Tagged: National Institute of Standards and Technology (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:17 am on May 9, 2021 Permalink | Reply
    Tags: , , , , National Institute of Standards and Technology (US), "NIST Team Directs and Measures Quantum Drum Duet"   

    From National Institute of Standards and Technology (US) : “NIST Team Directs and Measures Quantum Drum Duet” 

    From National Institute of Standards and Technology (US)

    May 06, 2021
    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    Like conductors of a spooky symphony, researchers at the National Institute of Standards and Technology (NIST) have “entangled” two small mechanical drums and precisely measured their linked quantum properties. Entangled pairs like this might someday perform computations and transmit data in large-scale quantum networks.

    The NIST team used microwave pulses to entice the two tiny aluminum drums into a quantum version of the Lindy Hop, with one partner bopping in a cool and calm pattern while the other was jiggling a bit more. Researchers analyzed radar-like signals to verify that the two drums’ steps formed an entangled pattern — a duet that would be impossible in the everyday classical world.

    1
    Credit: Juha Juvonen.

    2
    NIST researchers entangled the beats of these two mechanical drums — tiny aluminum membranes each made of about 1 trillion atoms — and precisely measured their linked quantum properties. Entangled pairs like this (as shown in this colorized micrograph), which are massive by quantum standards, might someday perform computations and transmit data in large-scale quantum networks. Credit: J. Teufel/NIST.

    What’s new is not so much the dance itself but the researchers’ ability to measure the drumbeats, rising and falling by just one-quadrillionth of a meter, and verify their fragile entanglement by detecting subtle statistical relationships between their motions.

    The research is described in the May 7 issue of Science.

    “If you analyze the position and momentum data for the two drums independently, they each simply look hot,” NIST physicist John Teufel said. “But looking at them together, we can see that what looks like random motion of one drum is highly correlated with the other, in a way that is only possible through quantum entanglement.”

    Quantum mechanics was originally conceived as the rulebook for light and matter at atomic scales. However, in recent years researchers have shown that the same rules can apply to increasingly larger objects such as the drums. Their back-and-forth motion makes them a type of system known as a mechanical oscillator. Such systems were entangled for the first time at NIST about a decade ago, and in that case the mechanical elements were single atoms.

    Since then, Teufel’s research group has been demonstrating quantum control of drumlike aluminum membranes suspended above sapphire mats. By quantum standards, the NIST drums are massive, 20 micrometers wide by 14 micrometers long and 100 nanometers thick. They each weigh about 70 picograms, which corresponds to about 1 trillion atoms.

    Entangling massive objects is difficult because they interact strongly with the environment, which can destroy delicate quantum states. Teufel’s group developed new methods to control and measure the motion of two drums simultaneously. The researchers adapted a technique first demonstrated in 2011 for cooling a single drum by switching from steady to pulsed microwave signals to separately optimize the steps of cooling, entangling and measuring the states. To rigorously analyze the entanglement, experimentalists also worked more closely with theorists, an increasingly important alliance in the global effort to build quantum networks.

    The NIST drum set is connected to an electrical circuit and encased in a cryogenically chilled cavity. When a microwave pulse is applied, the electrical system interacts with and controls the activities of the drums, which can sustain quantum states like entanglement for approximately a millisecond, a long time in the quantum world.

    For the experiments, researchers applied two simultaneous microwave pulses to cool the drums, two more simultaneous pulses to entangle the drums, and two final pulses to amplify and record the signals representing the quantum states of the two drums. The states are encoded in a reflected microwave field, similar to radar. Researchers compared the reflections to the original microwave pulse to determine the position and momentum of each drum.

    To cool the drums, researchers applied pulses at a frequency below the cavity’s natural vibrations. As in the 2011 experiment, the drumbeats converted applied photons to the cavity’s higher frequency. These photons leaked out of the cavity as it filled up. Each departing photon took with it one mechanical unit of energy — one phonon, or one quantum — from drum motion. This got rid of most of the heat-related drum motion.

    To create entanglement, researchers applied microwave pulses in between the frequencies of the two drums, higher than drum 1 and lower than drum 2. These pulses entangled drum 1 phonons with the cavity’s photons, generating correlated photon-phonon pairs. The pulses also cooled drum 2 further, as photons leaving the cavity were replaced with phonons. What was left was mostly pairs of entangled phonons shared between the two drums.

    To entangle the phonon pairs, the duration of the pulses was crucial. Researchers discovered that these microwave pulses needed to last longer than 4 microseconds, ideally 16.8 microseconds, to strongly entangle the phonons. During this time period the entanglement became stronger and the motion of each drum increased because they were moving in unison, a kind of sympathetic reinforcement, Teufel said.

    Researchers looked for patterns in the returned signals, or radar data. In the classical world the results would be random. Plotting the results on a graph revealed unusual patterns suggesting the drums were entangled. To be certain, the researchers ran the experiment 10,000 times and applied a statistical test to calculate the correlations between various sets of results, such as the positions of the two drums.

    “Roughly speaking, we measured how correlated two variables are — for example, if you measured the position of one drum, how well could you predict the position of the other drum,” Teufel said. “If they have no correlations and they are both perfectly cold, you could only guess the average position of the other drum within an uncertainly of half a quantum of motion. When they are entangled, we can do better, with less uncertainty. Entanglement is the only way this is possible.”

    “To verify that entanglement is present, we do a statistical test called an ‘entanglement witness,’’’ NIST theorist Scott Glancy said. “We observe correlations between the drums’ positions and momentums, and if those correlations are stronger than can be produced by classical physics, we know the drums must have been entangled. The radar signals measure position and momentum simultaneously, but the Heisenberg uncertainty principle says that this can’t be done with perfect accuracy. Therefore, we pay a cost of extra randomness in our measurements. We manage that uncertainty by collecting a large data set and correcting for the uncertainty during our statistical analysis.”

    Highly entangled, massive quantum systems like this might serve as long-lived nodes of quantum networks. The high-efficiency radar measurements used in this work could be helpful in applications such as quantum teleportation — data transfer without a physical link — or swapping entanglement between nodes of a quantum network, because these applications require decisions to be made based on measurements of entanglement outcomes. Entangled systems could also be used in fundamental tests of quantum mechanics and force sensing beyond standard quantum limits.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 11:33 am on May 7, 2021 Permalink | Reply
    Tags: "Spotlight- A Giant Leap for Magnifying Materials With Neutron Beams", National Institute of Standards and Technology (US), Wolter optics   

    From National Institute of Standards and Technology (US) : “Spotlight- A Giant Leap for Magnifying Materials With Neutron Beams” 

    From National Institute of Standards and Technology (US)

    May 02, 2021

    1
    Credit: D. Hussey/NIST.

    From the stars to the Lilliputian — a new camera lens using the power of reflection has the potential to transform neutron imaging.

    Wolter optics, named after German physicist Hans Wolter, is based on a combination of mirrors acting as lenses to create a telescope of sorts. For two decades, the Marshall Space Flight Center for the National Aeronautics and Space Administration (NASA) (US) has developed these magnifying instruments for both its X-ray astronomy missions and laboratory imaging needs.

    Now, we want to apply this space-age method to our neutron beams. Scientists aim neutrons at objects to learn about their properties and produce images of them.

    Together with NASA and the Massachusetts Institute of Technology (US), NIST researchers are developing the first high spatial resolution neutron microscope based on Wolter optics.

    Here’s what our design, if successfully implemented, can provide:

    Time resolution: We can reduce how long it takes to render a 3D image with a 10,000x increase in flux, shortening the process from multiple days to mere minutes. This opens up opportunities to see how things change due to temperature, pressure, magnetic fields and more.
    Spatial resolution: In order to capture a sharp neutron image, we no longer need to place a sample in direct contact with our camera. That means we can place samples inside bulky exteriors (cryostats, magnets, furnaces, etc.) without needing to adjust so the detector is close enough to the sample.

    With these improvements and an expected boost in the signal rate, this could be a game changer in neutron imaging. Stay tuned, since we’re projecting the completion of the microscope optics in 2022.

    Until then, take a look at our project page for more details.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 10:53 am on April 27, 2021 Permalink | Reply
    Tags: "Identifying Individual Molecules- "NIST Study Suggests How to Build a Better ‘Nanopore’ Biosensor", National Institute of Standards and Technology (US)   

    From National Institute of Standards and Technology (US) : “Identifying Individual Molecules- “NIST Study Suggests How to Build a Better ‘Nanopore’ Biosensor” 

    From National Institute of Standards and Technology (US)

    April 27, 2021

    Media Contact

    Ben P. Stein
    benjamin.stein@nist.gov
    (301) 975-2763

    Technical Contact

    Joseph Robertson
    joey.robertson@nist.gov
    (301) 975-2506

    Researchers have spent more than three decades developing and studying miniature biosensors that can identify single molecules. In five to 10 years, when such devices may become a staple in doctors’ offices, they could detect molecular markers for cancer and other diseases and assess the effectiveness of drug treatment to fight those illnesses.

    To help make that happen and to boost the accuracy and speed of these measurements, scientists must find ways to better understand how molecules interact with these sensors. Researchers from the National Institute of Standards and Technology (NIST) and Virginia Commonwealth University (US) have now developed a new approach. They reported their findings in the current issue of Science Advances.

    1
    Identifying Individual Molecules: NIST Study Suggests How to Build a Better ‘Nanopore’

    The team built its biosensor by making an artificial version of the biological material that forms a cell membrane. Known as a lipid bilayer, it contains a tiny pore, about 2 nanometers (billionths of a meter) wide in diameter, surrounded by fluid. Ions that are dissolved in the fluid pass through the nanopore, generating a small electric current. However, when a molecule of interest is driven into the membrane, it partially blocks the flow of current. The duration and magnitude of this blockade serve as a fingerprint, identifying the size and properties of a specific molecule.

    To make accurate measurements for a large number of individual molecules, the molecules of interest must stay in the nanopore for an interval that is neither too long nor too short (the “Goldilocks” time), ranging from 100 millionths to 10 thousandths of a second. The problem is that most molecules only stay in the small volume of a nanopore for this time interval if the nanopore somehow holds them in place. This means that the nanopore environment must provide a certain barrier — for instance, the addition of an electrostatic force or a change in the nanopore’s shape — that makes it more difficult for the molecules to escape.

    The minimum energy required to breach the barrier differs for each type of molecule and is critical for the biosensor to work efficiently and accurately. Calculating this quantity involves measuring several properties related to the energy of the molecule as it moves into and out of the pore.

    Critically, the goal is to measure whether the interaction between the molecule and its environment arises primarily from a chemical bond or from the ability of the molecule to wiggle and move freely throughout the capture and release process.

    Until now, reliable measurements to extract these energetic components have been missing for a number of technical reasons. In the new study, a team co-led by Joseph Robertson of NIST and Joseph Reiner of Virginia Commonwealth University (US) demonstrated the ability to measure these energies with a rapid, laser-based heating method.

    The measurements must be conducted at different temperatures, and the laser heating system ensures that these temperature changes occur rapidly and reproducibly. That enables researchers to complete measurements in less than 2 minutes, compared to the 30 minutes or more it would otherwise require.

    “Without this new laser-based heating tool, our experience suggests that the measurements simply won’t be done; they would be too time consuming and costly,” said Robertson. “Essentially, we have developed a tool that may change the development pipeline for nanopore sensors to rapidly reduce the guesswork involved in sensor discovery,” he added.

    Once the energy measurements are performed, they can help reveal how a molecule interacts with the nanopore. Scientists can then use this information to determine the best strategies for detecting molecules.

    For example, consider a molecule that interacts with the nanopore primarily through chemical — essentially electrostatic — interactions. To achieve the Goldilocks capture time, the researchers experimented with modifying the nanopore so that its electrostatic attraction to the target molecule was neither too strong nor too weak.

    With this goal in mind, the researchers demonstrated the method with two small peptides, short chains of compounds that form the building blocks of proteins. One of the peptides, angiotensin, stabilizes blood pressure. The other peptide, neurotensin, helps regulate dopamine, a neurotransmitter that influences mood and may also play a role in colorectal cancer. These molecules interact with nanopores primarily through electrostatic forces. The researchers inserted into the nanopore gold nanoparticles capped with a charged material that boosted the electrostatic interactions with the molecules.

    The team also examined another molecule, polyethylene glycol, whose ability to move determines how much time it spends in the nanopore. Ordinarily, this molecule can wiggle, rotate and stretch freely, unencumbered by its environment. To increase the molecule’s residence time in the nanopore, the researchers altered the nanopore’s shape, making it more difficult for the molecule to squeeze through the tiny cavity and exit.

    “We can exploit these changes to build a nanopore biosensor tailored to detecting specific molecules,” says Robertson. Ultimately, a research laboratory could employ such a biosensor to identify biological molecules of interest or a doctor’s office could use the device to identify markers for disease.

    “Our measurements provide a blueprint for how we can modify the interactions of the pore, whether it be through geometry or chemistry, or some combination of both, to tailor a nanopore sensor for detecting specific molecules, counting small numbers of molecules, or both,” said Robertson.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 12:25 pm on April 22, 2021 Permalink | Reply
    Tags: "Monitoring the Oceans’ Color for Clues to Climate Change", , , MOBY project, National Institute of Standards and Technology (US),   

    From National Institute of Standards and Technology (US) : “Monitoring the Oceans’ Color for Clues to Climate Change” 

    From National Institute of Standards and Technology (US)

    April 22, 2021
    B. Carol Johnson

    1

    Ocean chlorophyll concentrations, MODIS-Aqua full mission July 2002 to January 2021.
    Credit: Ocean Biology Processing Group, National Aeronautics Space Agency (US)/Goddard Space Flight Center(US)

    “It is February 1994 and I am on the research vessel R/V Moana Wave off the coast of Lanai, Hawaii, with the team of the Marine Optical BuoY (MOBY) project. The water is incredibly blue, and I can’t help but be awestruck by the enormous energy, momentum, power and depth of the ocean as I watch the currents and the wind create what appear to be rising and falling pyramids of solid substance, no longer a liquid but a mighty living thing. It is against this backdrop that we work to deploy devices designed to determine the optical properties of the Pacific Ocean. As the instrument at hand, bright yellow and wing-shaped, is lowered over the port side into the water, its yellow wings appear green. This change, and indeed the blue color of the water itself, was indicative of what was in the water, which in the case of the open Pacific, was “not much.” “Much” meaning small particles in the water that scatter or absorb sunlight, changing the overall reflectance of the sunlit layer, and thereby the observed color.

    2
    Phytoplankton. Credit:National Oceanic and Atmospheric Administration (US) MESA Project.

    One class of these small particles is phytoplankton, a form of algae. They contain chlorophyll and practice photosynthesis as does any other plant, using solar radiation to convert carbon dioxide dissolved in the water into plant sugars, releasing oxygen and respiring a portion of the carbon dioxide. A portion of the carbon dioxide is eventually converted to sediment thanks to the grazing activities of marine life (and death), such as zooplankton, young fish or crustaceans and those that feed upon them.

    Phytoplankton
    are the basis of marine life, produce about half of the oxygen in the Earth’s atmosphere, and currently absorb much of the carbon dioxide we humans produce. Ocean temperature, currents, acidification, surface winds and nutrients can affect phytoplankton populations, life cycles and the amount of carbon dioxide they remove from the atmosphere, and so measuring them is critical to understanding climate change. A reasonable question to ask is “Will the oceans continue to remove significant amounts of human-produced carbon dioxide in the future?

    We need to continually observe the color of the world’s oceans to address these questions, and ocean color satellites have been in continuous operation since the launch of NASA’s SeaWiFS mission in 1997. The idea is simple: Just as you can tell a desert from a forest by the color, so it goes with the oceans. But, while the idea is simple, detecting the color of the oceans through Earth’s atmosphere is not. The main problem is the atmosphere also scatters sunlight, and both sources of scattered light, from the ocean and the atmosphere, are detected by the satellite sensor. Because the portion from the atmosphere dominates, it is not possible, with the current status of preflight calibration and atmospheric modeling, to use ocean color satellites to derive the light scattered out of the oceans with the accuracy we need to determine the chlorophyll concentration and other quantities of interest.

    2
    Divers inspecting MOBY. The buoy extends 12 meters (39.4 feet) underwater and has sensors at depths of 1 m (3.3 ft), 5 m (16.4 ft) and 9 m (29.5 ft). Credit: Moss Landing Marine Laboratories (US)(MLML).

    The solution lies in a procedure called system vicarious calibration (SVC), which was pioneered by Dennis Clark at NOAA and colleagues from ships during the Coastal Zone Color Scanner satellite mission (1978 to 1986). Based on this experience, Dennis implemented the MOBY project with support from NOAA and NASA’s SeaWiFS and MODIS projects; MOBY has produced data from July 1997 to the present. MOBY is an optical system that measures light at different colors (wavelengths). This type of system is called a spectrograph. It is mounted on a tethered wave-rider buoy and measures the light incident on the surface and at three depths, and the backscattered light at four depths. MOBY is located about 20 kilometers from Lanai where the water is representative of the world’s oceans. Data are acquired daily as ocean color satellites fly over the location. The MOBY instrument, in collaboration with NIST, is extremely well characterized and extensively calibrated, and the results are traceable to the International System of Units (SI), the modern metric system. By providing accurate values for the oceanic portion of the light measured by the satellite sensor, MOBY provides a calibrated source for any ocean color sensor that observes this region of the ocean.

    I was on the Wave in 1994 because Dennis had come to NIST a couple of years earlier for help with establishing traceability to the SI, which means ensuring the MOBY results are rigorously connected to the SI measurement system so that researchers around the world have the best possible ocean color reference. He had designed a robust measurement plan, with cross-checks and validation at every turn. Over the years, NIST has supplied radiometric sensors for the MOBY team to track its calibration sources in between the NIST calibrations, and we have deployed additional NIST radiometers and sources on occasion to validate the radiometric scales at the MOBY facility in Honolulu.

    NIST has also played a role in characterizing the MOBY optical system. A good example is a problem Dennis presented early on: Independent, simultaneous measurements at the same wavelength and depth did not agree. Now, this is a problem, but really it is a good thing to find issues. In metrology, in order to assure ourselves we are getting the best (and hopefully correct) answer, it is good practice to measure the same thing with different approaches, in this case the backscattered light at the same wavelength with two different spectrographs. It took a while to figure out, but thanks to some laser characterizations and subsequent discussions, we identified stray light as the issue and developed and implemented an algorithm to correct the problem.

    As you may have gathered, MOBY has been around for quite some time. It is an example of how collaborations really work, leading to a world-class product. We’re currently on our 67th buoy (a buoy has a deployment cycle of three to six months). We rotate two systems, calibrating and refurbishing one while the other is in the water. NOAA fully supports the MOBY project for its visible infrared imaging radiometer suite (VIIRS) calibration. Presently, under the leadership of Kenneth Voss (University of Miami; Dennis retired in 2005 and died in 2014) and execution of Moss Landing Marine Laboratories, and with NOAA support, we are implementing a new system design. The new optical system collects data from all depths simultaneously in order to reduce environmental sources of measurement uncertainty. A new carbon-fiber buoy structure, and new control, communication, and data analysis systems complete the system, which we call “Refresh.”

    The MOBY team, with NASA funding, is developing a portable version termed MarONet. This system is identical to Refresh and enables deployment at a new location with recalibrations in Honolulu at the MOBY facility. The first MarONet will be deployed off Rottnest Island, Australia, in 2022. NIST’s role in MarONet is to supply a stable source and spectroradiometer system to validate any changes with shipment. In 2022, NASA will decide whether to continue the MarONet project as the primary SCV site for the upcoming Plankton, Aerosol, Cloud and ocean Ecosystem

    (PACE) mission.

    I would like to close with a few words about the MOBY team and how this work has been a core part of my career at NIST. Yes, I have been involved with other satellite sensors, performing on-site validation activities at the manufacturer facilities with my NIST colleagues for the NASA Earth Observing System program, NOAA geostationary satellites, ESA’s Sentinel-2 , the Orbiting Carbon Observatory and others.

    I have had the opportunity to participate in validation of ground-based measurements of the Moon’s irradiance. But the field of ocean color has led to long-standing relationships with exceptional scientists, and I am so grateful for this experience.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 9:57 am on April 22, 2021 Permalink | Reply
    Tags: National Institute of Standards and Technology (US), NIST National Cybersecurity Center of Excellence (US)   

    From National Institute of Standards and Technology (US) and From NIST National Cybersecurity Center of Excellence (US) : “Securing the Industrial Internet of Things” 

    From National Institute of Standards and Technology (US)

    and

    From NIST National Cybersecurity Center of Excellence (US)

    1

    Current Status

    The NCCoE released for public comment a preliminary draft of Volumes A and B of NIST SP 1800-32, Securing the Industrial Internet of Things: Cybersecurity for Distributed Energy Resources. Implementation of the example solution at the NCCoE is ongoing. We are providing this preliminary draft to gather valuable feedback and inform stakeholders of the progress of the project. Organizations are encouraged to review the preliminary draft and provide feedback online or via email to energy_nccoe@nist.gov by May 24, 2021.

    SP 1800-32A: Executive Summary (PDF)
    SP 1800-32B: Approach, Architecture, and Security Characteristics (PDF)
    SP 1800-32C: How-To Guides (under development)

    Read the Securing Distributed Energy Resources one-page flyer to learn about the cybersecurity capabilities demonstrated in the project.

    Read the two-page fact sheet for a brief overview of this project.

    If you have questions or would like to join our Community of Interest, please email the project team at energy_nccoe@nist.gov.

    Summary

    The Industrial Internet of Things, or IIoT, refers to the application of instrumentation and connected sensors and other devices to machinery and vehicles in the transport, energy, and industrial sectors. In the energy sector, distributed energy resources (DERs), such as solar photovoltaics and wind turbines, introduce information exchanges between a utility’s distribution control system and the DERs to manage the flow of energy in the distribution grid. These information exchanges often employ IIoT technologies that may lack communications security. Additionally, the operating characteristics of DERs are dynamic and significantly different from those of traditional power generation capabilities. Timely management of DER capabilities often requires a higher degree of automation. Introduction of additional automation into DER management and control systems can also introduce cybersecurity risks. Managing the automation, the increased need for information exchanges, and the cybersecurity associated with these presents significant challenges.

    The National Cybersecurity Center of Excellence (NCCoE) is proposing a project that will focus on helping energy companies secure IIoT information exchanges of DERs in their operating environments. As an increasing number of DERs are connected to the grid there is a need to examine the potential cybersecurity concerns that may arise from these interconnections.

    Our goal in this project is to document an approach for improving the overall security of IIoT in a DER environment that will address the following areas of interest:

    The information exchanges between and among DER systems and distribution facilities/entities, and the cybersecurity considerations involved in these interactions.
    The processes and cybersecurity technologies needed for trusted device identification and communication with other devices.
    The ability to provide malware prevention, detection, and mitigation in operating environments where information exchanges are occurring.
    The mechanisms that can be used for ensuring the integrity of command and operational data and the components that produce and receive this data.
    Data-driven cybersecurity analytics to help owners and operators securely perform necessary tasks.

    Collaborating Vendors

    Organizations participating in this project submitted their capabilities in response to an open call in the Federal Register for all sources of relevant security capabilities from academia and industry (vendors and integrators). The following respondents with relevant capabilities or product components (identified as “Technology Partners/Collaborators” herein) signed a Cooperative Research and Development Agreement to collaborate with NIST in a consortium to build this example solution.

    2
    3
    4
    5
    6
    7
    8
    9

    11

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Cybersecurity Center of Excellence (NCCoE) is a US government organization that builds and publicly shares solutions to cybersecurity problems faced by U.S. businesses. The center, located in Rockville, Maryland, was established in 2012 through a partnership with the National Institute of Standards and Technology (US), the State of Maryland, and Montgomery County. The center is partnered with nearly 20 market-leading IT companies, which contribute hardware, software and expertise.

    The NCCoE asks industry sector members about their cybersecurity problems, then selects issues that affect an entire sector or reaches across sectors. The center forms a team of people from cybersecurity technology companies, other federal agencies and academia to address each problem. The teams work in the center’s labs to build example solutions using commercially available, off-the-shelf products. For each example solution, the NCCoE publishes a practice guide, a collection of the materials and information needed to deploy the example solution, and makes it available to the general public. The center’s goal is to “accelerate the deployment and use of secure technologies” that can help businesses improve their defenses against cyber attack.

    In September 2014, the National Institute of Standards and Technology (NIST) awarded a contract to the MITRE Corporation to operate the Department of Commerce’s first Federally Funded Research and Development Center (FFRDC), the National Cybersecurity FFRDC, which supports the NCCoE. According to the press release on the NIST website, “this FFRDC is the first solely dedicated to enhancing the security of the nation’s information systems.” The press release states that the FFRDC will help the NCCoE “expand and accelerate its public-private collaborations” and focus on “boosting the security of U.S. information systems.” “FFRDCs operate in the public interest and are required to be free from organizational conflicts of interest as well as bias toward any particular company, technology or product—key attributes given the NCCoE’s collaborative nature…The first three task orders under the contract will allow the NCCoE to expand its efforts in developing use cases and building blocks and provide operations management and facilities planning.”

    National Cybersecurity Excellence Partners (NCEPs) offer technology companies the opportunity to develop long-term relationships with the NCCoE and NIST. As core partners, NCEPs can provide hardware, software, or personnel who collaborate with the NCCoE on current projects.

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 2:02 pm on April 20, 2021 Permalink | Reply
    Tags: , National Institute of Standards and Technology (US), The scientists developed a method to enhance receivers based on quantum physics properties to dramatically increase network performance while significantly reducing the error bit rate (EBR) and energy, University of Maryland (US)   

    From American Institute of Physics-AIP (US) via phys.org : “Boosting fiber optics communications with advanced quantum-enhanced receiver” 

    From American Institute of Physics-AIP (US)

    via

    phys.org

    April 20, 2021

    1
    Illustration showing how single-photon detection is used for feedback. Once correct parameters for the reference beam are established, the input state is extinguished. Credit: Ivan Burenkov.

    Fiber optic technology is the holy grail of high-speed, long-distance telecommunications. Still, with the continuing exponential growth of internet traffic, researchers are warning of a capacity crunch.

    In AVS Quantum Science, researchers from the National Institute of Standards and Technology (US) and the University of Maryland (US) show how quantum-enhanced receivers could play a critical role in addressing this challenge.

    The scientists developed a method to enhance receivers based on quantum physics properties to dramatically increase network performance while significantly reducing the error bit rate (EBR) and energy consumption.

    Fiber optic technology relies on receivers to detect optical signals and convert them into electrical signals. The conventional detection process, largely as a result of random light fluctuations, produces ‘shot noise,’ which decreases detection ability and increases EBR.

    To accommodate this problem, signals must continually be amplified as pulsating light becomes weaker along the optic cable, but there is a limit to maintaining adequate amplification when signals become barely perceptible.

    Quantum-enhanced receivers that process up to two bits of classical information and can overcome the shot noise have been demonstrated to improve detection accuracy in laboratory environments. In these and other quantum receivers, a separate reference beam with a single-photon detection feedback is used so the reference pulse eventually cancels out the input signal to eliminate the shot noise.

    The researchers’ enhanced receiver, however, can decode as many as four bits per pulse, because it does a better job in distinguishing among different input states.

    To accomplish more efficient detection, they developed a modulation method and implemented a feedback algorithm that takes advantage of the exact times of single photon detection. Still, no single measurement is perfect, but the new holistically designed communication system yields increasingly more accurate results on average.

    “We studied the theory of communications and the experimental techniques of quantum receivers to come up with a practical telecommunication protocol that takes maximal advantage of the quantum measurement,” author Sergey Polyakov said. “With our protocol, because we want the input signal to contain as few photons as possible, we maximize the chance that the reference pulse updates to the right state after the very first photon detection, so at the end of the measurement, the EBR is minimized.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The American Institute of Physics (AIP) promotes science and the profession of physics, publishes physics journals, and produces publications for scientific and engineering societies. The AIP is made up of various member societies. Its corporate headquarters are at the American Center for Physics in College Park, Maryland, but the institute also has offices in Melville, New York, and Beijing.

    The focus of the AIP appears to be organized around a set of core activities. The first delineated activity is to support member societies regarding essential society functions. This is accomplished by annually convening the various society officers to discuss common areas of concern. A range of topics is discussed which includes scientific publishing, public policy issues, membership-base issues, philanthropic giving, science education, science careers for a diverse population, and a forum for sharing ideas.

    Another core activity is publishing the science of physics in research journals, magazines, and conference proceedings. Member societies continue nevertheless to publish their own journals.

    Other core activities are tracking employment and education trends with six decades of coverage, being a liaison between research science and industry, historical collections and physics outreach programs, and supporting science education initiatives and supporting undergraduate physics. One other core activity is as an advocate for science policy to the U.S. Congress and the general public.

    Member societies:
    Acoustical Society of America
    American Association of Physicists in Medicine
    American Association of Physics Teachers
    American Astronomical Society
    American Crystallographic Association
    American Meteorological Society
    American Physical Society
    American Vacuum Society

    Affiliated societies

    American Association for the Advancement of Science, Section on Physics
    American Chemical Society, Division of Physical Chemistry
    American Institute of Aeronautics and Astronautics
    American Nuclear Society
    American Society of Civil Engineers
    ASM International
    Astronomical Society of the Pacific
    Biomedical Engineering Society
    Council on Undergraduate Research, Physics & Astronomy Division
    Electrochemical Society
    Geological Society of America
    IEEE Nuclear and Plasma Sciences Society
    International Association of Mathematical Physics
    International Union of Crystallography
    International Centre for Diffraction Data
    Health Physics Society

     
  • richardmitnick 7:47 pm on April 13, 2021 Permalink | Reply
    Tags: "Counting single photons at unprecedented rates", , In high-end 21st century communications information travels in the form of a stream of light pulses typically traveling through fiber optic cables., National Institute of Standards and Technology (US), , , , Scientists at the National institute of Standards and Technology (NIST) have devised a method that can detect individual photons at a rate 10 times faster than the best existing technology., The NIST innovation entails a major redesign of the control electronics system surrounding a workhorse detector called a Single Photon Avalanche Diode (SPAD).   

    From National Institute of Standards and Technology (US) via phys.org : “Counting single photons at unprecedented rates” 

    From National Institute of Standards and Technology (US)

    via

    phys.org

    April 13, 2021

    1
    1. A photon is absorbed, creating an electron–hole pair (carrier pair). Credit: Sean Kelley/NIST.

    In high-end 21st century communications information travels in the form of a stream of light pulses typically traveling through fiber optic cables. Each pulse can be as faint as a single photon, the smallest possible unit (quantum) of light. The speed at which such systems can operate depends critically on how fast and how accurately detectors on the receiving end can discriminate and process those photons.

    Now scientists at the National institute of Standards and Technology (NIST) have devised a method that can detect individual photons at a rate 10 times faster than the best existing technology with lower error rates; higher detection efficiency; and less noise.

    “While classical communication and detection can operate at blazing speeds, quantum systems, which need that ultimate sensitivity for those faintest of pulses, are limited to much lower speeds,” said group leader Alan Migdall. “Combining that ultimate sensitivity with the ability to achieve the counting of photons at high rates has been a long-standing challenge. Here we are pushing both performance limits all in the same device.”

    The NIST innovation entails a major redesign of the control electronics system surrounding a workhorse detector called a Single Photon Avalanche Diode (SPAD) in which an incoming photon triggers a tiny but measurable burst of current across a semiconductor. SPADs are employed not only in optical communications, but also in lidar (a high-frequency counterpart of radar) and other kinds of 3D imaging, and in PET scans, among other uses.

    2
    2. The electron and hole are accelerated by the applied bias voltage. Credit: Sean Kelley/NIST.

    A voltage is applied across the semiconductor. When a photon hits the detector, its absorbed energy kicks an electron off an atom in the semiconductor—the same photoelectric effect that generates electricity in solar panels.

    That loose electron is accelerated by the applied voltage and causes a sort of chain reaction in which large numbers of adjacent atoms release an “avalanche” of electrons just as a small added stress can prompt an entire mountainside of snow to collapse. That avalanche current is the output signal. Finally, the device is reset by quenching the current with a counter-voltage and restoring the initial applied voltage. Because the avalanche involves such a large number of electrons, getting the entire system back to a quiet state where it is ready to detect another photon is challenging.

    A conventional SPAD can detect from 1 million to 10 million photons per second. That may seem fast, but it is not enough to meet the developing needs of modern communications. Raising the rate, however, has been problematic because of the many trade-offs involved.

    3
    3. The accelerated electron knocks other electrons loose, creating an avalanche of carrier pairs. Credit: Sean Kelley/NIST.

    For example, the thickness of the absorption layer that the incoming photon hits determines how likely the device is to catch that incoming photon: thick absorbers (around 0.1 mm, about the width of a human hair) have a higher probability of photon capture because of their greater depth; thinner layers have a greater chance that the photon will pass through undetected.

    But the thicker the absorber, the higher the applied voltage needs to be. And higher voltages can produce larger avalanches—large enough to overheat the device, reducing detection efficiency as well as increasing the risk of spurious “afterpulses” in which left-over electrons trapped in the semiconductor set off a secondary avalanche after the SPAD is reset.

    To reduce afterpulses, it is necessary to reset the system in two nanoseconds (billionths of a second) or less. Conventional modules that detect the current and then apply the quench cannot operate that fast, historically limiting the performance of thick-absorber SPADs to about 10 million counts per second or fewer. It has generally been assumed that thick-absorber SPADS are unsuited to higher rate counts.

    4
    4. This avalanche produces a rapidly growing current across the junction, which can be detected. Credit: Sean Kelley/NIST

    To overcome those problems in a thick-absorber device, the NIST team—which reported its results in Applied Physics Letters—began experimenting with an advanced electronics system for a commercially available thick-absorber SPAD.

    Like many such systems, the SPAD is “gated” off and on repeatedly—that is, it is reset continuously by an applied alternating voltage at some frequency. As a result, the longest time period during which the SPAD can produce an avalanche is the gate interval. “Typical gating frequencies for these types of SPADs has been limited to no higher than 150 megahertz,” said NIST associate Michael Wayne, first author on the journal article. [1 MHz is a million cycles per second.]

    “That means that the SPAD is able to avalanche for six or seven nanoseconds,” Wayne said. “While this may not seem like a long time, it is long enough for the device to both become fully saturated with charge—which increases unwanted afterpulsing—and to become hot enough at high count rates to lower its detection efficiency. Gating at a higher frequency—thus shortening the maximum duration of an avalanche—would lessen both of these effects. But because the avalanche is not allowed to grow for as long, it can become too small to detect over the ‘noise’ caused by opening and closing the gate.”

    5
    5. The bias voltage is then lowered, “quenching” the semiconductor to remove the existing carrier pairs. Credit: Sean Kelley/NIST.

    To overcome that problem, the team developed a method similar to noise-canceling headphones: applying a radio frequency signal that exactly offsets the noise. That allowed them to operate the SPAD at one billion cycles per second (one gigahertz, GHz).

    Subtracting out the noise, said project leader Joshua Bienfang, “we are able reveal extremely small avalanches. Additionally, the high frequency means that the gate is open for only 500 picoseconds. [One ps is a trillionth of a second. 500 ps is half a nanosecond.] This results in a reduction in average avalanche current by about a factor of 500, lowering both the afterpulsing and self-heating effects, and allowing us to count at rates up to 100 million per second.”

    6
    6. Finally, the bias voltage is raised back to its initial state, resetting the device. Credit: Sean Kelley/NIST.

    “The new SPAD design could find practical uses in the applications of quantum communication and quantum computation,” Migdall said. “Both of those offer capabilities not possible with conventional communication and computation. And both of those applications would benefit from faster, lower-noise single photon detectors.”

    “This novel design is likely to impact a number of quantum applications. They range from single-photon sensing, where faster count rates and lower noise reduce the time for existing measurements, to the emerging quantum internet, which relies critically on single-photon detection for quantum communication and quantum computation. Both of those can be expected to have a very substantial impact on our society and economy.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 7:48 pm on April 5, 2021 Permalink | Reply
    Tags: "NIST Demo Adds Key Capability to Atom-Based Radio Communications", National Institute of Standards and Technology (US)   

    From National Institute of Standards and Technology (US): “NIST Demo Adds Key Capability to Atom-Based Radio Communications” 

    From National Institute of Standards and Technology (US)

    April 05, 2021
    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    1
    NIST researchers and collaborators determined the direction of an incoming radio signal based on laser measurements at two locations in this sensor filled with a gas of cesium atoms. Credit: NIST.

    Researchers at the National Institute of Standards and Technology (NIST) and collaborators have demonstrated an atom-based sensor that can determine the direction of an incoming radio signal [Applied Physics Letters], another key part for a potential atomic communications system that could be smaller and work better in noisy environments than conventional technology.

    NIST researchers previously demonstrated that the same atom-based sensors can receive commonly used communications signals. The capability to measure a signal’s “angle of arrival” helps ensure the accuracy of radar and wireless communications, which need to sort out real messages and images from random or deliberate interference.

    “This new work, in conjunction with our previous work on atom-based sensors and receivers, gets us one step closer to a true atom-based communication system to benefit 5G and beyond,” project leader Chris Holloway said.

    In NIST’s experimental setup, two different-colored lasers prepare gaseous cesium atoms in a tiny glass flask, or cell, in high-energy (“Rydberg”) states, which have novel properties such as extreme sensitivity to electromagnetic fields. The frequency of an electric field signal affects the colors of light absorbed by the atoms.

    An atom-based “mixer” takes input signals and converts them into different frequencies. One signal acts as a reference while a second signal is converted or “detuned” to a lower frequency. Lasers probe the atoms to detect and measure differences in frequency and phase between the two signals. Phase refers to the position of electromagnetic waves relative to one another in time.

    The mixer measures the phase of the detuned signal at two different locations inside the atomic vapor cell. Based on the phase differences at these two locations, researchers can calculate the signal’s direction of arrival.

    To demonstrate this approach, NIST measured phase differences of a 19.18 gigahertz experimental signal at two locations inside the vapor cell for various angles of arrival. Researchers compared these measurements to both a simulation and a theoretical model to validate the new method. The selected transmission frequency could be used in future wireless communications systems, Holloway said.

    The work is part of NIST’s research on advanced communications, including 5G, the fifth-generation standard for broadband cellular networks, many of which will be much faster and carry far more data than today’s technologies. The sensor research is also part of the NIST on a Chip program, which aims to bring world-class measurement-science technology from the lab to users anywhere and anytime. Co-authors are from the University of Colorado Boulder (US) and ANSYS Inc. in Boulder.

    Atom-based sensors in general have many possible advantages, notably measurements that are both highly accurate and universal, that is, the same everywhere because the atoms are identical. Measurement standards based on atoms include those for length and time.

    With further development, atom-based radio receivers may offer many benefits over conventional technologies. For example, there is no need for traditional electronics that convert signals to different frequencies for delivery because the atoms do the job automatically. The antennas and receivers can be physically smaller, with micrometer-scale dimensions. In addition, atom-based systems may be less susceptible to some types of interference and noise.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 11:41 am on March 31, 2021 Permalink | Reply
    Tags: "Everyday Time and Atomic Time- Part One", , JILA [ Joint Institute for Laboratory Astrophysics], National Institute of Standards and Technology (US), University of University of Colorado(US) Boulder   

    From National Institute of Standards and Technology (US): “Everyday Time and Atomic Time- Part One” 

    March 31, 2021
    Judah Levine

    1
    Judah Levine in the lab with with the National Institute of Standards and Technology(US) time scale, an array of hydrogen masers (microwave versions of lasers) that maintains official U.S. civilian time. NIST atomic clocks are used to calibrate the time scale.

    “As a physicist in the National Institute of Standards and Technology (NIST) Time and Frequency Division, I have worked in the general area of operating atomic clocks and using output signals from them to distribute time and frequency information for more than 40 years. I am also a Fellow at JILA [ Joint Institute for Laboratory Astrophysics] U Colorado/NIST, an institute operated jointly by National Institute of Standards and Technology(US) and the University of University of Colorado(US) Boulder, and I teach in the physics department of the university.

    I came to Boulder in 1967 as a post-doc at JILA. I joined NIST when it was still the National Bureau of Standards in 1969, and I was initially a physicist in the Radio Standards Physics Division. This division was engaged in several research projects that used lasers whose wavelengths were stabilized by adjusting them to match the wavelengths naturally absorbed by an atom or molecule.

    A particularly useful system was a helium-neon laser whose output at 3.39 µm was stabilized by comparing it to the wavelength absorbed by methane. This wavelength could then be used to measure tiny changes in the length of a 30-meter long interferometer, which was in the Poorman’s Relief Gold Mine near Boulder. The interferometer consisted of two mirrors mounted on piers that were firmly connected to the floor of the mine. The mirrors and the space between them were enclosed in an evacuated pipe.

    The tiny changes in length were caused by tidal forces, by earthquakes, and by other effects, and the wavelength stability of the reference laser resulted in a very sensitive strain meter. For example, we used the interferometer to study the seismic signals generated by underground nuclear explosions at the Nevada test site, and we also attempted to detect the continuous vibrations induced in the Earth by gravitational waves from pulsars and from rotating binary stars, foreshadowing the work of Caltech/ MIT Advanced aLIGO (US), which detected gravitational waves on September 14, 2015 at 5:51 a.m. Eastern Daylight Time (09:51 UTC).

    I started working on questions of the definition of the standards for time and frequency in 1972, when I was transferred into the Time and Frequency Division, and I have been active in that general area since that time.

    You can get additional information about the definitions of time and frequency and the services that NIST operates to distribute this information at our division webpage. This webpage also has pointers to all our publications, most of which are intended for a technical audience.

    Coordinated Universal Time (UTC) is the legal time in most countries. Currently, UTC is based on data from an international ensemble of atomic clocks combined with astronomical observations on the rotation rate of Earth. The UTC time scale is kept within 1 second of astronomical time (which I will define later) by the occasional addition of “leap seconds.” Several current proposals suggest changing the way UTC is computed, either by making the addition of a leap second much less frequent or by discontinuing the process of adding leap seconds altogether. In this series of essays, I will explain how the UTC time scale was defined, why leap seconds are needed, and why there is a discussion to eliminate them.

    A very short introduction to the early history of time

    Astronomical events, and especially the solar day and the lunar month, have been important in the definition of time since antiquity. The earliest time references were based on the “apparent solar day.” This could be defined in several ways, including the time between consecutive sunrises at any location. Sometimes the apparent solar day denoted the shorter interval between sunrise and sunset. The lunar month was usually defined as the time between consecutive new moons. The solar year – often the time between consecutive spring equinoxes – was also important for agricultural purposes, and many festivals were linked to events in the solar year.

    Apparent solar time is still used for some religious purposes. For example, the Jewish Sabbath and other holidays in the Jewish calendar begin and end at local sundown. Ecclesiastical “hours” divided the time between local sunrise and sunset into 12 “hours,” which are longer in the summer and shorter in the winter. Ecclesiastical hours introduce the concept, which will be important in our later discussion, that units of time were initially a way to sub-divide an astronomical time interval. In the jargon of measurement science, ecclesiastical hours are a derived quantity – they are defined by the requirement that 12 of them must match the time interval between local sunrise and sunset.

    In addition to the variation in the time interval between sunrise and sunset that is the basis for ecclesiastical hours, the overall length of the day, measured for example between the apparent solar noon on consecutive days, has an annual variation. This variation comes from the facts that the orbit of the Earth around the Sun is an ellipse, and not a circle, and that the Sun is located not at the geometrical center of this ellipse but at another important point known as the focus. This configuration results in an annual variation in the speed of Earth in its orbit, and this, in turn, adds an annual variation to the length of the solar day.

    4
    The sundial that is located on the campus of the University of Colorado in Boulder. A graph of the Equation of Time is shown in the base of the sundial.

    This variation is often called the “Equation of Time,” and many sundials show a plot of this variation as a function of date. The Equation of Time gives the difference between the length of the apparent solar day for any day in the year, and the length of the day that would be observed if the orbital speed of the Earth was constant. This average value is called “Mean Solar Time,” (in contrast to apparent solar time, which is what we have been discussing) and I will discuss this point in more detail below.

    The earliest clocks were methods of dividing the relatively large astronomical intervals into smaller units. Some of these clocks used the motion of the shadow of a vertical pole on the ground to mark elapsed time; others used the flow of water or sand to measure elapsed time. The important point is that all these clocks were adjusted so that they measured time intervals that agreed with the astronomical definition – usually the length of the solar day. As with ecclesiastical hours, once the number of units in an astronomical time interval was chosen, the size of the unit (the length of a second, for example) was determined by astronomy.

    3
    A close-up of the plot of the Equation of Time at the base of the sundial.

    In the next essay, I will describe the early connection between frequency and musical instruments, and the fundamental links between time, time interval and frequency. These relationships became increasingly important with the development precision clocks and oscillators in the late 19th and early 20th century, and I will explore this topic in subsequent essays.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 7:39 am on March 28, 2021 Permalink | Reply
    Tags: "NIST Team Compares 3 Top Atomic Clocks With Record Accuracy Over Both Fiber and Air", , National Institute of Standards and Technology (US), Precision   

    From National Institute of Standards and Technology (US): “NIST Team Compares 3 Top Atomic Clocks With Record Accuracy Over Both Fiber and Air” 


    From National Institute of Standards and Technology (US)

    March 24, 2021

    Laura Ost
    laura.ost@nist.gov
    (303) 497-4880

    1
    NIST researchers precisely compared the signals from three optical atomic clocks over air and optical fiber, with two of the clocks (indicated by Yb and Al+/Mg+) located in different NIST-Boulder laboratories, and a third (Sr) located 1.5 kilometers away at JILA.

    In a significant advance toward the future redefinition of the international unit of time, the second, a research team led by the National Institute of Standards and Technology (NIST) has compared three of the world’s leading atomic clocks with record accuracy over both air and optical fiber links.

    Described in the March 25 issue of Nature, the NIST-led work is the first to compare three clocks based on different atoms and the first to link the most advanced atomic clocks in different locations over the air. These atomic clock comparisons place the scientific community one step closer to meeting the guidelines for redefinition of the second.

    “These comparisons are really defining the state of the art for both fiber-based and free-space measurements — they are all close to 10 times more accurate than any clock comparisons using different atoms performed so far,” NIST physicist David Hume said.

    The new measurements were challenging because the three types of atoms involved “tick” at vastly different frequencies, because all the many network components had to operate with extreme accuracy, and because the wireless link required cutting-edge laser technology and design.

    The study compared the aluminum-ion clock and ytterbium lattice clock, located in different laboratories at NIST Boulder, with the strontium lattice clock located 1.5 kilometers away at JILA, a joint institute of NIST and the University of Colorado Boulder. The team’s measurements were so accurate that uncertainties were only 6 to 8 parts in 1018 — that is, errors never exceeded 0.000000000000000008 — for both fiber and wireless links.

    NIST researchers previously described in detail [Physical Review Research] how they transferred time signals over the air link between two of the clocks, the NIST ytterbium and JILA strontium clocks, and found the process worked as well as the fiber-based method and 1,000 times more precisely than conventional wireless transfer schemes. This work shows how the best atomic clocks might be synchronized across remote sites on Earth and, as time signals are transferred over longer distances, even between spacecraft.

    The key to the air link was the use of optical frequency combs, which enable accurate comparisons of widely different frequencies. NIST researchers developed two-way transfer methods to precisely compare optical clocks over the air, even in conditions of atmospheric turbulence and laboratory vibrations. The comb-based signal transfer technique had been demonstrated previously, but the latest work was the first to compare state-of-the-art atomic clocks.

    Since 1967, the second has been defined based on the cesium atom, which ticks at a microwave frequency. The atomic clocks used in the new comparisons tick at much higher optical frequencies, which divide time into smaller units and thus offer greater precision. Comparisons are crucial to the international community’s selection of one or more atoms as the next time standard.

    The new NIST results reported in Nature also set other important records. Frequency is the most accurately measured single quantity in science. The NIST team measured frequency ratios, the quantitative relationships between the frequencies of the atoms as measured in three pairs (ytterbium-strontium, ytterbium-aluminum, aluminum-strontium). The results are the three most accurate measurements ever made of natural constants. Frequency ratios are considered constants and are used in some international standards and tests of fundamental physics theories.

    Frequency ratios offer an important advantage as a metric for evaluating optical atomic clocks. A direct measurement of an optical clock frequency in the usual units of hertz (one cycle per second) is limited by the accuracy of the current international standard, the cesium microwave clock. Frequency ratios overcome this limitation because they are not expressed in any units.

    Frequency ratios are usually measured over long distances by use of fiber networks, which are few and far between, or in some cases with microwave data transferred over satellite links, which tend to be unstable.

    Guidelines for redefinition of the second recommend the demonstration and verification of multiple frequency ratio measurements with uncertainties approaching the best optical clock performance. All three types of clocks in the new study offer superlative performance now and promise further improvements. NIST’s ytterbium clocks, for example, represent the natural frequency of the atoms (a value known as systematic uncertainty) to within a possible error of just 1.4 parts in 10^18 — about one billionth of a billionth.

    NIST’s new frequency ratio measurements, while record-setting, are not quite that good yet. But the research team is working on improving measurement stability and clock performance, Hume said.

    Beyond their role in the next generation of international standards, optical atomic clocks can be used as sensitive probes for new physics, such as the “dark matter” believed to constitute most of the stuff in the universe. Technological applications for optical clocks include improved timing and navigation systems and measuring Earth’s gravitational shape (geodesy).

    This work was supported in part by the Defense Advanced Research Projects Agency, the Air Force Office for Scientific Research, the National Science Foundation, the Office of Naval Research, NASA Fundamental Physics, and the Department of Energy.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD, USA

    National Institute of Standards and Technology (US)‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “National Institute of Standards and Technology (US)” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock. NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR). The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961. SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology (CNST) performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility. This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: