Tagged: NASA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:14 pm on March 21, 2020 Permalink | Reply
    Tags: (SORCE)-NASA’s Solar Radiation and Climate Experiment, NASA, , TSIS-1 [2017] the present and TSIS-2 [2023] the future.   

    From NASA: “Solar Energy Tracker Powers Down After 17 Years” 


    From NASA

    March 20, 2020
    By Jessica Merzdorf
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    The Sun is Earth’s primary power source. Energy from the Sun, called solar irradiance, drives Earth’s climate, temperature, weather, atmospheric chemistry, ocean cycles, energy balance and more. Credit: NASA / Scott Wiessinger

    After nearly two decades, the Sun has set for NASA’s SOlar Radiation and Climate Experiment (SORCE), a mission that continued and advanced the agency’s 40-year record of measuring solar irradiance and studying its influence on Earth’s climate.

    1
    SORCE. NASA

    The SORCE team turned off the spacecraft on February 25, 2020, concluding 17 years of measuring the amount, spectrum and fluctuations of solar energy entering Earth’s atmosphere — vital information for understanding climate and the planet’s energy balance. The mission’s legacy is continued by the Total and Spectral solar Irradiance Sensor (TSIS-1), launched to the International Space Station in December 2017, and TSIS-2, which will launch aboard its own spacecraft in 2023.

    3
    TSIS-1. NASA

    Monitoring Earth’s “Battery”

    The Sun is Earth’s primary power source. Energy from the Sun, called solar irradiance, drives Earth’s climate, temperature, weather, atmospheric chemistry, ocean cycles, energy balance and more. Scientists need accurate measurements of solar power to model these processes, and the technological advances in SORCE’s instruments allowed more accurate solar irradiance measurements than previous missions.

    “These measurements are important for two reasons,” said Dong Wu, project scientist for SORCE and TSIS-1 at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Climate scientists need to know how much the Sun varies, so they know how much change in the Earth’s climate is due to solar variation. Secondly, we’ve debated for years, is the Sun getting brighter or dimmer over hundreds of years? We live only a short period, but an accurate trend will become very important. If you know how the Sun is varying and can extend that knowledge into the future, you can then put the anticipated future solar input into climate models together with other information, like trace gas concentrations, to estimate what our future climate will be.”

    SORCE’s four instruments measured solar irradiance in two complementary ways: Total and spectral.

    3
    NASA’s Solar Radiation and Climate Experiment, or SORCE, collected this data on total solar irradiance, the total amount of the Sun’s radiant energy, throughout Sept. 2017. Sunspots (darkened areas on the Sun’s surface) and faculae (brightened areas) create tiny TSI variations that show up as measurable changes in Earth’s climate and systems.
    Credits: NASA / Walt Feimer

    Total solar irradiance, or TSI, is the total amount of solar energy that reaches the Earth’s outer atmosphere in a given time. Sunspots (darkened areas on the Sun’s surface) and faculae (brightened areas) create tiny TSI variations that show up as measurable changes in Earth’s climate and systems. From space, SORCE and other solar irradiance missions measure TSI without interference from Earth’s atmosphere.

    SORCE’s TSI values were slightly but significantly lower than those measured by previous missions. This was not an error — its Total Irradiance Monitor was ten times more accurate than previous instruments. This improved solar irradiance inputs into the Earth climate and weather models from what was previously available.

    “The big surprise with TSI was that the amount of irradiance it measured was 4.6 watts per square meter less than what was expected,” said Tom Woods, SORCE’s principal investigator and senior research associate at the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado. “That started a whole scientific discussion and the development of a new calibration laboratory for TSI instruments. It turned out that the TIM was correct, and all the past irradiance measurements were erroneously high.”

    “It’s not often in climate studies that you make a quantum leap in measurement capability, but the tenfold improvement in accuracy by the SORCE / TIM was exactly that,” said Greg Kopp, TIM instrument scientist for SORCE and TSIS at LASP.

    SORCE’s other measurements focused on spectrally-resolved solar irradiance (SSI): The variation of solar irradiance with wavelength across the solar spectrum, covering the major wavelength regions important to Earth’s climate and atmospheric composition.

    Besides the familiar rainbow of colors in visible light, solar energy also contains shorter ultraviolet and longer infrared wavelengths, both of which play important roles in affecting Earth’s atmosphere. Earth’s atmospheric layers and surface absorb different wavelengths of energy — for example, atmospheric ozone absorbs harmful ultraviolet radiation, while atmospheric water vapor and carbon dioxide absorb longer-wavelength infrared radiation, which keeps the surface warm. SORCE was the first satellite mission to record a broad spectrum of SSI for a long period, tracking wavelengths from 1 to 2400 nanometers across its three SSI instruments.

    “For public health, ozone chemistry and ultraviolet radiation are very important, and visible light is important for climate modeling,” Wu said. “We need to know the solar variability at different wavelengths and compare these measurements with our models.”

    SORCE observed the Sun across two solar minima (periods of low sunspot activity), providing valuable information about variability over a relatively short 11-year period. But a longer record is needed to improve long-term predictions, Wu said.

    Buying Time for an Aging Mission

    SORCE was originally designed to collect data for just five years. Extending its lifespan to 17 required creative and resourceful engineering, said Eric Moyer, SORCE’s mission director at Goddard.

    “The operation and science teams at our partner organizations developed and implemented a completely new way to operate this mission when it appeared it was over because of battery capacity loss,” said Moyer. LASP and Northrup Grumman Space Systems led the development of new operational software in order to continue the SORCE mission. “The small, highly dedicated team persevered and excelled when encountering operational challenges. I am very proud of their excellent accomplishment and honored to have had the opportunity to participate in managing the SORCE mission.”

    Continuing a Bright Legacy

    As SORCE’s time in the Sun ends, NASA’s solar irradiance record continues with TSIS-1. The mission’s two instruments measure TSI and SSI with even more advanced instruments that build on SORCE’s legacy, said Wu. They have already enabled advances like establishing a new reference for the “quiet” Sun when there were no sunspots in 2019, and for comparing this to SORCE observations of the previous solar cycle minimum in 2008.

    TSIS-2 is scheduled to launch in 2023 with identical instruments to TSIS-1. Its vantage point aboard its own spacecraft will give it more flexibility than TSIS-1’s data collection aboard the ISS.

    “We are looking forward to continuing the groundbreaking science ushered in by SORCE, and to maintaining the solar irradiance data record through this decade and beyond with TSIS-1 and 2,” said LASP’s Peter Pilewskie, principal investigator for the TSIS missions. “SORCE set the standard for measurement accuracy and spectral coverage, two attributes of the mission that were key to gaining insight into the Sun’s role in the climate system. TSIS has made additional improvements that should further enhance Sun-climate studies.”

    “Solar irradiance measurements are very challenging, and the SORCE team proposed a different way, a new technology, to measure them,” said Wu. “Using advanced technology to advance our science capability, SORCE is a very good example of NASA’s spirit.”

    For more information on SORCE, visit: http://lasp.colorado.edu/home/sorce/.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 4:30 pm on February 13, 2020 Permalink | Reply
    Tags: , , , , DAVINCI+, IVO, NASA, NASA’s Discovery Program has supported the development and implementation of over 20 missions and instruments, Solar System projects, TRIDENT,   

    From NASA: “NASA Selects Four Possible Missions to Study the Secrets of the Solar System” 


    From NASA

    Feb. 13, 2020

    Grey Hautaluoma
    Headquarters, Washington
    202-358-0668
    grey.hautaluoma-1@nasa.gov

    Joshua Handal
    Headquarters, Washington
    202-358-2307
    joshua.a.handal@nasa.gov

    1
    Artist concept of the solar system. Credits: NASA.

    NASA has selected four Discovery Program investigations to develop concept studies for new missions. Although they’re not official missions yet and some ultimately may not be chosen to move forward, the selections focus on compelling targets and science that are not covered by NASA’s active missions or recent selections. Final selections will be made next year.

    NASA’s Discovery Program invites scientists and engineers to assemble a team to design exciting planetary science missions that deepen what we know about the solar system and our place in it. These missions will provide frequent flight opportunities for focused planetary science investigations. The goal of the program is to address pressing questions in planetary science and increase our understanding of our solar system.

    “These selected missions have the potential to transform our understanding of some of the solar system’s most active and complex worlds,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate. “Exploring any one of these celestial bodies will help unlock the secrets of how it, and others like it, came to be in the cosmos.”

    Each of the four nine-month studies will receive $3 million to develop and mature concepts and will conclude with a Concept Study Report. After evaluating the concept studies, NASA will continue development of up to two missions towards flight.

    The proposals were chosen based on their potential science value and feasibility of development plans following a competitive peer-review process.

    The selected proposals are:

    DAVINCI+ (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging Plus)
    DAVINCI+ will analyze Venus’ atmosphere to understand how it formed, evolved and determine whether Venus ever had an ocean. DAVINCI+ plunges through Venus’ inhospitable atmosphere to precisely measure its composition down to the surface. The instruments are encapsulated within a purpose-built descent sphere to protect them from the intense environment of Venus. The “+” in DAVINCI+ refers to the imaging component of the mission, which includes cameras on the descent sphere and orbiter designed to map surface rock-type. The last U.S.-led, in-situ mission to Venus was in 1978. The results from DAVINCI+ have the potential to reshape our understanding of terrestrial planet formation in our solar system and beyond. James Garvin of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is the principal investigator. Goddard would provide project management.

    Io Volcano Observer (IVO)

    IVO would explore Jupiter’s moon, Io, to learn how tidal forces shape planetary bodies. Io is heated by the constant crush of Jupiter’s gravity and is the most volcanically active body in the solar system. Little is known about Io’s specific characteristics, such as whether a magma ocean exists in its interior. Using close-in flybys, IVO would assess how magma is generated and erupted on Io. The mission’s results could revolutionize our understanding of the formation and evolution of rocky, terrestrial bodies, as well as icy ocean worlds in our solar system, and extrasolar planets across the universe. Alfred McEwen of the University of Arizona in Tucson is the principal investigator. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland would provide project management.

    TRIDENT

    Trident would explore Triton, a unique and highly active icy moon of Neptune, to understand pathways to habitable worlds at tremendous distances from the Sun. NASA’s Voyager 2 mission showed that Triton has active resurfacing—generating the second youngest surface in the solar system—with the potential for erupting plumes and an atmosphere. Coupled with an ionosphere that can create organic snow and the potential for an interior ocean, Triton is an exciting exploration target to understand how habitable worlds may develop in our solar system and others. Using a single fly-by, Trident would map Triton, characterize active processes, and determine whether the predicted subsurface ocean exists. Louise Prockter of the Lunar and Planetary Institute/Universities Space Research Association in Houston is the principal investigator. NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, would provide project management

    VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy)
    VERITAS would map Venus’ surface to determine the planet’s geologic history and understand why Venus developed so differently than the Earth. Orbiting Venus with a synthetic aperture radar, VERITAS charts surface elevations over nearly the entire planet to create three-dimensional reconstructions of topography and confirm whether processes, such as plate tectonics and volcanism, are still active on Venus. VERITAS would also map infrared emissions from the surface to map Venus’ geology, which is largely unknown. Suzanne Smrekar of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, is the principal investigator. JPL would provide project management.

    The concepts were chosen from proposals submitted in 2019 under NASA Announcement of Opportunity (AO) NNH19ZDA010O, Discovery Program. The selected investigations will be managed by the Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, as part of the Discovery Program. The Discovery Program conducts space science investigations in the Planetary Science Division of NASA’s Science Mission Directorate, guided by NASA’s agency priorities and the Decadal Survey process of the National Academy of Sciences.

    Established in 1992, NASA’s Discovery Program has supported the development and implementation of over 20 missions and instruments. These selections are part of the ninth Discovery Program competition.

    For more information about NASA’s planetary science, visit:

    http://www.nasa.gov/solarsystem

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:05 pm on February 8, 2020 Permalink | Reply
    Tags: "All About the Laser (and Microphone) Atop Mars 2020, , , NASA, NASA's Next Rover", SuperCam   

    From NASA: “All About the Laser (and Microphone) Atop Mars 2020, NASA’s Next Rover” 


    From NASA

    Feb. 7, 2020

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-2433
    andrew.c.good@jpl.nasa.gov

    Josh Handal
    NASA Headquarters, Washington
    202-358-2307
    joshua.a.handal@nasa.gov

    1
    Mars 2020’s mast, or “head,” includes a laser instrument called SuperCam that can vaporize rock material and study the resulting plasma. Credits: NASA/JPL-Caltech

    NASA JPL


    NASA is sending a new laser-toting robot to Mars. But unlike the lasers of science fiction, this one is used for studying mineralogy and chemistry from up to about 20 feet (7 meters) away. It might help scientists find signs of fossilized microbial life on the Red Planet, too.

    NASA Mars 2020 Rover

    One of seven instruments aboard the Mars 2020 rover that launches this summer, SuperCam was built by a team of hundreds and packs what would typically require several sizable pieces of equipment into something no bigger than a cereal box. It fires a pulsed laser beam out of the rover’s mast, or “head,” to vaporize small portions of rock from a distance, providing information that will be essential to the mission’s success.

    Here’s a closer look at what makes the instrument so special:

    A Far Reach

    Using a laser beam will help researchers identify minerals that are beyond the reach of the rover’s robotic arm or in areas too steep for the rover to go. It will also enable them to analyze a target before deciding whether to guide the rover there for further analysis. Of particular interest: minerals that formed in the presence of liquid water, like clays, carbonates and sulfates. Liquid water is essential to the existence of life as we know it, including microbes, which could have survived on Mars billions of years ago.

    Scientists can also use the information from SuperCam to help decide whether to capture rock cores for the rover’s sample caching system. Mars 2020 will collect these core samples in metal tubes, eventually depositing them at a predetermined location for a future mission to retrieve and bring back to Earth.

    2
    The Mast Unit for Mars 2020’s SuperCam, shown being tested here, will use a laser to vaporize and study rock material on the Red Planet’s surface. Credits: LANL

    Laser Focus

    SuperCam is essentially a next-generation version of the Curiosity rover’s ChemCam. Like its predecessor, SuperCam can use an infrared laser beam to heat the material it impacts to around 18,000 degrees Fahrenheit (10,000 degrees Celsius) — a method called laser induced breakdown spectroscopy, or LIBS — and vaporizes it. A special camera can then determine the chemical makeup of these rocks from the plasma that is created.


    In a test shown here, the SuperCam Mast Unit — which sits in the mast, or “head,” of the Mars 2020 rover — zaps marks across a piece of metal.

    Just like ChemCam, SuperCam will use artificial intelligence to seek out rock targets worth zapping during and after drives, when humans are out of the loop. In addition, this upgraded A.I. lets SuperCam point very precisely at small rock features.

    Another new feature in SuperCam is a green laser that can determine the molecular composition of surface materials. This green beam excites the chemical bonds in a sample and produces a signal depending on which elements are bonded together — a technique called Raman spectroscopy. SuperCam also uses the green laser to cause some minerals and carbon-based chemicals to emit light, or fluoresce.

    Minerals and organic chemicals fluoresce at different rates, so SuperCam’s light sensor features a shutter that can close as quickly as 100 nanoseconds at a time — so fast that very few photons of light will enter it. Altering the shutter speed (a technique called time-resolved luminescence spectroscopy) will enable scientists to better determine the compounds present.

    Moreover, SuperCam can use visible and infrared (VISIR) light reflected from the Sun to study the mineral content of rocks and sediments. This VISIR technique complements the Raman spectroscopy; each technique is sensitive to different types of minerals.

    Laser With a Mic Check

    SuperCam includes a microphone so scientists can listen each time the laser hits a target. The popping sound created by the laser subtly changes depending on a rock’s material properties.

    “The microphone serves a practical purpose by telling us something about our rock targets from a distance. But we can also use it to directly record the sound of the Martian landscape or the rover’s mast swiveling,” said Sylvestre Maurice of the Institute for Research in Astrophysics and Planetary Science in Toulouse, France.

    The Mars 2020 rover marks the third time this particular microphone design will go to the Red Planet, Maurice said. In the late 1990s, the same design rode aboard the Mars Polar Lander, which crashed on the surface. In 2008, the Phoenix mission experienced electronics issues that prevented the microphone from being used.

    In the case of Mars 2020, SuperCam doesn’t have the only microphone aboard the rover: an entry, descent and landing microphone will capture all the sounds of the car-sized rover making its way to the surface. It will add audio to full-color video recorded by the rover’s cameras, capturing a Mars landing like never before.

    Teamwork

    SuperCam is led by Los Alamos National Laboratory in New Mexico, where the instrument’s Body Unit was developed. That part of the instrument includes several spectrometers, control electronics and software.

    The Mast Unit was developed and built by several laboratories of the CNRS (French research center) and French universities under the contracting authority of CNES (French space agency). Calibration targets on the rover deck are provided by Spain’s University of Valladolid.

    2

    JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency’s headquarters in Washington.

    Read more about Mars 2020:

    https://mars.nasa.gov/mars2020/

    http://nasa.gov/mars2020

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:50 am on January 27, 2020 Permalink | Reply
    Tags: "This NASA Visualisation of a Black Hole Is So Beautiful We Could Cry", , , , , , , NASA,   

    From NASA via Science Alert: “This NASA Visualisation of a Black Hole Is So Beautiful, We Could Cry” 

    From NASA

    via

    ScienceAlert

    Science Alert

    26 JAN 2020
    MICHELLE STARR

    1
    NASA Visualization Shows a Black Hole’s Warped World

    The first-ever direct image of a black hole’s event horizon was a truly impressive feat of scientific ingenuity. But it was extremely difficult to achieve, and the resulting image was relatively low-resolution.

    Mesier 87*, The first image of a black hole. First-ever direct image of a black hole, Messier 87*. (EHT Collaboration).This is the supermassive black hole at the center of the galaxy Messier 87. Image via JPL/ Event Horizon Telescope Collaboration.

    EHT map

    Now iconic image of Katie Bouman-Harvard Smithsonian Astrophysical Observatory after the image of Messier 87 was achieved. Headed from Harvard to Caltech as an Assistant Professor. On the committee for the next iteration of the EHT .

    Techniques and technology will be refined, and it’s expected that future direct images of black holes will improve with time. In September 2019, a NASA visualisation – made for the agency’s Black Hole Week – showed what we might expect to see in high-resolution images of an actively accreting supermassive black hole.

    Supermassive black holes sit at the centres of most large galaxies, and how they got there is a mystery; which came first, the black hole or the galaxy, is one of the big questions in cosmology.

    What we do know is that they are really huge, as in millions or billions of times the mass of the Sun; that they can control star formation; that when they wake up and start feeding, they can become the brightest objects in the Universe. Over the decades, we have also figured out some of their strange dynamics.

    In fact, the very first simulated image of a black hole, calculated using a 1960s punch card IBM 7040 computer and plotted by hand by French astrophysicist Jean-Pierre Luminet in 1978, still looks a lot like NASA’s simulation.

    In both simulations (the one above, and Luminet’s work below), you see a black circle in the centre. That’s the event horizon, the point at which electromagnetic radiation – light, radio waves, X-rays and so forth – are no longer fast enough to achieve escape velocity from the black hole’s gravitational pull.

    4
    (Jean-Pierre Luminet)

    Across the middle of the black hole is the front of the disc of material that is swirling around the black hole, like water into a drain. It generates such intense radiation through friction that we can detect this part with our telescopes – that’s what you are seeing in the picture of Messier 87*.

    You can see the photon ring, a perfect ring of light around the event horizon. And you can see a broad sweep of light around the black hole. That light is actually coming from the part of the accretion disc behind the black hole; but the gravity is so intense, even outside the event horizon, that it warps spacetime and bends the path of light around the black hole.

    You can also see that one side of the accretion disc is brighter than the other. This effect is called relativistic beaming, and it’s caused by the rotation of the disc. The part of the disc that is moving towards us is brighter because it is moving close to light-speed. This motion produces a change in frequency in the wavelength of the light. It’s called the Doppler effect.

    The side that’s moving away from us, therefore, is dimmer, because that motion has the opposite effect.

    “It is precisely this strong asymmetry of apparent luminosity,” Luminet wrote in a paper last year, “that is the main signature of a black hole, the only celestial object able to give the internal regions of an accretion disk a speed of rotation close to the speed of light and to induce a very strong Doppler effect.”

    Simulations such as these can help us understand the extreme physics around supermassive black holes – and that helps us understand what we are seeing when we look at the picture of Messier 87*.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:08 am on December 18, 2019 Permalink | Reply
    Tags: , NASA, , Pulsar J0030,   

    From NASA via EarthSky: “Scientists map a pulsar for the 1st time” 

    From NASA

    via

    1

    EarthSky

    Using a revolutionary X-ray telescope aboard the International Space Station, scientists have finally created the 1st pulsar surface “map.” It shows odd hot spots and suggests that pulsar magnetic fields are more complicated than anyone had assumed.

    NASA/NICER on the ISS

    1
    New “map” of hotspots on pulsar J0030, from observations from July 2017 to December 2018. Image via Goddard Space Flight Center/ NASA.

    Pulsars – the extremely dense but tiny remnants of exploded stars – have been known for decades, but remain one of the most enigmatic phenomena in the known universe. They’re not easy to study, in part due to their immense distances. Now, using a special X-ray telescope launched to the International Space Station (ISS) in 2017, scientists have been able to map a pulsar and take precise measurements of its size and mass, for the first time. These momentous findings also include odd hot spots on the pulsar’s surface.

    NASA announced the findings on December 12, 2019, and these results have been published in a series of new peer-reviewed papers in a special issue of The Astrophysical Journal Letters.

    The study focuses on a pulsar called J0030+0451 (J0030), in an isolated region of space 1,100 light-years away in the direction of the constellation Pisces.

    Astrophysicist Paul Hertz, at NASA headquarters, said in a statement that, from its perch above Earth aboard ISS, NASA’s NICER telescope – which stands for Neutron star Interior Composition Explorer – is revolutionizing our understanding of pulsars:

    “Pulsars were discovered more than 50 years ago as beacons of stars that have collapsed into dense cores, behaving unlike anything we see on Earth. With NICER we can probe the nature of these dense remnants in ways that seemed impossible until now.”

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    The researchers – two groups of scientists – used NICER observations from July 2017 to December 2018, and came up with similar results for the size and mass of the pulsar, as well as hot spots on its surface.

    With the help of computer simulations, NICER found three million-degree hot spots on the pulsar, all in its southern hemisphere, but the spots didn’t look like what textbooks had predicted. One spot was small and circular, while another was longer and crescent-shaped. The third spot, a bit cooler, was slightly askew of the pulsar’s south rotational pole. Previous models had suggested that the locations and shapes of the spots would vary more.

    This is the first time that such surface features have been positively identified on a pulsar. The findings indicate that pulsar magnetic fields are more complicated than the traditional two-pole model had implied.

    3
    Simulation of a possible quadrupole magnetic field configuration – 2 pairs of oppositely charged poles – for a pulsar with hot spots only in its southern hemisphere. The new pulsar map suggests that pulsar magnetic fields are more complicated than anyone knew. Image via Goddard Space Flight Center/ NASA.

    NICER was also able to determine a pulsar’s size and mass much more accurately than ever before.

    One of the research teams, led by Thomas Riley, a doctoral student in computational astrophysics, and his supervisor Anna Watts, a professor of astrophysics at the University of Amsterdam, found that the pulsar is about 1.3 times the sun’s mass and 15.8 miles (25.4 km) across.

    The second team, led by Cole Miller, an astronomy professor at the University of Maryland, came up with very similar results: 1.4 times the sun’s mass and about 16.2 miles (26 km) wide. Riley said:

    “When we first started working on J0030, our understanding of how to simulate pulsars was incomplete, and it still is. But thanks to NICER’s detailed data, open-source tools, high-performance computers and great teamwork, we now have a framework for developing more realistic models of these objects.”

    Miller said:

    “NICER’s unparalleled X-ray measurements allowed us to make the most precise and reliable calculations of a pulsar’s size to date, with an uncertainty of less than 10%. The whole NICER team has made an important contribution to fundamental physics that is impossible to probe in terrestrial laboratories.”

    NICER is so accurate it can measure the arrival of each X-ray from a pulsar to better than a hundred nanoseconds (one nanosecond is a billionth of a second). That precision is about 20 times greater than any previously available.

    Pulsars are the rapidly spinning, dense and tiny remnants of stars that exploded in a supernova. They are one type of neutron star and can spin up to hundreds of times per second, sweeping beams of radiation energy toward us with every rotation. J0030 revolves 205 times per second.

    Pulsars are unimaginably dense; their gravity actually warps nearby space-time, the “fabric” of the universe as described by Einstein’s general theory of relativity. Their rotations are so regular, that it was first thought that they might be evidence of extraterrestrial intelligence, until it was determined they were a natural phenomenon.

    Scientists now want to determine the masses and sizes of several more pulsars besides J0030. By doing so, they can better understand the state of matter in the cores of such neutron stars. The pressures and densities are well beyond anything that can be replicated in laboratories on Earth. According to Zaven Arzoumanian, NICER science lead at NASA’s Goddard Space Flight Center:

    “It’s remarkable, and also very reassuring, that the two teams achieved such similar sizes, masses and hot spot patterns for J0030 using different modeling approaches. It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?”

    The new findings are a breakthrough in pulsar and neutron star research, and will help scientists learn more about these very mysterious objects. For more, check out the video below.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:18 am on December 12, 2019 Permalink | Reply
    Tags: , , , , NASA, ,   

    From NASA: “How to Shape a Spiral Galaxy” 

    From NASA

    Dec. 10, 2019
    Felicia Chou
    NASA Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    1
    Magnetic fields in NGC 1086, or M77, are shown as streamlines over a visible light and X-ray composite image of the galaxy from the Hubble Space Telescope, the Nuclear Spectroscopic Array, and the Sloan Digital Sky Survey. The magnetic fields align along the entire length of the massive spiral arms — 24,000 light years across (0.8 kiloparsecs) — implying that the gravitational forces that created the galaxy’s shape are also compressing the its magnetic field. This supports the leading theory of how the spiral arms are forced into their iconic shape known as “density wave theory.” SOFIA studied the galaxy using far-infrared light (89 microns) to reveal facets of its magnetic fields that previous observations using visible and radio telescopes could not detect. Credits: NASA/SOFIA; NASA/JPL-Caltech/Roma Tre Univ.

    Our Milky Way galaxy has an elegant spiral shape with long arms filled with stars, but exactly how it took this form has long puzzled scientists. New observations of another galaxy are shedding light on how spiral-shaped galaxies like our own get their iconic shape.

    Magnetic fields play a strong role in shaping these galaxies, according to research from the Stratospheric Observatory for Infrared Astronomy, or SOFIA.

    NASA/DLR SOFIA

    Scientists measured magnetic fields along the spiral arms of the galaxy called NGC 1068, or Messier 77. The fields are shown as streamlines that closely follow the circling arms.

    Magnetic fields are invisible, but they may influence the evolution of a galaxy,” said Enrique Lopez-Rodriguez, a Universities Space Research Association scientist at the SOFIA Science Center at NASA’s Ames Research Center in California’s Silicon Valley. “We have a pretty good understanding of how gravity affects galactic structures, but we’re just starting to learn the role magnetic fields play.”

    The Messier 77 galaxy is located 47 million light years away in the constellation Cetus. It has a supermassive active black hole at its center that is twice as massive as the black hole at the heart of our Milky Way galaxy. The swirling arms are filled with dust, gas and areas of intense star formation called starbursts.

    SOFIA’s infrared observations reveal what human eyes cannot: magnetic fields that closely follow the newborn-star-filled spiral arms. This supports the leading theory of how these arms are forced into their iconic shape known as “density wave theory.” It states that dust, gas and stars in the arms are not fixed in place like blades on a fan. Instead, the material moves along the arms as gravity compresses it, like items on a conveyor belt.

    The magnetic field alignment stretches across the entire length of the massive, arms — approximately 24,000 light years across. This implies that the gravitational forces that created the galaxy’s spiral shape are also compressing its magnetic field, supporting the density wave theory. The results are published in The Astrophysical Journal

    “This is the first time we’ve seen magnetic fields aligned at such large scales with current star birth in the spiral arms,” said Lopez-Rodriquez. “It’s always exciting to have observational evidence that supports theories.”

    Celestial magnetic fields are notoriously difficult to observe. SOFIA’s newest instrument, the High-resolution Airborne Wideband Camera-Plus, or HAWC+, uses far-infrared light to observe celestial dust grains, which align perpendicular to magnetic field lines.

    NASA SOFIA High-resolution Airborne Wideband Camera-Plus HAWC+ Camera

    From these results, astronomers can infer the shape and direction of the otherwise invisible magnetic field. Far-infrared light provides key information about magnetic fields because the signal is not contaminated by emission from other mechanisms, such as scattered visible light and radiation from high-energy particles. SOFIA’s ability to study the galaxy with far infrared light, specifically at the wavelength of 89 microns, revealed previously unknown facets of its magnetic fields.

    Further observations are necessary to understand how magnetic fields influence the formation and evolution of other types of galaxies, such as those with irregular shapes.

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California. The HAWC+ instrument was developed and delivered to NASA by a multi-institution team led by the Jet Propulsion Laboratory in Pasadena, California.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 2:04 pm on November 27, 2019 Permalink | Reply
    Tags: , Centre National d’Etudes Spatiales, Diel Vertical Migration (DVM), , French Space Laser Measures Massive Migration of Ocean Animals", NASA, Space-based CALIPSO lidar   

    From NASA: “NASA, French Space Laser Measures Massive Migration of Ocean Animals” 


    From NASA

    Nov. 27, 2019
    Editor: Karen Northon

    Every night, under the cover of darkness, countless small sea creatures – from squid to krill – swim from the ocean depths to near the surface to feed. This vast animal migration – the largest on the planet and a critical part of Earth’s climate system – has been observed globally for the first time thanks to an unexpected use of a space-based laser.

    Researchers observed this vertical migration pattern using the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite — a joint venture between NASA and the French space agency, Centre National d’Etudes Spatiales — that launched in 2006. They published their findings in the journal Nature [link not available] Wednesday.

    1
    Researchers used the space-based CALIPSO lidar to measure the planet’s largest animal migration, which takes place when small sea creatures swim up from the depths at night to feed on phytoplankton, then back down again just before sunrise.
    Credits: NASA/Timothy Marvel

    NASA Calipso

    “This is the latest study to demonstrate something that came as a surprise to many: that lidars have the sensitivity to provide scientifically useful ocean measurements from space,” said Chris Hostetler, a scientist at NASA’s Langley Research Center in Hampton, Virginia, and co-author on the study. “I think we are just scratching the surface of exciting new ocean science that can be accomplished with lidar.”

    The study looks at a phenomenon known as Diel Vertical Migration (DVM), in which small sea creatures swim up from the deep ocean at night to feed on phytoplankton near the surface, then return to the depths just before sunrise. Scientists recognize this natural daily movement around the world as the largest migration of animals on Earth in terms of total number.

    The cumulative effect of daily vertically migrating creatures on Earth’s climate is significant. During the day, ocean phytoplankton photosynthesize and, in the process, absorb significant amounts of carbon dioxide, which contributes to the ocean’s ability to absorb the greenhouse gas from the atmosphere. Animals that undergo DVM come up to the surface to feed on phytoplankton near the ocean’s surface and then swim back down, taking the phytoplankton carbon with them. Much of this carbon is then defecated at depths where it is effectively trapped deep in the ocean, preventing its release back into the atmosphere.

    “What the lidar from space allowed us to do is sample these migrating animals on a global scale every 16 days for 10 years,” said Mike Behrenfeld, the lead for the study and a senior research scientist and professor at Oregon State University in Corvallis, Oregon. “We’ve never had anywhere near that kind of global coverage to allow us to look at the behavior, distribution and abundance of these animals.”

    Zeroing in on tropical and subtropical ocean regions, researchers found that while there are fewer vertically migrating animals in lower-nutrient and clearer waters, they comprise a greater fraction of the total animal population in these regions. This is because the migration is a behavior that has evolved primarily to avoid visual predators during the day when visual predators have their greatest advantage in clear ocean regions.

    2
    Tiny creatures such as small squid, fish and krill are part of the massive vertical migration pattern in the ocean that has now been measured around the world from space.
    Credits: Chandler Countryman

    In murkier and more nutrient-rich regions, the abundance of animals that undergo DMV is higher, but they represent a smaller fraction of the total animal population because visual predators are at a disadvantage. In these regions, many animals just stay near the surface both day and night.

    The researchers also observed long-term changes in populations of migrating animals, likely driven by climate variations. During the study period (2008 to 2017), CALIPSO data revealed an increase in migrating animal biomass in the subtropical waters of the North and South Pacific, North Atlantic and South Indian oceans. In the tropical regions and North Atlantic, biomass decreased. In all but the tropical Atlantic regions, these changes correlated with changes in phytoplankton production.

    This animal-mediated carbon conveyor belt is recognized as an important mechanism in Earth’s carbon cycle. Scientists are adding animals that undergo DVM as a key element in climate models.

    “What these modelers haven’t had is a global dataset to calibrate these models with, to tell them where these migrators are most important, where they’re most abundant, and how they change over time,” said Behrenfeld. “The new satellite data give us an opportunity to combine satellite observations with the models and do a better job quantifying the impact of this enormous animal migration on Earth’s carbon cycle.”

    The satellite data are also relevant to global fisheries because the migrating animals are an important food source for larger predators that lurk in the depths of the ocean. Those predators are often species of fish that are attractive to commercial fisheries. The larger the DVM signal, the larger the population of fish that can live in the deep sea.

    Though CALIPSO’s laser was designed to measure clouds and atmospheric aerosols, it can penetrate the upper 20 meters of the ocean’s surface layer. If the migrating animals reach this layer, they are detected by CALIPSO.

    NASA uses the vantage point of space to understand and explore our home planet, improve lives and safeguard our future. The agency’s observations of Earth’s complex natural environment are critical to understanding how our planet’s natural resources and climate are changing now and could change in the future.

    For more information about NASA’s Earth science activities, visit:

    https://www.nasa.gov/earth

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:46 am on November 20, 2019 Permalink | Reply
    Tags: "First Detection of Sugars in Meteorites Gives Clues to Origin of Life", , , , , NASA   

    From NASA: “First Detection of Sugars in Meteorites Gives Clues to Origin of Life” 


    NASA

    Nov. 18, 2019
    Bill Steigerwald /
    NASA Goddard Space Flight Center, Greenbelt, Maryland
    301-286-8955
    william.a.steigerwald@nasa.gov

    Nancy Jones
    NASA Goddard Space Flight Center, Greenbelt, Maryland
    301-286-0039
    nancy.n.jones@nasa.gov

    Yoshihiro Furukawa
    Tohoku University, Japan
    furukawa@tohoku.ac.jp

    An international team has found sugars essential to life in meteorites. The new discovery adds to the growing list of biologically important compounds that have been found in meteorites, supporting the hypothesis that chemical reactions in asteroids – the parent bodies of many meteorites – can make some of life’s ingredients. If correct, meteorite bombardment on ancient Earth may have assisted the origin of life with a supply of life’s building blocks.

    1
    This is a mosaic image of asteroid Bennu, from NASA’s OSIRIS-REx spacecraft. The discovery of sugars in meteorites supports the hypothesis that chemical reactions in asteroids – the parent bodies of many meteorites – can make some of life’s ingredients. Credits: NASA/Goddard/University of Arizona

    NASA OSIRIS-REx Spacecraft

    The team discovered ribose and other bio-essential sugars including arabinose and xylose in two different meteorites that are rich in carbon, NWA 801 (type CR2) and Murchison (type CM2). Ribose is a crucial component of RNA (ribonucleic acid). In much of modern life, RNA serves as a messenger molecule, copying genetic instructions from the DNA molecule (deoxyribonucleic acid) and delivering them to molecular factories within the cell called ribosomes that read the RNA to build specific proteins needed to carry out life processes.

    “Other important building blocks of life have been found in meteorites previously, including amino acids (components of proteins) and nucleobases (components of DNA and RNA), but sugars have been a missing piece among the major building blocks of life,” said Yoshihiro Furukawa of Tohoku University, Japan, lead author of the study published in the [PNAS] November 18. “The research provides the first direct evidence of ribose in space and the delivery of the sugar to Earth. The extraterrestrial sugar might have contributed to the formation of RNA on the prebiotic Earth which possibly led to the origin of life.”

    2
    Artist’s concept of meteors impacting ancient Earth. Some scientists think such impacts may have delivered water and other molecules useful to emerging life on Earth. Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab.

    “It is remarkable that a molecule as fragile as ribose could be detected in such ancient material,” said Jason Dworkin, a co-author of the study at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “These results will help guide our analyses of pristine samples from primitive asteroids Ryugu and Bennu, to be returned by the Japan Aerospace Exploration Agency’s Hayabusa2 and NASA’s OSIRIS-REx spacecraft [above].”

    JAXA/Hayabusa 2 Credit: JAXA/Akihiro Ikeshita

    3
    This is a model of the molecular structure of ribose and an image of the Murchison meteorite. Ribose and other sugars were found in this meteorite. Credits: Yoshihiro Furukawa

    An enduring mystery regarding the origin of life is how biology could have arisen from non-biological chemical processes. DNA is the template for life, carrying the instructions for how to build and operate a living organism. However, RNA also carries information, and many researchers think it evolved first and was later replaced by DNA. This is because RNA molecules have capabilities that DNA lacks. RNA can make copies of itself without “help” from other molecules, and it can also initiate or speed up chemical reactions as a catalyst. The new work gives some evidence to support the possibility that RNA coordinated the machinery of life before DNA.

    “The sugar in DNA (2-deoxyribose) was not detected in any of the meteorites analyzed in this study,” said Danny Glavin, a co-author of the study at NASA Goddard. “This is important since there could have been a delivery bias of extraterrestrial ribose to the early Earth which is consistent with the hypothesis that RNA evolved first.”

    The team discovered the sugars by analyzing powdered samples of the meteorites using gas chromatography mass spectrometry, which sorts and identifies molecules by their mass and electric charge. They found that the abundances of ribose and the other sugars ranged from 2.3 to 11 parts per billion in NWA 801 and from 6.7 to 180 parts per billion in Murchison.

    Since Earth is awash with life, the team had to consider the possibility that the sugars in the meteorites simply came from contamination by terrestrial life. Multiple lines of evidence indicate contamination is unlikely, including isotope analysis. Isotopes are versions of an element with different mass due to the number of neutrons in the atomic nucleus. For example, life on Earth prefers to use the lighter variety of carbon (12C) over the heavier version (13C). However, the carbon in the meteorite sugars was significantly enriched in the heavy 13C, beyond the amount seen in terrestrial biology, supporting the conclusion that it came from space.

    The team plans to analyze more meteorites to get a better idea of the abundance of the extraterrestrial sugars. They also plan to see if the extraterrestrial sugar molecules have a left-handed or right-handed bias. Some molecules come in two varieties that are mirror images of each other, like your hands. On Earth, life uses left-handed amino acids and right-handed sugars. Since it’s possible that the opposite would work fine – right-handed amino acids and left-handed sugars – scientists want to know where this preference came from. If some process in asteroids favors the production of one variety over the other, then maybe the supply from space via meteorite impacts made that variety more abundant on ancient Earth, which made it more likely that life would end up using it.

    The research was funded by a Japan Society for the Promotion of Science KAKENHI (science grant), the National Institutes of Natural Sciences Astrobiology Center, Japan, the Institute of Low Temperature Science, Hokkaido University, the Simons Foundation, and the NASA Astrobiology Institute, Goddard Center for Astrobiology. Jason Dworkin and Danny Glavin are members of the Goddard Center for Astrobiology team.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:40 am on November 19, 2019 Permalink | Reply
    Tags: "Water Plumes Above The Surface of Jupiter's Moon Europa", , , , Confirming that water vapor is present above Europa helps scientists better understand the inner workings of the moon., , NASA, What makes this moon so alluring is the possibility that it may possess all of the ingredients necessary for life.   

    From NASA: “Water Plumes Above The Surface of Jupiter’s Moon Europa” 

    NASA image
    From NASA

    Nov. 18, 2019
    By Lonnie Shekhtman
    lonnie.shekhtman@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Media contact:
    Nancy Neal Jones
    nancy.g.neal@nasa.gov
    301-286-0039
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    On the left is a view of Europa taken from 2.9 million kilometers (1.8 million miles) away on March 2, 1979 by the Voyager 1 spacecraft. Next is a color image of Europa taken by the Voyager 2 spacecraft during its close encounter on July 9, 1979. On the right is a view of Europa made from images taken by the Galileo spacecraft in the late 1990s.
    Credits: NASA/JPL

    NASA/Voyager 1

    NASA/Voyager 2

    NASA/Galileo 1989-2003

    Forty years ago, a Voyager spacecraft snapped the first closeup images of Europa, one of Jupiter’s 79 moons. These revealed brownish cracks slicing the moon’s icy surface, which give Europa the look of a veiny eyeball. Missions to the outer solar system in the decades since have amassed enough additional information about Europa to make it a high-priority target of investigation in NASA’s search for life.

    What makes this moon so alluring is the possibility that it may possess all of the ingredients necessary for life. Scientists have evidence that one of these ingredients, liquid water, is present under the icy surface and may sometimes erupt into space in huge geysers. But no one has been able to confirm the presence of water in these plumes by directly measuring the water molecule itself. Now, an international research team led out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, has detected the water vapor for the first time above Europa’s surface. The team measured the vapor by peering at Europa through one of the world’s biggest telescopes in Hawaii.

    Confirming that water vapor is present above Europa helps scientists better understand the inner workings of the moon. For example, it helps support an idea, of which scientists are confident, that there’s a liquid water ocean, possibly twice as big as Earth’s, sloshing beneath this moon’s miles-thick ice shell. Another source of water for the plumes, some scientists suspect, could be shallow reservoirs of melted water ice not far below Europa’s surface. It’s also possible that Jupiter’s strong radiation field is stripping water particles from Europa’s ice shell, though the recent investigation argued against this mechanism as the source of the observed water.

    “Essential chemical elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur) and sources of energy, two of three requirements for life, are found all over the solar system. But the third — liquid water — is somewhat hard to find beyond Earth,” said Lucas Paganini, a NASA planetary scientist who led the water detection investigation. “While scientists have not yet detected liquid water directly, we’ve found the next best thing: water in vapor form.”

    Paganini and his team reported in the journal Nature Astronomy on November 18 that they detected enough water releasing from Europa (5,202 pounds, or 2,360 kilograms, per second) to fill an Olympic-size swimming pool within minutes. Yet, the scientists also found that the water appears infrequently, at least in amounts large enough to detect from Earth, said Paganini: “For me, the interesting thing about this work is not only the first direct detection of water above Europa, but also the lack thereof within the limits of our detection method.”

    Indeed, Paganini’s team detected the faint yet distinct signal of water vapor just once throughout 17 nights of observations between 2016 and 2017. Looking at the moon from the W. M. Keck Observatory atop the dormant Mauna Kea volcano in Hawaii, the scientists saw water molecules at Europa’s leading hemisphere, or the side of the moon that’s always facing in the direction of the moon’s orbit around Jupiter.

    Keck Observatory, operated by Caltech and the University of California, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level,

    (Europa, like Earth’s moon, is gravitationally locked to its host planet, so the leading hemisphere always faces the direction of the orbit, while the trailing hemisphere always faces in the opposite direction.)

    They used a spectrograph at the Keck Observatory that measures the chemical composition of planetary atmospheres through the infrared light they emit or absorb. Molecules such as water emit specific frequencies of infrared light as they interact with solar radiation.

    Mounting Evidence for Water

    Before the recent water vapor detection, there have been many tantalizing findings on Europa. The first came from NASA’s Galileo spacecraft, which measured perturbations in Jupiter’s magnetic field near Europa while orbiting the gas giant planet between 1995 and 2003. The measurements suggested to scientists that electrically conductive fluid, likely a salty ocean beneath Europa’s ice layer, was causing the magnetic disturbances. When researchers analyzed the magnetic disturbances more closely in 2018, they found evidence of possible plumes.

    In the meantime, scientists announced in 2013 that they had used NASA’s Hubble Space Telescope to detect the chemical elements hydrogen (H) and oxygen (O) — components of water (H2O) — in plume-like configurations in Europa’s atmosphere. And a few years later, other scientists used Hubble to gather more evidence of possible plume eruptions when they snapped photos of finger-like projections that appeared in silhouette as the moon passed in front of Jupiter.

    “This first direct identification of water vapor on Europa is a critical confirmation of our original detections of atomic species, and it highlights the apparent sparsity of large plumes on this icy world” said Lorenz Roth, an astronomer and physicist from KTH Royal Institute of Technology in Stockholm who led the 2013 Hubble study and was a co-author of this recent investigation.

    Roth’s research, along with other previous Europa findings, have only measured components of water above the surface. The trouble is that detecting water vapor at other worlds is challenging. Existing spacecraft have limited capabilities to detect it, and scientists using ground-based telescopes to look for water in deep space have to account for the distorting effect of water in Earth’s atmosphere. To minimize this effect, Paganini’s team used complex mathematical and computer modeling to simulate the conditions of Earth’s atmosphere so they could differentiate Earth’s atmospheric water from Europa’s in data returned by the Keck spectrograph.

    “We performed diligent safety checks to remove possible contaminants in ground-based observations,” said Avi Mandell, a Goddard planetary scientist on Paganini’s team. “But, eventually, we’ll have to get closer to Europa to see what’s really going on.”

    Scientists will soon be able get close enough to Europa to settle their lingering questions about the inner and outer workings of this possibly habitable world. The forthcoming Europa Clipper mission, expected to launch in the mid-2020s, will round out half a century of scientific discovery that started with a modest photo of a mysterious, veiny eyeball.

    NASA/Europa Clipper annotated

    When it arrives at Europa, the Clipper orbiter will conduct a detailed survey of Europa’s surface, deep interior, thin atmosphere, subsurface ocean, and potentially even smaller active vents. Clipper will try to take images of any plumes and sample the molecules it finds in the atmosphere with its mass spectrometers. It will also seek out a fruitful site from which a future Europa lander could collect a sample. These efforts should further unlock the secrets of Europa and its potential for life.

    Other Goddard researchers on Paganini’s team included Geronimo Villanueva, Michael Mumma, and Terry Hurford. Kurt Retherford, from Southwest Research Institute, also contributed to the research.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:57 pm on October 18, 2019 Permalink | Reply
    Tags: "NASA’s Planetary Protection Review Addresses Changing Reality of Space Exploration", NASA   

    From NASA: “NASA’s Planetary Protection Review Addresses Changing Reality of Space Exploration” 

    NASA image
    From NASA

    Oct. 18, 2019

    Grey Hautaluoma
    Headquarters, Washington
    202-358-0668
    grey.hautaluoma-1@nasa.gov

    Alana Johnson
    202-358-1501
    alana.r.johnson@nasa.gov

    1
    The bit carousel, which lies at the heart of Sample Caching System of NASA’s Mars 2020 mission, is attached to the front end of the rover in the Spacecraft Assembly Facility’s High Bay 1 at the Jet Propulsion Laboratory in Pasadena, California. The carousel contains all of the tools the coring drill uses to sample the Martian surface and is the gateway for the samples to move into the rover for assessment and processing.
    Credits: NASA

    NASA released a report Friday with recommendations from the Planetary Protection Independent Review Board (PPIRB) the agency established in response to a recent National Academies of Sciences, Engineering, and Medicine report and a recommendation from the NASA Advisory Council.

    With NASA, international, and commercial entities planning bold missions to explore our solar system and return samples to Earth, the context for planetary protection is rapidly changing. NASA established the PPIRB to conduct a thorough review of the agency’s policies.

    Planetary protection establishes guidelines for missions to other solar system bodies so they are not harmfully contaminated for scientific purposes by Earth biology and Earth, in turn, is protected from harmful contamination from space.

    The board’s report assesses a rapidly changing environment where more samples from other solar system bodies will be returned to Earth, commercial and international entities are discussing new kinds of solar system missions, and NASA’s Artemis program is planning human missions to the Moon and eventually to Mars.

    The report discusses 34 findings, and 43 recommendations from the PPIRB, which was chaired by planetary scientist Alan Stern of the Southwest Research Institute to address future NASA missions and proposed missions by other nations and the private sector that include Mars sample return, robotic missions to other bodies, eventual human missions to Mars, and the exploration of ocean worlds in the outer solar system.

    “The landscape for planetary protection is moving very fast. It’s exciting now that for the first time, many different players are able to contemplate missions of both commercial and scientific interest to bodies in our solar system,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate. “We want to be prepared in this new environment with thoughtful and practical policies that enable scientific discoveries and preserve the integrity of our planet and the places we’re visiting.”

    The PPIRB, comprised of a high-level team of 12 experts and stakeholders from science, engineering and industry, examined how to update planetary protection policies and procedures in light of current capabilities. Such guidelines have periodically been updated and inform exploration by spacefaring nations that have signed the Outer Space Treaty since the 1960s.

    “Planetary science and planetary protection techniques have both changed rapidly in recent years, and both will likely continue to evolve rapidly,” Stern said. “Planetary protection guidelines and practices need to be updated to reflect our new knowledge and new technologies, and the emergence of new entities planning missions across the solar system. There is global interest in this topic, and we also need to address how new players, for example in the commercial sector, can be integrated into planetary protection.”

    NASA plans to begin a dialogue about the PPIRB report’s recommendations with stakeholders, and international and commercial partners to help build a new chapter for conducting planetary missions, and planetary protection policies and procedures.

    For more information about Planetary Protection, visit:

    https://sma.nasa.gov/sma-disciplines/planetary-protection

    To read the full report of the Planetary Protection Independent Review Board, visit:

    http://www.nasa.gov/reports

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: