Tagged: NASA Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:32 am on April 19, 2017 Permalink | Reply
    Tags: , , , , NASA, Tiny Probes Hold Big Promise for Future NASA Missions   

    From NASA: “Tiny Probes Hold Big Promise for Future NASA Missions” 

    NASA image
    NASA

    April 18, 2017
    Editor: Loura Hall

    1
    This picture shows the entry probe and the metal outer shell. The metal shell allows the probe to be connected with the supply ship and also facilitates the probe to be released during break-up of the supply spacecraft during reentry.

    2
    The three probes shown in the above picture will reentry during the supply spacecraft break-up and collect data. The probe on the left has conformal TPS, the probe in the middle is Orion’s Avcoat TPS and the probe on the right is made of Shuttle Tile.

    Sometimes to find the best solution to a big problem, you have to start small.

    A team of NASA engineers has been working on a new type of Thermal Protection System (TPS) for spacecraft that would improve upon the status quo.

    Having seen success in the laboratory with these new materials, the next step is to test in space.

    The Conformal Ablative Thermal Protection System, or CA-TPS, will be installed on a small probe flight article provided by Terminal Velocity Aerospace (TVA) and launched on Orbital ATK’s seventh contracted commercial resupply services mission for NASA to the International Space Station on April 18.

    TVA’s RED Data2 probe, only slightly larger than a soccer ball, is an unmanned exploratory spacecraft designed to transmit information about its environment.

    “The purpose of the flight test is to gather supply vehicle break up data and at the same time demonstrate performance of the conformal ablative thermal protection system as the probe—encapsulated with TPS—enters Earth’s atmosphere,” explained Ethiraj Venkatapathy, project manager for Thermal Protection System Materials with NASA’s Space Technology Mission Directorate’s (STMD) Game Changing Development (GCD) program. “Thermal protection is a vital element that safeguards a spacecraft from burning up during entry.”

    “Data obtained from flight tests like this one with TVA and NASA, combined with testing at different atmospheric compositions, allows us to build design tools with higher confidence for entry into other planetary atmospheres such as Venus, Mars or Titan,” he continued. “Partnering with a small business to get flight data for a developmental material is a very inexpensive way of achieving multiple goals.”

    The TPS Venkatapathy and his team are designing uses newly emerging materials called conformal PICA (C-PICA) and conformal SIRCA (C-SIRCA), short for Phenolic Impregnated Carbon Ablator and Silicone Impregnated Reusable Ceramic Ablator, respectively.

    The probe is essentially a hard aeroshell covered with the TPS and outfitted with sensors called thermocouples. To measure temperature during atmospheric entry, the thermocouples are embedded within the heat shield’s C-PICA and the back shell’s C-SIRCA to capture data for understanding how the materials behave in an actual entry environment.

    With funding through STMD/GCD, NASA’s Ames Research Center led the work providing conformal ablative materials and TPS instrumentation installed on Terminal Velocity’s probes. Terminal Velocity is also working with NASA’s Johnson Space Center with funding from STMD’s Small Business Innovation Research program for miniaturizing and improving the data acquisition and transmission system as well as providing support for ISS flight certification.


    Video of a probe-shaped test article that is a nearly-perfect match to the TVA flight article, tested in the IHF (Interactive Heating Facility) arc jet at a constant condition, matching the anticipated flight total heat load on the probe. After the flight, we will subject another test article with time-profiled heating to simulate the conditions determined from the actual flight trajectory reconstruction. This will be the first time we will have arc jet tested and flight tested the exact same geometry and materials.

    Through the ISS Exploration Flight Project Initiative, Johnson certified three TVA probes for flight. One probe uses the conformal ablative materials, another has the Orion heat-shield material and the third probe uses shuttle tile material for reference. TVA delivered the assembled probes to the Cargo Mission Contract group for this flight.

    After Orbital ATK’s resupply services launch arrives at the ISS, the probes will remain on the cargo ship awaiting their opportunity to go to work. Projected to be released from the ISS in June, once the cargo ship reenters Earth’s atmosphere and breaks up, the probes will deploy and then begin capturing data through the thermocouples embedded in the TPS.

    “The probes are designed to be released from the metallic shell and once they are released, they start to get heated. The thermal response data are collected from the various locations where thermocouples are embedded within the TPS,” explains Robin Beck, technical lead for the conformal TPS development. “The probe includes an antenna that allows it to communicate with an Iridium satellite. As the probe descends into the atmosphere and slows to the speed of sound, the data are collected and stored, then transmitted to the Iridium satellite above, which in turn transmits the data to researchers on the ground.”

    Once the flight test’s data are collected, TVA’s probe is allowed to fall into the ocean and is not recovered; however, these tiny spacecraft will contribute in a very big way to ensure the predictive models developed based on testing in ground facilities are valid and applicable in space.

    “There are known and unknown risks, but both NASA and TVA are motivated to be successful as the benefits also translate to the larger community that wants to have on-demand access to space,” says Venkatapathy. “This technology has the potential to lower the cost of access to space for small payloads while making it attractive for universities and the non-aerospace community who may be novices to flight testing—a challenge in and of itself and not risk free.”

    Because there is no backup for a spacecraft’s TPS, it is critical to understand and develop prediction capabilities that allow safe, robust entry system design. A successful flight test at this scale will increase confidence in the conformal ablator and allow mission planners to consider C-PICA and C-SIRCA for use in future programs such as New Frontiers or Orion.

    For more information about NASA’s Game Changing Development program, visit:

    https://gameon.nasa.gov/

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 4:55 pm on March 31, 2017 Permalink | Reply
    Tags: , , , NASA   

    From Astronomy: “Rethinking the habitable zone” 

    Astronomy magazine

    Astronomy Magazine

    March 28, 2017
    K.N. Smith

    1
    NASA

    With proof of liquid water in the farthest reaches of the solar system, it’s clear that the habitable zone isn’t the only place life might exist, but it may be years before that knowledge changes how — and where — astrobiologists look for habitable exoplanets.

    If you want to look for life in space, most astronomy textbooks will tell you to stick to the Goldilocks Zone: the region around a star that’s the right temperature range for liquid water to exist on the surface of a planet, also called the habitable zone. The trouble is that water seems to be everywhere on icy moons in the outer solar system, well beyond the textbook habitable zone, and some planetary scientists have even suggested that there could be liquid seas out in the Kuiper Belt. Thanks to those discoveries, some experts are suggesting that it could be time to rethink how we define the habitable zone. But does that mean changing how we search for potentially habitable worlds in other solar systems?

    2
    Wilfried Bauer

    Beyond the Goldilocks Zone

    Until the last few decades, scientists assumed that the conditions for life, starting with liquid water, could only exist in a planetary neighborhood exactly like ours.

    “It’s been a big shift, but it’s been kind of gradual; it just kind of kept creeping up on people,” JPL’s Diana Blaney, principal investigator on the Mapping Imaging Spectrometer for Europa, said.

    9
    Prototype MISE spectrometer

    That shift happened in two parts, fueled by discoveries in broadly different fields. First came the idea that life could live in colder, darker, stranger places than biologists could have dreamed. Second came the idea that the most basic conditions for survival – chiefly the presence of liquid water – could turn up in unexpected places.

    Most of the liquid water we’ve found in the solar system is concealed beneath the icy crusts of moons orbiting Jupiter and Saturn, but before scientists sent Voyager, Galileo, and Cassini out into the outer solar system to find those sub-surface oceans, they found analogues here on Earth. In 1970, airborne radio-echo sounding surveys found the first evidence of lakes hidden beneath several kilometers of glacial ice in Antarctica. Researchers have found 379 such lakes so far, and a series of discoveries in the last few years have confirmed the presence of microbial life beneath several of them.

    Just before the first mission to the outer solar system, in 1976 – while Viking 1 was searching for life on Mars – botanists discovered bacteria eking out a living in porous sandstone in the cold, dry, thoroughly inhospitable mountains of Antarctica’s Ross Desert. The following year, in 1977, a marine geology expedition discovered hydrothermal vents in the Galapagos Rift, deep beneath the eastern Pacific Ocean. In the lightless depths of the ocean, they found a thriving ecosystem based on chemosynthesis.

    Looking back, it’s easy to see how discoveries of extremophiles and sub-glacial lakes here on Earth pointed toward the idea that wildly unexpected environments out there might be habitable.

    The Voyager spacecraft launched later that year, on their way to the outer solar system; it was a mission that some in the scientific community at the time didn’t expect much from – after all, the moons of the outer solar system were far outside the bounds of the Goldilocks Zone.


    NASA/Voyager 1

    “It was really Voyager that broke all of this open, because a lot of scientists thought that most of the outer solar system was just dead balls of ice and rock,” said planetary scientist Jonathan Lunine of Cornell University. From 1979 to 1981, Voyager sent home images of active, complex worlds: Io with its violent, volcanic surface; Titan with its thick, hazy atmosphere; and Europa with a cracked crust that hinted at tidal movements of an ocean beneath.

    Once scientists realized that the moons of the outer solar system were dynamic, unexpectedly complex worlds, some began to speculate that they could host life, warmed not just by the light of the Sun, but by the tidal pull of a gas giant. Meanwhile, discoveries here on Earth continued apace, feeding into astrobiologists’ ideas about where life might flourish.

    4
    NASA Goddard/Katrina Jackson

    All these worlds are yours …

    The Galileo spacecraft left Earth in 1989, bound for Jupiter amid intensifying speculation about what it might find waiting beneath the ice at Europa.


    ESA Galileo Spacecraft

    Galileo’s close flybys of the Jovian moons confirmed what Voyager’s images had hinted at: liquid water exists well outside the familiar confines of the Goldilocks Zone, beneath the ice of Europa and Ganymede. Then, in 2005, the Cassini spacecraft captured surprising images of watery plumes jetting out from the southern surface of Enceladus.


    NASA/ESA/ASI Cassini Spacecraft

    As the data came back from Galileo and Cassini, it collided with research on extremophiles here on Earth, fueling discussions about which unexpected corners of our solar system might turn out to be habitable.

    “I think they actually reinforced each other, you know?” said Blaney. “A lot of the stuff, I think, was happening in parallel. You were sitting in [science conferences] listening to people talk about the building evidence for an ocean on Europa, and then you would go next door and listen to someone talk about life in the Antarctic dry valleys, and that kind of cross-communication between the different communities, I think, got people thinking more about Europa potentially having life now.”

    Now astrobiologists may have to rethink the limits of habitability again. In late 2016, William McKinnon, a planetary scientist at Washington University in St. Louis, and his colleagues concluded that orientation of Sputnik Planitia, the icy heart-shaped basin in Pluto’s northern hemisphere, could only be explained by an uneven distribution of mass in the planet’s crust.

    10
    Original discription: This image contains the initial, informal names being used by the New Horizons team for the features on Pluto’s Sputnik Planum (plain). Names were selected based on the input the team received from the Our Pluto naming campaign. Names have not yet been approved by the International Astronomical Union (IAU).
    Date 29 July 2015
    Source http://pluto.jhuapl.edu/Multimedia/Images/index.php
    Author JPL/NASA

    That, in turn, the researchers claimed, could only be explained by a liquid ocean of (mostly) water beneath the ice. There’s no proof yet that Pluto hosts a subglacial lake similar to those beneath Antarctica’s ice, but the research proves it’s theoretically possible for Kuiper Belt Objects to hold liquid water.

    “We know oceans exist beneath icy crusts, generally maintained by tidal heating (Europa and Enceladus). What Pluto does is to push the potential limits of habitable zones to icy dwarf planets in deep solar space,” said McKinnon.

    6
    NASA / JHUAPL / SwRI

    Miniature Habitable Zones

    The current view among many astrobiologists is that, because there are so many environments where liquid water – and therefore the basic ingredients for life – might exist, there are many habitable zones in a solar system. There’s the traditional Goldilocks Zone, where solar heating keeps the planet at just the right temperature; there are orbits around gas giants, where tidal heating could keep water liquid and potentially habitable beneath the ice.

    “The data point I seize on is more the number of potential habitable environments we have in our single solar system. I don’t think that’s a fluke,” said Curt Niebur, program scientist for NASA’s Europa Multiple Flyby Mission. “I think as we peer outward, we are going to find that in most solar systems we explore, either in person or via telescopes, that there is likely to be multiple habitable zones in every solar system.”

    In fact, we’ve found more liquid water on icy moons in the outer solar system than in the temperate belt of the Habitable Zone. Some planetary scientists are even beginning to talk about the idea that gas giants, like Jupiter and Saturn, create their own habitable zones through their tidal heating of icy moons like Europa and Enceladus. And if McKinnon and his colleagues turn out to be right about what lies beneath Pluto’s Sputnik Planum, then there may even be little habitable zones far out in the frozen reaches of the Kuiper Belt.

    “Sometimes it’s around giant planets like Jupiter, sometimes it’s on Earth-like planets, sometimes it’s in the deep solar system like at Pluto,” said Niebur. “I think every one of those three cases is a Goldilocks zone, and I think that there are more Goldilocks zones out there remaining to be discovered.”

    That means that we may not be giving gas giants enough credit as hosts for potentially habitable worlds. For one thing, they seem to be much more common – or at least easier to detect from Earth – than rocky planets, especially rocky planets that happen to orbit just the right distance from their stars, which means the odds are in favor of a gas giant winning the lottery of biochemistry.

    “I think it’s probably likely that gas giants are more common than terrestrial worlds, so just by sheer numbers, I think that they could either directly or indirectly provide far more habitable zones, far more Goldilocks zones, than terrestrial planets,” said Niebur.

    That’s an eye-opening concept for astrobiology, but in practice it could be nearly impossible to draw a neat map of that type of habitable zone. Mapping a star’s Goldilocks Zone is pretty straightforward; the temperature of a planet depends on its distance from the star, as well as how much heat the star produces. Figuring out the region of potential habitability around a gas giant, on the other hand, requires a lot more information about the gas giant, its moons, and how they all interact.

    The oceans of Europa, Enceladus, and Ganymede rely on tidal heating to keep them liquid, and those tidal forces come not only from the gravitational pull of the gas giants, but from gravitational interactions with other moons. For instance, every time Ganymede orbits Jupiter, Europa makes exactly two orbits, and Io makes exactly four. That means that the planets line up regularly, giving each other a gravitational tug that stretches their orbits out, making them more elliptical.

    Thanks to orbital resonance, the tidal effects of the planet’s gravity are much more pronounced. In simple terms, that’s because the difference between “high tide” and “low tide” is exaggerated. That, in turn, keeps the moons’ interiors in motion – and warm.

    That’s why Io is such a hotbed of volcanic activity, and it’s why Europa and Ganymede have enough geothermal heat to maintain liquid water so far from the Goldilocks Zone. Around Saturn, Enceladus is in a similar orbital resonance with its sister moon Dione, and that’s what keeps the plumes erupting from cracks in the moon’s icy crust.

    Astronomers have a very good understanding of the dynamics that make the moons of Jupiter and Saturn so active, but beyond our solar system, there’s no way to spot tidally heated habitable zones – yet. To predict whether a moon might experience enough tidal heating to keep water liquid in its interior, astronomers would need to know how many other moons were orbiting the same planet and whether those orbits are in resonance with each other.
    “The broader definition of habitable zones will also include some that we just can’t observe with the missions that we’re anticipating in the next decades,” said Lunine. “That includes icy moons around gas giants, which may be harboring life, or at least habitable oceans, that we can’t see yet.”

    7
    Danielle Futselaar / Franck Marchis / SETI Institute.

    Observable Habitable Zones

    It’s fascinating to think that an interesting new gas giant in a solar system like 51 Eridani may play host to another Enceladus or Europa, but with our current technology, those potentially habitable icy exo-moons are still invisible to astronomers here on Earth.

    “The problem, of course, is that if you really have something the size of Enceladus or even Europa orbiting around a giant planet, around another star, you have a really tough time observing it, and if it’s habitable five or ten kilometers below the surface, you’re sort of out of luck,” said Lunine. “It would be a very, very difficult challenge to make the kinds of observations of a Europa or an Enceladus that are required to determine its habitability.”

    Of course, that kind of observation is feasible for icy moons in our own solar system, because we can send probes to fly through the plumes of Enceladus or perhaps one day land on the surface of Europa, but to study objects in other solar systems, astronomers have to stick with looking for spectra through a telescope. So even if there might be miniature habitable zones in the other reaches of most solar systems, Earthbound astrobiologists can only speculate.

    Instead, Lunine says that in the search for potentially habitable exoplanets, what really matters is something he calls the observable habitable zone: the area where water might exist, and in a place where we could see evidence of it with a telescope. That means a planet that telescopes can actually observe, and it means liquid water existing stably on the surface, not hidden beneath a layer of ice. Essentially, it means the traditional Goldilocks Zone.

    “The technology limitations mean that you’re going to have to restrict yourself to the traditional definition of the Goldilocks, but I think that as our technology increases, we can pursue the more modern and accurate Goldilocks zone concept as well,” said Niebur.

    In the future, that might change. In the meantime, it’s worth keeping in mind that the search for habitable worlds probably still has surprises in store.

    “People have to kind of keep an open mind about what’s possible and – and let the data take you where it takes you, because sometimes it takes you to places that are unexpected – like Europa,” said Blaney.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:09 pm on March 28, 2017 Permalink | Reply
    Tags: Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory, NASA, ,   

    From SRON: “Dutch ‘cameras’ on NASA Science Mission ‘First complete study of all phases of the stellar life cycle’ “ 

    sron-bloc
    SRON

    1
    GUSTO: Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory

    Dutch ‘cameras’ on NASA Science Mission
    ‘First complete study of all phases of the stellar life cycle’

    NASA has selected a science mission that will measure emissions from cosmic material between stars (the interstellar medium) with Dutch Far-Infrared (FIR) ‘cameras’. The balloon telescope mission GUSTO will provide the first complete study of all phases of the stellar life cycle, from the formation of molecular clouds, through star birth and evolution, to the formation of gas clouds and the re-initiation of the cycle. SRON Netherlands Institute for Space Research and the TU Delft develop the key detector technologies.

    GUSTO stands for Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory. The observatory consists of a telescope of one meter in diameter, and three observation instruments carried by an Ultra-long Duration Balloon (ULDB). GUSTO will fly on an altitude of 40 km above Antarctica, at the edge of space. SRON and TU Delft contribute hot electron bolometer multi-pixel camera’s, operating at three Terahertz frequencies, and also a local oscillator and a novel phase grating that helps the detectors determine the exact color of the light. Last December GUSTO’s precursor STO2 was launched as a pathfinder, demonstrating the Dutch key detector technologies from SRON and TU Delft.

    GUSTO detects carbon, oxygen and nitrogen emission lines. The unique and novel combination of data will provide information needed to untangle the complexities of the interstellar medium, and map out large sections of our Milky Way galaxy and the nearby galaxy known as the Large Magellanic Cloud.

    “NASA has a great history of launching observatories in the Astrophysics Explorers Program with new and unique observational capabilities. GUSTO continues that tradition”, says Paul Hertz, astrophysics division director in NASA’s Science Mission Directorate in Washington.
    NASA determined that out of eight proposals of which two were further studied since 2014, GUSTO has the best potential for excellent science return with a feasible development plan.

    The GUSTO mission is targeted for launch in 2021 from McMurdo, Antarctica, and is expected to stay in the air between 100 to 170 days, depending on weather conditions. It will cost approximately $40 million, including the balloon launch funding and the cost of post-launch operations and data analysis.

    The University of Arizona in Tucson will provide the actual GUSTO telescope and instruments, with technology from SRON, TU Delft, NASA’s Jet Propulsion Laboratory in Pasadena, California, the Massachusetts Institute of Technology in Cambridge, and the Arizona State University in Tempe. The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, provides the mission operations, and the gondola where the instruments are mounted.

    The principal investigator of the mission is Christopher Walker from the University of Arizona. Jian-Rong Gao (SRON & TU Delft) will lead the project in the Netherlands. Floris van der Tak (SRON & University Groningen) and Xander Tielens (University Leiden) will contribute to the science team.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    sron-campus

    How did the Earth and life on it evolve? How do stars and planets evolve? How did the universe evolve? What is the position of the Earth and humankind in that immense universe? These are fundamental questions that have always intrigued humankind. Moreover, people have always possessed an urge to explore and push back the boundaries of science and technology.

    Science

    Since the launch of Sputnik in 1957, Dutch astronomers have seen the added value of space missions for science. Reaching beyond the Earth’s atmosphere would open up new windows on the universe and provide fantastic views of our home planet. It would at last be possible to pick up cosmic radiation that never normally reached the Earth’s surface, such as X-rays, ultraviolet and infrared radiation. A wealth of scientific information from every corner of the universe would then become available.

    The first Dutch scientific rocket experiments and contributions to European and American satellites in the early 1960s, formed the start of an activity in which a small country would develop an enviable reputation: scientific space research.

    Groundbreaking technology

    Nowadays we take for granted images of the Earth from space, beautiful photos from the Hubble Space Telescope or landings of space vehicles on nearby planets. Yet sometimes we all too easily forget that none of these scientific successes would have been possible without the people who developed groundbreaking technology. Technology that sooner or later will also prove useful to life on Earth.

     
  • richardmitnick 11:57 am on March 28, 2017 Permalink | Reply
    Tags: , , , , NASA, Stratospheric Terahertz Observatory (STO),   

    From U Arizona: “NASA Selects Airborne Observatory for Funding” 

    U Arizona bloc

    University of Arizona

    March 24, 2017
    Christopher Walker
    UA Steward Observatory
    520-621-8783
    cwalker@as.arizona.edu

    1
    Christopher Walker’s team successfully launched the Stratospheric Terahertz Observatory (STO) from McMurdo in Antarctica on Dec 8, 2016. (Photo: Brian Duffy and Christopher Walker)

    From a pool of eight proposed missions competing for funding in NASA’s Explorer category, the space agency has selected to fund the UA-led GUSTO mission. The goal of the $40 million endeavor is to send a balloon to near-space, carrying a telescope that will study the interstellar medium — the gas and dust between the stars, from which all stars and planets originate.

    Circling Antarctica in a balloon at an elevation between 110,000 and 120,000 feet, or 17 miles above a typical airliner’s cruising altitude, the Galactic/Extragalactic ULDB Spectroscopic Terahertz Observatory, or GUSTO, will study the interstellar medium in our Milky Way and beyond by observing the sky above most of the atmospheric water vapor that otherwise would obscure its view.

    Scheduled for launch on Dec. 15, 2021, the high-altitude, Ultralong-Duration Balloon, or ULDB, balloon will silently rise into the cold, dry air above Antarctica with an airborne observatory in tow. GUSTO’s science payload consists of a 1-meter telescope and various instruments mounted to a platform known as the gondola. The GUSTO payload will weigh close to 2 tons and run on about 1 kilowatt of electrical power generated by its solar panels.

    Christopher Walker, a professor of astronomy in the UA’s Steward Observatory with joint appointments in the UA’s Colleges of Optical Sciences and Engineering, is the principal investigator of the GUSTO mission. The mission’s science aims at measuring emissions from the interstellar medium. The data will help scientists determine the life cycle of interstellar gas in our Milky Way galaxy, witness the formation and destruction of star-forming clouds, and understand the dynamics and gas flow in the vicinity of the center of our galaxy.

    2
    The GUSTO mission will untangle the complexities of the interstellar medium, and map out large sections of the plane of our Milky Way galaxy and a nearby galaxy known as the Large Magellanic Cloud. (Credits: NASA, ESA and Hubble Heritage Team)

    “If we want to understand where we came from, we have to understand the interstellar medium,” Walker said, “because 4.6 billion years ago, we were interstellar medium.”

    The interstellar medium, it turns out, is the stuff from which most of the observable universe is made: stars, planets, rocks, oceans and all living creatures, and GUSTO is uniquely equipped to probe the conditions inside it.

    The telescope is outfitted with carbon, oxygen and nitrogen emission line detectors. This unique combination of data will provide the spectral and spatial resolution information needed for Walker and his team to untangle the complexities of the interstellar medium, and map out large sections of the plane of our Milky Way galaxy and the nearby galaxy known as the Large Magellanic Cloud.

    Walker, who is a longtime amateur radio (ham) operator, explains that carbon atoms, nitrogen atoms and oxygen atoms in the interstellar medium act like tiny, very-high-frequency radio transmitters, and GUSTO is engineered to listen to what they have to say.

    “We do this by using cutting-edge superconducting detectors and other instruments that allow us to listen in at these very high frequencies,” Walker explained.

    In December, his team successfully launched the Stratospheric Terahertz Observatory, or STO, which served as a pathfinder mission for GUSTO, in Antarctica. Carried by stable, circumpolar winds, the airborne observatory completed a three-week flight and collected data from a portion of the Milky Way.

    3
    STO’s gondola carrying the telescope and other scientific instruments (Photo: Christopher Walker)

    “With STO, we proved our team is capable of making a balloon payload capable of mapping the interstellar medium on a much larger scale,” Walker said.

    GUSTO will map the Milky Way and also the Large Magellanic Cloud, which has hallmarks of a galaxy more commonly found in the early universe, Walker said.

    “Our measurements will provide the data to help develop a model for early galaxies and our own Milky Way, which together will serve as bookends to understand the evolution of stars and galaxies through cosmic time,” he said.

    “GUSTO will provide the first complete study of all phases of the stellar life cycle, from the formation of molecular clouds, through star birth and evolution, to the formation of gas clouds and the re-initiation of the cycle,” added Paul Hertz, astrophysics division director in the Science Mission Directorate in Washington. “NASA has a great history of launching observatories in the Astrophysics Explorers Program with new and unique observational capabilities. GUSTO continues that tradition.”

    Launched from McMurdo, Antarctica, GUSTO is expected to stay in the air between 100 to 170 days, depending on weather conditions. It will cost approximately $40 million, including the balloon launch funding and the cost of post-launch operations and data analysis.

    NASA’s Astrophysics Explorers Program requested proposals for mission of opportunity investigations in September 2014. A panel of NASA and other scientists and engineers reviewed two mission of opportunity concept studies selected from the eight proposals submitted at that time, and NASA has determined that GUSTO has the best potential for excellent science return with a feasible development plan.

    “This work is an example of the innovative cutting-edge ideas that our faculty are turning into reality every day,” said Kimberly Andrews Espy, the UA’s senior vice president for research. “We very much appreciate the support from NASA and confidence in Dr. Walker and his team to deliver this next generation space technology. Utilizing the stratosphere holds great promise to transform our approach to imaging and observing, and the UA researchers are leading the way forward.”

    The Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, is providing the mission operations and the gondola. The UA will provide the GUSTO telescope and instrument, which will incorporate detector technologies from NASA’s Jet Propulsion Laboratory in Pasadena, California; the Massachusetts Institute of Technology in Cambridge; Arizona State University; and SRON Netherlands Institute for Space Research.

    NASA’s Explorers Program is the agency’s oldest continuous program and is designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the astrophysics and heliophysics programs in the agency’s Science Mission Directorate. The program has launched more than 90 missions. It began in 1958 with the Explorer 1, which discovered the Earth’s radiation belts, now called the Van Allen belt, named after the principal investigator. Another Explorer mission, the Cosmic Background Explorer, led to a Nobel Prize. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the program for the Science Mission Directorate in Washington.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Arizona campus

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    Where else in the world can you find an astronomical observatory mirror lab under a football stadium? An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 3:12 pm on March 23, 2017 Permalink | Reply
    Tags: , , , , , From NASA: "NASA Embraces Small Satellites" Video and text, NASA   

    From NASA: “NASA Embraces Small Satellites” Video and text 

    NASA image
    NASA


    Access mp4 video here .

    The earliest satellites of the Space Age were small. Sputnik, for instance, weighed just 184.3 lbs. America’s first satellite, Explorer 1, was even smaller at only about 30 lbs.

    Over time, satellites grew to accommodate more sensors with greater capabilities, but thanks to miniaturization and new technology capabilities, small is back in vogue.

    NASA is one of many government agencies, universities, and commercial organizations embracing small satellite designs, from tiny CubeSats to micro-satellites. A basic CubeSat has 4 inch sides and weighs just a few pounds!

    A CubeSat can be put into place a number of different ways. It can be a hitchhiker, flying to space onboard a rocket whose main purpose is to launch a full-sized satellite. Or it can be put into orbit from the International Space Station. Astronauts recently used this technique when they deployed the Miniature X-Ray Solar Spectrometer (MinXSS), a CubeSat that studies solar flares.

    2
    On Feb. 2, 2016, NASA announced which CubeSats will fly on the inaugural flight of the agency’s Space Launch System in late 2018. CubeSats are small satellites, about the size of a cereal box, which provide an inexpensive way to access space. This file photo shows a set of NanoRacks CubeSats in space after their deployment in 2014.
    Credits: NASA

    In 2018, NASA plans to launch the CubeSat to study Solar Particles (CuSP). It will hitch a ride out of Earth orbit during an uncrewed test flight of NASA’s Space Launch System.

    CuSP could serve as a small “space weather buoy.”

    Eric Christian, CuSP’s lead scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland says, “Right now, with our current fleet of large satellites, it’s like we’re trying to understand weather for the entire Pacific Ocean with just a handful of weather stations. We need to collect data from more locations.”

    For certain areas of science, having a larger number of less expensive missions will provide a powerful opportunity to really understand a given environment. Christian says, “If you had, say, 20 CubeSats in different orbits, you could really start to understand the space environment in three dimensions.”

    NASA scientists are taking this approach of using a constellation of sensors to probe the details of a large area with a number of recently launched and upcoming missions.

    The Cyclone Global Navigation Satallite System, or CYGNSS, launched in December 2016. CYGNSS uses eight micro-satellites to measure ocean surface winds in and near the eyes of tropical cyclones, typhoons, and hurricanes to learn about their rapid intensification. These micro-satellites each weigh about 65 lbs, larger than a CubeSat but still very small compared to traditional satellite designs.

    Additionally, the first four selections from the In-Space Validation of Earth Science Technologies (InVEST) program recently began launching. The goal of the InVEST program is to validate new technologies in space prior to use in a science mission.

    RAVAN, the first of the InVEST CubeSats, was launched in November 2016 to demonstrate a new way to measure radiation reflected by Earth. The next three InVEST missions to launch, HARP, IceCube, and MiRaTA, will demonstrate technologies that may pave the way for future satellites to measure clouds and aerosols suspended in Earth’s atmosphere, probe the role of icy clouds in climate change, and collect atmospheric temperature, water vapor, and cloud ice data through remote sensing, respectively.

    NASA’s Science Mission Directorate is looking to develop scientific CubeSats that cut across all NASA Science through the SMD CubeSat Initiative Program.

    Andrea Martin, communications specialist for NASA’s Earth Science Technology Office, believes this is just the beginning. She says, “CubeSats could be flown in formation, known as constellations, with quick revisit times to better capture the dynamic processes of Earth. Multiple CubeSats can also take complementary measurements unachievable by a single larger mission.” She envisions big things ahead for these little satellites.

    For more news about CubeSats and other cutting edge technologies both big and small, stay tuned to science.nasa.gov.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:32 am on March 22, 2017 Permalink | Reply
    Tags: , , , ESA aim to ram asteroid, Moonlet of asteroid 65803 Didymos, NASA,   

    From COSMOS: “NASA, ESA aim to ram asteroid” 

    Cosmos Magazine bloc

    COSMOS

    22 March 2017
    Richard A. Lovett

    1
    Artist’s impression of the binary asteroid Didymos, the ESA satellite watching, the NASA satellite heading in for impact. ESA/Getty Images [This is confusing. ESA satellite is easy to pick out, but NASA dart?]

    A planned NASA and European Space Agency (ESA) joint mission is poised to test whether it is possible to knock an asteroid from one orbit into another.

    The mission, which has not yet fully funded, is part of the space agencies’ focus on “planetary defense”: the protection of Earth from collision with dangerous asteroids.

    But instead of trying to blow up such a threat, as in the 1998 science fiction movie Armageddon, the Asteroid Impact and Deflection Assessment mission intends to prove that an asteroid can be shifted by hitting it with a fast-moving spacecraft launched from Earth.

    “We save Bruce Willis’s life,” quips Patrick Michel, a planetary scientist from the Observatoire de la Côte d’Azur, in Nice, France, in a reference to the movie. “He doesn’t have to sacrifice himself.”

    The mission uses two spacecraft, one to be launched by ESA in 2020, the other by NASA in 2021.

    The ESA spacecraft, called AIM (for Asteroid Impact Mission) will rendezvous with the selected asteroid and go into orbit around it in early 2022.

    5
    ESA AIM

    The NASA spacecraft, called DART (Double Asteroid Redirection Test) will be timed to hit the rock a few months later, at a speed of six kilometres per second, while the AIM spacecraft and earthbound telescopes watch.

    4
    NASA DART

    The target is a moonlet of 65803 Didymos, a near-Earth asteroid discovered in 1996. At the time of impact it will be about 11 million kilometres away.

    As the world “double” in the DART mission’s name suggests, Didymos is a binary system, meaning that there are two asteroids orbiting each other. The large one is about 800 metres across; the moonlet measures about 160 metres.

    The impact is expected to alter the moonlet’s orbital speed around Didymos by about a half-millimetre per second, says Andrew Cheng, a planetary scientist at the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, who is lead investigator for the NASA side of the project.

    “That doesn’t sound like much, but it is very easily measured, both by the AIM spacecraft and by telescopes on the ground,” he said, speaking by phone from the 2017 Lunar and Planetary Science Conference in the Woodlands, Texas, where he is presenting details on the project.

    The effect is easy to measure from Earth, he adds, because the moonlet’s orbit is aligned so that viewed from down here it passes behind Didymos once each circuit.

    These disappearances make it easy to precisely measure its orbital period, Cheng says, estimating that even the tiny speed change expected to be imparted by the crash will alter its 11.9-hour orbit by several minutes.

    One of the goals of the mission is to test whether it is possible to hit such a small, distant object with a spacecraft moving at such a high speed. But it’s also important, Cheng says, to see how the asteroid responds to the impact.

    That’s because hitting an asteroid with a spacecraft isn’t like hitting a billiard ball with the cue ball.

    “When we have a high-speed impact on an asteroid, you create a crater,” Cheng says. “You blow pieces back in the direction you came from.”

    The ejection of this material shoves the asteroid in the opposite direction, significantly increasing its momentum change.

    “The amount can be quite large,” Cheng says, “More than a factor of two.”

    With the AIM spacecraft orbiting nearby, the impact will also allow the first scientific measurements of precisely what happens when an asteroid (or moon) gets hit by a fast-moving object, such as the 500-kilogram DART spacecraft.

    “This will tell us about cratering processes,” says Michel, who is the lead investigator of the ESA side of the mission.

    That is important because planetary scientists use crater counts on other worlds to help determine how old their surfaces are, based on the numbers and sizes of objects that have hit the surface since it formed.

    But most of the research designed to correlate crater size to the size of the impactor rests either on modeling or small-scale laboratory tests.

    This is the first time, Cheng says, that scientists will be able to test their models by looking at a crater on an asteroid, knowing exactly what hit it and how fast it was moving. Michel adds that the target moonlet will also be the smallest asteroid ever to be visited by a spacecraft.

    “This is important for science and for companies interested in asteroid mining because so far we don’t have any data regarding what we will find on the surface of such a small body,” he says.

    “Each time we discover a new world we have surprises,” he adds. “The main driver [of this mission] is planetary defence, but it has a lot of scientific implicaitons.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:01 pm on February 21, 2017 Permalink | Reply
    Tags: , , NASA, When Rocket Science Meets X-ray Science,   

    From LBNL: “When Rocket Science Meets X-ray Science” 

    Berkeley Logo

    Berkeley Lab

    February 21, 2017
    Glenn Roberts Jr.
    glennemail@gmail.com
    510-486-5582

    Berkeley Lab and NASA collaborate in X-ray experiments to ensure safety, reliability of spacecraft systems.

    1
    Francesco Panerai of Analytical Mechanical Associates Inc., a materials scientist leading a series of X-ray experiments at Berkeley Lab for NASA Ames Research Center, discusses a 3-D visualization (shown on screens) of a heat shield material’s microscopic structure in simulated spacecraft atmospheric entry conditions. The visualization is based on X-ray imaging at Berkeley Lab’s Advanced Light Source. (Credit: Marilyn Chung/Berkeley Lab)

    Note: This is the first installment in a four-part series that focuses on a partnership between NASA and Berkeley Lab to explore spacecraft materials and meteorites with X-rays in microscale detail.

    It takes rocket science to launch and fly spacecraft to faraway planets and moons, but a deep understanding of how materials perform under extreme conditions is also needed to enter and land on planets with atmospheres.

    X-ray science is playing a key role, too, in ensuring future spacecraft survive in extreme environments as they descend through otherworldly atmospheres and touch down safely on the surface.

    Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and NASA are using X-rays to explore, via 3-D visualizations, how the microscopic structures of spacecraft heat shield and parachute materials survive extreme temperatures and pressures, including simulated atmospheric entry conditions on Mars.

    Human exploration of Mars and other large-payload missions may require a new type of heat shield that is flexible and can remain folded up until needed.


    Streaking particles collide with carbon fibers in this direct simulation Monte Carlo (DSMC) calculation based on X-ray microtomography data from Berkeley Lab’s Advanced Light Source. NASA is developing new types of carbon fiber-based heat shield materials for next-gen spacecraft. The slow-motion animation represents 2 thousandths of a second. (Credit: Arnaud Borner, Tim Sandstrom/NASA Ames Research Center)

    Candidate materials for this type of flexible heat shield, in addition to fabrics for Mars-mission parachutes deployed at supersonic speeds, are being tested with X-rays at Berkeley Lab’s Advanced Light Source (ALS) and with other techniques.

    LBNL/ALS
    LBNL/ALS

    “We are developing a system at the ALS that can simulate all material loads and stresses over the course of the atmospheric entry process,” said Harold Barnard, a scientist at Berkeley Lab’s ALS who is spearheading the Lab’s X-ray work with NASA.

    The success of the initial X-ray studies has also excited interest from the planetary defense scientific community looking to explore the use of X-ray experiments to guide our understanding of meteorite breakup. Data from these experiments will be used in risk analysis and aid in assessing threats posed by large asteroids.

    The ultimate objective of the collaboration is to establish a suite of tools that includes X-ray imaging and small laboratory experiments, computer-based analysis and simulation tools, as well as large-scale high-heat and wind-tunnel tests. These allow for the rapid development of new materials with established performance and reliability.


    NASA has tested a new type of flexible heat shield, developed through the Adaptive Deployable Entry and Placement Technology (ADEPT) Project, with a high-speed blow torch at its Arc Jet Complex at NASA Ames, and has explored the microstructure of its woven carbon-fiber material at Berkeley Lab. (Credit: NASA Ames)

    This system can heat sample materials to thousands of degrees, subject them to a mixture of different gases found in other planets’ atmospheres, and with pistons stretch the material to its breaking point, all while imaging in real time their 3-D behavior at the microstructure level.

    NASA Ames Research Center (NASA ARC) in California’s Silicon Valley has traditionally used extreme heat tests at its Arc Jet Complex to simulate atmospheric entry conditions.

    Researchers at ARC can blast materials with a giant superhot blowtorch that accelerates hot air to velocities topping 11,000 miles per hour, with temperatures exceeding that at the surface of the sun. Scientists there also test parachutes and spacecraft at its wind-tunnel facilities, which can produce supersonic wind speeds faster than 1,900 miles per hour.

    Michael Barnhardt, a senior research scientist at NASA ARC and principal investigator of the Entry Systems Modeling Project, said the X-ray work opens a new window into the structure and strength properties of materials at the microscopic scale, and expands the tools and processes NASA uses to “test drive” spacecraft materials before launch.

    “Before this collaboration, we didn’t understand what was happening at the microscale. We didn’t have a way to test it,” Barnhardt said. “X-rays gave us a way to peak inside the material and get a view we didn’t have before. With this understanding, we will be able to design new materials with properties tailored to a certain mission.”

    He added, “What we’re trying to do is to build the basis for more predictive models. Rather than build and test and see if it works,” the X-ray work could reduce risk and provide more assurance about a new material’s performance even at the drawing-board stage.

    2
    Francesco Panerai holds a sample of parachute material at NASA Ames Research Center. The screen display shows a parachute prototype (left) and a magnified patch of the material at right. (Credit: Marilyn Chung/Berkeley Lab)

    Francesco Panerai, a materials scientist with NASA contractor AMA Inc. and the X-ray experiments test lead for NASA ARC, said that the X-ray experiments at Berkeley Lab were on samples about the size of a postage stamp. The experimental data is used to improve realistic computer simulations of heat shield and parachute systems.

    “We need to use modern measurement techniques to improve our understanding of material response,” Panerai said. The 3-D X-ray imaging technique and simulated planetary conditions that NASA is enlisting at the ALS provide the best pictures yet of the behavior of the internal 3-D microstructure of spacecraft materials.

    The experiments are being conducted at an ALS experimental station that captures a sequence of images as a sample is rotated in front of an X-ray beam. These images, which provide views inside the samples and can resolve details less than 1 micron, or 1 millionth of a meter, can be compiled to form detailed 3-D images and animations of samples.

    This study technique is known as X-ray microtomography. “We have started developing computational tools based on these 3-D images, and we want to try to apply this methodology to other research areas, too,” he said.

    Learn more about the research partnership between NASA and Berkeley Lab in these upcoming articles, to appear at :

    Feb. 22—The Heat is On: X-rays reveal how simulated atmospheric entry conditions impact spacecraft shielding.
    Feb. 23—A New Paradigm in Parachute Design: X-ray studies showing the microscopic structure of spacecraft parachute fabrics can fill in key details about how they perform under extreme conditions.
    Feb. 24—Getting to Know Meteors Better: Experiments at Berkeley Lab may help assess risks posed by falling Space rocks.

    The Advanced Light Source is a DOE Office of Science User Facility.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 1:23 pm on February 17, 2017 Permalink | Reply
    Tags: First-Ever Space Technology Research Institutes, NASA, Space Technology Mission Directorate   

    From NASA: “NASA Selects Proposals for First-Ever Space Technology Research Institutes” 

    NASA image
    NASA

    Feb. 16, 2017
    Gina Anderson
    Headquarters, Washington
    202-358-1160
    gina.n.anderson@nasa.gov

    NASA has selected proposals for the creation of two multi-disciplinary, university-led research institutes that will focus on the development of technologies critical to extending human presence deeper into our solar system.

    The new Space Technology Research Institutes (STRIs) created under these proposals will bring together researchers from various disciplines and organizations to collaborate on the advancement of cutting-edge technologies in bio-manufacturing and space infrastructure, with the goal of creating and maximizing Earth-independent, self-sustaining exploration mission capabilities.

    “NASA is establishing STRIs to research and exploit cutting-edge advances in technology with the potential for revolutionary impact on future aerospace capabilities,” said Steve Jurczyk, associate administrator for NASA’s Space Technology Mission Directorate in Washington. “These university-led, multi-disciplinary research programs promote the synthesis of science, engineering and other disciplines to achieve specific research objectives with credible expected outcomes within five years. At the same time, these institutes will expand the U.S. talent base in areas of research and development with broader applications beyond aerospace.”

    1
    High performance materials and structures are needed for safe and affordable next generation exploration systems such as transit vehicles, habitats, and power systems.
    Credits: NASA

    Each STRI will receive up to $15 million over the five-year period of performance. The selected new institutes are:

    2
    Advanced biological engineering techniques are rapidly emerging that can lead to innovative approaches for in situ biological manufacturing techniques using microbes and plants, and provide the means to create sustainable technologies for both future space exploration and terrestrial applications.
    Credits: NASA

    Center for the Utilization of Biological Engineering in Space (CUBES)

    As NASA shifts its focus from low-Earth orbit to deep space missions, the agency is investing in the development of technologies that will allow long-duration mission crews to manufacture the products they need, rather than relying on the current practice of resupply missions from Earth.

    The CUBES institute will advance research into an integrated, multi-function, multi-organism bio-manufacturing system to produce fuel, materials, pharmaceuticals and food. While the research goals of the CUBES institute are to benefit deep-space planetary exploration, these goals also lend themselves to practical Earth-based applications. For example, the emphasis on using carbon dioxide as the base component for materials manufacturing has relevance to carbon dioxide management on Earth.

    The CUBES team is led by Adam Arkin, principal investigator at the University of California, Berkeley, in partnership with Utah State University, the University of California, Davis, Stanford University, and industrial partners Autodesk and Physical Sciences, Inc.

    Institute for Ultra-Strong Composites by Computational Design (US-COMP)

    Affordable deep space exploration will require transformative materials for the manufacturing of next-generation transit vehicles, habitats, power systems, and other exploration systems. These building materials need to be lighter and stronger than those currently used in even the most advanced systems.

    US-COMP aims to develop and deploy a carbon nanotube-based, ultra-high strength, lightweight aerospace structural material within five years. Success will mean a critical change to the design paradigm for space structures. Through collaboration with industry partners, it is anticipated that advances in laboratories could quickly translate to advances in manufacturing facilities that will yield sufficient amounts of advanced materials for use in NASA missions.

    Results of this research will have broad societal impacts, as well. Rapid development and deployment of the advanced materials created by the institute could support an array of Earthly applications and benefit the U.S. manufacturing sector.

    US-COMP is a multidisciplinary team of 22 faculty members led by Gregory Odegard, principal investigator at the Michigan Technological University, in partnership with Florida State University, University of Utah, Massachusetts Institute of Technology, Florida A&M University, Johns Hopkins University, Georgia Institute of Technology, University of Minnesota, Pennsylvania State University, University of Colorado and Virginia Commonwealth University. Industrial partners include Nanocomp Technologies and Solvay, with the U.S. Air Force Research Lab as a collaborator.

    These awards are funded by NASA’s Space Technology Mission Directorate, which is responsible for developing the cross-cutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future missions.

    For more information about STMD, visit:

    http://www.nasa.gov/spacetech

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:30 pm on January 24, 2017 Permalink | Reply
    Tags: Hidden Figures, Human computers, NACA, NASA,   

    From SA: “The Story of NASA’s Real “Hidden Figures”’ 

    Scientific American

    Scientific American

    January 24, 2017
    Elizabeth Howell

    1
    Mary Jackson was one of the “human computers” portrayed in the film “Hidden Figures.” Credit: NASA

    In the 1960s, Mercury astronauts Alan Shepard, Gus Grissom, John Glenn and others absorbed the accolades of being the first men in space. Behind the scenes, they were supported by hundreds of unheralded NASA workers, including “human computers” who did the calculations for their orbital trajectories. Hidden Figures, a 2016 book by Margot Lee Shetterly and a movie based on the book, celebrates the contributions of some of those workers.

    Beginning in 1935, the National Advisory Committee for Aeronautics (NACA), a precursor of NASA, hired hundreds of women as computers. The job title designated someone who performed mathematical equations and calculations by hand, according to a NASA history. The computers worked at the Langley Memorial Aeronautical Laboratory in Virginia.

    Human computers were not a new concept. In the late 19th and early 20thcentury, female “computers” at Harvard University analyzed star photos to learn more about their basic properties.

    2

    Edward Charles Pickering, left, director of the Harvard College Observatory, hired women to analyze the images.
    Credit: Harvard-Smithsonian Center for Astrophysics. via Space.com.

    These women made discoveries still fundamental to astronomy today. For example: Williamina Fleming is best known for classifying stars based on their temperature, and Annie Jump Cannon developed a stellar classification system still used today (from coolest to hottest stars: O, B, A, F, G, K, M.)

    During World War II, the computer pool was expanded. Langley began recruiting African-American women with college degrees to work as computers, according to NASA. However, segregation policies required that these women work in a separate section, called the West Area Computers—although computing sections became more integrated after the first several years.

    As the years passed and the center evolved, the West Computers became engineers, (electronic) computer programmers, the first black managers at Langley and trajectory whizzes whose work propelled the first American, John Glenn, into orbit in 1962.

    “Hidden Figures” focuses on three computers, Mary Jackson, Katherine Johnson and Dorothy Vaughan. Here are brief biographies of these women:

    Mary Jackson (1921-2005)

    Jackson hailed from Hampton, Virginia. She graduated with high marks from high school and received a bachelor of science degree from the Hampton Institute in Mathematics and Physical Science, according to a biography posted on NASA’s website. She began her career as a schoolteacher, and took on several other jobs before joining NACA.

    As a computer with the all-black West Area Computing section, she was involved with wind tunnels and flight experiments. Her job was to extract the relevant data from experiments and flight tests. She also tried to help other women advance in their career, according to the biography, by advising them on what educational opportunities to pursue.

    “She discovered that occasionally it was something as simple as a lack of a couple of courses, or perhaps the location of the individual, or perhaps the assignments given them, and of course, the ever present glass ceiling that most women seemed to encounter,” stated the biography.

    After 30 years with NACA and NASA (at which point she was an engineer), Jackson decided to become an equal opportunity specialist to help women and minorities. Although described as a behind-the-scenes sort of worker, she helped many people get promoted or become supervisors. She retired from NASA in 1985.

    Katherine Johnson (born 1918)

    Johnson showed early brilliance in West Virginia schools by being promoted several years ahead of her age, according to NASA. She attended a high school on the campus of West Virginia State College by age 13, and began attending the college at age 18. After graduating with highest honors, she started work as a schoolteacher in 1937.

    Two years later, when the college chose to integrate its graduate schools, Johnson and two male students were offered spots. She quickly enrolled, but left to have children. In 1953, when she was back in the workforce, Johnson joined the West Area Computing section at Langley.

    She began her career working with data from flight tests, but her life quickly changed after the Soviet Union launched the first satellite in 1957. For example, some of her math equations were used in a lecture series compendium called Notes on Space Technology. These lectures were given by engineers that later formed the Space Task Group, NACA’s section on space travel.

    For the Mercury missions, Johnson did trajectory analysis for Shepard’s Freedom 7 mission in 1961, and (at John Glenn’s request) did the same job for his orbital mission in 1962. Despite Glenn’s trajectory being planned by computers, Glenn reportedly wanted Johnson herself to run through the equations to make sure they were safe.

    “When asked to name her greatest contribution to space exploration, Katherine Johnson talks about the calculations that helped synch Project Apollo’s Lunar Lander with the moon-orbiting Command and Service Module,” NASA wrote. “She also worked on the space shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports.”

    Johnson retired from NASA In 1986. At age 97, in 2015, she received the Presidential Medal of Freedom, the highest civilian honor in the United States.

    Dorothy Vaughan (1910-2008)

    Vaughan joined the Langley Memorial Aeronautical Laboratory in 1943 after beginning her career as a math teacher in Farmville, Virginia. Her job during World War II was a temporary position, but (in part thanks to a new executive order prohibiting discrimination in the defense industry) she was hired on permanently because the laboratory had a wealth of data to process.

    Still, the law required that she and her black colleagues needed to work separately from white female computers, and the first supervisors were white. Vaughan became the first black NACA supervisor in 1949 and made sure that her employees received promotions or pay raises if merited.

    Her segregation was ended in 1958 when NACA became NASA, at which point NASA created an analysis and computation division. Vaughan was an expert programmer in FORTRAN, a prominent computer language of the day, and also contributed to a satellite-launching rocket called Scout (Solid Controlled Orbital Utility Test). She retired from NASA in 1971.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 1:48 pm on December 31, 2016 Permalink | Reply
    Tags: , , , Black hole seeds, , NASA, NASA Telescopes Find Clues For How Giant Black Holes Formed So Quickly,   

    From NASA: “NASA Telescopes Find Clues For How Giant Black Holes Formed So Quickly” 

    NASA image
    NASA

    May 24, 2016 [Picked up for year end.]
    Felicia Chou
    Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    Sean Potter
    Headquarters, Washington
    202-358-1536
    sean.potter@nasa.gov

    1
    This illustration represents the best evidence to date that the direct collapse of a gas cloud produced supermassive black holes in the early Universe. Researchers combined data from NASA’s Chandra, Hubble, and Spitzer telescopes to make this discovery. Credits: NASA/CXC/STScI

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    NASA/ESA Hubble Telescope
    NASA/ESA Hubble Telescope

    NASA/Spitzer Telescope
    NASA/Spitzer Telescope

    Using data from NASA’s Great Observatories, astronomers have found the best evidence yet for cosmic seeds in the early universe that should grow into supermassive black holes.

    Researchers combined data from NASA’s Chandra X-ray Observatory, Hubble Space Telescope, and Spitzer Space Telescope to identify these possible black hole seeds. They discuss their findings in a paper that will appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society.

    “Our discovery, if confirmed, explains how these monster black holes were born,” said Fabio Pacucci of Scuola Normale Superiore (SNS) in Pisa, Italy, who led the study. “We found evidence that supermassive black hole seeds can form directly from the collapse of a giant gas cloud, skipping any intermediate steps.”

    Scientists believe a supermassive black hole lies in the center of nearly all large galaxies, including our own Milky Way. They have found that some of these supermassive black holes, which contain millions or even billions of times the mass of the sun, formed less than a billion years after the start of the universe in the Big Bang.

    One theory suggests black hole seeds were built up by pulling in gas from their surroundings and by mergers of smaller black holes, a process that should take much longer than found for these quickly forming black holes.

    These new findings suggest instead that some of the first black holes formed directly when a cloud of gas collapsed, bypassing any other intermediate phases, such as the formation and subsequent destruction of a massive star.

    “There is a lot of controversy over which path these black holes take,” said co-author Andrea Ferrara, also of SNS. “Our work suggests we are narrowing in on an answer, where the black holes start big and grow at the normal rate, rather than starting small and growing at a very fast rate.”

    The researchers used computer models of black hole seeds combined with a new method to select candidates for these objects from long-exposure images from Chandra, Hubble, and Spitzer.

    The team found two strong candidates for black hole seeds. Both of these matched the theoretical profile in the infrared data, including being very red objects, and also emit X-rays detected with Chandra. Estimates of their distance suggest they may have been formed when the universe was less than a billion years old

    “Black hole seeds are extremely hard to find and confirming their detection is very difficult,” said Andrea Grazian, a co-author from the National Institute for Astrophysics in Italy. “However, we think our research has uncovered the two best candidates to date.”

    The team plans to obtain further observations in X-rays and the infrared to check whether these objects have more of the properties expected for black hole seeds. Upcoming observatories, such as NASA’s James Webb Space Telescope and the European Extremely Large Telescope will aid in future studies by detecting the light from more distant and smaller black holes. Scientists currently are building the theoretical framework needed to interpret the upcoming data, with the aim of finding the first black holes in the universe.

    “As scientists, we cannot say at this point that our model is ‘the one’,” said Pacucci. “What we really believe is that our model is able to reproduce the observations without requiring unreasonable assumptions.”

    NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program while the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington.

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission, whose science operations are conducted at the Spitzer Science Center. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado.

    For more on NASA’s Chandra X-ray Observatory, visit:

    http://www.nasa.gov/chandra

    For more on NASA’s Hubble Space Telescope, visit:

    http://www.nasa.gov/hubble

    For more on NASA’s Spitzer Space Telescope, visit:

    http://www.nasa.gov/spitzer

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: