Tagged: Neutrinos Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:25 pm on July 18, 2021 Permalink | Reply
    Tags: "Curiosity and technology drive quest to reveal fundamental secrets of the universe", A very specific particle called a J/psi might provide a clearer picture of what’s going on inside a proton’s gluonic field., , Argonne-driven technology is part of a broad initiative to answer fundamental questions about the birth of matter in the universe and the building blocks that hold it all together., , , , , , Computational Science, , , , , , Developing and fabricating detectors that search for signatures from the early universe or enhance our understanding of the most fundamental of particles., , Electron-Ion Collider (EIC) at DOE's Brookhaven National Laboratory (US) to be built inside the tunnel that currently houses the Relativistic Heavy Ion Collider [RHIC]., Exploring the hearts of protons and neutrons, , , Neutrinoless double beta decay can only happen if the neutrino is its own anti-particle., Neutrinos, , , , , QGP: Quark Guon PLasma, SLAC National Accelerator Laboratory(US), , ,   

    From DOE’s Argonne National Laboratory (US) : “Curiosity and technology drive quest to reveal fundamental secrets of the universe” 

    Argonne Lab

    From DOE’s Argonne National Laboratory (US)

    July 15, 2021
    John Spizzirri

    Argonne-driven technology is part of a broad initiative to answer fundamental questions about the birth of matter in the universe and the building blocks that hold it all together.

    Imagine the first of our species to lie beneath the glow of an evening sky. An enormous sense of awe, perhaps a little fear, fills them as they wonder at those seemingly infinite points of light and what they might mean. As humans, we evolved the capacity to ask big insightful questions about the world around us and worlds beyond us. We dare, even, to question our own origins.

    “The place of humans in the universe is important to understand,” said physicist and computational scientist Salman Habib. ​“Once you realize that there are billions of galaxies we can detect, each with many billions of stars, you understand the insignificance of being human in some sense. But at the same time, you appreciate being human a lot more.”

    The South Pole Telescope is part of a collaboration between Argonne and a number of national labs and universities to measure the CMB, considered the oldest light in the universe.

    The high altitude and extremely dry conditions of the South Pole keep water vapor from absorbing select light wavelengths.

    With no less a sense of wonder than most of us, Habib and colleagues at the U.S. Department of Energy’s (DOE) Argonne National Laboratory are actively researching these questions through an initiative that investigates the fundamental components of both particle physics and astrophysics.

    The breadth of Argonne’s research in these areas is mind-boggling. It takes us back to the very edge of time itself, to some infinitesimally small portion of a second after the Big Bang when random fluctuations in temperature and density arose, eventually forming the breeding grounds of galaxies and planets.

    It explores the heart of protons and neutrons to understand the most fundamental constructs of the visible universe, particles and energy once free in the early post-Big Bang universe, but later confined forever within a basic atomic structure as that universe began to cool.

    And it addresses slightly newer, more controversial questions about the nature of Dark Matter and Dark Energy, both of which play a dominant role in the makeup and dynamics of the universe but are little understood.
    _____________________________________________________________________________________
    Dark Energy Survey

    Dark Energy Camera [DECam] built at DOE’s Fermi National Accelerator Laboratory(US)

    NOIRLab National Optical Astronomy Observatory(US) Cerro Tololo Inter-American Observatory(CL) Victor M Blanco 4m Telescope which houses the Dark-Energy-Camera – DECam at Cerro Tololo, Chile at an altitude of 7200 feet.

    NOIRLab(US)NSF NOIRLab NOAO (US) Cerro Tololo Inter-American Observatory(CL) approximately 80 km to the East of La Serena, Chile, at an altitude of 2200 meters.

    Timeline of the Inflationary Universe WMAP

    The Dark Energy Survey (DES) is an international, collaborative effort to map hundreds of millions of galaxies, detect thousands of supernovae, and find patterns of cosmic structure that will reveal the nature of the mysterious dark energy that is accelerating the expansion of our Universe. DES began searching the Southern skies on August 31, 2013.

    According to Einstein’s theory of General Relativity, gravity should lead to a slowing of the cosmic expansion. Yet, in 1998, two teams of astronomers studying distant supernovae made the remarkable discovery that the expansion of the universe is speeding up. To explain cosmic acceleration, cosmologists are faced with two possibilities: either 70% of the universe exists in an exotic form, now called dark energy, that exhibits a gravitational force opposite to the attractive gravity of ordinary matter, or General Relativity must be replaced by a new theory of gravity on cosmic scales.

    DES is designed to probe the origin of the accelerating universe and help uncover the nature of dark energy by measuring the 14-billion-year history of cosmic expansion with high precision. More than 400 scientists from over 25 institutions in the United States, Spain, the United Kingdom, Brazil, Germany, Switzerland, and Australia are working on the project. The collaboration built and is using an extremely sensitive 570-Megapixel digital camera, DECam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, high in the Chilean Andes, to carry out the project.

    Over six years (2013-2019), the DES collaboration used 758 nights of observation to carry out a deep, wide-area survey to record information from 300 million galaxies that are billions of light-years from Earth. The survey imaged 5000 square degrees of the southern sky in five optical filters to obtain detailed information about each galaxy. A fraction of the survey time is used to observe smaller patches of sky roughly once a week to discover and study thousands of supernovae and other astrophysical transients.
    _____________________________________________________________________________________

    “And this world-class research we’re doing could not happen without advances in technology,” said Argonne Associate Laboratory Director Kawtar Hafidi, who helped define and merge the different aspects of the initiative.

    “We are developing and fabricating detectors that search for signatures from the early universe or enhance our understanding of the most fundamental of particles,” she added. ​“And because all of these detectors create big data that have to be analyzed, we are developing, among other things, artificial intelligence techniques to do that as well.”

    Decoding messages from the universe

    Fleshing out a theory of the universe on cosmic or subatomic scales requires a combination of observations, experiments, theories, simulations and analyses, which in turn requires access to the world’s most sophisticated telescopes, particle colliders, detectors and supercomputers.

    Argonne is uniquely suited to this mission, equipped as it is with many of those tools, the ability to manufacture others and collaborative privileges with other federal laboratories and leading research institutions to access other capabilities and expertise.

    As lead of the initiative’s cosmology component, Habib uses many of these tools in his quest to understand the origins of the universe and what makes it tick.

    And what better way to do that than to observe it, he said.

    “If you look at the universe as a laboratory, then obviously we should study it and try to figure out what it is telling us about foundational science,” noted Habib. ​“So, one part of what we are trying to do is build ever more sensitive probes to decipher what the universe is trying to tell us.”

    To date, Argonne is involved in several significant sky surveys, which use an array of observational platforms, like telescopes and satellites, to map different corners of the universe and collect information that furthers or rejects a specific theory.

    For example, the South Pole Telescope survey, a collaboration between Argonne and a number of national labs and universities, is measuring the cosmic microwave background (CMB) [above], considered the oldest light in the universe. Variations in CMB properties, such as temperature, signal the original fluctuations in density that ultimately led to all the visible structure in the universe.

    Additionally, the Dark Energy Spectroscopic Instrument and the forthcoming Vera C. Rubin Observatory are specially outfitted, ground-based telescopes designed to shed light on dark energy and dark matter, as well as the formation of luminous structure in the universe.

    DOE’s Lawrence Berkeley National Laboratory(US) DESI spectroscopic instrument on the Mayall 4-meter telescope at Kitt Peak National Observatory, in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Optical Astronomy Observatory (US) Mayall 4 m telescope at NSF NOIRLab NOAO Kitt Peak National Observatory (US) in the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers 55 mi west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Science Foundation(US) NSF (US) NOIRLab NOAO Kitt Peak National Observatory on the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft).

    National Science Foundation(US) NOIRLab (US) NOAO Kitt Peak National Observatory (US) on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    NSF (US) NOIRLab (US) NOAO (US) Vera C. Rubin Observatory [LSST] Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing NSF (US) NOIRLab (US) NOAO (US) Gemini South Telescope and NSF (US) NOIRLab (US) NOAO (US) Southern Astrophysical Research Telescope.

    Darker matters

    All the data sets derived from these observations are connected to the second component of Argonne’s cosmology push, which revolves around theory and modeling. Cosmologists combine observations, measurements and the prevailing laws of physics to form theories that resolve some of the mysteries of the universe.

    But the universe is complex, and it has an annoying tendency to throw a curve ball just when we thought we had a theory cinched. Discoveries within the past 100 years have revealed that the universe is both expanding and accelerating its expansion — realizations that came as separate but equal surprises.

    Saul Perlmutter (center) [The Supernova Cosmology Project] shared the 2006 Shaw Prize in Astronomy, the 2011 Nobel Prize in Physics, and the 2015 Breakthrough Prize in Fundamental Physics with Brian P. Schmidt (right) and Adam Riess (left) [The High-z Supernova Search Team] for providing evidence that the expansion of the universe is accelerating.

    “To say that we understand the universe would be incorrect. To say that we sort of understand it is fine,” exclaimed Habib. ​“We have a theory that describes what the universe is doing, but each time the universe surprises us, we have to add a new ingredient to that theory.”

    Modeling helps scientists get a clearer picture of whether and how those new ingredients will fit a theory. They make predictions for observations that have not yet been made, telling observers what new measurements to take.

    Habib’s group is applying this same sort of process to gain an ever-so-tentative grasp on the nature of dark energy and dark matter. While scientists can tell us that both exist, that they comprise about 68 and 26% of the universe, respectively, beyond that not much else is known.

    ______________________________________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970

    Dark Matter Research

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    _____________________________________________________________________________________

    Observations of cosmological structure — the distribution of galaxies and even of their shapes — provide clues about the nature of dark matter, which in turn feeds simple dark matter models and subsequent predictions. If observations, models and predictions aren’t in agreement, that tells scientists that there may be some missing ingredient in their description of dark matter.

    But there are also experiments that are looking for direct evidence of dark matter particles, which require highly sensitive detectors [above]. Argonne has initiated development of specialized superconducting detector technology for the detection of low-mass dark matter particles.

    This technology requires the ability to control properties of layered materials and adjust the temperature where the material transitions from finite to zero resistance, when it becomes a superconductor. And unlike other applications where scientists would like this temperature to be as high as possible — room temperature, for example — here, the transition needs to be very close to absolute zero.

    Habib refers to these dark matter detectors as traps, like those used for hunting — which, in essence, is what cosmologists are doing. Because it’s possible that dark matter doesn’t come in just one species, they need different types of traps.

    “It’s almost like you’re in a jungle in search of a certain animal, but you don’t quite know what it is — it could be a bird, a snake, a tiger — so you build different kinds of traps,” he said.

    Lab researchers are working on technologies to capture these elusive species through new classes of dark matter searches. Collaborating with other institutions, they are now designing and building a first set of pilot projects aimed at looking for dark matter candidates with low mass.

    Tuning in to the early universe

    Amy Bender is working on a different kind of detector — well, a lot of detectors — which are at the heart of a survey of the cosmic microwave background (CMB).

    “The CMB is radiation that has been around the universe for 13 billion years, and we’re directly measuring that,” said Bender, an assistant physicist at Argonne.

    The Argonne-developed detectors — all 16,000 of them — capture photons, or light particles, from that primordial sky through the aforementioned South Pole Telescope, to help answer questions about the early universe, fundamental physics and the formation of cosmic structures.

    Now, the CMB experimental effort is moving into a new phase, CMB-Stage 4 (CMB-S4).

    CMB-S4 is the next-generation ground-based cosmic microwave background experiment.With 21 telescopes at the South Pole and in the Chilean Atacama desert surveying the sky with 550,000 cryogenically-cooled superconducting detectors for 7 years, CMB-S4 will deliver transformative discoveries in fundamental physics, cosmology, astrophysics, and astronomy. CMB-S4 is supported by the Department of Energy Office of Science and the National Science Foundation.

    This larger project tackles even more complex topics like Inflationary Theory, which suggests that the universe expanded faster than the speed of light for a fraction of a second, shortly after the Big Bang.
    _____________________________________________________________________________________
    Inflation

    4
    Alan Guth, from Highland Park High School and M.I.T., who first proposed cosmic inflation
    [caption id="attachment_55311" align="alignnone" width="632"] HPHS Owls

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes
    Alex Mittelmann, Coldcreation


    Alan Guth’s notes:

    Alan Guth’s original notes on inflation


    _____________________________________________________________________________________

    3
    A section of a detector array with architecture suitable for future CMB experiments, such as the upcoming CMB-S4 project. Fabricated at Argonne’s Center for Nanoscale Materials, 16,000 of these detectors currently drive measurements collected from the South Pole Telescope. (Image by Argonne National Laboratory.)

    While the science is amazing, the technology to get us there is just as fascinating.

    Technically called transition edge sensing (TES) bolometers, the detectors on the telescope are made from superconducting materials fabricated at Argonne’s Center for Nanoscale Materials, a DOE Office of Science User Facility.

    Each of the 16,000 detectors acts as a combination of very sensitive thermometer and camera. As incoming radiation is absorbed on the surface of each detector, measurements are made by supercooling them to a fraction of a degree above absolute zero. (That’s over three times as cold as Antarctica’s lowest recorded temperature.)

    Changes in heat are measured and recorded as changes in electrical resistance and will help inform a map of the CMB’s intensity across the sky.

    CMB-S4 will focus on newer technology that will allow researchers to distinguish very specific patterns in light, or polarized light. In this case, they are looking for what Bender calls the Holy Grail of polarization, a pattern called B-modes.

    Capturing this signal from the early universe — one far fainter than the intensity signal — will help to either confirm or disprove a generic prediction of inflation.

    It will also require the addition of 500,000 detectors distributed among 21 telescopes in two distinct regions of the world, the South Pole and the Chilean desert. There, the high altitude and extremely dry conditions keep water vapor in the atmosphere from absorbing millimeter wavelength light, like that of the CMB.

    While previous experiments have touched on this polarization, the large number of new detectors will improve sensitivity to that polarization and grow our ability to capture it.

    “Literally, we have built these cameras completely from the ground up,” said Bender. ​“Our innovation is in how to make these stacks of superconducting materials work together within this detector, where you have to couple many complex factors and then actually read out the results with the TES. And that is where Argonne has contributed, hugely.”

    Down to the basics

    Argonne’s capabilities in detector technology don’t just stop at the edge of time, nor do the initiative’s investigations just look at the big picture.

    Most of the visible universe, including galaxies, stars, planets and people, are made up of protons and neutrons. Understanding the most fundamental components of those building blocks and how they interact to make atoms and molecules and just about everything else is the realm of physicists like Zein-Eddine Meziani.

    “From the perspective of the future of my field, this initiative is extremely important,” said Meziani, who leads Argonne’s Medium Energy Physics group. ​“It has given us the ability to actually explore new concepts, develop better understanding of the science and a pathway to enter into bigger collaborations and take some leadership.”

    Taking the lead of the initiative’s nuclear physics component, Meziani is steering Argonne toward a significant role in the development of the Electron-Ion Collider, a new U.S. Nuclear Physics Program facility slated for construction at DOE’s Brookhaven National Laboratory (US).

    Argonne’s primary interest in the collider is to elucidate the role that quarks, anti-quarks and gluons play in giving mass and a quantum angular momentum, called spin, to protons and neutrons — nucleons — the particles that comprise the nucleus of an atom.


    EIC Electron Animation, Inner Proton Motion.
    Electrons colliding with ions will exchange virtual photons with the nuclear particles to help scientists ​“see” inside the nuclear particles; the collisions will produce precision 3D snapshots of the internal arrangement of quarks and gluons within ordinary nuclear matter; like a combination CT/MRI scanner for atoms. (Image by Brookhaven National Laboratory.)

    While we once thought nucleons were the finite fundamental particles of an atom, the emergence of powerful particle colliders, like the Stanford Linear Accelerator Center at Stanford University and the former Tevatron at DOE’s Fermilab, proved otherwise.

    It turns out that quarks and gluons were independent of nucleons in the extreme energy densities of the early universe; as the universe expanded and cooled, they transformed into ordinary matter.

    “There was a time when quarks and gluons were free in a big soup, if you will, but we have never seen them free,” explained Meziani. ​“So, we are trying to understand how the universe captured all of this energy that was there and put it into confined systems, like these droplets we call protons and neutrons.”

    Some of that energy is tied up in gluons, which, despite the fact that they have no mass, confer the majority of mass to a proton. So, Meziani is hoping that the Electron-Ion Collider will allow science to explore — among other properties — the origins of mass in the universe through a detailed exploration of gluons.

    And just as Amy Bender is looking for the B-modes polarization in the CMB, Meziani and other researchers are hoping to use a very specific particle called a J/psi to provide a clearer picture of what’s going on inside a proton’s gluonic field.

    But producing and detecting the J/psi particle within the collider — while ensuring that the proton target doesn’t break apart — is a tricky enterprise, which requires new technologies. Again, Argonne is positioning itself at the forefront of this endeavor.

    “We are working on the conceptual designs of technologies that will be extremely important for the detection of these types of particles, as well as for testing concepts for other science that will be conducted at the Electron-Ion Collider,” said Meziani.

    Argonne also is producing detector and related technologies in its quest for a phenomenon called neutrinoless double beta decay. A neutrino is one of the particles emitted during the process of neutron radioactive beta decay and serves as a small but mighty connection between particle physics and astrophysics.

    “Neutrinoless double beta decay can only happen if the neutrino is its own anti-particle,” said Hafidi. ​“If the existence of these very rare decays is confirmed, it would have important consequences in understanding why there is more matter than antimatter in the universe.”

    Argonne scientists from different areas of the lab are working on the Neutrino Experiment with Xenon Time Projection Chamber (NEXT) collaboration to design and prototype key systems for the collaborative’s next big experiment. This includes developing a one-of-a-kind test facility and an R&D program for new, specialized detector systems.

    “We are really working on dramatic new ideas,” said Meziani. ​“We are investing in certain technologies to produce some proof of principle that they will be the ones to pursue later, that the technology breakthroughs that will take us to the highest sensitivity detection of this process will be driven by Argonne.”

    The tools of detection

    Ultimately, fundamental science is science derived from human curiosity. And while we may not always see the reason for pursuing it, more often than not, fundamental science produces results that benefit all of us. Sometimes it’s a gratifying answer to an age-old question, other times it’s a technological breakthrough intended for one science that proves useful in a host of other applications.

    Through their various efforts, Argonne scientists are aiming for both outcomes. But it will take more than curiosity and brain power to solve the questions they are asking. It will take our skills at toolmaking, like the telescopes that peer deep into the heavens and the detectors that capture hints of the earliest light or the most elusive of particles.

    We will need to employ the ultrafast computing power of new supercomputers. Argonne’s forthcoming Aurora exascale machine will analyze mountains of data for help in creating massive models that simulate the dynamics of the universe or subatomic world, which, in turn, might guide new experiments — or introduce new questions.

    Depiction of ANL ALCF Cray Intel SC18 Shasta Aurora exascale supercomputer, to be built at DOE’s Argonne National Laboratory.

    And we will apply artificial intelligence to recognize patterns in complex observations — on the subatomic and cosmic scales — far more quickly than the human eye can, or use it to optimize machinery and experiments for greater efficiency and faster results.

    “I think we have been given the flexibility to explore new technologies that will allow us to answer the big questions,” said Bender. ​“What we’re developing is so cutting edge, you never know where it will show up in everyday life.”

    Funding for research mentioned in this article was provided by Argonne Laboratory Directed Research and Development; Argonne program development; DOE Office of High Energy Physics: Cosmic Frontier, South Pole Telescope-3G project, Detector R&D; and DOE Office of Nuclear Physics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Argonne National Laboratory (US) seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.
    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 2:39 pm on July 18, 2021 Permalink | Reply
    Tags: "Fermilab and INFN sign 3 arrangements", , , , FNAL Short Baseline Neutrino Program, Neutrinos, , , ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “Fermilab and INFN sign 3 arrangements” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    July 16, 2021
    Hema Ramamoorthi

    [I do not usually cover these sort of contractual news articles; but this is a big deal for both parties. This actually strengthens the U.S. position in Particle Physics and High Energy Physics which we ceded to Europe when our idiots cancelled the Superconducting Super Collider and allowed the finding of the Higgs Boson at the Large Hdron Collider, which was at 14TeV about one third the power the SSC would have achieved. Our overall position in HEP is still strong but under the radar: many of the superconducting magnets for the LHC are built at DOE’s Brookhaven, Lawrence Berkeley, and Fermi National Laboratories. Also, there are 600 scentists on the Atlas(CH) project at Brookhaven and 1,000 scientists on CMS[CH] at Fermilab, and there are other noted scientists in our universities who do work at and for the LHC. Sorry, for the editorial, but as a science commmunicator, keeping the record straight is my job. I do not write any science as I am not any kind of scientist, but I take science news to over 1,000 readers all over the world and I want to do a good and complete job. Keeping the U.S. position in the Basic and Applied Sciences portrayed accurately is my chosen field.

    This is a great contractual agreement for both parties, on a par with all of the contractual agreements surrounding the development of SKA and SARAO. ]

    1
    Fermilab Director Nigel Lockyer (left) and INFN President Antonio Zoccoli sign the three arrangements. Credit: Fermilab and INFN.

    The U.S. Department of Energy’s Fermi National Accelerator Laboratory signed three international arrangements in June with the National Institute for Nuclear Physics, known as INFN, the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them. Under the supervision of the MIUR – Italian Ministry of Education, University and Research (IT), the INFN conducts theoretical and experimental research in the fields of subnuclear, nuclear, particle and astroparticle physics.

    The three arrangements include:

    a Multi-Institutional Memorandum of Understanding for the FNAL Short Baseline Neutrino Program hosted at Fermilab;
    a Project Planning Document for the PIP-II particle accelerator project at Fermilab; and
    a legally binding agreement with INFN -National Laboratory of Frascati [Laboratori Nazionali di Frascati] (IT) to develop a superconducting undulator for the EuPRAXIA advanced accelerator project.

    “Our INFN partners are internationally recognized leaders in advanced particle accelerator technologies in general and superconducting radio-frequency technology in particular,” said PIP-II Project Director Lia Merminga. “Fermilab and the PIP-II project are grateful to INFN for their expertise and contributions in building a state-of-the-art particle accelerator powering the world’s most intense neutrino beam. These contributions will help drive groundbreaking discoveries in particle physics for the next 50 years.”

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.

    FNAL Icon

     
  • richardmitnick 10:44 am on July 5, 2021 Permalink | Reply
    Tags: "Chasing cosmic particles with radio antennas in Greenland's ice", , , Neutrinos, The Radio Neutrino Observatory - RNO-G   

    From DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE) : “Chasing cosmic particles with radio antennas in Greenland’s ice” 

    From DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE)

    2021/07/02

    Pioneering project listens for neutrinos from outer space.

    1
    The first station of the network on the Greenland ice. The red flags mark underground antennas powered by solar panels (dark rectangles). Credit: Cosmin Deaconu/Radio Neutrino Observatory in Greenland-U Chicago (US). The Radio Neutrino Observatory – RNO-G – will be built in Greenland to search for ultra-high energy neutrinos.

    2
    The phased array as deployed in the Askaryan Radio Array-U Wisconsin (US) at the South Pole. The main trigger of RNO-G will be an updated version of this technology.

    3
    The Aero6gen unit was temporarily put up on a 20′ tower; afterward the turbine was to be retrograded, and the tower sections were reused on the Whisper turbine at Site 2. In the foreground on the box is a 235W PV panel, not yet mounted.

    3
    The layout for each of the 37 planned clusters.

    4
    A schematic diagram of how ARA detects and analyzes neutrino interactions.

    Briefly, ARA uses radio antennas to detect nanosecond-long radio pulses from high-energy neutrinos. These are believed to be produced by ultra-high-energy cosmic rays, perhaps emanating from supermassive black holes in nearby active galactic nuclei. ARA uses the Askaryan effect, whereby charged particles can similarly emit radio or microwave radiation. By comparison, IceCube utilizes the Cherenkov effect, where charged particles moving faster than the phase velocity of light can emit light radiation. Because ARA looks for high-energy particles, a larger array is required than that of IceCube.

    6
    Schematic layout of the equipment.

    5
    The revised site layout for the Askaryan Radio Array (ARA) for the 2011-12 season.

    In Greenland’s ice sheet, a set-up unlike any other in the world will in future be listening for extremely elusive particles from space. The Radio Neutrino Observatory in Greenland-U Chicago (US) is a pioneering project that relies on a new method of detecting very high-energy cosmic neutrinos using radio antennas. The scientists involved in the project have now installed the first antenna stations in the ice at the Summit Station research facility.

    “Neutrinos are extremely elusive, ultralight elementary particles,” explains DESY physicist Anna Nelles, one of the initiators of the project. “These particles are created in vast quantities in space, especially during high-energy processes like those that take place in cosmic particle accelerators. But they are very difficult to detect because they hardly ever react with matter. From the Sun alone, some 60 billion neutrinos pass completely unnoticed through a speck on Earth the size of a fingernail – every second.”

    The ultralight elementary particles are sometimes called ghost particles because they have no trouble passing straight through walls, the Earth and even entire stars. “This property makes them interesting for astrophysicists because they can be used to look inside exploding stars or merging neutron stars, for example, from which no light can reach us,” explains Nelles, who is also a professor at Friedrich–Alexander University Erlangen–Nürnberg [Friedrich-Alexander-Universität Erlangen-Nürnberg] (DE). “Also, neutrinos can be used to track down natural cosmic particle accelerators.”

    On extremely rare occasions, however, a neutrino does in fact interact with matter when it happens to bump into an atom as it passes through – the Greenland ice sheet, for instance. Such rare collisions produce an avalanche of secondary particles, many of which are electrically charged, unlike the neutrino. This cascade of charged secondary particles emits radio waves that can be picked up by the antennas.

    7
    Summit Station is situated in the middle of the ice sheet. Credit: Cosmin Deaconu/ RNO-G.

    “The advantage of using radio waves is that ice is fairly transparent to them,” explains DESY physicist Christoph Welling, who is currently in Greenland as part of the project team. “This means we can detect radio signals over distances of several kilometres.” The greater the range, the larger the volume of ice that can be monitored, and the greater the chances of detecting one of the rare neutrino collisions. “RNO-G will be the first large-scale radio neutrino detector,” says Welling. Previous smaller-scale experiments had already shown that it is possible to use radio waves to detect cosmic particles.

    Overall, the scientists plan to install 35 antenna stations, each 1.25 kilometres apart, around Summit Station on the mighty Greenland ice sheet. Nevertheless, it could take months or even years before the observatory records a signal. “Neutrino research calls for patience,” explains Nelles. “Capturing high-energy neutrinos is an incredibly rare event. But when you do catch one, it reveals an enormous amount of information.” The researchers are also already thinking ahead to the next step, because the next radio neutrino observatory is planned literally at the other end of the world, augmenting the IceCube neutrino telescope at the South Pole.

    IceCube neutrino detector interior.


    There, an international consortium, which includes DESY, has installed some 5000 sensitive optical detectors to depths of several kilometres inside the Antarctic ice. These photomultipliers are looking out for a faint bluish flash of light, which is also produced by the energetic secondary particles from one of the rare neutrino collisions as they race through the subterranean ice. Using this technique, IceCube has already succeeded in making some spectacular observations of neutrinos arriving from the vicinity of a gigantic black hole or shattered star, for example. The visible light from the subterranean secondary particles cannot be tracked over such long distances in the ice as radio waves. However, the photomultipliers make up for this by responding to cosmic neutrinos with lower energies.

    “The higher the energy, the rarer the neutrinos become, which means you need larger detectors,” explains DESY scientist Ilse Plaisier, who also is part of the installation team in Greenland. “The two systems complement each other perfectly: IceCube’s grid of optical detectors registers neutrinos with energies of up to about a quadrillion electron volts, while the array of radio antennas will be sensitive to energies from about ten quadrillion to a hundred quintillion electron volts.” The electron volt is widely used as an energy unit in particle physics. One hundred quintillion electron volts roughly corresponds to the energy of a squash ball travelling at 130 kilometres per hour – but in the case of a neutrino, that energy is concentrated in a single subatomic particle that is a quintillion quintillion times lighter than a squash ball.

    The first stage of installing the equipment for this pioneering project is due to continue until mid-August, and carrying this out during the pandemic has been a huge logistical challenge: teams have had to spend several weeks quarantined at various locations before arriving at Summit Station, to avoid introducing the coronavirus. RNO-G will remain on the Greenland ice sheet for at least five years. The individual stations can operate autonomously, powered by solar panels, and will be connected with each other via a wireless network. Based on their operation, radio antennas are planned to be added to the IceCube neutrino detector at the South Pole as part of its Generation 2 expansion (IceCube-Gen2).

    “Detecting radio signals from high-energy neutrinos is a very promising way of significantly increasing the energy range we can access, and thus opening this new window to the cosmos even further,” says Christian Stegmann, DESY’s Director of Astroparticle Physics. “We are pursuing this path via initial test structures in Greenland, and will then go on to install radio antennas at the South Pole as part of IceCube-Gen2.”

    More than a dozen partners are involved in the pioneering project, including the University of Chicago (US), Free University of Amsterdam [Vrije Universiteit Amsterdam] (NL), Pennsylvania State University (US), the University of Wisconsin-Madison (US) and DESY.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    desi

    DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron] (DE) is one of the world’s leading accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety – from the interactions of tiny elementary particles and the behaviour of new types of nanomaterials to biomolecular processes that are essential to life. The accelerators and detectors that DESY develops and builds are unique research tools. The facilities generate the world’s most intense X-ray light, accelerate particles to record energies and open completely new windows onto the universe. 
That makes DESY not only a magnet for more than 3000 guest researchers from over 40 countries every year, but also a coveted partner for national and international cooperations. Committed young researchers find an exciting interdisciplinary setting at DESY. The research centre offers specialized training for a large number of professions. DESY cooperates with industry and business to promote new technologies that will benefit society and encourage innovations. This also benefits the metropolitan regions of the two DESY locations, Hamburg and Zeuthen near Berlin.

     
  • richardmitnick 10:49 pm on June 30, 2021 Permalink | Reply
    Tags: "DUNE prototype detector ArgonCube crosses the globe", , , DUNE/LBNF experiment (US), Neutrinos   

    From DOE’s Fermi National Accelerator Laboratory (US) : “DUNE prototype detector ArgonCube crosses the globe” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    June 30, 2021
    Brianna Barbu

    1
    The ArgonCube collaboration assembled the first of four prototype neutrino detector modules for the DUNE near detector at the University of Bern [Universität Bern](CH). The module now is on its way to Fermilab for testing with a neutrino beam. Photo: Igor Kreslo.

    Imagine you’re standing at one end of a long, windowless hallway. The only light is the beam from a flashlight in your hand, illuminating the length of the hall. In the beam’s path are two clear boxes: one right in front of you, the other at the far end of the hall. Because the beam’s light spreads out as it travels, the far box is lit only dimly, while the near box is blindingly bright.

    That, in a nutshell, is the difference between what the near and far detectors will see when the international Fermi National Accelerator Laboratory DUNE/LBNF experiment (US) hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory starts up later this decade.

    But instead of light from a flashlight, DUNE will send a particle beam through multiple detectors to tackle big mysteries in particle physics — including why the universe evolved the way it did.

    At the heart of the experiment are elusive particles called neutrinos, which scientists will study using detectors underground at Fermilab in Illinois and the Sanford Underground Research Facility, or SURF, in South Dakota.

    The far detector, 800 miles (1,300 kilometers) from the source of the beam, will detect about one neutrino for every four hours of data collection — the dim light in our analogy. The near detector, about 2,000 feet (600 meters) from the beam source, will be bombarded with neutrinos, capturing about a dozen every second.

    For the past six years, an international collaboration of more than 100 scientists and engineers from 31 institutions has been working on ArgonCube, a new type of detector that will make sure the near detector can successfully see all of the neutrino interactions clearly without “glare” from overlapping signals. A prototype is now traveling from the University of Bern in Switzerland to Fermilab for testing with the lab’s neutrino beams.

    “A lot of people were involved, including a lot of students and postdocs,” said Michele Weber, who leads the team at Bern working on the near detector. “We’re all very excited about creating something new.”

    Creating something new

    Neutrinos come in three varieties, called flavors. But thanks to some of nature’s quantum shenanigans known as oscillation, they change flavor as they travel. DUNE’s near and far detectors will record what flavors make up the beam at the beginning and end of their journey from Fermilab to SURF. Looking at how the neutrinos change during their journey will give scientists clues about the fundamental building blocks of matter and how the universe began.

    Two main innovations will help ArgonCube sort out a deluge of neutrino data. The first is a pixelated charge readout, which adds a third dimension to data collection. Current state-of-the art detectors such as ProtoDUNE, an enormous testbed for DUNE’s far detectors, use wires for charge collection.

    While powerful, these systems only create a 3D view of the particle interactions by overlaying several 2D images. In the flurry of chaotic and overlapping particle interactions in the near detector, the extra spatial dimension provided by ArgonCube will make it easier for scientists to tell apart near-simultaneous neutrino events. Each ArgonCube protype module has around 80,000 pixels.

    The other ArgonCube feature that will help scientists distinguish between multiple neutrino interactions in the near detector is modularity. The final detector will be made up of 35 independent ArgonCube modules sharing a single cryogenic argon bath.

    “Having multiple search volumes helps us see each single interaction separately,” said Weber. Despite the name, ArgonCube modules are actually rectangular. The prototype currently en route to Fermilab is nearly 6 feet tall with a 2.5-by-2.5-foot base (1.8 meters tall with about a three-quarter meter square base). The final modules for the near detector will be about twice as tall and 5 times bigger in volume.

    2
    Four ArgonCube prototype modules will undergo testing with the NuMI neutrino beam, powered by Fermilab’s Main Injector accelerator. Each module is nearly 6 feet tall. The DUNE near detector will feature 35 modules, each one five times larger in volume than a prototype module. Illustration: Gary Smith, Fermilab.

    The modular setup means the charge and light produced by neutrino interactions won’t have as far to travel to reach the electronics that record them. Hence, the electric field voltage doesn’t have to be as high to draw those particles along. This reduces the demand on high-voltage supply and makes the detector easier and safer to operate.

    ArgonCube also includes an improved light detection system, important for reconstructing the timing of particle interactions. It also features a new, more compact way of producing the internal electric field.

    Building blocks

    Researchers tested the first complete ArgonCube prototype module at Bern earlier this year. The prototype module successfully picked up particle tracks from cosmic ray muons, high-energy particles produced in Earth’s atmosphere. With that basic functionality confirmed, the team used cosmic rays to check that the detector’s charge and light detection systems work together to capture 3D particle trajectories.

    That same module, with its accompanying cryogenic system, is now on its journey by truck and ship to Fermilab for the next phase of testing. This will be the first large DUNE prototype module to arrive at Fermilab. A second module will come in early fall, followed by two more by the end of 2021.

    The Fermilab team plans to first test two ArgonCube modules side-by-side above ground at the Liquid Argon Test Facility. There they will check the cryogenic systems and do initial troubleshooting related to connecting the modules and combining their signals. Then the team needs to work out how best to install and operate modules in tandem. The next step is to take all four modules 300 feet (100 meters) underground to the refurbished MINOS hall for testing with a neutrino beam powered by Fermilab’s Main Injector accelerator, known as the NuMI beamline.

    “From one module to two and two to four is a big change,” said Ting Miao, the Fermilab scientist serving as project manager for the prototype installation and testing. “We want to flesh out all the details of operation and installation before we do things underground.”

    The NuMI beam will simulate the intense onslaught of neutrinos that the DUNE near detector will see and make sure the detector can disentangle overlapping signals. Beginning next year, these tests will look at every aspect of the detection process — including beam timing, event selection and data processing. The results will confirm whether the modular approach works. They will help the ArgonCube team prepare for analyzing the data from the 35 full-size modules that will go into the final DUNE near detector.

    Though it will be a few years before the ArgonCube technology fulfills its DUNE destiny, it’s already made remarkable strides since the idea for a next-generation modular neutrino detector was first sketched out during a coffee hour at Bern in 2014.

    “The most amazing thing is to see the journey of this detector, coming together from first ideas on a blackboard and pieces of paper to recording particle events,” said Weber.

    The international Deep Underground Neutrino Experiment hosted by Fermilab is supported by the DOE Office of Science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Don Lincoln.[/caption]

    FNAL Icon

     
  • richardmitnick 9:31 am on June 29, 2021 Permalink | Reply
    Tags: "Rigging underground construction", , , Neutrinos,   

    From Sanford Underground Research Facility-SURF: “Rigging underground construction” 

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA.

    From Sanford Underground Research Facility-SURF

    Homestake Mining, Lead, South Dakota, USA.

    June 28, 2021
    Constance Walter

    As excavation begins for DUNE, SURF and TMI plan critical lifts to rig and lower huge pieces of equipment a mile underground.

    1
    Jeff Barthel, rigging master at Sanford Underground Research Facility, watches as a slung load is moved into position in the Ross Headframe. Photo by Adam Gomez.

    The Sanford Underground Research Facility (SURF) shaft crews move equipment, materials and people underground every day inside a 13- by 5-foot cage. But what happens if something doesn’t fit in the cage? For example, how would you land a 20,000-pound, 30-foot-long raisebore drill deep underground?

    Careful planning, a bit of math, practice and communication—from beginning to end.

    “Our shaft is our lifeline, and we’ve got to protect our people and infrastructure,” said Wendy Straub, director of hoists and shafts. “So, communication is key.”

    Often, large equipment must be taken apart and slung under the cage, then slowly lowered to the level on which it will be used. The raisebore drill was moved to the 3650 Level in May to drill a 1200-foot ventilation shaft for the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment (LBNF/DUNE). The drill is just one of approximately 30 pieces of equipment that will need to be disassembled and transported underground for the excavation work.

    Moving these pieces is a collaborative effort between SURF and Thyssen Mining Inc (TMI), the contractor executing the excavation for the DUNE project. TMI disassembled the drill into four pieces, then delivered it to the Ross cage, where SURF crews slung it under the cage—one piece at a time—and conveyed each separately underground.

    “It’s our equipment so we bring it to the cage, but we don’t load it—the SURF team does that,” said Andrew Hardy, a TMI project manager working on the excavation. “They deliver it to the level where work is being done and we reassemble it there. And “SURF is fantastic to work with. We all talk the same language.”

    But we’re getting ahead of ourselves.

    Planning a critical lift

    “We always prefer to convey everything inside the cage because there is a much lower risk,” said Will McElroy, operations division director at SURF. “So there’s a lot of planning that goes into slinging—or tethering—loads under the cage.”

    The process of moving a large piece of equipment under the cage begins with a build plan. Developed by TMI, the build plan includes an engineering analysis, safety hazard analysis and a lift plan. Simultaneously, SURF develops its own critical lift plan, both of which are sent to a third-party engineering company for analysis. If no issues are found, the plan is approved, a permit is issued and a test lift is scheduled.

    2
    Approximately 30 pieces of equipment will need to be disassembled and transported underground for the excavation work. Photo by Matthew Kapust.

    A little bit of math

    Jeff Barthel is a rigging master at SURF. When developing a critical lift plan, he looks at several things.

    “Before you do anything, you have to do the math,” he said. “When you are slinging a load, you’re talking about triangles, basically trigonometry, which we use to determine load angle factors and sideloading on the cage.”

    He also takes into consideration the center of gravity of the object, as well as its dimensions—weight and size—and the load limits of the cage. TMI and SURF look at drawings and computer models that demonstrate how a piece of equipment will be loaded under the cage, moved down the shaft and extracted from the shaft.

    “The size of the object limits what can fit in a shaft—and also be extracted from the shaft. So the first obvious consideration is the physical size and weight of the object,” Barthel said. “The other limitation is how much load we can put on the cage when feeding the object into the shaft or extracting it.”

    The object being moved is placed into a specially designed sling, using pick points, or anchors to hold the object in place, then secured to pick points on the cage. The object is pulled into the shaft by the hoists, which pulls the cage toward the shaft and shaft guides, creating additional force on the cage.

    2
    A large piece of equipment is rigged under the cage in the Ross Shaft. Photo by Adam Gomez

    “You have to calculate all of this and support it on your lift plan. The math is key to figuring out the dynamic forces we put on the cage, the sling and the object,” Barthel said. “And you have to do it all in a safe manner so you’re not overloading the cage, you’re not overloading the guides, and you’re not overloading the slings.”

    Practice makes perfect

    Every slung load is different, so every plan is different. That’s why a test run, or test pick, is critical. The equipment is taken to the Ross Crusher Room where it is connected to an overhead hoist. The equipment is connected to the hoist using the same slings that will be used in the actual move then raised as if it is under the cage. As it moves, teams from TMI and SURF examine every move, looking for issues that may require adjustments to the plan.

    Is the rigging (sling) the right one? Does the object hang right? How does it move as it is raised from a horizontal into a vertical position? If any concerns are raised, the plan is adjusted and sent through the review process again.

    “We need to make sure everything is exactly right,” said Mike Johnson, Ross Shaft superintendent. “When we get that load underneath the cage, we have no room for error. It’s got to be perfect so we can make sure our people are safe and no damage is done.”

    When everyone is satisfied, the critical lift can move forward.

    4
    A load is rigged in the Ross Shaft, awaiting transport to the underground. Photo by Adam Gomez.

    Collaboration and communication

    From start to finish, collaboration and communication are critical. TMI and SURF work hand in glove to ensure everyone understands the plan and the process.

    Several people take part in the lift, but at every juncture, there is one person who calls the shots. They communicate with shaft operators, the people loading and extracting the slung load, equipment operators and the hoist operator.

    “The lead person is the eyes and ears for the hoist operator who is in a completely different building and can’t see anything,” Straub said. “He’s watching out for everyone’s safety.”

    Loading and unloading are the most critical times of the move, Straub added. “When loading the equipment, we go from a horizontal to a vertical position. The reverse happens when unloading. All of that adds stress to the cage,” Straub said. “Once under the cage, things are fairly uneventful because the equipment is vertical.”

    When the slung load is safely delivered underground, the equipment is extracted from the shaft then turned over to TMI for reassembly. Later, the two teams come together to discuss the lift and lessons learned.

    “We’re always reviewing and assessing and thinking about what worked well. You look at safety, you look at efficiency, you look at what worked and didn’t work,” said Straub.

    “It’s a big team effort,” Johnson said. “Everyone works so well together. One person couldn’t handle it. You need people helping and working together to make things run smooth.” After a pause, Johnson added, “It makes my job easier, you know. It takes the stress out of my mind.”

    5
    Barthel laughs with a coworker after the team successfully completed a lift in the Ross Headframe. Photo by Adam Gomez.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

    The U Washington Large Underground Xenon at SURF, Lead, SD, USA dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF ,Lead, South Dakota, USA.

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard..

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

     
  • richardmitnick 9:08 am on June 2, 2021 Permalink | Reply
    Tags: "ICARUS gets ready to fly", , , Neutrinos, ,   

    From DOE’s Fermi National Accelerator Laboratory (US) : “ICARUS gets ready to fly” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    May 20, 2021
    Brianna Barbu

    The ICARUS detector [image below], part of Fermilab’s Short-Baseline Neutrino Program, will officially start its hunt for elusive sterile neutrinos this fall. The international collaboration led by Nobel laureate Carlo Rubbia successfully brought the detector online and is now collecting test data and making final improvements.

    When teams began cooling the ICARUS neutrino detector and filling it with 760 tons of liquid argon in early 2020, few people knew how much the world would change in the two months that the fill would take.

    “In an ideal world, as soon as the filling is complete and the cryogenic plant is stabilized, then we can activate the detector and start looking for particle tracks basically immediately,” said Angela Fava, the ICARUS commissioning coordinator and deputy technical coordinator.

    The ICARUS collaboration includes more than 150 scientists from 23 institutions in Italy, Mexico, Switzerland and the United States. The detector is located at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located near Chicago.

    Restrictions on international travel instituted last year due to the COVID-19 pandemic meant that many European experts could not come to Fermilab in person as planned to start up the detector components. Researchers restructured their plans to get the detector up and running with much of the team working remotely.

    The collaboration successfully activated ICARUS in August 2020 and recorded the first particle tracks — from cosmic rays, particles from space that constantly bombard Earth — soon after. Exposed to both the Booster and NuMI neutrino beams at Fermilab, the ICARUS detector has recorded the first muon and electron neutrinos, demonstrating the high-level detection capabilities of the liquid-argon time projection chamber technique.

    1
    The ICARUS detector has been collecting test data in preparation for the official start of the physics data collection later this year. The left panel shows an electron neutrino interaction that produced a proton (top track) and an electron, which produced an electromagnetic shower with photons and electrons (bottom tracks). The right panel shows a muon neutrino interaction that produced a proton (short track, top left) and a muon (3.4-meter-long track); a cosmic-ray track independent of the muon neutrino interaction is also visible in the lower half of the image. In both panels, the neutrino beam came from left. Image credit: ICARUS collaboration.

    The team is now working on finishing the system to identify and exclude cosmic-ray signals. They are also making final improvements to the neutrino data acquisition system to prepare the detector for its official first data collection run in fall 2021.

    “We’ve been able to do our jobs with most people not moving from their local offices or homes,” said Claudio Montanari, the ICARUS technical coordinator. “Everybody contributed to the best of their ability, which was key to the success of the operation.”

    Searching for stealth particles

    When the ICARUS detector was originally assembled at the laboratories of the Italian National Institute for Nuclear Physics in Pavia in the early 2000s, it was the largest liquid-argon detector in the world. It began its neutrino-hunting career at Italy’s Gran Sasso National Laboratory in an experiment that ran between 2010 and 2014.

    After the experiment in Italy concluded, scientists realized that the ICARUS detector could have a second life at Fermilab, searching for a new type of particle: the sterile neutrino.

    2
    ICARUS will be the largest and farthest detector in the Short-Baseline Neutrino program at Fermilab, which examines neutrino oscillations over short distances and looks for hints of elusive sterile neutrinos. Graphic credit: Fermilab.

    Scientists already know of three types, or flavors, of neutrinos. The particles are notoriously hard to catch because they interact through only two of the four known forces: gravity and the weak force. But this potential fourth kind of neutrino — if it exists — may not even be sensitive to weak interaction, making detection even trickier. Scientists will have to look carefully at how the different flavors of neutrinos morph into one another, a phenomenon called neutrino oscillation.

    Previous experiments saw hints of unusual oscillation, but researchers need more data to determine if sterile neutrinos were responsible for the results. Finding evidence of sterile neutrinos would advance scientists’ knowledge about physics beyond the Standard Model, the theoretical framework that has accurately described almost all known subatomic particle interactions for over 50 years.

    To make this happen the ICARUS detector’s two school-bus-size modules were shipped from Gran Sasso to CERN for upgrades. In 2017, the two modules travelled by truck and ship to Fermilab, where they will soon begin hunting for ultra-elusive sterile neutrinos.

    ICARUS is one of three particle detectors at Fermilab that will look for indicators of sterile neutrinos as part of the laboratory’s Short-Baseline Neutrino Program, along with the Short-Baseline Neutrino Detector and MicroBooNE. Together, the detectors will analyze how neutrinos oscillate as they travel along their straight beamline path through these detectors.

    SBND, situated 110 meters from the start of the neutrino beamline, will provide a snapshot of the neutrinos right after they’re produced. MicroBooNE, located 360 meters farther down the beamline, will provide a second look at the beam composition. The final checkpoint is ICARUS, 600 meters from the start of the beamline. If ICARUS picks up fewer muon neutrinos and more electron neutrinos than expected based on data from SBND and MicroBooNE, “the combination of these things would be the unique signature of the oscillation and therefore of the existence of the sterile neutrino,” said Fava.

    Preflight checklist

    Getting ICARUS ready to search for signs of sterile neutrinos at Fermilab has involved three distinct stages: installation, activation and commissioning. Installation started in 2018 and included set up of the vacuum chambers, insulation, cryostats and various electronics used to power the detector and collect data.

    After electrical safety checks, making sure the vacuum chambers were leak-free and testing the components’ basic functionality, it was time to get the detector ready for activation. Technicians started up the filters, pumps and condensers for the cryogenic systems and began adding the liquid argon in early 2020.

    Collaborators from European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] and INFN with historical knowledge of the detector were present for the beginning of the fill. They left with plans to return to Fermilab in April 2020 to help wrap up the process and see the detector through to activation. While they were unable to return in person, the group successfully coordinated with the Fermilab branch of the team to complete the activation last summer.

    “We were lucky enough not to have any showstoppers,” said Montanari.

    With the detector activated, the international collaboration turned its attention to debugging and optimizing the equipment. For example: To capture good neutrino data, the liquid argon inside the detector has to be ultra-pure. When researchers found the argon was less pure than expected, they traced the problem back to slow gaseous argon movement through the recirculation system and took steps to address the flow.

    “That’s the life of a physicist — dealing with problems and finding a way of overcoming them,“ Fava said.

    Since last year, ICARUS has been in the commissioning phase. The team is testing all of the subsystems to make sure they are in sync and calibrated to collect quality data with minimal noise before the start of official data collection.

    Getting ready for takeoff

    ICARUS began taking test data from the booster neutrino beam in December 2020. That data is now being used to refine the triggers for deciding what type of signal constitutes a particle “event” worthy of recording.

    “The trigger system is one of the most critical components to commission, because it brings together all the other subsystems,” said Fava.

    The trigger rate — how frequently the system records an event — must be finely tuned. If it’s too high, the researchers end up sifting through more data than they need to, wasting time and computing power. Too low, and they might miss recording particle interactions that are crucial to making a discovery. The team plans to test the next iteration of trigger logic in May.

    In addition to refining the trigger, the ICARUS team will install a final set of cosmic-ray trackers. Roughly 10 cosmic rays hit the detector during each 1.6-millisecond time window used to record a potential neutrino interaction. The cosmic-ray trackers are used to sort out which signal is which.

    “If there is an external signal and the timing is correct, we can reject that event on the basis that it was induced by a particle that was coming from outside,” said Montanari. Trackers on the bottom and sides have already been installed — all that’s needed now is to finish the top.

    With everything expected to be in place this fall, the experiment will move into the next exciting stage: collecting high-quality data that will be used in scientists’ search for sterile neutrinos.

    “I’m really looking forward to making a nice data analysis and seeing what nature is willing to tell us,” Montanari said.

    CARUS is supported by the U.S. Department of Energy Office of Science, the Italian National Institute for Nuclear Physics (INFN) and CERN, the European Organization for Nuclear Research.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.
    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.
    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA Reidar Hahn.

    FNAL Icon

     
  • richardmitnick 1:41 pm on May 13, 2021 Permalink | Reply
    Tags: "Detector Technology Developed at Berkeley Lab Yields Unprecedented 3D Images Heralding Far Larger Application to Study Neutrinos", , , , , , Neutrinos,   

    From DOE’s Lawrence Berkeley National Laboratory (US): “Detector Technology Developed at Berkeley Lab Yields Unprecedented 3D Images Heralding Far Larger Application to Study Neutrinos” 

    From DOE’s Lawrence Berkeley National Laboratory (US)

    May 13, 2021

    Media Relations
    media@lbl.gov
    (510) 486-5183

    Bill Schulz

    1
    A LArPix sensor with 4900 pixels under testing at Berkeley Lab before shipment to the University of Bern [Universität Bern](CH) for installation. Credit: Thor Swift, Berkeley Lab.

    An experiment to capture unprecedented 3D images of the trajectories of charged particles has been demonstrated using cosmic rays as they strike and travel through a cryostat filled with a ton of liquid argon. The results confirm the capabilities of a novel detector technology for particle physics developed by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) in collaboration with several university and industrial partners.

    Groundbreaking in scale for this new technology, the experiment at University of Bern [Universität Bern](CH) – directed remotely because of the COVID-19 pandemic – demonstrates readiness for a far larger and more ambitious project: the Fermi National Accelerator Laboratory DUNE/LBNF experiment (US), said Berkeley Lab scientist and team leader Dan Dwyer.

    In just a few short years, the Berkeley Lab team has turned an ambitious concept called LArPix (liquid argon pixels) into a reality, Dwyer said. “We have overcome challenges in noise, power consumption, cryogenic compatibility, and most recently scalability/reliability by transferring many aspects of this technology to industrial fabrication.”

    DUNE is a major new science facility being built by the U.S. Department of Energy (DOE) to study the properties of subatomic neutrinos that will be fired off underground from an accelerator at DOE’s Fermi National Accelerator Laboratory (Fermilab) near Chicago, Dwyer explained. Neutrinos are extremely light particles that interact weakly with matter ­– something researchers would like to understand better in their quest to answer fundamental questions about the universe.

    Neutrinos produced by the Fermilab accelerator will pass through a near detector, instrumented with LArPix, on the Fermilab site before moving on to complete their 700-mile journey at a deep underground mine in South Dakota.

    LArPix is a leap forward in how to detect and record signals in liquid argon time projection chambers (LArTPCs), a technology of choice for future neutrino and dark matter experiments, Dwyer explained.

    In a LArTPC, energetic subatomic particles enter the chamber and liberate or ionize electrons in the liquid argon. A strong, externally applied electric field drifts the electrons toward an anode side of the detector chamber where typically a plane of wires acts as sensitive antennae to read these signals and create stereoscopic 2D images of the event. But this technology is not enough to cope with the intensity and complexity of the neutrino events to be read for the DUNE Near Detector, Dwyer said.

    “So, that’s where we at Berkeley Lab come in with this true 3D pixel readout provided by LArPix,” Dwyer said. “It will allow us to image DUNE neutrinos with high fidelity in a very busy environment.“

    Using LArPix, he explained, the planes of wires are replaced with arrays of metallic pixels fabricated on standard electronic circuit boards, which can be readily manufactured. The low-power electronics, he said, are compatible with the demands of the cryogenic state of the liquid argon medium.

    This latest achievement would not have been possible without the strong partnership with the ArgonCube Collaboration, a team of scientists focused on advancing LArTPC technology, centered at the University of Bern. For the Bern experiments, the researchers used a detector chamber with 80,000 pixels submerged in a ton of liquid argon at -330 degrees Fahrenheit. The system, he said, provided high fidelity, true 3D-imaging of cosmic ray showers as they traveled through the detector.

    “This is a major milestone in the development of LArTPCs and the DUNE Near Detector,” said Michele Weber, Director of the Laboratory for High Energy Physics at the University of Bern who also serves as leader of the DUNE International Consortium responsible for building this detector.

    “It’s vastly more complicated than anything that’s ever been built for LArTPCs,” said Brooke Russell, a postdoctoral fellow at Berkeley Lab and member of the LArPix team. With 80,000 channels, she said, the LArPix run at Bern far surpassed the previous state-of-the-art 15,000 channel LArTPC. “The level of complexity going from wires to pixels grew exponentially,” she said.

    Partners from University of California at Berkeley (US), California Institute of Technology (US), Colorado State University (US), Rutgers University (US), University of California Davis (US), University of California Irvine (US), University of California Santa Barbara (US), University of Pennsylvania (US), and the University of Texas- Arlington (US) helped the researchers develop and test this much larger system.

    For DUNE, Dwyer said, the system must scale to more than 10 million pixels that will sit in some 300 tons of liquid argon. He said this is doable both because of the modular nature of the detector chambers as well as the ability to tile LArPix boards made up of thousands of individual pixel detectors.

    “This technology will enable the DUNE Near Detector to overcome signal pileup resulting from the high-intensity of the neutrino beam at the site,” Dwyer said. “It may also find use in the DUNE Far Detectors, other physics experiments, as well as non-physics applications,” he said.

    At the DUNE Far Detectors, scientists will measure how the quantum flavor of the neutrinos changes in transit from the near detector.

    By studying neutrinos, “we think we can learn something about the deeper mysteries of the universe – particularly such questions as why there’s more matter than antimatter in the universe,” Dwyer explained.

    For DUNE to succeed, particle physicists “needed a level of thinking outside the box when it comes to detector technology,” Russell said. “For any breakthroughs in experimental particle physics of course you need novel ideas,” she added. “But if your hardware can’t deliver then you simply can’t make the measurement.”

    This research is supported by the Department of Energy’s Office of Science, in part through the Office of Science Early Career Research Program.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus


    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the National Academy of Sciences (NAS), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California(UC) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the UC Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California, Berkeley(US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.


    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory(US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy(US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory(US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy(US), with management from the University of California(US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science(US):

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS


    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The Joint Genome Institute (JGI) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, Lawrence Livermore National Lab (LLNL), DOE’s Oak Ridge National Laboratory(US)(ORNL), DOE’s Pacific Northwest National Laboratory(US) (PNNL), and the HudsonAlpha Institute for Biotechnology(US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry(US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center(US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Future:

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network(US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute(US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory(US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science(US), and DOE’s Lawrence Livermore National Laboratory(US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology(US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory(US) leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 11:55 am on May 13, 2021 Permalink | Reply
    Tags: "Which neutrino is the heaviest?", , Neutrinos, ,   

    From Symmetry: “Which neutrino is the heaviest?” 

    Symmetry Mag

    From Symmetry

    05/13/21
    Scott Hershberger

    1
    Illustration by Sandbox Studio, Chicago with Corinne Mucha.

    The question may seem simple, but physicists don’t yet know the answer. New measurements aim to change that.

    Neutrinos are the featherweights of the subatomic world. These extremely plentiful, rarely interacting particles are at least 500,000 times lighter than electrons. They are produced in the sun, in exploding stars, and in decay processes on Earth—even ones in your own body. But they interact so infrequently with other matter that you’d hardly know there are so many of them around.

    For decades physicists thought these ghostly particles were massless. But experiments revealed that neutrinos do have mass. In fact, there are three types of neutrinos and three different masses.

    Scientists have yet to measure the exact value of each of these masses. But even finding out which neutrino is the heaviest would be a huge leap in our understanding of both neutrinos and the physics that govern our universe. A lot rides on the answer to this puzzle, known as the “neutrino mass hierarchy” or “neutrino mass ordering.”

    Sun, sky and earth

    Neutrinos interact with matter as electron neutrinos, muon neutrinos or tau neutrinos, named after the partner particles they like to hang around with. And neutrinos can oscillate, meaning they shift between those three identities.

    The nuclear processes in the sun’s core generate a deluge of electron neutrinos, many of which turn into muon and tau neutrinos by the time they reach Earth. When high-energy particles strike Earth’s atmosphere, muon neutrinos are created; they may oscillate to electron or tau neutrinos before being detected.

    But the three types of neutrinos do not correspond directly to the three masses. Instead, there are three “neutrino mass states” numbered 1, 2 and 3, each with different likelihoods of interacting with matter as an electron neutrino, a muon neutrino or a tau neutrino.

    Knowing the rates at which neutrinos oscillate from one type to another allows scientists to make some inferences about the relationships between the three mass states. Careful measurements of solar neutrinos show that the second mass state is only slightly heavier than the first. Measurements of the oscillations of atmospheric and accelerator-made muon neutrinos indicate a large difference in mass between the third mass state and the other two.

    But so far scientists have been unable to determine whether mass state 3 is much heavier or much lighter than states 1 and 2.

    To distinguish between the “normal mass hierarchy” (the order 1, 2, 3) and the “inverted mass hierarchy” (3, 1, 2), researchers fire beams of neutrinos through hundreds of kilometers of solid rock in what are called “long-baseline” neutrino experiments.

    “When a neutrino is traveling, the electron neutrino part of it wants to interact with the electrons in the Earth, and the muon and tau neutrino parts are unaffected,” says Zoya Vallari, a postdoc at Caltech. “This extra impact affects how much oscillation will happen.”

    The current leading long-baseline experiments—the NOvA experiment in the United States and the T2K experiment in Japan—have helped refine scientists’ understanding of oscillation. But their measurements of the mass hierarchy so far remain inconclusive.

    A key puzzle piece

    Whether the third neutrino is the lightest or the heaviest carries massive implications (pun intended) for our understanding of these abundant particles. For instance, the source of neutrinos’ mass remains unknown. Determining if it is akin to the Higgs mechanism, which is responsible for other particles’ mass, depends in part on figuring out the hierarchy.

    Also, since neutrinos have no electric charge, they could theoretically be their own antimatter particles. Knowing the mass ordering will guide experiments that are testing this hypothesis, a gateway to deep questions about the entire universe.

    In pursuit of an answer to the neutrino hierarchy question, the NOvA experiment sends beams of neutrinos and antineutrinos about 500 miles from Fermilab in Illinois to a detector in Ash River, Minnesota. The T2K experiment sends them about 190 miles from J-PARC in Tokai, Japan, to a detector under Mount Ikeno.

    Scientists at the experiments compare the rate of neutrino oscillations to the rate of antineutrino oscillations. Any differences between them could help scientists figure out what’s going on with neutrino masses. It could also help them discern why matter won over antimatter in the early universe. We might owe our existence to neutrinos, but we can’t be sure yet.

    NOvA currently does not see a strong asymmetry between neutrino and antineutrino oscillations. The T2K experiment has reported tantalizing evidence that neutrinos may oscillate differently than antineutrinos. T2K is currently undergoing an upgrade, and NOvA will continue collecting data through the middle of the decade.

    Between the two possibilities, the inverted hierarchy would make several future experiments easier. “So if I could choose, I would choose the inverted hierarchy, but apparently it’s not up to me,” says Pedro Machado, a theorist at the US Department of Energy’s Fermi National Accelerator Laboratory. “And without experimental results, theory doesn’t go forward.”

    For Vallari, too, the inverted hierarchy would be more “fun,” but “if I had to place a bet, I would do it on the normal hierarchy,” she says.

    An answer within reach

    Unlike many mysteries in particle physics, the neutrino mass hierarchy has a clear path toward resolution. The answer lies well within the capabilities of the next generation of experiments.

    The Deep Underground Neutrino Experiment [ depiction above], an international experiment hosted by DOE’s Fermi National Accelerator Laboratory (US) and scheduled to come online in the late 2020s, will send neutrinos on a 1300-kilometer journey from Illinois to South Dakota—60% farther than NOvA, providing more matter for the neutrinos to interact with. Both experiments receive support from the DOE Office of Science and other funding agencies.

    Such a long voyage will amplify the Earth’s influence on neutrino oscillations, enabling researchers to tease out the mass hierarchy, says Vallari, who is part of the DUNE and NOvA collaborations. In Japan, the planned Hyper-Kamiokande upgrade to the T2K experiment should also yield an answer within a few years of data collection.

    “I feel pretty confident in saying that in the early 2030s, we should have a definitive measurement of the mass hierarchy from at least one of the experiments,” Vallari says.

    Even then, we will know only the differences between the three neutrino masses—the overall magnitude of the masses will remain a mystery.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 8:26 am on May 8, 2021 Permalink | Reply
    Tags: "High Energy Cosmic Messengers Observed In The Laboratory For The First Time", , , , , DOE's Fermi National Accelerator Laboratory (US)' Don Lincoln, , Neutrinos,   

    From Forbes Magazine : “High Energy Cosmic Messengers Observed In The Laboratory For The First Time” 

    From Forbes Magazine

    Jun 1, 2021

    1
    Cosmic rays. Artwork of high-energy particles and radiation from a star in deep space (cosmic rays) impacting molecules and atoms in the Earths atmosphere. These primary impacts cause a secondary cascade of subatomic particles. Detection and analysis of these particles, which include protons, neutrons, light nuclei, neutrinos, pions, and muons, can reveal the source of the cosmic rays. These sources may include gamma ray bursts (GRBs), active galactic nuclei, supernovae and quasars. Such research is carried out with atmospheric balloons, or with advanced detectors built underground or underwater, to shield them from other radiation. Credit: Getty.

    The Earth is constantly pummeled by cosmic rays from outer space. Most of these are low energy protons that come from our Sun; but some others are high energy monsters that originate in the jets of black holes, supernovae, colliding stars, and other cosmic calamities. Researchers use observations of these high energy particles to better understand rare astronomical phenomena. However, to achieve a precise understanding, scientists need to create those same particles in the laboratory to better unravel the story they tell us. Researchers at CERN are beginning to generate very high energy neutrinos and capture their behavior when they interact. This research uses sophisticated instrumentation to tell us a lot about that interaction.

    Generating high energy particles is not new. Scientists have been making beams of particles for a century, with each new particle accelerator facility creating ever-higher energy beams of particles with an impressive array of particles to investigate. However, one interesting cosmic ray particle cannot be accelerated – the neutrino.

    Neutrinos are most commonly created in nuclear reactions. They are very low mass particles – at least 500,000 times lighter than the familiar electron, itself a subatomic featherweight. They also interact extremely rarely. While the probability that a neutrino will interact in a detector grows with energy, for neutrinos coming from the biggest nuclear reactor around – the Sun – neutrinos would have to pass through five light years of solid lead to have a fifty percent chance of interacting. Thus, nearly none of them will stop in any realistic detector that scientists can build.

    2
    Fermilab is America’s flagship particle physics laboratory and a world class facility in the field of neutrino research. Credit: Reider Hahn.

    But nearly none is not the same as none. As an example, researchers at Fermilab shoot beams of neutrinos at sophisticated particle detectors. For instance, as a ballpark number, in a Fermilab detector named MINOS, about one neutrino interacts for every ten billion that pass through it.

    That’s a small fraction, but when it was operating the Fermilab facility shot about 430 trillion neutrinos per day to the MINOS detector. That means their daily catch of neutrino interactions was about 50,000.

    However, the neutrinos investigated at laboratories like Fermilab are relatively low energy compared to the highest energy neutrinos that arrive from the cosmos. For instance, the neutrinos investigated by the MINOS experiment average about six billion electron volts of energy. In contrast, the highest energy cosmic neutrino ever seen has an energy of about a thousand trillion electron volts of energy, over 150,000 times higher. Now most cosmic neutrinos do not have the same energy as this record breaking one, but many are still much larger than those observed in most accelerator-based investigations. (To give perspective, neutrinos from the Sun have only hundreds of thousands or a small number of millions of electron volts of energy.)

    That’s a problem, because it means that researchers can take detailed data at low energies, but need to project what they see to a much higher energy. It’s like someone taking a foot-long ruler, determining the direction it points, and then projecting it out to a distance of nearly thirty miles. It could well be that small uncertainties or errors made in low energy measurements could propagate to large uncertainties at the higher energies. It is thus important to devise new ways for scientists to measure the behavior of higher energy neutrinos than is commonly available. For that, they need to employ a new device.

    The Large Hadron Collider, or LHC, is a particle accelerator, located on the French and Swiss border.

    It accelerates two beams of protons to a world record energy of 6.5 trillion electron volts each. It then collides these beams together at the center of four different detectors. It has had many successes, like testing accepted physics theories at higher energy than possible before and discovering the Higgs boson in 2021, but it also means that researchers can use this incredible facility to look for very high energy neutrinos.

    Now, making high energy neutrinos at the LHC isn’t hard. Scientists at the facility have been doing that since it began operations in 2010. However, those neutrinos were not beams of neutrinos, rather they sprayed in random directions. Furthermore, the detectors, while fantastic for what they were designed for, are simply too small to directly detect neutrinos.

    Thus, scientists have built the ForwArd Search ExpeRiment for Neutrinos, more commonly known by the strained acronym “FASERn.” FASERn is a relatively small experiment, located about 480 meters (about 0.3 miles), away from a location where the beams of protons collide, and nestled tightly around the LHC’s beam pipe. Given the detector’s size and great distance from the collision point, FASERn will study extremely high energy neutrinos, with an average energy of about a trillion electron volts, about 200 times higher energy than the average neutrino at MINOS. It’s a far cry from the highest energy cosmic neutrinos, but many cosmic ray neutrinos are in the energy range that FASERn can measure.

    In a recent publication, the FASERn collaboration used a pilot run of data to search for high energy neutrinos and reported that they had seen six of them. This was just an exploratory effort. Their calculations predict that they will record about 10,000 over the time period 2022 – 2024.

    Observing neutrinos is important for astronomical studies, because neutrinos are not affected by the magnetic fields that permeate intergalactic space – basically, they travel in nearly straight lines. Thus experiments designed to capture high energy cosmic neutrinos, like the IceCube detector, can determine the direction these high energy neutrinos are coming from.

    IceCube is a detector that uses a cubic kilometer of Antarctic ice to look for high energy cosmic neutrinos. It looks for neutrinos with energies above 6 trillion electron volts of energy, not much above energy range of the neutrinos studied by FASERn.

    Astronomers can then match up the neutrino direction with observations using telescopes, to find out which cosmic phenomenon emits such high energy neutrinos. Whatever the source, from hypernovae, to supermassive black holes gobbling up entire stars, to gamma ray bursts, which are the brightest thing in the universe since the Big Bang, anything that generates such high energy neutrinos is bound to be incredibly interesting. And the new FASERn facility is an important advance in our ability to understand the universe around us.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 1:20 pm on May 5, 2021 Permalink | Reply
    Tags: "Rock transportation system is ready for excavation of DUNE caverns", , , , Neutrinos   

    From DOE’s Fermi National Accelerator Laboratory (US) and Sanford Underground Research Facility-SURF: “Rock transportation system is ready for excavation of DUNE caverns” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From DOE’s Fermi National Accelerator Laboratory (US) , an enduring source of strength for the US contribution to scientific research worldwide.

    Sanford Underground Research Facility-SURF

    May 5, 2021
    Brianna Barbu

    The Fermilab-hosted international Deep Underground Neutrino Experiment will shoot the world’s most powerful beam of neutrinos from the Department of Energy’s Fermilab in Illinois to detectors 800 miles (1,300 kilometers) away at the Sanford Underground Research Facility in South Dakota. Data collected from this ambitious experiment will help scientists answer such lofty questions as how black holes form and why the universe itself exists.

    But in order to make this groundbreaking project happen, a lot of literal ground will have to be broken.

    Now, Fermilab contractors working on the construction of the Long-Baseline Neutrino Facility in South Dakota have successfully tested a system that will move almost 800,000 tons of rock over the course of three years to make room for DUNE’s massive underground detectors. The system will use a combination of refurbished mining hoists and a new conveyor belt system to bring rock up from the LBNF excavation area nearly a mile underground and send it to a former open mining pit three-quarters of a mile away in Lead, South Dakota.

    “LBNF is a long project, and that’s why we’re excited to start the excavation work for the detector caverns. We want to start building the detectors as soon as possible,” said Chris Mossey, Fermilab deputy director for LBNF/DUNE-US.

    1
    The conveyor belt taking the rocks from the crusher to the Open Cut passes close to the town of Lead, South Dakota. Image: Fermilab.

    LBNF encompasses all of the infrastructure that will support the DUNE collaboration, including caverns for four liquid-argon detector modules, each as tall as a four-story building and as long as a football field.

    The detector modules will be installed 4,850 feet (1,480 meters) underground — the depth made possible by Sanford Lab’s former life as a gold mine — to shield the experiment from cosmic rays.

    Excavated rock from the LBNF construction will go through underground chutes into skips — essentially giant buckets — that will be hoisted up Sanford Lab’s Ross Shaft to a rock crusher in the Ross Headframe, on the surface. After being crushed, the rock will be dumped into a giant bin. The bin will feed the rock onto the first of two underground conveyor belts that will take it out of the mountain, down the mountainside and to the huge Open Cut. The entire system is designed to move about 3,000 tons of rock per day.

    The hoists, first built in 1934, were recently upgraded with new digital controls to get them ready for LBNF construction. The conveyor belts start off following the same path as an old mine tramway through the mountain but take a different path down the side of the mountain to bring the rock to a new destination.

    “The new thing is that we’re taking rock to the Open Cut. When the Open Cut was being mined in the 1980s, the miners were doing the opposite, bringing rock from the Open Cut over to the mill system,” said Josh Willhite, the Fermilab Long-Baseline Neutrino Facility far-site conventional facilities design manager.

    2
    This graphic shows the route that the rock will follow from the LBNF/DUNE excavation to the Open Cut pit. Image: Fermilab.

    Two different conveyor belts will transport the rock 4,200 feet (1,280 meters) from the crusher to the Open Cut. The first, covering about 60% of the total distance, runs entirely underground. The second is mostly aboveground, at one point passing over a state highway. Parts of the second belt curve to accommodate the mountain terrain while minimizing the number of times the rock is transferred to a new belt so that fewer noise and dust controls are needed.

    The fact that the conveyor system, built by contractor Kiewit Alberici Joint Venture, is in a populated town was taken into account in the conveyor design: It has controls for dust and noise, and the conveyor operates only during weekdays (though the hoists will bring rock up the shaft more or less constantly during the excavation).

    As enormous as 800,000 tons sounds — it’s twice the weight of the Empire State Building — the rocks from the LBNF excavation will fill less than 1% of the Open Cut, which is 1,200 feet deep.

    The first step in commissioning the rock transportation system was a dry run to make sure all of its parts work and to break in the conveyor belts. Now, the system has successfully been tested with 1,600 tons of rock dug up during pre-excavation projects. It’s the culmination of eight years of work for Willhite and the far-site conventional facilities team.

    “We’re thrilled to say, ‘Hey, this step is complete, and it’s a big deal!’ And more importantly, it allows us to do the main construction,” Willhite said.

    Thyssen Mining, the company contracted to excavate the main LBNF caverns, started moving their equipment underground in April. Their first scheduled blast for the main excavation will be in late June. It will take about three years to excavate the caverns before construction can begin on cryogenics for the neutrino detectors.

    Mossey said the investment that the Department of Energy is putting into constructing a huge facility 800 miles away from Fermilab speaks to the fact that the impact of LBNF/DUNE will go far beyond the lab hosting it.

    “This world-class facility will enable the world’s neutrino science community to research some of the fundamental unanswered questions in physics,” he said. “It’s a privilege to be a part of the team effort that is going to have that type of reach and impact.”

    The Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment at Fermilab is supported by the DOE Office of Science.

    Fermilab is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us: The Sanford Underground Research Facility-SURF in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    The LBNL LZ Dark Matter Experiment (US) Dark Matter project at SURF, Lead, SD, USA.

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe.

    The U Washington Large Underground Xenon at SURF, Lead, SD, USA dark matter detector | Sanford Underground Research Facility mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC National Accelerator Laboratory(US) physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.

    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”

    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL DUNE LBNF (US) from FNAL to SURF ,Lead, South Dakota, USA.

    FNAL DUNE LBNF (US) Caverns at Sanford Lab.

    U Washington MAJORANA Neutrinoless Double-beta Decay Experiment (US) at SURF.

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with Germanium Detector Array (or GERDA) experiment is searching for neutrinoless double beta decay (0νββ) in Ge-76 at the underground Laboratori Nazionali del Gran Sasso (LNGS) for a future tonne-scale 76Ge 0νββ search.

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard..

    Compact Accelerator System for Performing Astrophysical Research (CASPAR). Credit: Nick Hubbard.

    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

    DOE’s Fermi National Accelerator Laboratory Wilson Hall (US).

    Fermi National Accelerator Laboratory (US), located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.

    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.
    Asteroid 11998 Fermilab is named in honor of the laboratory.

    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.
    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    DOE’s Fermi National Accelerator Laboratory(US) campus .

    DOE’s Fermi National Accelerator Laboratory(US)/MINERvA. Photo: Reidar Hahn.

    DOE’s Fermi National Accelerator Laboratory(US) DAMIC | Fermilab Cosmic Physics Center

    DOE’s Fermi National Accelerator Laboratory(US) Muon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles..

    DOE’s Fermi National Accelerator Laboratory(US) Short-Baseline Near Detector under construction.

    DOE’s Fermi National Accelerator Laboratory(US) Mu2e solenoid

    Dark Energy Camera [DECam] built at DOE’s Fermi National Accelerator Laboratory(US)

    Fermi National Accelerator Laboratory DUNE/LBNF experiment (US) Argon tank at Sanford Underground Research Facility(US)

    DOE’s Fermi National Accelerator Laboratory(US) MicrobooNE

    FNAL Don Lincoln.

    DOE’s Fermi National Accelerator Laboratory(US) MINOS

    DOE’s Fermi National Accelerator Laboratory(US) Cryomodule Testing Facility

    DOE’s Fermi National Accelerator Laboratory(US) MINOS Far Detector

    FNAL DUNE LBNF (US) from FNAL to SURF Lead, South Dakota, USA .

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] (CH) ProtoDune.

    DOE’s Fermi National Accelerator Laboratory(US) NOvA experiment map.

    DOE’s Fermi National Accelerator Laboratory(US) NOvA Near Detector at Batavia IL, USA

    DOE’s Fermi National Accelerator Laboratory(US)ICARUS.

    DOE’s Fermi National Accelerator Laboratory(US) Holometer.

    DOE’s Fermi National Accelerator Laboratory(US) LArIAT.

    DOE’s Fermi National Accelerator Laboratory(US) ICEBERG particle detector.

    FNAL Icon

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: