Tagged: NGC 1275 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:47 pm on May 15, 2018 Permalink | Reply
    Tags: , , , CHFT, , NGC 1275, SITELLE   

    From Canada France Hawaii Telescope: “Revealing the complexity of the nebula in NGC 1275 with SITELLE” 

    CFHT icon
    From Canada France Hawaii Telescope

    Ph.D. student Marie-Lou Gendron-Marsolais and professor Julie Hlavacek-Larrondo, from the Centre for Research in Astrophysics of Québec (CRAQ) and Université de Montréal, have joined the developers of SITELLE, Laurent Drissen and Thomas Martin from Université Laval, an instrument recently installed at the Canada-France-Hawaii telescope (CFHT), to reveal for the first time the intricate dynamic around the galaxy NGC 1275.

    CFHT Sitelle optical imaging Fourier transform spectrometer (IFTS)

    Hα filamentary structure around NGC 1275.
    Credits: Marie-Lou Gendron-Marsolais, Julie Hlavacek-Larrondo, Laurent Drissen and Maxime Pivin-Lapointe.

    Located 250 million light-years from earth, NGC 1275 is not an ordinary galaxy. It sits in the middle of the Perseus galaxy cluster, a gigantic cluster harboring thousands of galaxies in the constellation of the same name.

    Perseus galaxy cluster by NASA/Chandra

    NGC 1275 rests at the center of a hot and diffuse intracluster gas with an average temperature of tens of millions of degrees. This complex gas constitutes a large part of the luminous mass of galaxy clusters: the hot gas tends to cool and fall toward the galaxy while the central supermassive black hole releases powerful jets of energetic particles. These particles blow gigantic bubbles in the hot gas, preventing it from cooling. Astronomers generally dectect these bubbles by using radio radio telescopes. However, a spectacular network of thin intricate filaments surrounding the galaxy NGC 1275 is visible at specific optical wavelengths. “These types of filaments are often visible around galaxies that lie in similar environments… but their origin is a real mystery”, declares Marie-Lou Gendron-Marsolais, lead author on the paper.

    Extending over 250 000 light-years, two to three times the size of our own galaxy, the link between this large network of filaments and its environment is still unclear. Two theories are in conflict: the filaments could be condensing from the hot intracluster gas and sinking toward the center of the galaxy or being lifted by the bubbles created by the central supermassive black hole jets and dragged outward of the galaxy.

    In order to unravel the mystery of these filaments, the international team of researchers have used SITELLE, an instrument at the Canada-France-Hawaii Telescope that enables the imaging of the galaxy at several different wavelengths at the same time. “This way we obtain a spectrum for each pixel of the image” declares Julie Hlavacek-Larrondo, a coauthor on the paper. “But what is unique about SITELLE is its incredibly large field of view, covering NGC 1275 in its entirety for the first time since the discovery of the nebula, 60 years ago”, she adds.

    Installed at the top of Maunakea on the Big Island in 2015, SITELLE is the product of the expertise of a team led by the astrophysicist Laurent Drissen as well as the optical design specialist Simon Thibault, both professors at the Faculté des sciences et de génie of Université Laval, as well as the knowledge of CFHT and the high-performance technology business ABB.

    With a spectra for each pixel, it is now possible to obtain the radial velocity of each filament, revealing their dynamics at an unprecedented level. “The motion of this network of filaments seems to be very complex. It does not seem to be from a uniform motion, rather it is extremely chaotic”, declares Marie-Lou Gendron-Marsolais. The team is convinced that such observations will help illuminate the mysteries of these structures. Understanding the filaments’ dynamics aids astronmers in the understanding the processes of heating and cooling of the gas feeding the central black hole. Unlocking this process constitutes a key element in the study of galaxy evolution and, at larger scale, of environment such as clusters of galaxies.

    The results from the work led by Marie-Lou Gendron-Marsolais, Julie Hlavacek-Larrondo, Laurent Drissen, Thomas Martin and their international collaborators are published in a letter of the latest issue of the Monthly Notices of the Royal Astronomical Society.

    See the full article here .

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The CFH observatory hosts a world-class, 3.6 meter optical/infrared telescope. The observatory is located atop the summit of Mauna Kea, a 4200 meter, dormant volcano located on the island of Hawaii. The CFH Telescope became operational in 1979. The mission of CFHT is to provide for its user community a versatile and state-of-the-art astronomical observing facility which is well matched to the scientific goals of that community and which fully exploits the potential of the Mauna Kea site.

    CFHT Telescope
    CFHT Interior

  • richardmitnick 11:37 am on April 6, 2018 Permalink | Reply
    Tags: A telescope bigger than our planet reveals minute details in a nearby galaxy's center, Astronomers zoom in on a supermassive black hole's jets, , , , , , NGC 1275, Perseus Cluster of galaxies,   

    From Astronomy Magazine: “Astronomers zoom in on a supermassive black hole’s jets” 

    Astronomy magazine

    Astronomy Magazine

    April 03, 2018
    Alison Klesman

    A telescope bigger than our planet reveals minute details in a nearby galaxy’s center.

    This image shows how radio telescopes on Earth and in space (left) combined to observe a very small region around another galaxy’s supermassive black hole (right). In this radio image, the black hole is located in the bright yellow-green spot at the top; a young jet about 3 light-years long shoots away from the black hole.
    Pier Raffaele Platania INAF/IRA (compilation); ASC Lebedev Institute (RadioAstron image).

    Supermassive black holes millions to billions of times the mass of our Sun lurk in the centers of most galaxies. In addition to feeding on nearby gas and dust, some of these black holes launch massive jets of plasma that not only dwarf the black hole itself, but the entire galaxy in which they reside. The mechanics of these jets, including exactly where they are launched, are still poorly understood, but observations such as those recently achieved using a combination of Earth- and space-based radio telescopes will help unlock the mysteries surrounding these dramatic structures.

    In a paper published April 2 in Nature Astronomy, an international collaboration of astronomers released observations of the jets around the black hole in the galaxy NGC 1275, located in the Perseus Cluster of galaxies about 230 million light-years away.

    Perseus galaxy cluster by NASA/Chandra

    Also known as Perseus A or 3C 84, this galaxy is classified as a Seyfert galaxy, meaning it has an “active” black hole currently feeding on surrounding material. That black hole is in the early stages of generating massive jets, which have now been mapped out via radio observations down to a mere 12 light-days from their origin around the black hole. That’s just a few hundred times the radius of the black hole itself (1 light-day is about 16 billion miles [26 billion kilometers]).

    What they found surprised them. “It turned out that the observed width of the jet was significantly wider than what was expected in the currently favored models where the jet is launched from the black hole’s ergosphere — an area of space right next to a spinning black hole where space itself is dragged to a circling motion around the hole,” said the paper’s lead author, Gabriele Giovannini from the Italian National Institute for Astrophysics, in a press release.

    Instead, “this may imply that at least the outer part of the jet is launched from the [much larger] accretion disk surrounding the black hole,” said said Tuomas Savolainen of Aalto University in Finland, and leader of the RadioAstron observing program that created the images.

    These images took advantage of a technique called very long baseline interferometry, or VLBI. This technique links several radio telescopes together to essentially observe with a “virtual” dish as large as the distance between the telescopes. In this case, the team linked Earth-based radio telescopes with a Russian 10-meter (33 feet) radio telescope orbiting Earth as part of the RadioAstron project, creating a virtual radio telescope with a diameter of over 200,000 miles (350,000 km), nearly the distance between Earth and the Moon.

    RadioAstron Spektr R satellite, the Astro Space Center of Lebedev Physical Institute in Moscow, Russia

    The larger the radio telescope, the finer the detail it can see, which allowed astronomers to zoom in on the region around NGC 1275’s black hole to look for clues about how and where the jet is generated. Their resulting images are 10 times better than anything previously achieved using ground-based radio telescopes alone. This same technique is the one utilized by the Event Horizon Telescope last year in an attempt to image the shadow of a supermassive black hole on its accretion disk; astronomers are eagerly awaiting the results, which should be announced later this year.

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array, Chile

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    NSF CfA Greenland telescope

    But while these observations don’t mesh exactly with expectations, “Our result does not yet falsify the current models where the jets are launched from the ergosphere, but it hopefully gives the theorists insight about the jet structure close to the launching site and clues how to develop the models,” said Savolainen.

    The galaxy NGC 1275 contains the black hole around which jets were imaged in this study. This composite image shows detail from optical, radio, and X-ray observations. The purple X-ray lobes near the brightest part of the galaxy contain the young radio jets from the black hole.
    NASA, ESA, NRAO and L. Frattare (STScI). Science Credit: X-ray: NASA/CXC/IoA/A.Fabian et al.; Radio: NRAO/VLA/G. Taylor; Optical: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Fabian (Institute of Astronomy, University of Cambridge, UK)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    NASA/Chandra Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    NASA/ESA Hubble Telescope

    This is only the second observation of jets at such close proximity to the black hole; the only other system that has been observed with this level of detail is M87. But the jets in M87 are much older, which, researchers say, may be why they look different from those in NGC 1275. “The jet in NGC 1275 was re-started just over a decade ago and is currently still forming, which provides a unique opportunity to follow the very early growth of a black hole jet,” said Masanori Nakamura from Academia Sinica in Taiwan, a co-author on the paper. “Continuing these observations will be very important.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: