Tagged: (NETL)-National Energy Technology Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:03 pm on March 8, 2019 Permalink | Reply
    Tags: (NETL)-National Energy Technology Laboratory, , ,   

    From Brookhaven National Lab: “NETL Develops an Improved Process for Creating Building Blocks for $200 Billion Per Year Chemical Industry Market” 

    From Brookhaven National Lab

    March 6, 2019
    Stephanie Kossman
    skossman@bnl.gov

    1

    National Energy Technology Laboratory (NETL) researchers developed a new catalyst that can selectively convert syngas into light hydrocarbon compounds called olefins for application in a $200 billion per year chemical industry market. The work has been detailed in ChemCatChem, a premier catalysis journal.

    The catalyst was characterized using a variety of techniques from U.S. Department of Energy user facilities at Brookhaven National Laboratory including advanced electron microscopy at the Center for Functional Nanomaterials and synchrotron-based X-ray spectroscopy conducted at the National Synchrotron Light Source II.

    An olefin is a compound made up of hydrogen and carbon that contains one or more pairs of carbon atoms linked by a double bond. Because of their high reactivity and low cost, olefins are widely used as building blocks in the manufacture of plastics and the preparation of certain types of synthetic rubber, chemical fibers, and other commercially valuable products.

    The NETL research is significant because light olefins are currently produced using steam cracking of ethane or petroleum derived precursors. Steam cracking is a petrochemical process in which saturated hydrocarbons are broken down into smaller, often unsaturated hydrocarbons. It is one of the most energy intensive processes in the chemical industry. Research has been underway to develop alternative approaches to producing olefins that are less energy intensive, more sustainable and can use different feedstocks. The NETL research has shown promising results toward those goals.

    According to NETL researchers Congjun Wang and Christopher Matranga, the research led to development of a carbon nanosheet-supported iron oxide catalyst that has proven effective in converting syngas into light olefins. A catalyst is a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change. A nanosheet is a two-dimensional nanostructure with thickness ranging from 1 to 100 nanometers.

    The carbon nanosheet-supported iron oxide catalyst was put to the test in the Fischer-Tropsch to Olefins synthesis process —a set of chemical reactions that changes a mixture of carbon monoxide gas and hydrogen gas into hydrocarbons that is showing promise as a method for creating olefins at lower cost.

    “The NETL-developed carbon nanosheets-supported iron oxide catalysts demonstrated extremely high activity that was 40 to 1,000 time higher than other catalysts used in the Fischer-Tropsch to Olefins process,” Wang said. “In addition, it was extraordinarily robust with no degradation observed after up to 500 hours of repeated catalytic reactions.”

    Matranga added that the carbon nanosheets promoted the effective transformation of iron oxide in the fresh catalysts to active iron carbide under reaction conditions.

    “This effect was not seen in other carbon-based catalyst support materials such as carbon nanotubes,” he said. “It is a result of the potassium citrate we use to make the carbon support. The potassium has a promotion effect on the catalyst in a manner that cannot be achieved by just adding potassium to the carbon support.”

    Eli Stavitski, a physicist at Brookhaven’s NSLS-II’s Inner Shell Spectroscopy (ISS) beamline, said the new catalyst performed well in his tests. ISS was one of the two beamlines at NSLS-II where the work was conducted.

    “Using the exceptionally bright X-ray beams available at NSLS-II, we were able to confirm that the new catalyst developed by the NETL team transforms into an active, iron carbide phase faster, and more completely, than the materials proposed for the Fischer Tropsch synthesis before,” he said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    BNL Campus

    BNL NSLS-II


    BNL NSLS II

    BNL RHIC Campus

    BNL/RHIC Star Detector

    BNL RHIC PHENIX

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1

     
  • richardmitnick 11:50 am on January 23, 2019 Permalink | Reply
    Tags: (NETL)-National Energy Technology Laboratory, Chemical looping reactors (CLRs), Exascale Computing Project's MFiX-Exa, , Supercomputing Cleaner Power Plants   

    From insideHPC: “Supercomputing Cleaner Power Plants” 

    From insideHPC

    January 22, 2019

    1
    NETL’s laboratory-scale Chemical Looping Reactor (CLR) is used to test several oxygen-carrier materials (such as metal oxides) to determine their performance characteristics and durability. The CLR also generates data for validating computational models that will be used for designing larger-scale reactors. Courtesy: NETL

    Researchers are looking to HPC to help engineer cost-effective carbon capture and storage technologies for tomorrow’s power plants.

    One of the many novel combustion technologies that could greatly reduce the costs associated with the capture of carbon dioxide entails the use of what are called chemical looping reactors (CLRs). But CLRs have been demonstrated only in the laboratory and at small pilot scales, and they must be built to larger pilot and then industrial scales. Highly detailed, or high-fidelity, computer simulations could reduce the cost and technical risk as CLRs transition from research and development to first demonstrations in the 2025–2030 timeframe, to meet a CCS technology goal of the US Department of Energy.

    “An Exascale Computing Project effort, led by Madhava Syamlal of the National Energy Technology Laboratory (NETL), is building a new tool, called MFiX-Exa, that will enable the needed high-fidelity simulations. MFiX-Exa is a computational fluid dynamics–discrete element model (CFD-DEM) code designed to run efficiently on current and next-generation massively parallel supercomputing architectures. It is the latest creation based on the original MFiX code developed at NETL and is used widely in academia and industry.”

    By combining new algorithmic approaches and a new software infrastructure, MFiX-Exa will leverage future exascale machines to optimize CLRs. Exascale will provide 50 times more computational science and data analytic application power than is possible with DOE high-performance computing systems such as Titan at the Oak Ridge Leadership Computing Facility (OLCF) and Sequoia at Lawrence Livermore National Laboratory.

    ORNL Cray XK7 Titan Supercomputer, once the fastest in the world.

    LLNL Sequoia IBM Blue Gene Q petascale supercomputer

    “Tests have shown that the new MFiX-Exa algorithm reduces the computational time for the computational fluid dynamics calculations by 4x. The new algorithm is expected to perform even better in the ECP challenge problem simulation, which will use progressively more cores on an exascale machine.”

    2

    The Challenge Problem

    The MFiX-Exa efforts are directed at an ECP challenge problem that consists of a CFD-DEM simulation of NETL’s laboratory-scale CLR, which consists of a fuel reactor and an air reactor.

    Rather than air, the fuel reactor uses oxygen from solid oxygen carriers, such as metal oxides, to combust fossil fuels. The spent oxygen carrier is sent to the air reactor where it is regenerated with oxygen from air. The air reactor produces a hot air stream that is used to raise steam to drive a turbine for power generation; the fuel reactor produces gases from which CO2 can be easily captured. The regenerated oxygen carrier is returned to the fuel reactor, completing the chemical looping cycle.

    Chemical looping is a process to indirectly oxidize fuels with air, converting the chemical energy in fuels to thermal energy. In contrast to direct oxidation with air, carbon dioxide and nitrogen are in different exhaust streams. The carbon dioxide can be easily captured from the fuel reactor exhaust stream by condensing out the steam. Courtesy: NETL

    NETL’s laboratory-scale Chemical Looping Reactor (CLR) is used to test several oxygen-carrier materials (such as metal oxides) to determine their performance characteristics and durability. The CLR also generates data for validating computational models that will be used for designing larger-scale reactors. Courtesy: NETL

    The approximately 5 billion oxygen-carrier particles in the NETL CLR is a quantity 40 times greater than the number of particles simulated in the largest CFD-DEM studies reported in the research literature in which open-source or commercial codes are used. The challenge problem simulation is a stepping stone for large pilot- and industrial-scale simulations, which, however, are not in the scope of the current project.

    “Another aspect of the robustness of the MFiX-Exa challenge problem is that it requires the simulation of a longer operational time and the handling of a complex reactor with multiple flow regimes and chemical reactions. The team expects the challenge problem simulation to be 5x longer or more than studies reported in the research literature.”

    Project Advances and Successes

    The fundamental approach used to solve the ECP challenge problem is CFD-DEM. This methodology tracks individual particles using DEM while the gas flow is calculated with CFD. This method provides greater fidelity than the two-fluid model (TFM) and multiphase particle-in-cell (MP-PIC) methods currently popular in industry. By resolving the particles individually, the model does not need to use the approximations that reduce the fidelity of the TFM and MP-PIC methods.

    Although MFiX-Exa builds on the multiphase modeling expertise embodied in NETL’s MFiX code, the core methodology has been both re-designed and re-implemented. The foundation for MFiX-Exa is the AMReX software framework supported by the ECP Block-Structured Adaptive Mesh Refinement (AMR) Co-Design Center.

    In CFD-DEM, the entire volume of a simulated reactor is broken into a vast number of small contiguous volumes, over which the equations are solved. The collection of small volumes is called a mesh. The size of the mesh determines the fidelity of the simulation as well as the computational effort. AMR adjusts the computational effort locally to maintain a uniform level of accuracy throughout the reactor.

    MFiX-Exa uses more efficient algorithms than MFiX for reducing the computational time. A new CFD algorithm has been implemented in MFiX-Exa that leverages discretizations (finite elements of geometry) and linear solvers (pieces of mathematical software) already available through the AMReX framework.

    In CFD-DEM, the entire volume of a simulated reactor is broken into a vast number of small contiguous volumes, over which the equations are solved. The collection of small volumes is called a mesh. The size of the mesh determines the fidelity of the simulation as well as the computational effort. AMR adjusts the computational effort locally to maintain a uniform level of accuracy throughout the reactor.

    MFiX-Exa uses more efficient algorithms than MFiX for reducing the computational time. A new CFD algorithm has been implemented in MFiX-Exa that leverages discretizations (finite elements of geometry) and linear solvers (pieces of mathematical software) already available through the AMReX framework.

    “Tests have shown that the new MFiX-Exa algorithm reduces the computational time for the CFD calculations by 4x. The new algorithm is expected to perform even better in the challenge problem simulation, which will use progressively more cores on an exascale machine.”

    In the DEM, tracking the collisions between the particles and the reactor walls requires much computational time. A new algorithm that calculates the distance to the nearest wall once, stores that value, and reuses it for millions of repeated calculations, was implemented in MFiX-Exa. This improvement accelerated the DEM calculations for simple CLR geometries, and the team expects a greater speedup for the more complex CLR geometry.

    The finer the mesh, the greater the accuracy with which geometry and flow features can be simulated—but also greater is the computational time required.

    2
    National Energy Technology Laboratory Chemical Looping Reactor
    Chemical looping is a process to indirectly oxidize fuels with air, converting the chemical energy in fuels to thermal energy. In contrast to direct oxidation with air, carbon dioxide and nitrogen are in different exhaust streams. The carbon dioxide can be easily captured from the fuel reactor exhaust stream by condensing out the steam. Courtesy: NETL

    MFiX-Exa recently added the capability for local mesh refinement, which enables the use of a fine mesh near the walls that accurately resolves the reactor shape while not over-refining the interior of the reactor. Local mesh refinement will reduce the mesh size and, hence, the computational time required for the challenge problem.

    The project also implemented the ability to eliminate unneeded mesh in regions outside the CLR itself—that is, the empty space between the fuel and air reactors. For the challenge problem geometry, this will reduce the mesh size by 10x.

    The Collaborative Team

    MFiX-Exa has brought together researchers from NETL, Lawrence Berkeley National Laboratory (LBNL), and the University of Colorado (CU). NETL and CU represent more than six decades of experience in multiphase modeling and the MFiX code, while LBNL brings the same level of expertise in large-scale, multiscale multiphysics applications. In total, the MFiX-Exa team is characterized by more than 90 years of relevant experience and close collaborative ties: members interact daily, monthly, and yearly through Slack team message app channels, teleconferences, and all-hands meetings, respectively.

    Coming Next

    The most important next activity for the MFiX-Exa team is to ensure that MFiX-Exa code can run effectively on hybrid CPU/GPU architectures. The first stage of development has focused on running MFiX-Exa on multicore architectures such as the Cori supercomputer at the National Energy Research Scientific Computing Center.

    “The next stage will focus on running effectively on machines like the OLCF’s Summit system. Currently, the particle-particle collisions can be off-loaded to the GPUs, and work is in progress to migrate more of the algorithm to the GPUs to reap the benefit of their compute power.”

    Source: Exascale Computing Project

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Founded on December 28, 2006, insideHPC is a blog that distills news and events in the world of HPC and presents them in bite-sized nuggets of helpfulness as a resource for supercomputing professionals. As one reader said, we’re sifting through all the news so you don’t have to!

    If you would like to contact me with suggestions, comments, corrections, errors or new company announcements, please send me an email at rich@insidehpc.com. Or you can send me mail at:

    insideHPC
    2825 NW Upshur
    Suite G
    Portland, OR 97239

    Phone: (503) 877-5048

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: