Tagged: National Institute of Standards and Technology (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:15 am on September 22, 2021 Permalink | Reply
    Tags: "Making Measurements With a Fine-Toothed Comb", , , National Institute of Standards and Technology (US),   

    From National Institute of Standards and Technology (US) : “Making Measurements With a Fine-Toothed Comb” 

    From National Institute of Standards and Technology (US)

    September 22, 2021
    Rebecca Jacobson

    1
    Optical frequency combs allow scientists to measure light—and our world—with great precision and accuracy. This device has led to innovations that scientists never imagined when it was created. Credit: J. Wang/NIST.

    To many people, a measurement sounds mundane, like marking ticks on a ruler or reading the line on a thermometer. It’s a piece of data. And they tend to think that improved measurements look like finer and finer ticks on a ruler — which doesn’t seem very exciting.

    But making new measurements is more than just making finer marks on a ruler. To measure something is to understand it, pull it apart and see how it works. New measurements can unlock possibilities that even scientists never thought of when they started out.

    Perhaps there is no better example than the optical frequency comb. Very simply, this device is a ruler for light. Yet it’s so much more than a ruler.

    Radio waves, microwaves, visible light, X-rays and infrared are all part of a spectrum of electromagnetic frequencies. They’re all waves, traveling at the speed of light, but the distance between the peaks of those waves can be kilometers apart, like some radio waves, or nanometers apart, like visible light and ultraviolet.

    In the 1970s, scientists at the National Institute of Standards and Technology (NIST) were stuck. They wanted more precise and accurate atomic clocks, ones based on the very high optical frequencies of light released by atoms as their electrons jump between energy states, as opposed to the lower microwave frequencies they were using. Better clocks would give them a more precise definition of the second. A more precise second would give them a better definition of the meter, which is the distance light travels in a vacuum in a tiny fraction of a second. But all that relied on being able to measure these frequencies of light accurately and precisely.

    There was a gap in measurement between these two ends of the electromagnetic spectrum. Scientists could measure radio and microwave frequencies accurately, but there were no electronics that could count fast enough to keep up with the atom’s optical frequencies. They could use a laser with a matching frequency to read the atom’s optical frequency. Scientists had lasers with known, exact frequencies, but they could only produce a single frequency or color. Without knowing the exact frequency of the atom, finding the right frequency laser to read the atom would take a lot of trial and error. NIST scientists tried daisy-chaining several lasers of different frequencies together to make a rudimentary optical ruler. That worked well enough to redefine the meter but wasn’t a long-term solution.

    Enter the frequency comb, a Nobel Prize-winning device and the result of decades of research from NIST and others that you can read about here. The comb generates a billion pulses of light per second, which bounce back and forth inside an optical cavity. This creates millions of spikes of optical frequencies that look like rainbow-colored teeth on a comb (hence the name). The first tooth in that comb is set to a known frequency, which gives scientists a starting point to read the other frequencies. Much like a ruler, if you know the first marker is one millimeter and each marker is a millimeter apart, you can easily start measuring. Similarly, because they know exactly how far apart these frequencies are, scientists can translate these optical signals to microwaves with a simple mathematical formula, joining the two ends of the electromagnetic spectrum. This opens a lot of research doors.

    Scientists used this new technology to make better clocks, eventually developing clocks that are 100 times better than the cesium clocks used for civilian time standards. More accurate and precise clocks are critical for GPS navigation, which relies on precise time signals to determine your location. Better clocks also have research advantages, from detecting tiny changes in gravity to studying phenomena of the quantum world and perhaps finding dark matter. These clocks may eventually change how we define a second. But scientists couldn’t have predicted all the other ways the comb would be used.

    All atoms and molecules emit unique frequencies of light when they jump between energy states, not just the atoms used in clocks. If one of the frequencies from the comb hits an atom or molecule with the exact same frequency, scientists can identify what kind of atom or molecule they’ve hit. Using the optical frequency comb, scientists could study the composition of stars in exquisite detail. Astrophysicists can tell if they’ve found a new planet by measuring the changes in frequencies of the starlight as well. Using frequency combs, we can improve light-ranging systems, which bounce light off objects to detect them like radar or sonar. They can see objects through flames, helping NIST scientists study how structures fail during a fire.

    The comb is also being used to detect even the smallest amounts of greenhouse gases in the air or look for disease in human breath.

    All of that because we found a better way to measure light. Isn’t it amazing what a measurement can do?

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 10:53 am on September 16, 2021 Permalink | Reply
    Tags: "A Smart Use for Doping-Implanted Atoms Create Unique Electrical IDs That Distinguish Bona Fide Devices From Forgeries", , National Institute of Standards and Technology (US)   

    From National Institute of Standards and Technology (US) : “A Smart Use for Doping-Implanted Atoms Create Unique Electrical IDs That Distinguish Bona Fide Devices From Forgeries” 

    From National Institute of Standards and Technology (US)

    September 16, 2021
    Media Contact
    Ben P. Stein
    benjamin.stein@nist.gov
    (301) 975-2763

    Technical Contact
    Yaw S. Obeng
    yaw.obeng@nist.gov
    (301) 975-8093

    If someone sells you a luxury handbag from Paris, France, but it turns out be a forgery from Paris, Texas, the counterfeit item might cost you a thousand bucks and the crook could wind up in jail. But if a counterfeit electronic device gets installed in a car, it could cost passengers or the driver their lives.

    Without new security measures, the interconnected wireless technologies, digital electronics and micromechanical electronic systems that make up the Internet of Things are vulnerable to forgeries and tampering that could cause entire telecommunication networks to fail. In 2017, sales of counterfeit products of all sorts — from electronics to pharmaceuticals — amounted to an estimated $1.2 trillion worldwide.

    To help prevent counterfeit computer chips and other electronic devices from flooding the market, researchers at the National Institute of Standards and Technology (NIST) have demonstrated a method that could electronically authenticate products before they leave the factory.

    1
    Credit: NIST.

    The scientists employed a well-known technique called doping, in which small clusters of “foreign” atoms of a different element from those in the device to be labeled are implanted just beneath the surface. The implanted atoms alter the electrical properties of the topmost layer without harming it, creating a unique label that can be read by an electronic scanner.

    Using doping to create electronic tags for devices is not a new idea. However, the NIST technique, which uses the sharp tip of an atomic force microscope (AFM) probe to implant atoms, is simpler, less costly and requires less equipment than other doping techniques using lasers or a beam of ions, said NIST researcher Yaw Obeng. It is also less damaging than other methods.

    “We’re putting a sticker on every device, except that the sticker is electronic and no two are identical because in each case the amount and pattern of the dopant atoms is different,” said Obeng.

    To create the electronic ID, Obeng and his colleagues first deposited a 10-nanometer (billionth of a meter) film of dopant material — in this case aluminum atoms — about 10-centimeter-square silicon wafers that were then broken into postage-stamp-size fragments so that they could fit in the AFM. The team then used the needle-like tip of the AFM probe to push aluminum atoms a few nanometers into the silicon fragments. The diameter of the implanted regions was tiny, no larger than 200 nm.

    The implanted atoms alter the arrangement of silicon atoms just beneath the surface of the wafer. These silicon atoms, as well as those that reside throughout the wafer, are arranged in a repeating geometric pattern known as a lattice. Each silicon lattice acts like an electrical circuit with a certain impedance, the AC (alternating current) equivalent of resistance in a DC (direct current) circuit.

    When the implanted aluminum atoms were rapidly heated to about 600 degrees Celsius, a few of them acquired enough energy to replace some of the silicon in lattices just beneath the wafer’s surface. The random substitution altered the impedance of those lattices.

    Each dopant-modified lattice has a unique impedance depending on the amount and type of dopant. As a result, the lattice can serve as a distinctive electronic label — a nanometer-scale version of a QR code for the wafer, Obeng said. When a scanner directs a beam of radio waves at the device, the electrically altered lattices respond by emitting a unique radio frequency corresponding to their impedance. Counterfeit devices could be easily identified because they would not respond to the scanner in the same way.

    “This research is key because it offers a means to uniquely identify components by a secure, unalterable and inexpensive means,” said Jon Boyens, a researcher with NIST’s Computer Security Division who was not a co-author of the study.

    The study [Journal of Applied Physics], which Obeng presented on Sept. 16 at the International Conference on IC Design and Technology in Dresden, Germany, builds upon earlier work by the same team [Journal of Applied Physics]. The new study refines the AFM method for inserting dopant atoms, so that the AFM probe can more precisely place the atoms in the silicon wafer. The higher precision will make it easier to test the electronic ID system under real-life conditions.

    Obeng and his collaborators, who include Joseph Kopanski of NIST and Jung-Joon Ahn of NIST and The George Washington University (US)in Washington, D.C., consider their technique a prototype that will need modification before it can be used in mass production.

    One possibility is to use the sharp probes of several AFMs working side by side so that the dopant material could be implanted in many devices at once. Another strategy would employ high-pressure rollers to rapidly push dopant atoms coating a computer chip or other device a few nanometers into the device. A pattern stenciled onto the rollers would ensure that the dopant atoms were implanted according to a precise blueprint. Rollers are widely used to smooth paper, textiles and plastics.

    Obeng presented the work on Sept. 16 at the International Conference on IC Design and Technology
    in Dresden, Germany.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 3:16 pm on September 9, 2021 Permalink | Reply
    Tags: "Groundbreaking Technique Yields Important New Details on Silicon; Subatomic Particles; and Possible ‘Fifth Force’", , , Bragg planes, Finding of “Pendellösung” oscillations, National Institute of Standards and Technology (US), The scientists uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.   

    From National Institute of Standards and Technology (US) : “Groundbreaking Technique Yields Important New Details on Silicon; Subatomic Particles; and Possible ‘Fifth Force’” 

    From National Institute of Standards and Technology (US)

    September 09, 2021

    Media Contact:

    Ben P. Stein
    benjamin.stein@nist.gov
    (301) 975-2763

    Technical Contacts:

    Benjamin Heacock
    benjamin.heacock@nist.gov

    (301) 975-6218
    Michael G. Huber
    michael.huber@nist.gov
    (301) 975-5641

    1
    As neutrons pass through a crystal, they create two different standing waves – one along atomic planes and one between them. The interaction of these waves affects the path of the neutron, revealing aspects of the crystal structure. Credit: NIST.

    Using a groundbreaking new technique at the National Institute of Standards and Technology (NIST), an international collaboration led by NIST researchers has revealed previously unrecognized properties of technologically crucial silicon crystals and uncovered new information about an important subatomic particle and a long-theorized fifth force of nature.

    By aiming subatomic particles known as neutrons at silicon crystals and monitoring the outcome with exquisite sensitivity, the NIST scientists were able to obtain three extraordinary results: the first measurement of a key neutron property in 20 years using a unique method; the highest-precision measurements of the effects of heat-related vibrations in a silicon crystal; and limits on the strength of a possible “fifth force” beyond standard physics theories.

    The researchers report their findings in the journal Science.

    2
    In a regular crystal such as silicon, there are many parallel sheets of atoms, each of which forms a plane. Probing different planes with neutrons reveals different aspects of the crystal. Credit: NIST.

    To obtain information about crystalline materials at the atomic scale, scientists typically aim a beam of particles (such as X-rays, electrons or neutrons) at the crystal and detect the beam’s angles, intensities and patterns as it passes through or ricochets off planes in the crystal’s lattice-like atomic geometry.

    That information is critically important for characterizing the electronic, mechanical and magnetic properties of microchip components and various novel nanomaterials for next-generation applications including quantum computing. A great deal is known already, but continued progress requires increasingly detailed knowledge.

    “A vastly improved understanding of the crystal structure of silicon, the ‘universal’ substrate or foundation material on which everything is built, will be crucial in understanding the nature of components operating near the point at which the accuracy of measurements is limited by quantum effects,” said NIST senior project scientist Michael Huber.

    Neutrons, Atoms and Angles

    Like all quantum objects, neutrons have both point-like particle and wave properties. As a neutron travels through the crystal, it forms standing waves (like a plucked guitar string) both in between and on top of rows or sheets of atoms called Bragg planes. When waves from each of the two routes combine, or “interfere” in the parlance of physics, they create faint patterns called pendellösung oscillations that provide insights into the forces that neutrons experience inside the crystal.

    “Imagine two identical guitars,” said Huber. “Pluck them the same way, and as the strings vibrate, drive one down a road with speed bumps — that is, along the planes of atoms in the lattice — and drive the other down a road of the same length without the speed bumps — analogous to moving between the lattice planes. Comparing the sounds from both guitars tells us something about the speed bumps: how big they are, how smooth, and do they have interesting shapes?”

    The latest work, which was conducted at the NIST Center for Neutron Research (NCNR) in Gaithersburg, Maryland, in collaboration with researchers from Japan, the U.S. and Canada, resulted in a fourfold improvement in precision measurement of the silicon crystal structure.

    3
    Each neutron in an atomic nucleus is made up of three elementary particles called quarks. The three quarks’ electrical charge sum to zero, making it electrically neutral. But the distribution of those charges is such that positive charges are more likely to be found in the center of the neutron, and negative charges toward the outside. Credit: NIST.

    Not-Quite-Neutral Neutrons

    In one striking result, the scientists measured the electrical “charge radius” of the neutron in a new way with an uncertainty in the radius value competitive with the most-precise prior results using other methods. Neutrons are electrically neutral, as their name suggests. But they are composite objects made up of three elementary charged particles called quarks with different electrical properties that are not exactly uniformly distributed.

    As a result, predominantly negative charge from one kind of quark tends to be located toward the outer part of the neutron, whereas net positive charge is located toward the center. The distance between those two concentrations is the “charge radius.” That dimension, important to fundamental physics, has been measured by similar types of experiments whose results differ significantly. The new pendellösung data is unaffected by the factors thought to lead to these discrepancies.

    Measuring the pendellösung oscillations in an electrically charged environment provides a unique way to gauge the charge radius. “When the neutron is in the crystal, it is well within the atomic electric cloud,” said NIST’s Benjamin Heacock, the first author on the Science paper.

    “In there, because the distances between charges are so small, the interatomic electric fields are enormous, on the order of a hundred million volts per centimeter. Because of that very, very large field, our technique is sensitive to the fact that the neutron behaves like a spherical composite particle with a slightly positive core and a slightly negative surrounding shell.”

    Vibrations and Uncertainty

    A valuable alternative to neutrons is X-ray scattering. But its accuracy has been limited by atomic motion caused by heat. Thermal vibration causes the distances between crystal planes to keep changing, and thus changes the interference patterns being measured.

    The scientists employed neutron pendellösung oscillation measurements to test the values predicted by X-ray scattering models and found that some significantly underestimate the magnitude of the vibration.

    The results provide valuable complementary information for both x-ray and neutron scattering. “Neutrons interact almost entirely with the protons and neutrons at the centers, or nuclei, of the atoms,” Huber said, “and x-rays reveal how the electrons are arranged between the nuclei. This complementary knowledge deepens our understanding.

    “One reason our measurements are so sensitive is that neutrons penetrate much deeper into the crystal than x-rays – a centimeter or more – and thus measures a much larger assembly of nuclei. We have found evidence that the nuclei and electrons may not vibrate rigidly, as is commonly assumed. That shifts our understanding on the how silicon atoms interact with one another inside a crystal lattice.”

    Force Five

    The Standard Model is the current, widely accepted theory of how particles and forces interact at the smallest scales. But it’s an incomplete explanation of how nature works, and scientists suspect there is more to the universe than the theory describes.

    The Standard Model describes three fundamental forces in nature: electromagnetic, strong and weak. Each force operates through the action of “carrier particles.” For example, the photon is the force carrier for the electromagnetic force. But the Standard Model has yet to incorporate gravity in its description of nature. Furthermore, some experiments and theories suggest the possible presence of a fifth force.

    “Generally, if there’s a force carrier, the length scale over which it acts is inversely proportional to its mass,” meaning it can only influence other particles over a limited range, Heacock said. But the photon, which has no mass, can act over an unlimited range. “So, if we can bracket the range over which it might act, we can limit its strength.” The scientists’ results improve constraints on the strength of a potential fifth force by tenfold over a length scale between 0.02 nanometers (nm, billionths of a meter) and 10 nm, giving fifth-force hunters a narrowed range over which to look.

    The researchers are already planning more expansive pendellösung measurements using both silicon and germanium. They expect a possible factor of five reduction in their measurement uncertainties, which could produce the most precise measurement of the neutron charge radius to date and further constrain — or discover — a fifth force. They also plan to perform a cryogenic version of the experiment, which would lend insight into how the crystal atoms behave in their so-called “quantum ground state,” which accounts for the fact that quantum objects are never perfectly still, even at temperatures approaching absolute zero.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 4:12 pm on September 7, 2021 Permalink | Reply
    Tags: , National Institute of Standards and Technology (US), "Exploring quantum gravity—for whom the pendulum swings", When it comes to a marriage with quantum theory gravity is the lone holdout among the four fundamental forces in nature., Superposition: an undisturbed atomic particle can be described as a wave with some probability of being in two places at once., Entanglement: a phenomenon in which two widely separated particles can be so strongly correlated that they behave as a single entity., In a quantum theory of gravity the gravitational attraction between two massive objects would be communicated by a hypothetical subatomic particle: the graviton., The experiment would use a cold cloud of atoms trapped inside an atomic interferometer.   

    From National Institute of Standards and Technology (US) : “Exploring quantum gravity—for whom the pendulum swings” 

    From National Institute of Standards and Technology (US)

    August 18, 2021

    Jacob Taylor
    jacob.taylor@nist.gov
    (301) 975-8586

    All tangled up: A proposed experiment seeks to determine whether gravity is a quantum force.

    When it comes to a marriage with quantum theory gravity is the lone holdout among the four fundamental forces in nature. The three others—the electromagnetic force, the weak force, which is responsible for radioactive decay, and the strong force, which binds neutrons and protons together within the atomic nucleus—have all merged with quantum theory to successfully describe the universe on the tiniest of scales, where the laws of quantum mechanics must play a leading role.

    Although Einstein’s theory of general relativity, which describes gravity as a curvature of space-time, explains a multitude of gravitational phenomena, it fails within the tiniest of volumes—the center of a black hole or the universe at its explosive birth, when it was less than an atomic diameter in size. That’s where quantum mechanics ought to dominate.

    Yet over the past eight decades, expert after expert, including Einstein, have been unable to unite quantum theory with gravity. So, is gravity truly a quantum force?

    Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have now proposed an experiment that may help settle the question.

    1
    (1) In an atomic interferometer, the atom’s wave function is split into left and right arms. The left and right arms are then recombined, producing an interference pattern. Credit: S. Kelley/NIST.

    2
    (2) When the experiment begins, the atom’s wave function is unaffected by the pendulum. This means the two arms of the single atom interfere fully with each other. Credit: S. Kelley/NIST.

    3
    (3) If gravitational attraction indeed causes an entanglement between the pendulum and the atom, the pendulum will partially measure the position of the atom, concentrating it into one arm or the other. Credit: S. Kelley/NIST.

    4
    (4) After each half oscillation period, the pendulum will return to where it started, losing all memory of the gravitational entanglement it had created and restoring full interference. Credit: S. Kelley/NIST.

    The experiment takes advantage of two of the weirdest properties of quantum theory. One is the superposition principle, which holds that an undisturbed atomic particle can be described as a wave with some probability of being in two places at once. For instance, an undisturbed atom traveling through a region with two slits, passes through not one or the other of the slits but both. And because the atom is described by a wave, the portion that passes through one slit will interfere with the part that passes through the other, producing a well-known pattern of bright and dark fringes. The bright fringes correspond to regions where the hills and valleys of the two waves align so that they add together, creating constructive interference and the dark regions correspond to regions where the hills and valleys of the waves cancel each out, creating destructive interference.

    The second strange quantum property is known as entanglement, a phenomenon in which two particles can be so strongly correlated that they behave as a single entity. Measuring a property of one of the particles automatically forces the other to have a complementary property, even if the two particles reside galaxies apart.

    In a quantum theory of gravity the gravitational attraction between two massive objects would be communicated by a hypothetical subatomic particle: the graviton, in the same way that the electromagnetic interaction between two charged particles is communicated by a photon (the fundamental particle of light). So, if a graviton truly exists, it should be able to connect, or entangle, the properties of two massive bodies, just as a photon can entangle the properties of two charged particles

    The proposed experiment by Jake Taylor of NIST’s Joint Quantum Institute (US) at The University of Maryland (US), along with Daniel Carney, now at the DOE’s Lawrence Berkeley National Laboratory (US), and Holger Müller of The University of California-Berkeley (US), provides a clever way to test if two massive bodies can indeed become entangled by gravity. They described their work in an article published online in Physical Review X Quantum on August 18, 2021.

    The experiment would use a cold cloud of atoms trapped inside an atomic interferometer. The interferometer has two arms—a left arm and a right. According to the superposition principle, if each atom in the cloud is in a pure, undisturbed quantum state, it can be described as a wave occupying both arms simultaneously. When the two portions of the wave, one from each arm, recombine, they will produce an interference pattern that reveals any changes to their paths due to forces like gravity.

    A small, initially stationary mass suspended as a pendulum is introduced just outside the interferometer. The suspended mass and the atom are gravitationally attracted. If that gravitational tug also produces entanglement, what would that look like?

    The suspended mass will become correlated with a specific location for the atom—either the right arm of the interferometer or the left. As a result, the mass will start swinging to the left or the right. If the atom is located on the left, the pendulum will start swinging to the left; if the atom is located on the right, the pendulum will start swinging to the right. Gravity has entangled the position of the atom in the interferometer with the direction in which the pendulum begins swinging.

    The position entanglement means that the pendulum has effectively measured the location of the atom, pinpointing it to a particular site within the interferometer. Because the atom is no longer in a superposition of being in both arms at the same time, the interference pattern vanishes or diminishes.

    Half a period later, when the swinging mass returns to its starting point, it loses all “memory” of the gravitational entanglement it had created. That’s because regardless of what path the pendulum took–initially swinging to the right, which picks out a location for the atom in the right interferometer arm, or initially swinging to the left, which picks out a location for the atom in the left arm–it returns to the same starting position, much like a child on a swing. And when it returns to the starting position, it’s equally likely that the pendulum will pick out a location for the atom in the left or right arm. At that moment, entanglement between the mass and the atom has been erased and the atomic interference pattern reappears.

    Half a period after that, as the pendulum swings to one side or the other, entanglement is re-established and the interference pattern diminishes once again. As the pendulum swings back and forth the pattern repeats—interference, diminished interference, interference. This collapse and revival of interference, the scientists say, would be a “smoking gun” for entanglement.

    “It is difficult for any phenomenon other than gravitational entanglement to produce such a cycle,” said Carney.

    Although the ideal experiment may be a decade or more from being built, a preliminary version could be ready in just a few years. A variety of shortcuts could be exploited to make things easier to observe, Taylor said. The biggest shortcut is to embrace the assumption, similar to Einstein’s theory of general relativity, that it doesn’t matter when you start the experiment — you should always get the same result.

    Taylor noted that non-gravitational sources of quantum entanglement must be considered, which will require careful design and measurements to preclude.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 11:25 am on August 19, 2021 Permalink | Reply
    Tags: "Scientists Discover Crystal Exhibiting Exotic Spiral Magnetism", , , National Institute of Standards and Technology (US), , The electrons’ stability shows itself as a uniformity in the direction of their spins., The flowing electrons behave as massless particles the magnetism of which is linked to the direction of their motion., The magnetism is created and protected by the crystal’s unique electronic structure offering a mechanism that might be exploited for fast robust information storage devices., The material the team studied is different. It is a “semimetal” made of silicon and the metals aluminum and neodymium., Weyl electrons   

    From National Institute of Standards and Technology (US) : “Scientists Discover Crystal Exhibiting Exotic Spiral Magnetism” 

    From National Institute of Standards and Technology (US)

    August 19, 2021
    Chad Boutin
    charles.boutin@nist.gov
    (301) 975-4261

    1
    This “semimetal” crystal consists of repeating unit cells such as the one to the left, which has a square top and rectangular sides. The spheres represent silicon (violet), aluminum (turquoise), and — in gold — neodymium (Nd) atoms, the last of which are magnetic. Understanding the special magnetic properties of the material requires nine of these unit cells, shown as the larger block to the right (which has a unit single cell outlined in red). This 3×3 block shows green “Weyl” electrons traveling diagonally across the top of the cells and affecting the magnetic spin orientation of the Nd atoms. A special property of the Weyl electron is the locking of its spin direction, which either points parallel or antiparallel to the direction of its motion, as represented by the small arrows in the Weyl electrons. As these electrons travel along the four gold Nd atoms, the Nd spins reorient themselves into a “spin spiral” which can be imagined as pointing successively in the 12 o’clock direction (closest to viewer with red arrow pointing upward), 4 o’clock (blue arrow), 8 o’clock (also in blue) and again 12 o’clock (farthest from viewer and again in red). Lines of Nd atoms stretch through many layers of the crystal, offering many instances of this unusual magnetic pattern. Credit: N. Hanacek/NIST.

    An exotic form of magnetism has been discovered and linked to an equally exotic type of electrons, according to scientists who analyzed a new crystal in which they appear at the National Institute of Standards and Technology (NIST). The magnetism is created and protected by the crystal’s unique electronic structure offering a mechanism that might be exploited for fast robust information storage devices.

    The newly invented material has an unusual structure that conducts electricity but makes the flowing electrons behave as massless particles whose magnetism is linked to the direction of their motion. In other materials, such Weyl electrons have elicited new behaviors related to electrical conductivity. In this case, however, the electrons promote the spontaneous formation of a magnetic spiral.

    “Our research shows a rare example of these particles driving collective magnetism,” said Collin Broholm, a physicist at Johns Hopkins University (US) who led the experimental work at the NIST Center for Neutron Research (NCNR). “Our experiment illustrates a unique form of magnetism that can arise from Weyl electrons.”

    The findings, which appear in Nature Materials, reveal a complex relationship among the material, the electrons flowing through it as current and the magnetism the material exhibits.

    In a refrigerator magnet, we sometimes imagine each of its iron atoms as having a bar magnet piercing it with its “north” pole pointing in a certain direction. This image refers to the atoms’ spin orientations, which line up in parallel. The material the team studied is different. It is a “semimetal” made of silicon and the metals aluminum and neodymium. Together these three elements form a crystal, which implies that its component atoms are arranged in a regular repeating pattern. However, it is a crystal that breaks inversion symmetry, meaning that the repeating pattern is different on one side of a crystal’s unit cells — the smallest building block of a crystal lattice — than the other. This arrangement stabilizes the electrons flowing through the crystal, which in turn drive unusual behavior in its magnetism.

    The electrons’ stability shows itself as a uniformity in the direction of their spins. In most materials that conduct electricity, such as copper wire, the electrons that flow through the wire have spins that point in random directions. Not so in the semimetal, whose broken symmetry transforms the flowing electrons into Weyl electrons whose spins are oriented either in the direction the electron travels or in the exact opposite direction. It is this locking of the Weyl electrons’ spins to their direction of motion — their momentum — that causes the semimetal’s rare magnetic behavior.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 4:49 pm on August 5, 2021 Permalink | Reply
    Tags: "NIST’s Quantum Crystal Could Be a New Dark Matter Sensor", , Experiments searching for this type of dark matter have been ongoing for more than a decade with superconducting circuits., Ion crystals could detect certain types of dark matter — examples are axions and hidden photons — that interact with normal matter through a weak electric field., , National Institute of Standards and Technology (US), , , Quantum sensors such as this have the potential to detect signals from dark matter., The ions self-arrange into a flat 2D crystal just 200 millionths of a meter in diameter., The motion of trapped ions provides sensitivity over a different range of frequencies., The quantum sensor consists of 150 beryllium ions (electrically charged atoms) confined in a magnetic field.   

    From National Institute of Standards and Technology (US) : “NIST’s Quantum Crystal Could Be a New Dark Matter Sensor” 

    From National Institute of Standards and Technology (US)

    August 05, 2021
    Media Contact
    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    1
    NIST physicists John Bollinger (left) and Matt Affolter adjust the laser and optics array used to trap and probe beryllium ions in the large magnetic chamber (white pillar at left). The ion crystal may help detect mysterious dark matter. Credit: R. Jacobson/NIST

    2
    Illustration of NIST quantum sensor made of trapped beryllium ions (red dots) self-arranged into a 2D crystal. Credit: S. Burrows/ JILA [Joint Institute for Laboratory Astrophysics]

    Physicists at the National Institute of Standards and Technology (NIST) have linked together, or “entangled,” the mechanical motion and electronic properties of a tiny blue crystal, giving it a quantum edge in measuring electric fields with record sensitivity that may enhance understanding of the universe.

    The quantum sensor consists of 150 beryllium ions (electrically charged atoms) confined in a magnetic field, so they self-arrange into a flat 2D crystal just 200 millionths of a meter in diameter. Quantum sensors such as this have the potential to detect signals from dark matter — a mysterious substance that might turn out to be, among other theories, subatomic particles that interact with normal matter through a weak electromagnetic field. The presence of dark matter could cause the crystal to wiggle in telltale ways, revealed by collective changes among the crystal’s ions in one of their electronic properties, known as spin.

    As described in the Aug. 6 issue of Science researchers can measure the vibrational excitation of the crystal — the flat plane moving up and down like the head of a drum — by monitoring changes in the collective spin. Measuring the spin indicates the extent of the vibrational excitation, referred to as displacement.

    This sensor can measure external electric fields that have the same vibration frequency as the crystal with more than 10 times the sensitivity of any previously demonstrated atomic sensor. (Technically, the sensor can measure 240 nanovolts per meter in one second.) In the experiments, researchers apply a weak electric field to excite and test the crystal sensor. A dark matter search would look for such a signal.

    “Ion crystals could detect certain types of dark matter — examples are axions and hidden photons — that interact with normal matter through a weak electric field,” NIST senior author John Bollinger said. “The dark matter forms a background signal with an oscillation frequency that depends on the mass of the dark matter particle. Experiments searching for this type of dark matter have been ongoing for more than a decade with superconducting circuits. The motion of trapped ions provides sensitivity over a different range of frequencies.”

    Bollinger’s group has been working with the ion crystal for more than a decade. What’s new is the use of a specific type of laser light to entangle the collective motion and spins of a large number of ions, plus what the researchers call a “time reversal” strategy to detect the results.

    The experiment benefited from a collaboration with NIST theorist Ana Maria Rey, who works at JILA [Joint Institute for Laboratory Astrophysics] University of Colorado (US)/National Institute of Standards and Technology (US). The theory work was critical for understanding the limits of the laboratory setup, offered a new model for understanding the experiment that is valid for large numbers of trapped ions, and demonstrated that the quantum advantage comes from entangling the spin and motion, Bollinger said.

    Rey noted that entanglement is beneficial in canceling the ions’ intrinsic quantum noise. However, measuring the entangled quantum state without destroying the information shared between spin and motion is difficult.

    “To avoid this issue, John is able to reverse the dynamics and disentangle the spin and the motion after the displacement is applied,” Rey said. “This time reversal decouples the spin and the motion, and now the collective spin itself has the displacement information stored on it, and when we measure the spins we can determine the displacement very precisely. This is neat!”

    The researchers used microwaves to produce desired values of the spins. Ions can be spin up (often envisioned as an arrow pointing up), spin down or other angles, including both at the same time, a special quantum state. In this experiment the ions all had the same spin — first spin up and then horizontal — so when excited they rotated together in a pattern characteristic of spinning tops.

    Crossed laser beams, with a difference in frequency that was nearly the same as the motion, were used to entangle the collective spin with the motion. The crystal was then vibrationally excited. The same lasers and microwaves were used to undo the entanglement. To determine how much the crystal moved, researchers measured the ions’ spin level of fluorescence (spin up scatters light, spin down is dark).

    In the future, increasing the number of ions to 100,000 by making 3D crystals is expected to improve the sensing capability thirtyfold. In addition, the stability of the crystal’s excited motion might be improved, which would enhance the time reversal process and the precision of the results.

    “If we are able to improve this aspect, this experiment can become a fundamental resource for detecting dark matter,” Rey said. “We know 85% of the matter in the universe is made of dark matter, but to date we do not know what dark matter is made of. This experiment could allow us in the future to unveil this mystery.”

    Co-authors included researchers from the University of Oklahoma. This work is supported in part by the Department of Energy (US), Air Force Office of Scientific Research (US), Defense Advanced Research Projects Agency (DARPA)(US), Army Research Office (US) and National Science Foundation (US).

    _____________________________________________________________________________________

    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., Vera Rubin a Woman in STEM denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com.


    Coma cluster via NASA/ESA Hubble.


    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.
    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.
    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL).


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970

    Dark Matter Research

    Inside the Axion Dark Matter eXperiment U Washington (US) Credit : Mark Stone U. of Washington. Axion Dark Matter Experiment.
    ______________________________________________________________________________________________________________

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    [caption id="attachment_53872" align="alignnone" width="480"] NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 11:54 am on July 12, 2021 Permalink | Reply
    Tags: "NIST Updates Database Used for Designing Advanced Materials", , Many of the new systems may be key to solving the nation’s energy and climate challenges., , National Institute of Standards and Technology (US), Phase Equilibria Diagrams Database, SRD 31 version 4.5, The Phase Equilibria Diagrams Database contains more than 30000 diagrams for inorganic systems., The update includes 268 new entries and 720 new diagrams describing combinations of materials.   

    From National Institute of Standards and Technology (US) : “NIST Updates Database Used for Designing Advanced Materials” 

    From National Institute of Standards and Technology (US)

    July 12, 2021

    Technical Contact

    Igor Levin
    igor.levin@nist.gov
    (301) 975-6142

    Terrell A. Vanderah
    terrell.vanderah@nist.gov
    (301) 975-5785

    The Phase Equilibria Diagrams Database accelerates development of new materials across a wide range of critical U.S. industries.

    1
    A phase diagram from Standard Reference Database 31 including Lithium, Thorium, and Uranium. Newly added diagrams assist researchers with challenges in emerging energy technologies.

    No one can say with absolute certainty what will happen in the future. But scientists can predict the future state of advanced materials very precisely using NIST’s Standard Reference Database (SRD) 31, also known as the Phase Equilibria Diagrams Database.

    Now, NIST has released SRD 31 version 4.5, an update that includes 268 new entries and 720 new diagrams describing combinations of materials, including many new systems that may be key to solving the nation’s energy and climate challenges.

    Phase equilibria diagrams show the state — solid, liquid or gas — that a mixture of materials will ultimately reach at a given temperature and pressure. Knowing this information in advance accelerates the development of new materials.

    “When you start designing a new material, you need to know what will happen to it under different conditions,” said Igor Levin, the NIST materials scientist who oversees SRD 31. “This database helps researchers home in much more quickly on the combinations of materials that will have the precise properties they seek.”

    Researchers rely on SRD 31 to develop new materials — and improve existing ones — for countless applications, including semiconductors, solar cells, chemical sensors, video displays, data storage and dental restoration materials, to name just a few.

    The diagrams included in the new update will help researchers address challenges in emerging energy technologies, including corrosion issues in molten-salt generation IV nuclear reactors, heat transfer and storage in nuclear and concentrated solar power facilities, and development of next-generation batteries.

    The new update can also help in developing new processes for recycling rare earth minerals and in reducing carbon emissions from metallurgical processing.

    NIST scientists create content for the database by scouring newly published research literature for phase-diagram studies. Subject-matter experts at NIST and elsewhere standardize the phase diagrams to meet NIST guidelines and provide critical commentaries. NIST scientists provide quality control at each step in the process.

    The Phase Equilibria Diagrams Database contains more than 30,000 diagrams for inorganic systems. Materials covered include oxides and nonoxide systems such as chalcogenides and pnictides, phosphates, salt systems and mixed systems of these classes.

    The companion PED Editor for digitizing phase diagrams and extracting data from phase diagrams or other two‐dimensional scientific drawings is available for free download.

    SRD 31 Version 4.5 is available for purchase as a PC product and also online as a subscription.

    A free demonstration version of SRD 31 is available that displays the full functionality of the application and includes a searchable index of all materials systems covered in the database, including the new materials added in this release.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 10:17 am on July 9, 2021 Permalink | Reply
    Tags: "NIST Researchers Use Novel Method to Understand the Molecular Underpinnings of a Tumorlike Disease Affecting Coral Reefs", , , Metabolomics, National Institute of Standards and Technology (US), Proton nuclear magnetic resonance, Researchers sampled a coral colony that had both healthy and diseased tissue.   

    From National Institute of Standards and Technology (US) : “NIST Researchers Use Novel Method to Understand the Molecular Underpinnings of a Tumorlike Disease Affecting Coral Reefs” 

    From National Institute of Standards and Technology (US)

    July 09, 2021
    Alex Boss
    alexandra.boss@nist.gov
    (301) 975-3611

    1
    A coral disease called growth anomalies (GAs) is depicted here in the coral species Porites compressa, a reef-building species found off the coast of Hawaii. GAs can cause tumorlike protrusions that affect both the coral skeleton and its soft tissues. Credit: E. Andersson/NIST.

    Two different field images depicting the coral species Porites compressa, a reef-building coral off of the coast of Hawaii. The corals are affected by growth anomalies (GAs), a disease that can cause tumorlike protrusions that affect both the coral skeleton and its soft tissue. The GAs are the larger protrusions on the corals. Credit: R. Day/NIST.

    Coral reefs are a favorite spot for scuba divers and are among the world’s most diverse ecosystems. For example, the Hawaiian coral reefs, known as the “rainforests of the sea,” host over 7,000 species of marine animals, fishes, birds and plants. But coral reefs are facing serious threats, including a number of diseases that have been linked to human activity.

    To understand the connection between human activity and a type of tumorlike disease called growth anomalies (GAs), researchers at the National Institute of Standards and Technology (NIST) have collaborated with the U.S Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA) (US) to use an emerging molecular profiling method to identify 18 small molecules that promise to help them better understand the series of molecular reactions that lead to the disease.

    GAs affect both the coral skeleton and its soft tissues. Scientists don’t know the cause of the disease or how it spreads but have hypothesized that there is a strong correlation between GA prevalence in coral colonies and human population density nearby.

    Almost all types of corals are made of hundreds to millions of individual soft-bodied animals called polyps. The polyps secrete calcium carbonate to form a hard skeleton that lays the foundation for the coral colony. GAs affect corals through irregular and accelerated growth of their skeleton, causing it to be less dense and filled with holes. This results in a tumorlike mass in the skeleton of a coral colony with fewer polyps and a diminished ability to reproduce.

    Shallow water corals receive food like carbohydrates and oxygen as a byproduct of photosynthesis from the symbiotic relationship they have with zooxanthellae, photosynthetic algae that live inside coral tissues. GAs can lead to fewer symbiotic zooxanthellae and therefore less energy being absorbed from photosynthesis.

    Even though GAs do not typically directly lead to coral death, they do affect the overall health of coral colonies and can pose an ecological threat to coral populations. To analyze the disease, NIST researchers chose the coral species Porites compressa as their target sample.

    This coral species is known as the “finger” or “hump” coral and is part of the stony coral family, which is “one of the important reef-building species in Hawaii,” said NIST chemist Tracey Schock. “They lay the foundation for the coral reef.”

    P. compressa is found in shallow lagoons off the Hawaiian Islands, and the researchers obtained their coral samples from Kaneohe Bay, Oahu. The bay has been studied widely as a site affected by human activity such as sewage discharge and metal pollution. GAs have previously been observed in the coral species there.

    In order to analyze and study GAs in P. compressa, researchers turned to the field of metabolomics, which is the study of small molecules, such as those making up living organisms found in tissues, blood or urine. These small molecules, known as metabolites, are the intermediate and end products in a linked series of biochemical reactions known as molecular pathways in an organism.

    Some examples of such small molecules include sugars like glucose, amino acids, lipids and fatty acids. Their production can be influenced by genetic and environmental factors and can help researchers better understand the biochemical activity of tissue or cells. In this case, chemical analysis of metabolites provides significant information that helps researchers understand the physiology of the disease.

    For their study, researchers sampled a coral colony that had both healthy and diseased tissue. They split up their samples so they could assess the healthy coral and diseased coral separately. They also had a separate adjacent sample that was free of diseased tissue.

    The samples were frozen in liquid nitrogen, and then freeze-dried for practical sample processing while maintaining metabolic integrity. The researchers then separated the diseased parts from the healthy colony using a hammer and stainless-steel chisel and collected the tissue from the skeleton with a brush. In one of the final stages of the sample preparation, they chemically extracted the metabolites from the coral tissue using a combination of methanol, water and chloroform.

    “The method is novel for coral studies,” said Schock. “With metabolomics, it is critical to preserve the state of all metabolites in a sample at the time of collection. This requires halting all biochemical activity using liquid nitrogen and maintaining this state until chemical extraction of the metabolome. The complexity of a coral structure necessitates stringent collection and processing protocols.”

    The researchers then produced a metabolomic analysis of the coral samples by using a reproducible profiling technique known as proton nuclear magnetic resonance (1H NMR).

    The 1H NMR technique exposes the coral extract to electromagnetic fields and measures the radio frequency signals released by the hydrogens in the sample. The various kinds of metabolites are revealed by their unique signals which inform of their chemical environment. NMR detects all signals from the magnetic nuclei within a sample, making it an unbiased “all-in-one” technique. Two-dimensional NMR experiments that can identify both hydrogens (1H) and their directly bound carbon (13C) atoms provide more chemical information, giving confidence in the accuracy of the identities of the various metabolites within a sample.

    The study identified 18 different metabolites and a new GA morphological form in P. compressa. The researchers found that GA tumors have distinct metabolite profiles compared with healthy areas of the same coral colony and detected specific metabolites and metabolic pathways that may be important for these profile differences. They also discovered that the loss of internal pH regulation is seemingly responsible for the hollow skeletons that are a characteristic of GAs.

    “We have not only characterized new aspects of GA physiology, but have also discovered candidate pathways that provide a clear path forward for future research efforts aiming to further understand GA formation and coral metabolism, in general,” said Schock.

    As studies of this type accumulate, the researchers envision a database that could pull together coral metabolite information from multiple coral species into an accessible location for all scientists.

    Collaborating with other researchers in different fields could increase understanding of the biological impacts of this disease on coral colonies. “We are going to learn which species are tolerant and which species are sensitive to stresses, and the physiological adaptations or mechanisms of both types will be important to conservation efforts,” said Schock.

    For now, the researchers hope these findings will be helpful for other scientists analyzing coral species and ultimately be beneficial for the coral reefs themselves, potentially aiding efforts to better preserve them.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 8:00 am on June 30, 2021 Permalink | Reply
    Tags: "NIST Laser ‘Comb’ Systems Now Measure All Primary Greenhouse Gases in the Air", , , , , , National Institute of Standards and Technology (US),   

    From National Institute of Standards and Technology (US) : “NIST Laser ‘Comb’ Systems Now Measure All Primary Greenhouse Gases in the Air” 

    From National Institute of Standards and Technology (US)

    June 30, 2021

    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    1
    NIST researchers used a laser frequency-comb instrument (illustration at lower right) to simultaneously measure three airborne greenhouse gases — nitrous oxide, carbon dioxide and water vapor — plus the major air pollutants ozone and carbon monoxide over two round-trip paths (arrows) from a NIST building in Boulder, Colorado, to a reflector on a balcony of another building, and another reflector on a nearby hill.
    Credit: N. Hanacek/NIST.

    Researchers at the National Institute of Standards and Technology (NIST) have upgraded their laser frequency-comb instrument to simultaneously measure three airborne greenhouse gases — nitrous oxide, carbon dioxide and water vapor — plus the major air pollutants ozone and carbon monoxide.

    ______________________________________________________________________________________________________________
    2
    A simplified graphic of a corresponding frequency comb is shown below. Each “tooth” of the comb is a different color, arranged according to how fast the light wave oscillates in time. The waves that oscillate slowly (red) are on the left and the waves that oscillate faster (blue) are on the right. Frequency is measured in hertz, or cycles per second. An actual optical comb does not begin at zero on left, but at a very high number, 300 trillion hertz.

    2
    ______________________________________________________________________________________________________________

    Combined with an earlier version of the system that measures methane, NIST’s dual comb technology can now sense all four primary greenhouse gases, which could help in understanding and monitoring emissions of these heat-trapping gases implicated in climate change. The newest comb system can also help assess urban air quality.

    These NIST instruments identify gas signatures by precisely measuring the amounts of light absorbed at each color in the broad laser spectrum as specially prepared beams trace a path through the air. Current applications include detecting leaks from oil and gas installations as well as measuring emissions from livestock. The comb systems can measure a larger number of gases than conventional sensors that sample air at specific locations can. The combs also offer greater precision and longer range than similar techniques using other sources of light.

    NIST’s latest advance, described in a new paper [Laser and Photonics News] shifts the spectrum of light analyzed from the near-infrared into the mid-infrared, enabling the identification of more and different gases. The older, near-infrared comb systems can identify carbon dioxide and methane but not nitrous oxide, ozone or carbon monoxide.

    Researchers demonstrated the new system over round-trip paths with lengths of 600 meters and 2 kilometers. The light from two frequency combs was combined in optical fiber and transmitted from a telescope located at the top of a NIST building in Boulder, Colorado. One beam was sent to a reflector located on a balcony of another building, and a second beam to a reflector on a hill. The comb light bounced off the reflector and returned to the original location for analysis to identify the gases in the air.

    A frequency comb is a very precise “ruler” for measuring exact colors of light. Each comb “tooth” identifies a different color. To reach the mid-infrared part of the spectrum, the key component is a specially engineered crystal material, known as periodically poled lithium niobate, that converts light between two colors. The system in this experiment split the near-infrared light from one comb into two branches, used special fiber and amplifiers to broaden and shift the spectrum of each branch differently and to boost power, then recombined the branches in the crystal. This produced mid-infrared light at a lower frequency (longer wavelength) that was the difference between the original colors in the two branches.

    The system was precise enough to capture variations in atmospheric levels of all of the measured gases and agreed with results from a conventional point sensor for carbon monoxide and nitrous oxide. A major advantage in detecting multiple gases at once is the ability to measure correlations between them. For example, measured ratios of carbon dioxide to nitrous oxide agreed with other studies of emissions from traffic. In addition, the ratio of excess carbon monoxide versus carbon dioxide agreed with similar urban studies but was only about one-third the levels predicted by the U.S. National Emissions Inventory (NEI). These levels provide a measure of how efficiently fuel combusts in emissions sources such as cars.

    The NIST measurements, in echoing other studies suggesting there is less carbon monoxide in the air than the NEI predicts, put the first hard numbers on the reference levels or “inventories” of pollutants in the Boulder-Denver area.

    “The comparison with the NEI shows how hard it is to create inventories, especially that cover large areas, and that it is critical to have data to feed back to the inventories,” lead author Kevin Cossel said. “This isn’t something that will directly impact most people on a day-to-day basis — the inventory is just trying to replicate what is actually happening. However, for understanding and predicting air quality and pollution impacts, modelers do rely on the inventories, so it is critical that the inventories be correct.”

    Researchers plan to further improve the new comb instrument. They plan to extend the reach to longer distances, as already demonstrated for the near-infrared system. They also plan to boost detection sensitivity by increasing the light power and other tweaks, to enable detection of additional gases. Finally, they are working on making the system more compact and robust. These advances may help improve understanding of air quality, specifically the interplay of factors influencing ozone formation.

    The work was funded by the Defense Advanced Research Projects Agency and the NIST Special Programs Office.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 10:10 am on June 25, 2021 Permalink | Reply
    Tags: "NIST Method Uses Radio Signals to Image Hidden and Speeding Objects", National Institute of Standards and Technology (US)   

    From National Institute of Standards and Technology (US) : “NIST Method Uses Radio Signals to Image Hidden and Speeding Objects” 

    From National Institute of Standards and Technology (US)

    June 25, 2021
    Media Contact
    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    1
    Illustration of the lab setup for m-Widar, with transmitters and receiver at left and person behind wallboard at right. Inset at lower right shows the corresponding image produced by the instrument. Credit: NIST.

    Researchers at the National Institute of Standards and Technology (NIST) and Wavsens LLC have developed a method for using radio signals to create real-time images and videos of hidden and moving objects, which could help firefighters find escape routes or victims inside buildings filled with fire and smoke. The technique could also help track hypersonic objects such as missiles and space debris.

    The new method, described June 25 in Nature Communications, could provide critical information to help reduce deaths and injuries. Locating and tracking first responders indoors is a prime goal for the public safety community. Hundreds of thousands of pieces of orbiting space junk are considered dangerous to humans and spacecraft.

    “Our system allows real-time imaging around corners and through walls and tracking of fast-moving objects such as millimeter-sized space debris flying at 10 kilometers per second, more than 20,000 miles per hour, all from standoff distances,” said physicist Fabio da Silva, who led the development of the system while working at NIST.

    “Because we use radio signals, they go through almost everything, like concrete, drywall, wood and glass,” da Silva added. “It’s pretty cool because not only can we look behind walls, but it takes only a few microseconds of data to make an image frame. The sampling happens at the speed of light, as fast as physically possible.”

    The NIST imaging method is a variation on radar, which sends an electromagnetic pulse, waits for the reflections, and measures the round-trip time to determine distance to a target. Multisite radar usually has one transmitter and several receivers that receive echoes and triangulate them to locate an object.

    “We exploited the multisite radar concept but in our case use lots of transmitters and one receiver,” da Silva said. “That way, anything that reflects anywhere in space, we are able to locate and image.”

    Da Silva has applied for a patent

    , and he recently left NIST to commercialize the system under the name m-Widar (microwave image detection, analysis and ranging) through a startup company, Wavsens LLC (Westminster, Colorado).

    The NIST team demonstrated the technique in an anechoic (non-echoing) chamber, making images of a 3D scene involving a person moving behind drywall. The transmitter power was equivalent to 12 cellphones sending signals simultaneously to create images of the target from a distance of about 10 meters (30 feet) through the wallboard.

    Da Silva said the current system has a potential range of up to several kilometers. With some improvements the range could be much farther, limited only by transmitter power and receiver sensitivity, he said.

    The basic technique is a form of computational imaging known as transient rendering, which has been around as an image reconstruction tool since 2008. The idea is to use a small sample of signal measurements to reconstruct images based on random patterns and correlations. The technique has previously been used in communications coding and network management, machine learning and some advanced forms of imaging.

    Da Silva combined signal processing and modeling techniques from other fields to create a new mathematical formula to reconstruct images. Each transmitter emits different pulse patterns simultaneously, in a specific type of random sequence, which interfere in space and time with the pulses from the other transmitters and produce enough information to build an image.

    The transmitting antennas operated at frequencies from 200 megahertz to 10 gigahertz, roughly the upper half of the radio spectrum, which includes microwaves. The receiver consisted of two antennas connected to a signal digitizer. The digitized data were transferred to a laptop computer and uploaded to the graphics processing unit to reconstruct the images.

    The NIST team used the method to reconstruct a scene with 1.5 billion samples per second, a corresponding image frame rate of 366 kilohertz (frames per second). By comparison, this is about 100 to 1,000 times more frames per second than a cellphone video camera.

    With 12 antennas, the NIST system generated 4096-pixel images, with a resolution of about 10 centimeters across a 10-meter scene. This image resolution can be useful when sensitivity or privacy is a concern. However, the resolution could be improved by upgrading the system using existing technology, including more transmitting antennas and faster random signal generators and digitizers.

    ______________________________________________________________________________________________________________
    Da Silva explains the imaging process like this: To image a building, the actual volume of interest is much smaller than the volume of the building itself because it’s mostly empty space with sparse stuff in it. To locate a person, you would divide the building into a matrix of cubes. Ordinarily, you would transmit radio signals to each cube individually and analyze the reflections, which is very time consuming. By contrast, the NIST method probes all cubes at the same time and uses the return echo from, say, 10 out of 100 cubes to calculate where the person is. All transmissions will return an image, with the signals forming a pattern and the empty cubes dropping out.
    ______________________________________________________________________________________________________________

    n the future, the images could be improved by using quantum entanglement, in which the properties of individual radio signals would become interlinked. Entanglement can improve sensitivity. Radio-frequency quantum illumination schemes could increase reception sensitivity.

    The new imaging technique could also be adapted to transmit visible light instead of radio signals — ultrafast lasers could boost image resolution but would lose the capability to penetrate walls — or sound waves used for sonar and ultrasound imaging applications.

    In addition to imaging of emergency conditions and space debris, the new method might also be used to measure the velocity of shock waves, a key metric for evaluating explosives, and to monitor vital signs such as heart rate and respiration, da Silva said.

    This work was funded in part by the Public Safety Trust Fund, which provides funding to organizations across NIST leveraging NIST expertise in communications, cybersecurity, manufacturing and sensors for research on critical, lifesaving technologies for first responders.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: