Tagged: NASA/ESA/CSA Webb Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:29 pm on October 15, 2017 Permalink | Reply
    Tags: , , , , , , NASA/ESA/CSA Webb   

    From Goddard: “NASA’s James Webb Space Telescope and the Big Bang: A Short Q&A with Nobel Laureate Dr. John Mather” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 11, 2017
    Maggie Masetti
    NASA’s Goddard Space Flight Center

    1
    Dr. John Mather, a Nobel laureate and the senior project scientist for NASA’s James Webb Space Telescope. Credits: NASA/Chris Gunn

    Q: What is the Big Bang?

    A: The Big Bang is a really misleading name for the expanding universe that we see. We see an infinite universe with distant galaxies all rushing away from each other.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    The name Big Bang conveys the idea of a firecracker exploding at a time and a place — with a center. The universe doesn’t have a center, at least not one we can find. The Big Bang happened everywhere at once and was a process happening in time, not a point in time. We know this because 1) we see galaxies rushing away from each other, not from a central point; 2) we see the heat that was left over from early times, and that heat uniformly fills the universe; and 3) we can calculate and imagine what the universe was like when the parts were much closer together, and the calculations match everything we can see.

    Q: Can we see the Big Bang?

    A: No, the Big Bang itself is not something we can see.

    Q: What can we see?

    A: We can see the heat radiation that was there when the universe was young. We see this heat as it was about 380,000 years after the expansion of the universe began 13.8 billion years ago (which is what we refer to as the Big Bang). This heat covers the entire sky and fills the universe. (In fact it still does.) We were able to map it with satellites we (NASA and ESA) built called the Cosmic Background Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP), and Planck. The universe at this point was extremely smooth, with only tiny ripples in temperature.

    Cosmic Infrared Background, Credit: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA

    NASA/COBE

    1
    All-sky image of the infant universe, created from nine years of data from the Wilkinson Microwave Anisotropy Probe (WMAP).
    Credits: NASA/WMAP Science Team

    NASA/WMAP

    CMB per ESA/Planck


    ESA/Planck

    Q: I heard the James Webb Space Telescope will see back further than ever before. What will Webb see?

    NASA/ESA/CSA Webb Telescope annotated

    A: COBE, WMAP, and Planck all saw further back than Webb, though it’s true that Webb will see farther back than Hubble.

    NASA/ESA Hubble Telescope

    Webb was designed not to see the beginnings of the universe, but to see a period of the universe’s history that we have not seen yet.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Specifically, we want to see the first objects that formed as the universe cooled down after the Big Bang. That time period is perhaps hundreds of millions of years later than the one COBE, WMAP, and Planck were built to see. We think that the tiny ripples of temperature they observed were the seeds that eventually grew into galaxies. We don’t know exactly when the universe made the first stars and galaxies — or how for that matter. That is what we are building Webb to help answer.

    Q: Why can’t Hubble see the first stars and galaxies forming?

    A: The only way we can see back to the time when these objects were forming is to look very far away. Hubble isn’t big enough or cold enough to see the faint heat signals of these objects that are so far away.

    Q: Why do we want to see the first stars and galaxies forming?

    A: The chemical elements of life were first produced in the first generation of stars after the Big Bang. We are here today because of them — and we want to better understand how that came to be! We have ideas, we have predictions, but we don’t know. One way or another the first stars must have influenced our own history, beginning with stirring up everything and producing the other chemical elements besides hydrogen and helium. So if we really want to know where our atoms came from, and how the little planet Earth came to be capable of supporting life, we need to measure what happened at the beginning.

    Dr. John Mather is the senior project scientist for the James Webb Space Telescope. Dr. Mather shares the 2006 Nobel Prize for Physics with George F. Smoot of the University of California for their work using the COBE satellite to measure the heat radiation from the Big Bang.

    The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the premier space observatory of the next decade. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

    For more information about the Webb telescope, visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

    Advertisements
     
  • richardmitnick 9:28 pm on October 4, 2017 Permalink | Reply
    Tags: , , , , , , , NASA/ESA/CSA Webb   

    From Goddard: “NASA’s Webb Telescope to Witness Galactic Infancy” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 4, 2017
    Eric Villard
    eric.s.villard@nasa.gov
    NASA’s Goddard Space Flight Center

    Starfield
    The Hubble Ultra Deep Field is a snapshot of about 10,000 galaxies in a tiny patch of sky, taken by NASA’s Hubble Space Telescope.
    Credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team

    After it launches and is fully commissioned, scientists plan to focus Webb telescope on sections of the Hubble Ultra-Deep Field (HUDF) and the Great Observatories Origins Deep Survey (GOODS).

    NASA/ESA Hubble Telescope

    NASA/Chandra Telescope

    NASA/Spitzer Infrared Telescope

    These sections of sky are among Webb’s list of targets chosen by guaranteed time observers, scientists who helped develop the telescope and thus get to be among the first to use it to observe the universe. The group of scientists will primarily use Webb’s mid-infrared instrument (MIRI) to examine a section of HUDF, and Webb’s near infrared camera (NIRCam) to image part of GOODS.

    NASA Webb MIRI

    NASA Webb NIRCam

    “By mixing [the data from] these instruments, we’ll get information about the current star formation rate, but we’ll also get information about the star formation history,” explained Hans Ulrik Nørgaard-Nielsen, an astronomer at the Danish Space Research Institute in Denmark and the principal investigator for the proposed observations.

    Pablo Pérez-González, an astrophysics professor at the Complutense University of Madrid in Spain and one of several co-investigators on Nørgaard-Nielsen’s proposed observation, said they will use Webb to observe about 40 percent of the HUDF area with MIRI, in roughly the same location that ground-based telescopes like the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope array (VLT) obtained ultra-deep field data.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    The iconic HUDF image shows about 10,000 galaxies in a tiny section of the sky, equivalent to the amount of sky you would see with your naked eye if you looked at it through a soda straw. Many of these galaxies are very faint, more than 1 billion times fainter than what the naked human eye can see, marking them as some of the oldest galaxies within the visible universe.

    With its powerful spectrographic instruments, Webb will see much more detail than imaging alone can provide. Spectroscopy measures the spectrum of light, which scientists analyze to determine physical properties of what is being observed, including temperature, mass, and chemical composition. Pérez-González explained this will allow scientists to study how gases transformed into stars in the first galaxies, and to better understand the first phases in the formation of supermassive black holes, including how those black holes affect the formation of their home galaxy. Astronomers believe the center of nearly every galaxy contains a supermassive black hole, and that these black holes are related to galactic formation.

    MIRI can observe in the infrared wavelength range of 5 to 28 microns. Pérez-González said they will use the instrument to observe a section of HUDF in 5.6 microns, which Spitzer is capable of, but that Webb will be able to see objects 250 times fainter and with eight times more spatial resolution. In this case, spatial resolution is the ability of an optical telescope, such as Webb, to see the smallest details of an object.

    Pérez-González said in the area of HUDF they will observe, Hubble was able to see about 4,000 galaxies. He added that, with Webb, they “will detect around 2,000 to 2,500 galaxies, but in a completely different spectral band, so many galaxies will be quite different from the ones that [Hubble] detected.”

    With NIRCam, the team will observe a piece of the GOODS region near their selected section of HUDF. The entire GOODS survey field includes observations from Hubble, Spitzer, and several other space observatories.

    “These NIRCam images will be taken in three bands, and they will be the deepest obtained by any guaranteed time observation team,” explained Pérez-González.

    NIRCam can observe in the infrared wavelength range of 0.6 to 5 microns. Pérez-González explained they will use it to observe a section of GOODS in the 1.15 micron band, which Hubble is capable of, but that Webb will be able to see objects 50 times fainter and with two times more spatial resolution. They will also use it to observe the 2.8 and 3.6 micron bands. Spitzer is able to do this as well, but Webb will be able to observe objects nearly 100 times fainter and with eight times greater spatial resolution.

    Because the universe is expanding, light from distant objects in the universe is “redshifted,” meaning the light emitted by those objects is visible in the redder wavelengths by the time it reaches us. The objects farthest away from us, those with the highest redshifts, have their light shifted into the near- and mid-infrared part of the electromagnetic spectrum. The Webb telescope is specifically designed to observe the objects in that area of the spectrum, which makes it ideal for looking at the early universe.

    “When you build an observatory with unprecedented capabilities, most probably the most interesting results will not be those that you can expect or predict, but those that no one can imagine,” said Pérez-González.

    The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

    MIRI was built by ESA, in partnership with the European Consortium, a group of scientists and engineers from European countries; a team from NASA’s Jet Propulsion Laboratory in Pasadena, California; and scientists from several U.S. institutions. NIRCam was built by Lockheed Martin and the University of Arizona in Tucson.

    For more information about Webb telescope, visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

    For more information about Hubble telescope, visit: http://www.nasa.gov/hubble

    For more information about Spitzer telescope, visit: http://www.nasa.gov/spitzer

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 7:29 am on September 11, 2017 Permalink | Reply
    Tags: , , , , , NASA/ESA/CSA Webb, , Super-Earths a juicy target for new space telescope   

    From SAO via Cosmos: “Super-Earths a juicy target for new space telescope” 

    Smithsonian Astrophysical Observatory
    Smithsonian Astrophysical Observatory

    COSMOS

    11 September 2017
    Andrew Masterson

    NASA/ESA/CSA Webb Telescope annotated

    The discovery of three “super-Earth” planets orbiting a dwarf star roughly 97 light years away provides a juicy target for the James Webb Space Telescope to be launched later this year, say US astronomers.

    In a paper posted on the pre-print science platform arXiv, a team of scientists led by Joseph Rodriguez from the Harvard-Smithsonian Centre for Astrophysics in Massachusetts, US, say the discovery affords a rare opportunity to investigate the dividing line between smaller rocky planets and larger gaseous ones.

    The planets, dubbed GJ 9827-b, -c, and –d, all orbit a K-type dwarf star, and do so rapidly, with orbits that range between 1.2 and 6.2 Earth-days. The frequency of their orbit means that the new space telescope – a joint venture between NASA and the European and Canadian space agencies – will be able to monitor them many times as they move in front of their host star, potentially revealing a wide array of valuable information.

    Rodriguez and colleagues are particularly excited about the discovery because two of them fall within a size range that so far seems rare – or at least elusive.

    To date, more than 3000 exoplanets have been identified, with the Kepler mission adding at least another 4500 candidates to the list.

    The California Kepler Survey, operated by NASA, has so far logged precise radii for 2000 identified planets and produced a surprising result. Almost all of them fall in a range that tops out at one-and-a-half times the radius of Earth, or starts at two.

    This has led to the observation that so far all exoplanets seem to be either super-Earths or mini-Neptunes.

    2
    PLANETARY COUSINS Planets may be lumped into two groups: smaller and rocky like Kepler-452b (left), or bigger and gassy like Kepler-22b (right). W. Stenzel/NASA Ames. Science News.

    The key difference, of course, is that those on the Earth-side of the divide are rocky, and those on the Neptune side are gaseous.

    One theory for the puzzling lack of intermediates is that the rocky “sub-Neptune” planets recorded so far orbit comparatively close to their host stars. This may mean that solar radiation burns off the thick gaseous envelopes that cloak their more distant neighbours, leaving only small rocky cores.

    GJ 9827-b, at 1.64 Earth radii, and GJ 9827-d, at 2.08, fall between the two divisions, potentially affording strong opportunities to study the transitional zone between rocky Earths and gassy Neptunes. GJ 9827-c has a radius of 1.29 Earth equivalents, and should therefore be simply rocky.

    The short orbit periods of the three planets, the researchers note, will enable repeated observations over a limited timespan.

    “The planets span the transition from rocky to gaseous planets, so the characteristics of their atmospheres and interior structures may illuminate how the structure and composition of small planets change with radius,” the scientists write.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About CfA

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy. The long relationship between the two organizations, which began when the SAO moved its headquarters to Cambridge in 1955, was formalized by the establishment of a joint center in 1973. The CfA’s history of accomplishments in astronomy and astrophysics is reflected in a wide range of awards and prizes received by individual CfA scientists.

    Today, some 300 Smithsonian and Harvard scientists cooperate in broad programs of astrophysical research supported by Federal appropriations and University funds as well as contracts and grants from government agencies. These scientific investigations, touching on almost all major topics in astronomy, are organized into the following divisions, scientific departments and service groups.

     
  • richardmitnick 9:01 am on September 4, 2017 Permalink | Reply
    Tags: A new look at ocean worlds, , , , , , Europa and Enceladus - Ocean worlds?, NASA/ESA/CSA Webb   

    From EarthSky: “A new look at ocean worlds” 

    1

    EarthSky

    September 4, 2017
    Paul Scott Anderson

    Here’s how the James Webb Space Telescope – successor to Hubble, due to launch in 2018 – will study Jupiter’s moon Europa and Saturn’s moon Enceladus.

    NASA/ESA/CSA Webb Telescope annotated

    1
    This is Saturn’s moon Enceladus, as seen by the Cassini spacecraft. It’s thought to have a subsurface ocean and can be seen spewing water vapor from its interior. Photo via NASA/JPL-Caltech.

    NASA’s upcoming James Webb Space Telescope (JWST) will be used to study two of the most fascinating moons in our solar system – Europa and Enceladus, also known as ocean worlds since both have global oceans of water beneath their outer icy surfaces. The new observations will help scientists learn more about conditions on these worlds and guide the development of future robotic missions.

    Both moons are exciting targets since Europa’s surface has deposits of minerals thought to have come up from the ocean below, and Enceladus has huge plumes of water vapor erupting through fissures in the icy surface, originating from the subsurface ocean. Europa may also have plumes, which have been tentatively identified but not confirmed yet. Enceladus’ plumes also contain organic compounds of various complexities, which were sampled directly by the Cassini spacecraft multiple times.

    2
    A Galileo orbiter image of Europa has been added to a just-released Hubble Space Telescope image of what might be towering geysers of water erupting from near the moon’s south pole. NASA / ESA / W. Sparks / USGS Astrogeology Science Center

    3
    Enceladus. NASA.

    Astronomer Heidi Hammel is executive vice president of the Association of Universities for Research in Astronomy (AURA). She is spearheading the effort to study our solar system with the Webb telescope. She said:

    “We chose these two moons because of their potential to exhibit chemical signatures of astrobiological interest.”

    Astronomers will use Webb’s near-infrared camera (NIRCam) to take high-resolution images of Europa’s surface, to search for hot regions related to plumes and active geological processes. If a plume is found, they can then use Webb’s near-infrared spectrograph (NIRSpec) and mid-infrared instrument (MIRI) to analyze the plume’s composition. This video below shows possible results of using spectroscopy on Europa’s water plumes, obtainable using the Webb telescope’s NIRSpec instrument.

    NASA Webb NIRCam

    NASA Webb NIRspec

    NASA Webb MIRI

    Geronimo Villanueva, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is the lead scientist on the Webb telescope’s observation of Europa and Enceladus. He said:

    “Are they made of water ice? Is hot water vapor being released? What is the temperature of the active regions and the emitted water? Webb telescope’s measurements will allow us to address these questions with unprecedented accuracy and precision.”

    JWST will be able to study Enceladus’ plumes and surface in a similar manner, even though it is about 10 times smaller than Europa as seen by the telescope.

    For both moons, a focus will be to search for organic signatures such as methane, methanol, and ethane in the plumes. Evidence of life itself, like microbes, would be more difficult since some life-like processes could also have a geological explanation. Villanueva noted:

    “We only expect detections if the plumes are particularly active and if they are organic-rich.”

    JWST is the successor to the Hubble Space Telescope (HST) and will be the most powerful space-based telescope ever built. It is an international project led by NASA, along with the European Space Agency (ESA) and the Canadian Space Agency (CSA).

    Even if JWST isn’t able to find signs of life on either moon, it will be another huge step in understanding what conditions are like, both on their surfaces and below the ice in the oceans themselves, building on results from spacecraft such as Galileo and Cassini. It will help prepare the way for future, more advanced probes on the drawing boards now which may be able to answer that question of whether life has ever existed on (in) these far-off ocean worlds.

    4
    Diagram of an interior cross-section of the crust of Enceladus, showing how hydrothermal activity is thought to be causing the plumes of water vapor on the surface. Image via NASA-GSFC/SVS/NASA/JPL-Caltech/Southwest Research Institute.

    Bottom line: The James Webb Space Telescope will be used in part to study our own solar system, for example, Jupiter’s moon Europa and Saturn’s moon Enceladus, both considered ocean worlds.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:11 am on August 7, 2017 Permalink | Reply
    Tags: , , , , GTO-Guaranteed Time Observations, NASA/ESA/CSA Webb   

    From Hubble: ” Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jun 15, 2017 [This just appeared in social media]

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4366
    cpulliam@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Felicia Chou
    NASA Headquarters, Washington, D.C.
    202-358-0257
    felicia.chou@nasa.gov

    Natasha Pinol
    NASA Headquarters, Washington, D.C.
    202-358-0930
    natasha.r.pinol@nasa.gov

    1
    NASA/ESA/CSA Webb

    Prologue

    Webb Telescope Guaranteed Time Observations Targets Announced

    Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments. The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe.

    The Full Story

    Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments.

    “From the very first galaxies after the Big Bang, to searching for chemical fingerprints of life on Enceladus, Europa, and exoplanets like TRAPPIST-1e, Webb will be looking at some incredible things in our universe,” said Eric Smith, James Webb Space Telescope Director at NASA Headquarters in Washington. “With over 2,100 initial observations planned, there is no limit to what we might discover with this incredible telescope.”

    The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe.

    “The definition of observations to be conducted by the Webb Guaranteed Time Observers is a major milestone along the timeline for producing revolutionary science with this incredibly powerful observatory. These observations by the teams of people who designed and built the Webb instruments will yield not only amazing science, but will be crucial in putting the observatory through its paces and understanding its many capabilities,” said Dr. Ken Sembach, director of the Space Telescope Science Institute in Baltimore, which will lead science and mission operations for Webb.

    “I am very pleased that we’re at this point since it is now possible for the broader science community to begin selecting targets and designing observations for the Early Release Science program and the Cycle 1 call for proposals, which will be issued this fall,” he added.

    Observing time on Webb is scheduled in a series of cycles. Cycle 1 will encompass about 8,700 hours, or nearly a year. For their dedicated work on the project, the Guaranteed Time Observers were awarded 10 percent of the total JWST observing time in the prime mission. To maximize the overall Webb scientific return, the GTO projects will be scheduled earlier in the mission, and are expected to be completed within the first two years of telescope operations.

    The observations announced today will help the broader scientific community plan their proposals for observations to be made during Cycle 1. A call for proposals for regular Cycle 1 observations will be issued later this year.

    Webb is designed to complement and extend the scientific capabilities of other NASA missions such as the Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). The Space Telescope Science Institute (STScI) in Baltimore, Maryland will conduct Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

    [First, Webb’s launch as been delayed by the need to launch BepiColumbo is a critical time period. https://sciencesprings.wordpress.com/2017/08/06/from-spaceflight-insider-james-webb-space-telescope-may-be-delayed-again/ .

    Second. no one really knows what will happen when Webb is launched. The planning and testing might be the longest and most arduous for any spacecraft. But is has all been done on the ground by the builders and NASA.]

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 12:55 pm on August 6, 2017 Permalink | Reply
    Tags: , , , , , NASA/ESA/CSA Webb   

    From Spaceflight Insider: “James Webb Space Telescope may be delayed again” 

    1

    Spaceflight Insider

    August 5th, 2017
    Joe Latrell

    NASA/ESA/CSA Webb Telescope annotated

    The much delayed and over budget next-generation James Webb Space Telescope (JWST) has suffered another setback prior to its journey to the launch pad: the October 2018 launch may be in conflict with Europe’s BepiColombo mission to Mercury. Both spacecraft are to be flown on Ariane 5 boosters, but the spaceport at Kourou, French Guiana, cannot support two flights in the same month. BepiColombo has priority due to the tight launch window to reach Mercury. This will result in the JWST having its launch date pushed back to 2019 at the earliest.

    The James Webb Space Telescope

    The JWST is a space-based infrared telescope. To operate properly, it needs to maintain a temperature of 37 kelvins (–236 °C / –393 °F). In order to achieve this when in space, the telescope relies on a large tennis court sized sunshield to protect it from external heat and light sources, such as the Sun as well as the Earth and Moon.

    Light gathered from the segmented 6.5-meter (21-foot) diameter mirror is directed to the four science instruments: Fine Guidance Sensor / Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS), Mid-InfraRed Instrument (MIRI), Near InfraRed Camera (NIRCam), and Near InfraRed Spectrograph (NIRSpec). Due to the requirement of the MIRI to operate at an even lower temperature than the other science instruments, it will utilize a cryocooler to decrease its temperature to less than 7 kelvins (–266 °C / –447 °F).

    While smaller than telescopes here on Earth, the JWST is the most powerful space telescope ever constructed and is the science successor to the Hubble telescope.

    NASA/ESA Hubble Telescope

    Originally projected to cost $1.6 billion, the telescope’s price tag has ballooned to over $8.8 billion. Several factors, from delays in choosing a launch vehicle to management issues, contributed to the soaring costs. Additionally, the vehicle proved harder to construct than originally envisioned. For example, during vibration testing, the spacecraft experienced several anomalies that required NASA engineers to stop the test. After analysis and modifications, the tests resumed and the JWST was given a clean bill of health.

    Despite the technical issues and threats of cancellation, the project continued and the cost estimates grew. A launch delay into 2019 will only add to that dollar figure.

    The BepiColombo mission

    ESA/JAXA BepiColombo


    ESA/JAXA Elements of the BepiColombo Mercury Composite Spacecraft. From left to right: Mercury Transfer Module (MTM), Mercury Planetary Orbiter (MPO), Magnetospheric Orbiter Sunshield and Interface Structure (MOSIF), and Mercury Magnetospheric Orbiter (MMO).

    BepiColombo is a mission to explore the planet Mercury that is being conducted by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). The mission is actually two spacecraft: the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The objective is a comprehensive study of Mercury, including the planet’s surface, magnetic field, and interior structure.

    The MPO is a solar-powered spacecraft carrying 11 scientific instruments. These instruments include laser altimeters, spectrometers, magnetometers, as well as several cameras. It has a mass of 1,150 kilograms (2,540 pounds) and is capable of producing 1,000 watts of power for onboard instruments.

    The MMO has a mass of 285 kilograms (628 pounds) and carries five scientific payloads. Built mostly by Japan, this spacecraft will study plasma particles including high-energy ions and electrons emanating from the planet. A third spacecraft, the Mercury Surface Element (MSE), a small lander craft, was removed due to budgetary issues.

    The two Mercury spacecraft are scheduled to arrive at the planet in 2025 after performing numerous flybys: one at Earth, two at Venus, and six at Mercury. The craft must launch sometime between October 5, 2018, and November 28, 2018, to reach the planet as scheduled.

    Both missions as slated to fly on the Ariane 5 booster. The 52-meter (171-foot) vehicle is capable of lifting over 10,500 kilograms (23,100 pounds) to Geosynchronous Transfer Orbit (GTO).

    JWST chills in Chamber A

    Currently, the JWST is undergoing low-temperature checks at NASA Johnson Space Center’s Chamber A. The temperature of the chamber is steadily being reduced to approximately 20 kelvins (–253 °C / –424 °F) – the same temperature that the JWST will be when operating in space. These tests will validate that the JWST instruments can operate properly at the extremely low temperatures.

    Unlike Hubble, the JWST will be positioned at the Earth-Sun Lagrange point (L2) which is 1,500,000 kilometers (930,000 miles) from Earth. That location is currently beyond NASA’s manned space capabilities; therefore, precluding the JWST from being serviced on orbit.

    LaGrange Points map. NASA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SpaceFlight Insider reports on events taking place within the aerospace industry. With our team of writers and photographers, we provide an “insider’s” view of all aspects of space exploration efforts. We go so far as to take their questions directly to those officials within NASA and other space-related organizations. At SpaceFlight Insider, the “insider” is not anyone on our team, but our readers.

    Our team has decades of experience covering the space program and we are focused on providing you with the absolute latest on all things space. SpaceFlight Insider is comprised of individuals located in the United States, Europe, South America and Canada. Most of them are volunteers, hard-working space enthusiasts who freely give their time to share the thrill of space exploration with the world.

     
  • richardmitnick 4:55 pm on July 18, 2017 Permalink | Reply
    Tags: ESA European Space Agency, MIRI on Webb, NASA/ESA/CSA Webb, STFC RAL Space,   

    From STFC: “Recipe for success – the next steps for MIRI” 


    STFC

    14 July 2017
    Contacts
    Sarah-Jane Smart
    sarah.smart@stfc.ac.uk
    Communications Lead JWST MIRI EC for STFC
    Mob: +(44) (0) 7837 634683

    1
    The installation of MIRI into the instrument module.(Credit: NASA.)

    Testing is heating up for the Mid-Infrared Instrument (MIRI), the coldest instrument on the James Webb Space Telescope (JWST). The advanced cooler for the instrument (its own refrigerator) is currently undergoing performance testing at the NASA Jet Propulsion Laboratory (JPL) in California.

    MIRI is one of the key instruments currently being built for NASA’s JWST, which, once it is launched in 2018, will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    The cooler is very complex and needs components spread throughout the huge telescope to help reduce the temperature of the instrument to a super cold -267degC. The current tests at JPL are using a spare cooler and a prototype MIRI; this was specially adapted by the European MIRI team, including STFC RAL Space, to get a better understanding of how all these components behave when connected together.

    Engineers from STFC form part of the test team at JPL who are putting the cooler system through its paces to see how it functions.

    The MIRI Lead Thermal Engineer at STFC, Bryan Shaughnessy said “We’re calling this an end-to-end test. It is a little like perfecting a recipe. We have the ingredients and the techniques and, with a little knowhow and tweaking, we will get the perfect dish. These tests will fine-tune the operational parameters of MIRI.”

    Links

    STFC MIRI page
    NASA JWST Home page

    MIRI

    MIRI is an infrared camera and spectrometer and will operate between wavelengths of 5 to 27 microns, a region which is difficult to observe from the ground. The instrument has several unique advantages; its location in space will remove the blocking and large background noise effects of the atmosphere which limit ground-based telescopes. JWST can be cooled to a very low temperature; this reduces the emission from the telescope and therefore greatly improves its sensitivity. JWST will have a much larger mirror than any other infrared space telescope, giving improved angular resolution.

    MIRI has been put through its paces with a series of rigorous environmental test campaigns designed to verify performance and functionality and is now undergoing final testing. at Johnson Space Centre in Houston. The UK team and teams from both the US and Europe travel out at different times to work on shifts with the NASA team and the other JWST Science Instrument teams.

    STFC RAL Space

    STFC RAL Space are responsible for the functional testing of MIRI, these are carried out every time the mission completes a test cycle to ensure that MIRI is still working correctly. RAL Space are responsible for the overall thermal design of MIRI and provide support to the test team during cold tests.

    RAL Space based at STFC’s Rutherford Appleton Laboratory (RAL), carries out an exciting range of world-class space research and technology development. We have significant involvement in over 210 space missions and are at the forefront of UK Space Research. We undertake world-leading space research and technology development, provide space test and ground-based facilities, design and build instruments, analyse and process data and operate S- and X-band ground-station facilities, as well as lead conceptual studies for future missions. We work with space and ground-based groups around the world.

    UK Space Agency

    The UK Space Agency is at the heart of UK efforts to explore and benefit from space. It is responsible for all strategic decisions on the UK civil space programme and provides a clear, single voice for UK space ambitions.

    About the European Space Agency


    The European Space Agency (ESA) provides Europe’s gateway to space and is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe’s space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 5:08 pm on July 17, 2017 Permalink | Reply
    Tags: , , , , , , , , NASA/ESA/CSA Webb   

    From Webb: “Birth of Stars & Protoplanetary Systems” 

    NASA Webb Header

    NASA Webb Telescope

    James Webb Space Telescope

    1
    The Pillars of Creation in the Eagle Nebula captured in visible light by Hubble. Stellar nurseries are hidden within the towers of dust and gas. Credit: NASA/ESA/Hubble Heritage Team (STScI/AURA)/J. Hester, P. Scowen (Arizona State U.)

    Inside the Pillars of Creation

    While this image is spectacular, there are actually stars that Hubble can’t see inside those pillars of dust. And that’s because the visible light emitted by those stars is being obscured by the dust. But what if we used a telescope sensitive to infrared light to look at this nebula?

    The next image is another Hubble view, but this time in near-infrared. In the infrared more structure within the dust clouds is revealed and hidden stars have now become apparent. (And if Hubble, which is optimized for visible light, can capture a near-infrared image like this, imagine what JWST, which is optimized for near-infrared and 100x more powerful than Hubble, will do!)

    Another nebula, the “Mystic Mountains” of the Carina Nebula, shown in two Hubble images, one in visible light (left) and one in infrared (right).
    In the infrared image, we can see more stars that just weren’t visible before. Why is this?

    2
    The Pillars of Creation in the Eagle Nebula captured in infrared light by Hubble. The light from young stars being formed pierce the clouds of dust and gas in the infrared. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

    3
    Comparison of the Carina Nebula in visible light (left) and infrared (left), both images by Hubble. Credit: NASA/ESA/M. Livio & Hubble 20th Anniversary Team (STScI)

    How Do Infrared Cameras Work?

    We can try a thought experiment. What if you were to put your arm into a garbage bag? Your arm is hidden. Invisible.

    But what if you looked at your arm and the garbage bag with an infrared camera? Remember that infrared light is essentially heat. And that while your eyes may not be able to pick up the warmth of your arm underneath the cooler plastic of the bag, an infrared camera can. An infrared camera can see right through the bag!

    4
    5

    6
    ALMA image of the young star HL Tau and its protoplanetary disk. This best image ever of planet formation reveals multiple rings and gaps that herald the presence of emerging planets as they sweep their orbits clear of dust and gas. Credit: ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    The Dusty Cocoons of Star and Planet Formation

    JWST’s amazing imaging and spectroscopy capabilities will allow us to study stars as they are forming in their dusty cocoons. Additionally, it will be able to image disks of heated material around these young stars, which can indicate the beginnings of planetary systems, and study organic molecules that are important for life to develop.

    _________________________________________________________________
    Key Questions

    JWST will address several key questions to help us unravel the story of the star and planet formation:

    How do clouds of gas and dust collapse to form stars?
    Why do most stars form in groups?
    Exactly how do planetary systems form?
    How do stars evolve and release the heavy elements they produce back into space for recycling into new generations of stars and planets?

    7
    Infrared Spitzer image of a star-forming region. Credit: NASA/JPL-Caltech/ Harvard-Smithsonian CfA

    NASA/Spitzer Telescope

    JWST’s Role in Answering These Questions

    To unravel the birth and early evolution of stars and planets, we need to be able to peer into the hearts of dense and dusty cloud cores where star formation begins. These regions cannot be observed at visible light wavelengths as the dust would make such regions opaque and must be observed at infrared wavelengths.

    Stars, like our Sun, can be thought of as “basic particles” of the Universe, just as atoms are “basic particles” of matter. Groups of stars make up galaxies, while planets and ultimately life arise around stars. Although stars have been the main topic of astronomy for thousands of years, we have begun to understand them in detail only in recent times through the advent of powerful telescopes and computers.

    A hundred years ago, scientists did not know that stars are powered by nuclear fusion, and 50 years ago they did not know that stars are continually forming in the Universe. Researchers still do not know the details of how clouds of gas and dust collapse to form stars, or why most stars form in groups, or exactly how planetary systems form. Young stars within a star-forming region interact with each other in complex ways. The details of how they evolve and release the heavy elements they produce back into space for recycling into new generations of stars and planets remains to be determined through a combination of observation and theory.

    8
    The stages of solar system formation. Credit: Shu et al. 1987

    The stages of solar system formation are illustrated to the right: starting with a protostar embedded in a gas cloud (upper left of diagram), to an early star with a circumstellar disk (upper right), to a star surrounded by small “planetesimals” which are starting to clump together (lower left) to a solar system like ours today.

    The continual discovery of new and unusual planetary systems has made scientists re-think their ideas and theories about how planets are formed. Scientists realize that to get a better understanding of how planets form, they need to have more observations of planets around young stars, and more observations of leftover debris around stars, which can come together and form planets.

    _________________________________________________________________

    Related Content
    More Comparison Images

    Here’s is another stunning comparison of visible versus infrared light views of the same object – the gorgeous Horsehead Nebula:

    9
    The Horsehead Nebula in visible light, captured by the Canada-France Hawaii Telescope. Credit: NASA

    Visible Light Horsehead Nebula


    CFHT Telescope, Maunakea, Hawaii, USA

    Infrared Light Horsehead Nebula

    9
    The Horsehead Nebula in infrared light, captured by the Hubble Space Telescope. Credit: NASA/Space Telescope Science Institute (STScI)

    NASA/ESA Hubble Telescope

    Related Video

    This video shows how JWST will peer inside dusty knots where the youngest stars and planets are forming.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The James Webb Space Telescope will be a large infrared telescope with a 6.5-meter primary mirror. Launch is planned for later in the decade.

    Webb telescope will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb telescope was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center is managing the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute will operate Webb after launch.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There will be four science instruments on Webb: the Near InfraRed Camera (NIRCam), the Near InfraRed Spectrograph (NIRspec), the Mid-InfraRed Instrument (MIRI), and the Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS). Webb’s instruments will be designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch is scheduled for later in the decade on an Ariane 5 rocket. The launch will be from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb will be located at the second Lagrange point, about a million miles from the Earth.

    NASA image

    ESA50 Logo large

    Canadian Space Agency

     
  • richardmitnick 11:43 am on July 15, 2017 Permalink | Reply
    Tags: , , , , Cryogenic-temperature testing, , NASA/ESA/CSA Webb   

    From ESA: Webb “Ready for testing” 

    ESA Space For Europe Banner

    European Space Agency

    1

    The James Webb Space Telescope is prepared for cryogenic-temperature testing in Chamber A at NASA’s Johnson Space Center in Texas.

    Being a ‘cool’ telescope, JWST is designed to operate at very low temperatures (around -230° C). This will give us an unprecedented view of the Universe at near and mid-infrared wavelengths and will allow scientists to study a wide variety of celestial objects, ranging from planets in the Solar System to nearby stars, from neighbouring galaxies out to the farthest reaches of the very distant Universe.

    JWST is joint project of NASA, ESA and the Canadian Space Agency, and is scheduled for launch in October 2018 from Europe’s Spaceport in Kourou, French Guiana.

    More about the cryogenic-temperature testing on NASA’s JWST website.

    More about JWST

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:55 pm on June 15, 2017 Permalink | Reply
    Tags: A call for proposals for regular Cycle 1 observations will be issued later this year, , , , , Guaranteed Time Observations, Guaranteed Time Observers were awarded 10 percent of the total JWST observing time in the prime mission, , NASA/ESA/CSA Webb   

    From Hubble: “Icy Moons, Galaxy Clusters, and Distant Worlds Among Selected Targets for James Webb Space Telescope” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jun 15, 2017

    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4366
    cpulliam@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Felicia Chou
    NASA Headquarters, Washington, D.C.
    202-358-0257
    felicia.chou@nasa.gov

    Natasha Pinol
    NASA Headquarters, Washington, D.C.
    202-358-0930
    natasha.r.pinol@nasa.gov

    NASA/ESA/CSA Webb Telescope annotated

    Mission officials for NASA’s James Webb Space Telescope announced some of the science targets the telescope will observe following its launch and commissioning. These specific observations are part of a program of Guaranteed Time Observations (GTO), which provides dedicated time to the scientists that helped design and build the telescope’s four instruments.

    “From the very first galaxies after the Big Bang, to searching for chemical fingerprints of life on Enceladus, Europa, and exoplanets like TRAPPIST-1e, Webb will be looking at some incredible things in our universe,” said Eric Smith, James Webb Space Telescope Director at NASA Headquarters in Washington. “With over 2,100 initial observations planned, there is no limit to what we might discover with this incredible telescope.”

    The broad spectrum of initial GTO observations will address all of the science areas Webb is designed to explore, from first light and the assembly of galaxies to the birth of stars and planets. Targets will range from the solar system’s outer planets (Jupiter, Saturn, Uranus, and Neptune) and icy Kuiper Belt to exoplanets to distant galaxies in the young universe.

    “The definition of observations to be conducted by the Webb Guaranteed Time Observers is a major milestone along the timeline for producing revolutionary science with this incredibly powerful observatory. These observations by the teams of people who designed and built the Webb instruments will yield not only amazing science, but will be crucial in putting the observatory through its paces and understanding its many capabilities,” said Dr. Ken Sembach, director of the Space Telescope Science Institute in Baltimore, which will lead science and mission operations for Webb.

    “I am very pleased that we’re at this point since it is now possible for the broader science community to begin selecting targets and designing observations for the Early Release Science program and the Cycle 1 call for proposals, which will be issued this fall,” he added.

    Observing time on Webb is scheduled in a series of cycles. Cycle 1 will encompass about 8,700 hours, or nearly a year. For their dedicated work on the project, the Guaranteed Time Observers were awarded 10 percent of the total JWST observing time in the prime mission. To maximize the overall Webb scientific return, the GTO projects will be scheduled earlier in the mission, and are expected to be completed within the first two years of telescope operations.

    The observations announced today will help the broader scientific community plan their proposals for observations to be made during Cycle 1. A call for proposals for regular Cycle 1 observations will be issued later this year.

    Webb is designed to complement and extend the scientific capabilities of other NASA missions such as the Hubble Space Telescope. It will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). The Space Telescope Science Institute (STScI) in Baltimore, Maryland will conduct Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: