Tagged: NASA WISE Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:28 pm on January 5, 2016 Permalink | Reply
    Tags: , , , , NASA WISE, Runaway Stars Leave Infrared Waves in Space   

    From JPL-Caltech: “Runaway Stars Leave Infrared Waves in Space” 

    JPL-Caltech

    January 5, 2016
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    Bow shocks thought to mark the paths of massive, speeding stars are highlighted in these images from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE.
    Cosmic bow shocks occur when massive stars zip through space, pushing material ahead of them in the same way that water piles up in front of a race boat. The stars also produce high-speed winds that smack into this compressed material. The end result is pile-up of heated material that glows in infrared light. In these images, infrared light has been assigned the colored red.
    Green shows wispy dust in the region and blue shows stars.
    The two images at left are from Spitzer, and the one on the right is from WISE.
    The speeding stars thought to be creating the bow shocks can be seen at the center of each arc-shaped feature. The image at right actually consists of two bow shocks and two speeding stars. All the speeding stars are massive, ranging from about 8 to 30 times the mass of our sun.

    Astronomers are finding dozens of the fastest stars in our galaxy with the help of images from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE.

    NASA Spitzer Telescope
    Spitzer

    NASA Wise Telescope
    WISE

    When some speedy, massive stars plow through space, they can cause material to stack up in front of them in the same way that water piles up ahead of a ship. Called bow shocks, these dramatic, arc-shaped features in space are leading researchers to uncover massive, so-called runaway stars.

    “Some stars get the boot when their companion star explodes in a supernova, and others can get kicked out of crowded star clusters,” said astronomer William Chick from the University of Wyoming in Laramie, who presented his team’s new results at the American Astronomical Society meeting in Kissimmee, Florida. “The gravitational boost increases a star’s speed relative to other stars.”

    Our own sun is strolling through our Milky Way galaxy at a moderate pace. It is not clear whether our sun creates a bow shock. By comparison, a massive star with a stunning bow shock, called Zeta Ophiuchi (or Zeta Oph), is traveling around the galaxy faster than our sun, at 54,000 mph (24 kilometers per second) relative to its surroundings. Zeta Oph’s giant bow shock can be seen in this image from the WISE mission:

    2
    Zeta Ophiuchi — Runaway Star Plowing Through Space Dust
    The blue star near the center of this image is Zeta Ophiuchi. When seen in visible light it appears as a relatively dim red star surrounded by other dim stars and no dust. However, in this infrared image taken with NASA’s Wide-field Infrared Survey Explorer, or WISE, a completely different view emerges. Zeta Ophiuchi is actually a very massive, hot, bright blue star plowing its way through a large cloud of interstellar dust and gas.
    Astronomers theorize that this stellar juggernaut was likely once part of a binary star system with an even more massive partner. It’s believed that when the partner exploded as a supernova, blasting away most of its mass, Zeta Ophiuchi was suddenly freed from its partner’s pull and shot away like a bullet moving 24 kilometers per second (54,000 miles per hour). Zeta Ophiuchi is about 20 times more massive and 65,000 times more luminous than the sun. If it weren’t surrounded by so much dust, it would be one of the brightest stars in the sky and appear blue to the eye. Like all stars with this kind of extreme mass and power, it subscribes to the ‘live fast, die young’ motto. It’s already about halfway through its very short 8-million-year lifespan. In comparison, the sun is roughly halfway through its 10-billion-year lifespan. While the sun will eventually become a quiet white dwarf, Zeta Ophiuchi, like its ex-partner, will ultimately die in a massive explosion called a supernova.
    Perhaps the most interesting features in this image are related to the interstellar gas and dust that surrounds Zeta Ophiuchi. Off to the sides of the image and in the background are relatively calm clouds of dust, appearing green and wispy, slightly reminiscent of the northern lights. Near Zeta Ophiuchi, these clouds look quite different. The cloud in all directions around the star is brighter and redder, because the extreme amounts of ultraviolet radiation emitted by the star are heating the cloud, causing it to glow more brightly in the infrared than usual.
    Even more striking, however, is the bright yellow curved feature directly above Zeta Ophiuchi. This is a magnificent example of a bow shock. In this image, the runaway star is flying from the lower right towards the upper left. As it does so, its very powerful stellar wind is pushing the gas and dust out of its way (the stellar wind extends far beyond the visible portion of the star, creating an invisible ‘bubble’ all around it). And directly in front of the star’s path the wind is compressing the gas together so much that it is glowing extremely brightly (in the infrared), creating a bow shock. It is akin to the effect you might see when a boat pushes a wave in front it as it moves through the water. This feature is completely hidden in visible light. Infrared images like this one from WISE shed an entirely new light on the region.
    The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light from 12 and 22 microns, respectively, which is mostly emitted by dust.
    Image credit: NASA/JPL-Caltech/UCLA

    Both the speed of stars moving through space and their mass contribute to the size and shapes of bow shocks. The more massive a star, the more material it sheds in high-speed winds. Zeta Oph, which is about 20 times as massive as our sun, has supersonic winds that slam into the material in front of it.

    The result is a pile-up of material that glows. The arc-shaped material heats up and shines with infrared light. That infrared light is assigned the color red in the many pictures of bow shocks captured by Spitzer and WISE.

    Chick and his team turned to archival infrared data from Spitzer and WISE to identify new bow shocks, including more distant ones that are harder to find. Their initial search turned up more than 200 images of fuzzy red arcs. They then used the Wyoming Infrared Observatory, near Laramie, to follow up on 80 of these candidates and identify the sources behind the suspected bow shocks. Most turned out to be massive stars.

    U Wyoming Infrared Observatory exterior
    U Wyoming Infrared Observatory interior
    U Wyoming Infrared Observatory

    The findings suggest that many of the bow shocks are the result of speedy runaways that were given a gravitational kick by other stars. However, in a few cases, the arc-shaped features could turn out to be something else, such as dust from stars and birth clouds of newborn stars. The team plans more observations to confirm the presence of bow shocks.

    “We are using the bow shocks to find massive and/or runaway stars,” said astronomer Henry “Chip” Kobulnicky, also from the University of Wyoming. “The bow shocks are new laboratories for studying massive stars and answering questions about the fate and evolution of these stars.”

    Another group of researchers, led by Cintia Peri of the Argentine Institute of Radio Astronomy, is also using Spitzer and WISE data to find new bow shocks in space. Only instead of searching for the arcs at the onset, they start by hunting down known speedy stars, and then they scan them for bow shocks.

    “WISE and Spitzer have given us the best images of bow shocks so far,” said Peri. “In many cases, bow shocks that looked very diffuse before, can now be resolved, and, moreover, we can see some new details of the structures.”

    Some of the first bow shocks from runaway stars were identified in the 1980s by David Van Buren of NASA’s Jet Propulsion Laboratory in Pasadena, California. He and his colleagues found them using infrared data from the [Caltech] Infrared Astronomical Satellite (IRAS), a predecessor to WISE that scanned the whole infrared sky in 1983.

    NASA IRAS spacecraft
    IRAS

    Kobulnicky and Chick belong to a larger team of researchers and students studying bow shocks and massive stars, including Matt Povich from the California State Polytechnic University, Pomona. The National Science Foundation funds their research.

    Images from Spitzer, WISE and IRAS are archived at the NASA Infrared Science Archive housed at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena.

    More information about Spitzer is online at:

    http://www.nasa.gov/spitzer

    http://spitzer.caltech.edu

    More information about WISE is at:

    http://www.nasa.gov/wise

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 7:46 am on January 2, 2016 Permalink | Reply
    Tags: , , , NASA WISE, WISE J224607.57-052635.0   

    From Astronomy Now: “The most luminous galaxy in the Universe” 

    Astronomy Now bloc

    Astronomy Now

    Temp 1
    Artwork depicting a dusty galaxy, named WISE J224607.57-052635.0, which is the most luminous ever discovered. Image: NASA/JPL–Caltech.

    A distant galaxy that outshines our own by a thousand times set a new record when it was spotted in 2015 by NASA’s Wide-field Infrared Survey Explorer (WISE) satellite.

    NASA Wise Telescope
    NASA/WISE

    The galaxy is the most luminous ever discovered, but if it is so intrinsically bright, why did it take until 2015 to detect it? One reason is its sheer distance – WISE is detecting light that has travelled for 12.5 billion years to reach us – but it is also buried beneath an immense cloud of dust produced by the rapid cycle of star birth and death. WISE could only see this galaxy because its extreme luminosity heats up the dust, causing it to glow brightly in the infrared.

    There’s only one possible way that a galaxy could grow so bright: the radiation is pouring out from frenetic activity around a black hole thousands of times more massive than the black hole at the centre of our Galaxy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:19 pm on November 3, 2015 Permalink | Reply
    Tags: , , , , NASA WISE   

    From JPL-Caltech: “Whopping Galaxy Cluster Spotted with Help of NASA Telescopes” 

    JPL-Caltech

    November 3, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. Image credit: NASA/JPL-Caltech/Gemini/CARMA

    Astronomers have discovered a giant gathering of galaxies in a very remote part of the universe, thanks to NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE).

    NASA Spitzer Telescope
    Spitzer

    NASA Wise Telescope
    WISE

    The galaxy cluster, located 8.5 billion light-years away, is the most massive structure yet found at such great distances.

    Galaxy clusters are gravitationally bound groups of thousands of galaxies, which themselves each contain hundreds of billions of stars. The clusters grow bigger and bigger over time as they acquire new members.

    How did these clusters evolve over time? What did they look like billions of years ago? To answer these questions, astronomers look back in time to our youthful universe. Because light takes time to reach us, we can see very distant objects as they were in the past. For example, we are seeing the newfound galaxy cluster — called Massive Overdense Object (MOO) J1142+1527 — as it existed 8.5 billion years ago, long before Earth formed.

    As light from remote galaxies makes its way to us, it becomes stretched to longer, infrared wavelengths by the expansion of space. That’s where WISE and Spitzer help out.

    For infrared space telescopes, picking out distant galaxies is like plucking ripe cherries from a cherry tree. In the infrared images produced by Spitzer, these distant galaxies stand out as red dots, while closer galaxies look white. Astronomers first combed through the WISE catalog to find candidates for clusters of distant galaxies. WISE catalogued hundreds of millions of objects in images taken over the entire sky from 2010 to 2011.

    They then used Spitzer to narrow in on 200 of the most interesting objects, in a project named the “Massive and Distant Clusters of WISE Survey,” or MaDCoWS. Spitzer doesn’t observe the whole sky like WISE, but can see more detail.

    “It’s the combination of Spitzer and WISE that lets us go from a quarter billion objects down to the most massive galaxy clusters in the sky,” said Anthony Gonzalez of the University of Florida in Gainesville, lead author of a new study published in the Oct. 20 issue of the Astrophysical Journal Letters.

    From these observations, MOO J1142+1527 jumped out as one of the most extreme.

    The W.M. Keck Observatories and Gemini Observatory on Mauna Kea in Hawaii were used to measure the distance to the cluster at 8.5 billion light-years.

    Keck Observatory
    Keck Observatory Interior
    Keck

    Gemini North telescope
    Gemini North Interior
    Gemini North

    Using data from the (CARMA) telescopes near Owens Valley in California, the scientists were then able to determine that the cluster’s mass is a quadrillion times that of our sun — making it the most massive known cluster that far back in space and time.

    CARMA Array
    CARMA Array

    MOO J1142+1527 may be one of only a handful of clusters of this heft in the early universe, according to the scientists’ estimates.

    “Based on our understanding of how galaxy clusters grow from the very beginning of our universe, this cluster should be one of the five most massive in existence at that time,” said co-author Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    In the coming year, the team plans to sift through more than 1,700 additional galaxy cluster candidates with Spitzer, looking for biggest of the bunch.

    “Once we find the most massive clusters, we can start to investigate how galaxies evolved in these extreme environments,” said Gonzalez.

    JPL managed and operated WISE for NASA’s Science Mission Directorate in Washington. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA’s efforts to identify potentially hazardous near-Earth objects. JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations and data processing for Spitzer and NEOWISE take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    More information about WISE is online at:

    http://www.nasa.gov/wise

    More information about Spitzer is online at:

    http://www.nasa.gov/spitzer

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 6:01 am on August 4, 2015 Permalink | Reply
    Tags: , , , , NASA WISE   

    From JPL: “Tracking A Mysterious Group of Asteroid Outcasts” 

    JPL

    August 3, 2015
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    1
    The asteroid Euphrosyne glides across a field of background stars in this time-lapse view from NASA’s WISE spacecraft. WISE obtained the images used to create this view over a period of about a day around May 17, 2010, during which it observed the asteroid four times.

    Because WISE (renamed NEOWISE in 2013) is an infrared telescope, it senses heat from asteroids. Euphrosyne is quite dark in visible light, but glows brightly at infrared wavelengths.

    This view is a composite of images taken at four different infrared wavelengths: 3.4 microns (color-coded blue), 4.6 microns (cyan), 12 microns (green) and 22 microns (red).

    The moving asteroid appears as a string of red dots because it is much cooler than the distant background stars. Stars have temperatures in the thousands of degrees, but the asteroid is cooler than room temperature. Thus the stars are represented by shorter wavelength (hotter) blue colors in this view, while the asteroid is shown in longer wavelength (cooler) reddish colors.

    The WISE spacecraft was put into hibernation in 2011 upon completing its goal of surveying the entire sky in infrared light. WISE cataloged three quarters of a billion objects, including asteroids, stars and galaxies. In August 2013, NASA decided to reinstate the spacecraft on a mission to find and characterize more asteroids.

    Fast Facts:

    › A new NASA study has traced some members of the near-Earth asteroid population back to their likely source.

    › The source may be the Euphrosyne family of dark, asteroids on highly inclined (or tilted) orbits in the outer asteroid belt.

    › The study used data from NASA’s NEOWISE space telescope, which has a second life following its reactivation in 2013.

    NASA Wise Telescope
    WISE

    High above the plane of our solar system, near the asteroid-rich abyss between Mars and Jupiter, scientists have found a unique family of space rocks. These interplanetary oddballs are the Euphrosyne(pronounced you-FROH-seh-nee) asteroids, and by any measure they have been distant, dark and mysterious — until now.

    Distributed at the outer edge of the asteroid belt, the Euphrosynes have an unusual orbital path that juts well above the ecliptic, the equator of the solar system. The asteroid after which they are named, Euphrosyne — for an ancient Greek goddess of mirth — is about 156 miles (260 kilometers) across and is one of the 10 largest asteroids in the main belt. Current-day Euphrosyne is thought to be a remnant of a massive collision about 700 million years ago that formed the family of smaller asteroids bearing its name. Scientists think this event was one of the last great collisions in the solar system.

    A new study conducted by scientists at NASA’s Jet Propulsion Laboratory in Pasadena, California, used the agency’s orbiting Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) telescope to look at these unusual asteroids to learn more about Near Earth Objects, or NEOs, and their potential threat to Earth.

    NEOs are bodies whose orbits around the sun approach the orbit of Earth; this population is short-lived on astronomical timescales and is fed by other reservoirs of bodies in our solar system. As they orbit the sun, NEOs can occasionally have close approaches to Earth. For this reason alone — the safety of our home planet — the study of such objects is important.

    As a result of their study, the JPL researchers believe the Euphrosynes may be the source of some of the dark NEOs found to be on long, highly inclined orbits. They found that, through gravitational interactions with Saturn, Euphrosyne asteroids can evolve into NEOs over timescales of millions of years.

    NEOs can originate in either the asteroid belt or the more distant outer reaches of the solar system. Those from the asteroid belt are thought to evolve toward Earth’s orbit through collisions and the gravitational influence of the planets. Originating well above the ecliptic and near the far edge of the asteroid belt, the forces that shape their trajectories toward Earth are far more moderate.

    “The Euphrosynes have a gentle resonance with the orbit of Saturn that slowly moves these objects, eventually turning some of them into NEOs,” said Joseph Masiero, JPL’s lead scientist on the Euphrosynes study. “This particular gravitational resonance tends to push some of the larger fragments of the Euphrosyne family into near-Earth space.”

    By studying the Euphrosyne family asteroids with NEOWISE, JPL scientists have been able to measure their sizes and the amount of solar energy they reflect. Since NEOWISE operates in the infrared portion of the spectrum, it detects heat. Therefore, it can see dark objects far better than telescopes operating at visible wavelengths, which sense reflected sunlight. Its heat-sensing capability also allows it to measure sizes more accurately.

    The 1,400 Euphrosyne asteroids studied by Masiero and his colleagues turned out to be large and dark, with highly inclined and elliptical orbits. These traits make them good candidates for the source of some of the dark NEOs the NEOWISE telescope detects and discovers, particularly those that also have highly inclined orbits.

    NEOWISE was originally launched as an astrophysics mission in 2009 as the Wide-field Infrared Survey Explorer, or WISE. It operated until 2011 and was then shut down. But the spacecraft, now dubbed NEOWISE, would get a second life. “NEOWISE is a great tool for searching for near-Earth asteroids, particularly high-inclination, dark objects,” Masiero said.

    There are over 700,000 asteroidal bodies currently known in the main belt that range in size from large boulders to about 60 percent of the diameter of Earth’s moon, with many yet to be discovered. This makes finding the specific point of origin of most NEOs extremely difficult.

    With the Euphrosynes it’s different. “Most near-Earth objects come from a number of sources in the inner region of the main belt, and they are quickly mixed around,” Masiero said. “But with objects coming from this family, in such a unique region, we are able to draw a likely path for some of the unusual, dark NEOs we find back to the collision in which they were born.”

    A better understanding of the origins and behaviors of these mysterious objects will give researchers a clearer picture of asteroids in general, and in particular the NEOs that skirt our home planet’s neighborhood. Such studies are important, and potentially critical, to the future of humanity, which is a primary reason JPL and its partners continue to relentlessly track these wanderers within our solar system. To date, U.S. assets have discovered more than 98 percent of the known NEOs.

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the NEOWISE mission for NASA’s Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    NASA’s Near-Earth Object Program at NASA Headquarters, Washington, manages and funds the search, study and monitoring of asteroids and comets whose orbits periodically bring them close to Earth. JPL manages the Near-Earth Object Office for NASA’s Science Mission Directorate in Washington.

    For more information about NEOWISE, visit:

    http://www.nasa.gov/neowise

    More information about asteroids and near-Earth objects is available at:

    http://neo.jpl.nasa.gov

    http://www.jpl.nasa.gov/asteroidwatch

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 7:47 pm on June 3, 2015 Permalink | Reply
    Tags: , , , , NASA WISE   

    From JPL: “Charting the Milky Way From the Inside Out” 

    JPL

    June 3, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    Felicia Chou
    NASA Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    1
    This artist’s concept depicts the most up-to-date information about the shape of our own Milky Way galaxy. We live around a star, our sun, located about two-thirds of the way out from the center. Image credit: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

    Imagine trying to create a map of your house while confined to only the living room. You might peek through the doors into other rooms or look for light spilling in through the windows. But, in the end, the walls and lack of visibility would largely prevent you from seeing the big picture.

    The job of mapping our own Milky Way galaxy from planet Earth, situated about two-thirds of the way out from the galaxy’s center, is similarly difficult. Clouds of dust permeate the Milky Way, blocking our view of the galaxy’s stars. Today, researchers have a suitable map of our galaxy’s spiral structure, but, like early explorers charting new territory, they continue to patiently and meticulously fill in the blanks.

    Recently, researchers have turned to a new mapping method that takes advantage of data from NASA’s Wide-field Infrared Survey Explorer, or WISE.

    NASA Wise Telescope
    WISE

    Using WISE, the research team has discovered more than 400 dust-shrouded nurseries of stars, which trace the shape of our galaxy’s spiral arms. Seven of these “embedded star clusters” are described in a new study published online May 20 in the Monthly Notices of the Royal Astronomical Society.

    “The sun’s location within the dust-obscured galactic disk is a complicating factor to observe the galactic structure,” said Denilso Camargo, lead author of the paper from the Federal University of Rio Grande do Sul in Brazil.

    The results support the four-arm model of our galaxy’s spiral structure. For the last few years, various methods of charting the Milky Way have largely led to a picture of four spiral arms. The arms are where most stars in the galaxy are born. They are stuffed with gas and dust, the ingredients of stars. Two of the arms, called Perseus and Scutum-Centaurus, seem to be more prominent and jam-packed with stars, while the Sagittarius and Outer arms have as much gas as the other two arms but not as many stars.

    The new WISE study finds embedded star clusters in the Perseus, Sagittarius, and Outer arms. Data from the Two Micron All Sky Survey (2MASS), a ground-based predecessor of WISE from NASA, the National Science Foundation and the University of Massachusetts, Amherst, helped narrow down the distances to the clusters and pinpoint their location.

    2MASS Telescope
    2MASS telescope interior
    2MASS

    Embedded star clusters are a powerful tool for visualizing the whereabouts of spiral arms because the clusters are young, and their stars haven’t yet drifted away and out of the arms. Stars begin their lives in the dense, gas-rich neighborhoods of spiral arms, but they migrate away over time. These embedded star clusters complement other techniques for mapping our galaxy, such as those used by radio telescopes, which detect the dense gas clouds in spiral arms.

    NRAO GBT
    NRAO Greenbank Radio Telescope

    “Spiral arms are like traffic jams in that the gas and stars crowd together and move more slowly in the arms. As material passes through the dense spiral arms, it is compressed and this triggers more star formation,” said Camargo.

    WISE is ideal for finding the embedded star clusters because its infrared vision can cut through the dust that fills the galaxy and shrouds the clusters. What’s more, WISE scanned the whole sky, so it was able to perform a thorough survey of the shape of our Milky Way. NASA’s Spitzer Space Telescope also uses infrared images to map the Milky Way’s territory.

    NASA Spitzer Telescope
    Spitzer

    Spitzer looks along specific lines of sight and counts stars. The spiral arms will have the densest star populations.

    NASA’s Jet Propulsion Laboratory in Pasadena, California managed and operated WISE for NASA’s Science Mission Directorate in Washington. The spacecraft was put into hibernation mode in 2011, after it scanned the entire sky twice, thereby completing its main objectives. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA’s efforts to identify potentially hazardous near-Earth objects.

    Other authors of the study are: Charles Bonatto and Eduardo Bica, also with the Federal University of Rio Grande do Sul.

    For more information on WISE, visit:

    http://www.nasa.gov/wise

    Previous research from Camargo’s team found two embedded clusters far outside the plane of our Milky Way, 16,000 light-years away. A feature story about that work is online at:

    http://www.jpl.nasa.gov/news/news.php?feature=4497

    The new WISE study from the Monthly Notices of the Royal Astronomical Society is online at:

    http://mnras.oxfordjournals.org/content/450/4/4150.full?keytype=ref&ijkey=tjeJAezGAmgdXzc

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 4:29 pm on May 21, 2015 Permalink | Reply
    Tags: , , NASA WISE   

    From NASA WISE: “NASA’s WISE Spacecraft Discovers Most Luminous Galaxy in Universe” 

    WISE

    May 21, 2015

    Felicia Chou
    Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    Whitney Clavin
    |Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1

    A remote galaxy shining with the light of more than 300 trillion suns has been discovered using data from NASA’s Wide-field Infrared Survey Explorer (WISE). The galaxy is the most luminous galaxy found to date and belongs to a new class of objects recently discovered by WISE — extremely luminous infrared galaxies, or ELIRGs.

    “We are looking at a very intense phase of galaxy evolution,” said Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, lead author of a new report appearing in the May 22 issue of The Astrophysical Journal. “This dazzling light may be from the main growth spurt of the galaxy’s black hole.”

    The brilliant galaxy, known as WISE J224607.57-052635.0, may have a behemoth black hole at its belly, gorging itself on gas. Supermassive black holes draw gas and matter into a disk around them, heating the disk to roaring temperatures of millions of degrees and blasting out high-energy, visible, ultraviolet, and X-ray light. The light is blocked by surrounding cocoons of dust. As the dust heats up, it radiates infrared light.

    Immense black holes are common at the cores of galaxies, but finding one this big so “far back” in the cosmos is rare. Because light from the galaxy hosting the black hole has traveled 12.5 billion years to reach us, astronomers are seeing the object as it was in the distant past. The black hole was already billions of times the mass of our sun when our universe was only a tenth of its present age of 13.8 billion years.

    The new study outlines three reasons why the black holes in the ELIRGs could have grown so massive. First, they may have been born big. In other words, the “seeds,” or embryonic black holes, might be bigger than thought possible.

    “How do you get an elephant?” asked Peter Eisenhardt, project scientist for WISE at JPL and a co-author on the paper. “One way is start with a baby elephant.”

    The other two explanations involve either breaking or bending the theoretical limit of black hole feeding, called the Eddington limit. When a black hole feeds, gas falls in and heats up, blasting out light. The pressure of the light actually pushes the gas away, creating a limit to how fast the black hole can continuously scarf down matter. If a black hole broke this limit, it could theoretically balloon in size at a breakneck pace. Black holes have previously been observed breaking this limit; however, the black hole in the study would have had to repeatedly break the limit to grow this large.

    Alternatively, the black holes might just be bending this limit.

    “Another way for a black hole to grow this big is for it to have gone on a sustained binge, consuming food faster than typically thought possible,” said Tsai. “This can happen if the black hole isn’t spinning that fast.”

    If a black hole spins slowly enough, it won’t repel its meal as much. In the end, a slow-spinning black hole can gobble up more matter than a fast spinner.

    “The massive black holes in ELIRGs could be gorging themselves on more matter for a longer period of time,” said Andrew Blain of University of Leicester in the United Kingdom, a co-author of this report. “It’s like winning a hot-dog-eating contest lasting hundreds of millions of years.”

    More research is needed to solve this puzzle of these dazzlingly luminous galaxies. The team has plans to better determine the masses of the central black holes. Knowing these objects’ true hefts will help reveal their history, as well as that of other galaxies, in this very crucial and frenzied chapter of our cosmos.

    WISE has been finding more of these oddball galaxies in infrared images of the entire sky captured in 2010. By viewing the whole sky with more sensitivity than ever before, WISE has been able to catch rare cosmic specimens that might have been missed otherwise.

    The new study reports a total of 20 new ELIRGs, including the most luminous galaxy found to date. These galaxies were not found earlier because of their distance, and because dust converts their powerful visible light into an incredible outpouring of infrared light.

    “We found in a related study with WISE that as many as half of the most luminous galaxies only show up well in infrared light,” said Tsai.

    The technical paper is online at:

    http://arxiv.org/abs/1410.1751

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.

     
  • richardmitnick 4:06 pm on March 10, 2015 Permalink | Reply
    Tags: , , NASA WISE,   

    From S&T: “New Stars On Strange Orbits in Milky Way” 

    SKY&Telescope bloc

    Sky & Telescope

    March 5, 2015
    Monica Young

    1
    The view from newborn stars found far above the Milky Way’s plane would have a (heavily obscured) view of the galactic disk.
    NASA / JPL-Caltech

    Astronomers have found two just-born star clusters, part of our galaxy’s stellar disk, that float an incredible 16,000 light-years above the plane of the Milky Way.

    Two clusters of stars, still embedded in their natal clouds of dust and gas, are floating 16,000 light-years above the pancake-shaped disk of the Milky Way.

    Denilso Camargo (Colegio Militar de Porto Alegre, Brazil) and colleagues reported the surprising find, part of a larger study of embedded star clusters in Wide-field Infrared Survey Explorer (WISE) data, in the February 26th Monthly Notices of the Royal Astronomical Society.

    NASA Wise Telescope
    WISE

    The Milky Way is a paper-thin spiral galaxy, with 85% of its stars in a disk about 100,000 light-years across and only 3,000 light-years tall. A thicker and sparser disk of older stars extends up to 16,000 light-years above the galactic plane. The two disks appear to contain distinct stellar populations — the thick disk likely forged stars at an earlier stage of the Milky Way’s formation.

    So the discovery of new stars so far above the galactic plane, firmly in thick disk territory, is unexpected to say the least. No other such high-altitude star clusters have ever been found, even though violent supernova explosions have ejected plenty of molecular hydrogen clouds high above the galaxy’s plane, any of which could potentially form stars given the right trigger.

    The star clusters themselves are only about 2 million years old. Their age, distance, and mass come from models that Camargo’s team fit to the color and brightness measurements of their stellar populations.

    At an altitude of 16,000 light-years, the 33 and 42 stars belonging to clusters Camargo 438 and Camargo 439, respectively, have an exceptional (if heavily obscured) outsider’s view of the Milky Way’s spiral design. But they won’t for long, astronomically speaking. The authors calculated the velocity of the cloud containing the young and still-forming stars, and they find that the cloud has crossed paths with the disk before, sometime between 45 and 50 million years ago, an event that likely caused the clouds to condense and form stars. The clusters will cross paths with the disk again in another 50 million years or so.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sky & Telescope magazine, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 5:04 am on February 28, 2015 Permalink | Reply
    Tags: , , NASA WISE   

    from NASA Wise: “Living on the Edge: Stars Found Far from Galaxy Center” 

    WISE

    February 27, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    Like early explorers mapping the continents of our globe, astronomers are busy charting the spiral structure of our galaxy, the Milky Way. Using infrared images from NASA’s Spitzer Space Telescope, scientists have discovered that the Milky Way’s elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars.

    NASA Spitzer Telescope
    Spitzer

    Previously, our galaxy was thought to possess four major arms. This artist’s concept illustrates the new view of the Milky Way, along with other findings presented at the 212th American Astronomical Society meeting in St. Louis, Mo. The galaxy’s two major arms (Scutum-Centaurus and Perseus) can be seen attached to the ends of a thick central bar, while the two now-demoted minor arms (Norma and Sagittarius) are less distinct and located between the major arms. The major arms consist of the highest densities of both young and old stars; the minor arms are primarily filled with gas and pockets of star-forming activity. The artist’s concept also includes a new spiral arm, called the “Far-3 kiloparsec arm,” discovered via a radio-telescope survey of gas in the Milky Way. This arm is shorter than the two major arms and lies along the bar of the galaxy. Our sun lies near a small, partial arm called the Orion Arm, or Orion Spur, located between the Sagittarius and Perseus arms. Image credit: NASA/JPL-Caltech

    Astronomers using data from NASA’s Wide-field Infrared Survey Explorer, or WISE, have found a cluster of stars forming at the very edge of our Milky Way galaxy.

    “A stellar nursery in what seems to be the middle of nowhere is quite surprising,” said Peter Eisenhardt, the project scientist for the WISE mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “But surprises turn up when you look everywhere, as the WISE survey did.”

    The discovery, led by Denilso Camargo of the Federal University of Rio Grande do Sul in Porto Alegre, Brazil, appears in a new study in the journal Monthly Notices of the Royal Astronomical Society.

    The Milky Way, the galaxy we live in, has a barred spiral shape, with arms of stars, gas and dust winding out from a central bar. Viewed from the side, the galaxy would appear relatively flat, with most of the material in a disk and the central regions.

    Using infrared survey images from WISE, the team discovered two clusters of stars thousands of light-years below the galactic disk. The stars live in dense clumps of gas called giant molecular clouds.

    This is the first time astronomers have found stars being born in such a remote location. Clouds of star-forming material at very high latitudes away
 from the galactic plane are rare and, in general, are not expected to form stars.

    “Our work shows that the space around the galaxy is a lot less empty that we thought,” said Camargo. “The new clusters of stars are truly exotic. In a few million years, any inhabitants of planets around the stars will have a grand view of the outside of the Milky Way, something no human being will probably ever experience.”

    To learn more about the discovery, and what might have caused the stars to form at the edge of our galaxy, read the Royal Astronomical Society news release at:

    http://bit.ly/1ASpUYK

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.

     
  • richardmitnick 7:28 am on February 4, 2015 Permalink | Reply
    Tags: , , NASA WISE   

    From NASA/Wise: “Echoes of a Stellar Ending” 

    WISE

    1

    Over 11,000 years ago, a massive, supergiant star came to the end of its life. The star’s core collapsed to form an incredibly dense ball of neutrons, and its exterior was blasted away in an immense release of energy astronomers call a supernova.

    The light from this supernova first reached Earth from the direction of the constellation Cassiopeia around 1667 A.D. If anyone alive at the time saw it, they left no records. It is likely that large amounts of dust between the dying star and Earth dimmed the brightness of the explosion to the point that it was barely, if at all, visible to the unaided eye.

    The remnant of this supernova was discovered in 1947 from its powerful radio emission. Listed as Cassiopia A, it is one of the brightest radio sources in the whole sky. More recently, the Wide-field Infrared Survey Explorer (WISE), detected infrared echoes of the flash of light rippling outwards from the supernova.

    In the image, the central bright cloud of dust is the blast wave moving through interstellar space heating up dust as it goes. The blast wave travels fast – at about six percent the speed of light. By the time WISE took this image, the blast wave has expanded out to about a distance of 21 light-years from the original explosion. The flash of light from the explosion, traveling at the speed of light, has covered well over 300 light-years. The orange-colored echoes further out from the central remnant are from interstellar dust that was heated by the supernova flash centuries after the original explosion.

    The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted predominantly from stars at wavelengths of 3.4 and 4.6 microns. Green and red represent light mostly emitted by dust at 12 and 22 microns, respectively.

    See the full article here.

    Another view:

    1
    A false color image of Cassiopeia A (Cas A) using observations from both the Hubble and Spitzer telescopes as well as the Chandra X-ray Observatory (cropped).
    Date 2005/06/09
    Author Oliver Krause (Steward Observatory) George H. Rieke (Steward Observatory) Stephan M. Birkmann (Max-Planck-Institut fur Astronomie) Emeric Le Floc’h (Steward Observatory) Karl D. Gordon (Steward Observatory) Eiichi Egami (Steward Observatory) John Bieging (Steward Observatory) John P. Hughes (Rutgers University) Erick Young (Steward Observatory) Joannah L. Hinz (Steward Observatory) Sascha P. Quanz (Max-Planck-Institut fur Astronomie) Dean C. Hines (Space Science Institute)

    NASA Hubble Telescope
    Hubble

    NASA Spitzer Telescope
    Spitzer

    NASA Chandra Telescope
    Chandra

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.

     
  • richardmitnick 10:00 am on October 26, 2014 Permalink | Reply
    Tags: , , , , , , NASA WISE,   

    From Science Daily: “Illusions in the cosmic clouds: New image of spinning neutron star” 

    ScienceDaily Icon

    Science Daily

    October 24, 2014
    Source: NASA/Jet Propulsion Laboratory

    Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

    When an image from NASA’s Chandra X-ray Observatory of PSR B1509-58 — a spinning neutron star surrounded by a cloud of energetic particles –was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

    visions
    Do you see any recognizable shapes in this nebulous region captured by NASA’s WISE and Chandra missions?
    Credit: NASA/CXC/SAO: X-ray; NASA/JPL-Caltech: Infrared

    NASA Chandra Telescope
    NASA/Chandra

    In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASA’s Wide-field Infrared Survey Explorer (WISE) telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISE’s infrared data. What do you see?

    NASA Wise Telescope
    NASA/Wise

    NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

    NASA NuSTAR
    NASA/ NuSTAR

    PSR B1509-58 is about 17,000 light-years from Earth.

    JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and http://www.jpl.nasa.gov/wise.

    See the full article here.

    ScienceDaily is one of the Internet’s most popular science news web sites. Since starting in 1995, the award-winning site has earned the loyalty of students, researchers, healthcare professionals, government agencies, educators and the general public around the world. Now with more than 3 million monthly visitors, ScienceDaily generates nearly 15 million page views a month and is steadily growing in its global audience.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 537 other followers

%d bloggers like this: