Tagged: NASA WISE Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:06 pm on March 10, 2015 Permalink | Reply
    Tags: , , NASA WISE,   

    From S&T: “New Stars On Strange Orbits in Milky Way” 

    SKY&Telescope bloc

    Sky & Telescope

    March 5, 2015
    Monica Young

    1
    The view from newborn stars found far above the Milky Way’s plane would have a (heavily obscured) view of the galactic disk.
    NASA / JPL-Caltech

    Astronomers have found two just-born star clusters, part of our galaxy’s stellar disk, that float an incredible 16,000 light-years above the plane of the Milky Way.

    Two clusters of stars, still embedded in their natal clouds of dust and gas, are floating 16,000 light-years above the pancake-shaped disk of the Milky Way.

    Denilso Camargo (Colegio Militar de Porto Alegre, Brazil) and colleagues reported the surprising find, part of a larger study of embedded star clusters in Wide-field Infrared Survey Explorer (WISE) data, in the February 26th Monthly Notices of the Royal Astronomical Society.

    NASA Wise Telescope
    WISE

    The Milky Way is a paper-thin spiral galaxy, with 85% of its stars in a disk about 100,000 light-years across and only 3,000 light-years tall. A thicker and sparser disk of older stars extends up to 16,000 light-years above the galactic plane. The two disks appear to contain distinct stellar populations — the thick disk likely forged stars at an earlier stage of the Milky Way’s formation.

    So the discovery of new stars so far above the galactic plane, firmly in thick disk territory, is unexpected to say the least. No other such high-altitude star clusters have ever been found, even though violent supernova explosions have ejected plenty of molecular hydrogen clouds high above the galaxy’s plane, any of which could potentially form stars given the right trigger.

    The star clusters themselves are only about 2 million years old. Their age, distance, and mass come from models that Camargo’s team fit to the color and brightness measurements of their stellar populations.

    At an altitude of 16,000 light-years, the 33 and 42 stars belonging to clusters Camargo 438 and Camargo 439, respectively, have an exceptional (if heavily obscured) outsider’s view of the Milky Way’s spiral design. But they won’t for long, astronomically speaking. The authors calculated the velocity of the cloud containing the young and still-forming stars, and they find that the cloud has crossed paths with the disk before, sometime between 45 and 50 million years ago, an event that likely caused the clouds to condense and form stars. The clusters will cross paths with the disk again in another 50 million years or so.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sky & Telescope magazine, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 5:04 am on February 28, 2015 Permalink | Reply
    Tags: , , NASA WISE   

    from NASA Wise: “Living on the Edge: Stars Found Far from Galaxy Center” 

    WISE

    February 27, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    Like early explorers mapping the continents of our globe, astronomers are busy charting the spiral structure of our galaxy, the Milky Way. Using infrared images from NASA’s Spitzer Space Telescope, scientists have discovered that the Milky Way’s elegant spiral structure is dominated by just two arms wrapping off the ends of a central bar of stars.

    NASA Spitzer Telescope
    Spitzer

    Previously, our galaxy was thought to possess four major arms. This artist’s concept illustrates the new view of the Milky Way, along with other findings presented at the 212th American Astronomical Society meeting in St. Louis, Mo. The galaxy’s two major arms (Scutum-Centaurus and Perseus) can be seen attached to the ends of a thick central bar, while the two now-demoted minor arms (Norma and Sagittarius) are less distinct and located between the major arms. The major arms consist of the highest densities of both young and old stars; the minor arms are primarily filled with gas and pockets of star-forming activity. The artist’s concept also includes a new spiral arm, called the “Far-3 kiloparsec arm,” discovered via a radio-telescope survey of gas in the Milky Way. This arm is shorter than the two major arms and lies along the bar of the galaxy. Our sun lies near a small, partial arm called the Orion Arm, or Orion Spur, located between the Sagittarius and Perseus arms. Image credit: NASA/JPL-Caltech

    Astronomers using data from NASA’s Wide-field Infrared Survey Explorer, or WISE, have found a cluster of stars forming at the very edge of our Milky Way galaxy.

    “A stellar nursery in what seems to be the middle of nowhere is quite surprising,” said Peter Eisenhardt, the project scientist for the WISE mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “But surprises turn up when you look everywhere, as the WISE survey did.”

    The discovery, led by Denilso Camargo of the Federal University of Rio Grande do Sul in Porto Alegre, Brazil, appears in a new study in the journal Monthly Notices of the Royal Astronomical Society.

    The Milky Way, the galaxy we live in, has a barred spiral shape, with arms of stars, gas and dust winding out from a central bar. Viewed from the side, the galaxy would appear relatively flat, with most of the material in a disk and the central regions.

    Using infrared survey images from WISE, the team discovered two clusters of stars thousands of light-years below the galactic disk. The stars live in dense clumps of gas called giant molecular clouds.

    This is the first time astronomers have found stars being born in such a remote location. Clouds of star-forming material at very high latitudes away
 from the galactic plane are rare and, in general, are not expected to form stars.

    “Our work shows that the space around the galaxy is a lot less empty that we thought,” said Camargo. “The new clusters of stars are truly exotic. In a few million years, any inhabitants of planets around the stars will have a grand view of the outside of the Milky Way, something no human being will probably ever experience.”

    To learn more about the discovery, and what might have caused the stars to form at the edge of our galaxy, read the Royal Astronomical Society news release at:

    http://bit.ly/1ASpUYK

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.

     
  • richardmitnick 7:28 am on February 4, 2015 Permalink | Reply
    Tags: , , NASA WISE   

    From NASA/Wise: “Echoes of a Stellar Ending” 

    WISE

    1

    Over 11,000 years ago, a massive, supergiant star came to the end of its life. The star’s core collapsed to form an incredibly dense ball of neutrons, and its exterior was blasted away in an immense release of energy astronomers call a supernova.

    The light from this supernova first reached Earth from the direction of the constellation Cassiopeia around 1667 A.D. If anyone alive at the time saw it, they left no records. It is likely that large amounts of dust between the dying star and Earth dimmed the brightness of the explosion to the point that it was barely, if at all, visible to the unaided eye.

    The remnant of this supernova was discovered in 1947 from its powerful radio emission. Listed as Cassiopia A, it is one of the brightest radio sources in the whole sky. More recently, the Wide-field Infrared Survey Explorer (WISE), detected infrared echoes of the flash of light rippling outwards from the supernova.

    In the image, the central bright cloud of dust is the blast wave moving through interstellar space heating up dust as it goes. The blast wave travels fast – at about six percent the speed of light. By the time WISE took this image, the blast wave has expanded out to about a distance of 21 light-years from the original explosion. The flash of light from the explosion, traveling at the speed of light, has covered well over 300 light-years. The orange-colored echoes further out from the central remnant are from interstellar dust that was heated by the supernova flash centuries after the original explosion.

    The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted predominantly from stars at wavelengths of 3.4 and 4.6 microns. Green and red represent light mostly emitted by dust at 12 and 22 microns, respectively.

    See the full article here.

    Another view:

    1
    A false color image of Cassiopeia A (Cas A) using observations from both the Hubble and Spitzer telescopes as well as the Chandra X-ray Observatory (cropped).
    Date 2005/06/09
    Author Oliver Krause (Steward Observatory) George H. Rieke (Steward Observatory) Stephan M. Birkmann (Max-Planck-Institut fur Astronomie) Emeric Le Floc’h (Steward Observatory) Karl D. Gordon (Steward Observatory) Eiichi Egami (Steward Observatory) John Bieging (Steward Observatory) John P. Hughes (Rutgers University) Erick Young (Steward Observatory) Joannah L. Hinz (Steward Observatory) Sascha P. Quanz (Max-Planck-Institut fur Astronomie) Dean C. Hines (Space Science Institute)

    NASA Hubble Telescope
    Hubble

    NASA Spitzer Telescope
    Spitzer

    NASA Chandra Telescope
    Chandra

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.

     
  • richardmitnick 10:00 am on October 26, 2014 Permalink | Reply
    Tags: , , , , , , NASA WISE,   

    From Science Daily: “Illusions in the cosmic clouds: New image of spinning neutron star” 

    ScienceDaily Icon

    Science Daily

    October 24, 2014
    Source: NASA/Jet Propulsion Laboratory

    Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

    When an image from NASA’s Chandra X-ray Observatory of PSR B1509-58 — a spinning neutron star surrounded by a cloud of energetic particles –was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission.

    visions
    Do you see any recognizable shapes in this nebulous region captured by NASA’s WISE and Chandra missions?
    Credit: NASA/CXC/SAO: X-ray; NASA/JPL-Caltech: Infrared

    NASA Chandra Telescope
    NASA/Chandra

    In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASA’s Wide-field Infrared Survey Explorer (WISE) telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISE’s infrared data. What do you see?

    NASA Wise Telescope
    NASA/Wise

    NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

    NASA NuSTAR
    NASA/ NuSTAR

    PSR B1509-58 is about 17,000 light-years from Earth.

    JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    More information is online at http://www.nasa.gov/wise and http://wise.astro.ucla.edu and http://www.jpl.nasa.gov/wise.

    See the full article here.

    ScienceDaily is one of the Internet’s most popular science news web sites. Since starting in 1995, the award-winning site has earned the loyalty of students, researchers, healthcare professionals, government agencies, educators and the general public around the world. Now with more than 3 million monthly visitors, ScienceDaily generates nearly 15 million page views a month and is steadily growing in its global audience.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:55 pm on August 5, 2014 Permalink | Reply
    Tags: , , , , , NASA WISE   

    From Carnegie Institution for Science via Gemini Observatory: “Planet-like Object May Have Spent Its Youth as Hot as a Star” 

    NOAO

    Gemini Observatory
    Gemini Observatory

    August 5, 2014
    No Writer Credit

    Astronomers have discovered an extremely cool object that could have a particularly diverse history—although it is now as cool as a planet, it may have spent much of its youth as hot as a star.

    four
    A four-stage sequence (left to right) showing the possible extreme temperature evolution for WISE J0304-2705. For about 20 million years, the object was as hot as a star, shining with a temperature of at least 5,100 degrees Fahrenheit (2800 degrees Celsius). After about 100 million years it had cooled to about 2,700 degrees Fahrenheit (1500 degrees Celsius), and by a billion years its temperature was about 1,800 degrees Fahrenheit (1000 degrees Celsius). The final stage is billions of years later, when WISE J0304-2705 has cooled to its current planetary temperature of 100-150 C. Artwork credit: John Pinfield

    The current temperature of the object is 200 to 300 degrees Fahrenheit (100 to 150 degrees Celsius), which is intermediate between that of the Earth and of Venus. However, the object shows evidence of a possible ancient origin, implying that a large change in temperature has taken place. In the past this object would have been as hot as a star for many millions of years.

    Called WISE J0304-2705, the object is a member of the recently established “Y dwarf” class—the coolest stellar temperature class yet defined, following the other classes O, B, A, F, G, K, M, L, and T. Although the temperature is similar to that of the planets, the object is dissimilar to the rocky Earth-like planets, and instead is a giant ball of gas like Jupiter.

    The international discovery team, led by David Pinfield from the University of Hertfordshire and including Carnegie’s Yuri Beletsky, identified the Y dwarf using the WISE observatory—a NASA space telescope that has imaged the entire sky in the mid-infrared. The team also measured the spectrum of light emitted by the Y dwarf, which allowed them to determine its current temperature and better understand its history. Their work is published by Monthly Notices of the Royal Astronomical Society.

    NASA Wise Telescope
    NASA/Wise

    Only 20 other Y dwarfs have been discovered to-date, and amongst these WISE J0304-2705 is defined as “peculiar” due to unusual features in its emitted light spectrum.

    “Our measurements suggest that this Y dwarf may have a composition and/or age characteristic of one of the Galaxy’s older members,” Pinfield explained. “This would mean its temperature evolution could have been rather extreme.”

    The reason that WISE J0304-2705 undergoes such extensive evolutionary cooling is because it is “sub-stellar,” meaning its interior never gets hot enough for hydrogen fusion, the process that has kept our Sun hot for billions of years, and without an energy source maintaining a stable temperature, cooling and fading is inevitable.

    If WISE J0304-2705 is an ancient object, then its temperature evolution would have followed through an understood series of stages: During its first approximately 20 million years it would have a temperature of at least 5,100 degrees Fahrenheit (2800 degrees Celsius), the same as red dwarf stars like Proxima Centauri (the nearest star to the Sun). After 100 million years it would have cooled to about 2,700 degrees Fahrenheit (1,500 degrees Celsius), with silicate clouds condensing out in its atmosphere. At a billion years of age it would have cooled to about 1,800 degrees Fahrenheit (1,000 degrees Celsius), so cool that methane gas and water vapor would dominate its appearance. And since then it would have continued to cool to its current temperature, barely enough to boil water for a cup of tea.

    WISE J0304-2705 is as massive as 20-30 Jupiters combined, which is intermediate between the more massive stars and typical planets. But in terms of temperature it may have actually “taken the journey” from star-like to planet-like conditions.

    Having identified WISE 0304-2705, Pinfield’s team made crucial ground-based observations with some of the world’s largest telescopes—the 8-meter Gemini South Telescope, the 6.5-meter Magellan Telescope and the European Southern Observatory’s 3.6-meter New Technology Telescope, all located in the Chilean Andes.

    Gemini South telescope
    Gemini South

    Magellan 6.5 meter telescopes
    Magellan

    ESO NTT
    ESO/NTT

    Team member Mariusz Gromadzki said: “The ground based measurements were very challenging, even with the largest telescopes. It was exciting when the results showed just how cool this object was, and that it was unusual”.

    “The discovery of WISE J0304-2705, with its peculiar light spectrum, poses ongoing challenges for the most powerful modern telescopes that are being used for its detailed study” remarked Maria Teresa Ruiz, team member from the Universidad de Chile.

    WISE J0304-2705 is located in the Fornax (Furnace) constellation, belying its cool temperature.

    There is currently no lower limit for Y dwarf temperatures, and there could be many even cooler and more diverse objects un-detected in the solar neighborhood. WISE went into hibernation in February 2011 after carrying out its main survey mission. However, by popular demand it was revived in December 2013, and is continuing to observe as part of a three-year mission extension [Neowise].

    “WISE gives us wonderful sensitivity to the coolest objects” said Pinfield, “and with three more years of observations we will be able to search the sky for more Y dwarfs, and more diverse Y dwarfs.”

    The paper, to be published by Monthly Notices of the Royal Astronomical Society, is available on astro-ph

    See the full article here.

    Gemini North
    Gemini North, Hawai’i

    Gemini South
    Gemini South, Chile
    AURA Icon

    The Gemini Observatory consists of twin 8.1-meter diameter optical/infrared telescopes located on two of the best observing sites on the planet. From their locations on mountains in Hawai‘i and Chile, Gemini Observatory’s telescopes can collectively access the entire sky.
    Gemini was built and is operated by a partnership of six countries including the United States, Canada, Chile, Australia, Brazil and Argentina. Any astronomer in these countries can apply for time on Gemini, which is allocated in proportion to each partner’s financial stake.

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 4:22 pm on May 22, 2014 Permalink | Reply
    Tags: , , , , , NASA WISE   

    From NASA/WISE: “NASA’s WISE Findings Poke Hole in Black Hole ‘Doughnut’ Theory” 

    WISE

    May 22, 2014

    J.D. Harrington
    Headquarters, Washington
    202-358-5241
    j.d.harrington@nasa.gov

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    A survey of more than 170,000 supermassive black holes, using NASA’s Wide-field Infrared Survey Explorer (WISE), has astronomers reexamining a decades-old theory about the varying appearances of these interstellar objects.

    stars
    This image shows galaxies clumped together in the Fornax cluster, located 60 million light-years from Earth. The picture was taken by WISE, but has been artistically enhanced to illustrate the idea that clumped galaxies will, on average, be surrounded by larger halos of dark matter (purple).
    Image Credit: NASA/JPL-Caltech

    The unified theory of active, supermassive black holes, first developed in the late 1970s, was created to explain why black holes, though similar in nature, can look completely different. Some appear to be shrouded in dust, while others are exposed and easy to see.

    The unified model answers this question by proposing that every black hole is surrounded by a dusty, doughnut-shaped structure called a torus. Depending on how these “doughnuts” are oriented in space, the black holes will take on various appearances. For example, if the doughnut is positioned so that we see it edge-on, the black hole is hidden from view. If the doughnut is observed from above or below, face-on, the black hole is clearly visible.

    However, the new WISE results do not corroborate this theory. The researchers found evidence that something other than a doughnut structure may, in some circumstances, determine whether a black hole is visible or hidden. The team has not yet determined what this may be, but the results suggest the unified, or doughnut, model does not have all the answers.

    “Our finding revealed a new feature about active black holes we never knew before, yet the details remain a mystery,” said Lin Yan of NASA’s Infrared Processing and Analysis Center (IPAC), based at the California Institute of Technology in Pasadena. “We hope our work will inspire future studies to better understand these fascinating objects.”

    Yan is the second author of the research accepted for publication in the Astrophysical Journal. The lead author is post-doctoral researcher, Emilio Donoso, who worked with Yan at IPAC and has since moved to the Instituto de Ciencias Astronómicas, de la Tierra y del Espacio in Argentina. The research also was co-authored by Daniel Stern at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, and Roberto Assef of Universidad Diego Portales in Chile and formerly of JPL.

    Every galaxy has a massive black hole at its heart. The new study focuses on the “feeding” ones, called active, supermassive black holes, or active galactic nuclei. These black holes gorge on surrounding gas material that fuels their growth.

    With the aid of computers, scientists were able to pick out more than 170,000 active supermassive black holes from the WISE data. They then measured the clustering of the galaxies containing both hidden and exposed black holes — the degree to which the objects clump together across the sky.

    If the unified model was true, and the hidden black holes are simply blocked from view by doughnuts in the edge-on configuration, then researchers would expect them to cluster in the same way as the exposed ones. According to theory, since the doughnut structures would take on random orientations, the black holes should also be distributed randomly. It is like tossing a bunch of glazed doughnuts in the air — roughly the same percentage of doughnuts always will be positioned in the edge-on and face-on positions, regardless of whether they are tightly clumped or spread far apart.

    But WISE found something totally unexpected. The results showed the galaxies with hidden black holes are more clumped together than those of the exposed black holes. If these findings are confirmed, scientists will have to adjust the unified model and come up with new ways to explain why some black holes appear hidden.

    “The main purpose of unification was to put a zoo of different kinds of active nuclei into a single umbrella,” said Donoso. Now, that has become increasingly complex to do as we dig deeper into the WISE data.”

    Another way to understand the WISE results involves dark matter. Dark matter is an invisible substance that dominates matter in the universe, outweighing the regular matter that makes up people, planets and stars. Every galaxy sits in the center of a dark matter halo. Bigger halos have more gravity and, therefore, pull other galaxies toward them.

    Because WISE found that the obscured black holes are more clustered than the others, the researchers know those hidden black holes reside in galaxies with larger dark matter halos. Though the halos themselves would not be responsible for hiding the black holes, they could be a clue about what is occurring.

    “The unified theory was proposed to explain the complexity of what astronomers were seeing,” said Stern. “It seems that simple model may have been too simple. As Einstein said, models should be made ‘as simple as possible, but not simpler.'”

    Scientists still are actively combing public data from WISE, put into hibernation in 2011 after scanning Earth’s entire sky twice. WISE was reactivated in 2013, renamed NEOWISE, and given a new mission to identify potentially hazardous near-Earth objects.

    For more information about NEOWISE, visit:

    http://neo.jpl.nasa.gov/programs/neowise.html

    For more information about WISE, visit:

    http://www.nasa.gov/wise

    See the full article here.

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 3:49 pm on April 25, 2014 Permalink | Reply
    Tags: , , , , , NASA WISE   

    From NASA/Spitzer: “NASA’s Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun” 



    Spitzer

    NASA’s Wide-field Infrared Survey Explorer (WISE) and Spitzer Space Telescope have discovered what appears to be the coldest “brown dwarf” known — a dim, star-like body that surprisingly is as frosty as Earth’s North Pole.

    NASA Wise Telescope
    NASA/WISE

    bd
    WISE J085510.83-071442.5

    Images from the space telescopes also pinpointed the object’s distance to 7.2 light-years away, earning it the title for fourth closest system to our sun. The closest system, a trio of stars, is Alpha Centauri, at about 4 light-years away.

    ac
    Alpha Centauri

    cen
    Alpha Centauri Central

    “It’s very exciting to discover a new neighbor of our solar system that is so close,” said Kevin Luhman, an astronomer at Pennsylvania State University’s Center for Exoplanets and Habitable Worlds, University Park. “And given its extreme temperature, it should tell us a lot about the atmospheres of planets, which often have similarly cold temperatures.”

    Brown dwarfs start their lives like stars, as collapsing balls of gas, but they lack the mass to burn nuclear fuel and radiate starlight. The newfound coldest brown dwarf is named WISE J085510.83-071442.5. It has a chilly temperature between minus 54 and 9 degrees Fahrenheit (minus 48 to minus 13 degrees Celsius). Previous record holders for coldest brown dwarfs, also found by WISE and Spitzer, were about room temperature.

    WISE was able to spot the rare object because it surveyed the entire sky twice in infrared light, observing some areas up to three times. Cool objects like brown dwarfs can be invisible when viewed by visible-light telescopes, but their thermal glow — even if feeble — stands out in infrared light. In addition, the closer a body, the more it appears to move in images taken months apart. Airplanes are a good example of this effect: a closer, low-flying plane will appear to fly overhead more rapidly than a high-flying one.

    “This object appeared to move really fast in the WISE data,” said Luhman. “That told us it was something special.”

    After noticing the fast motion of WISE J085510.83-071442.5 in March of 2013, Luhman spent time analyzing additional images taken with Spitzer and the Gemini South telescope on Cerro Pachon in Chile. Spitzer’s infrared observations helped determine the frosty temperature of the brown dwarf. Combined detections from WISE and Spitzer, taken from different positions around the sun, enabled the measurement of its distance through the parallax effect. This is the same principle that explains why your finger, when held out right in front of you, appears to jump from side to side when you alternate left- and right-eye views.

    NOAO Gemini South
    Gemini South

    “It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the sun’s nearest neighbors,” said Michael Werner, the project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. JPL manages and operates Spitzer. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.”

    WISE J085510.83-071442.5 is estimated to be 3 to 10 times the mass of Jupiter. With such a low mass, it could be a gas giant similar to Jupiter that was ejected from its star system. But scientists estimate it is probably a brown dwarf rather than a planet since brown dwarfs are known to be fairly common. If so, it is one of the least massive brown dwarfs known.

    In March of 2013, Luhman’s analysis of the images from WISE uncovered a pair of much warmer brown dwarfs at a distance of 6.5 light years, making that system the third closest to the sun. His search for rapidly moving bodies also demonstrated that the outer solar system probably does not contain a large, undiscovered planet, which has been referred to as “Planet X” or “Nemesis.”

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:36 am on February 1, 2014 Permalink | Reply
    Tags: , , , , NASA WISE,   

    From NASA/WISE: “A storm of stars is brewing in the Trifid nebula…” 

    WISE

    tri
    Image Credit: NASA/JPL-Caltech/UCLA
    No Release Date

    A storm of stars is brewing in the Trifid nebula [Messier 20], located 5,400 light-years away in the constellation Sagittarius, as seen in this view from NASA’s Wide-field Infrared Survey Explorer, or WISE. The stellar nursery, where baby stars are bursting into being, is the yellow-and-orange object dominating the picture. Yellow bars in the nebula appear to cut a cavity into three sections, hence the name Trifid nebula.

    Colors in this image represent different wavelengths of infrared light detected by WISE. The main green cloud is made up of hydrogen gas. Within this cloud is the Trifid nebula, where radiation and winds from massive stars have blown a cavity into the surrounding dust and gas, and presumably triggered the birth of new generations of stars. Dust glows in infrared light, so the three lines that make up the Trifid, while appearing dark in visible-light views, are bright when seen by WISE. The blue stars scattered around the picture are older, and they lie between Earth and the Trifid nebula. The baby stars in the Trifid will eventually look similar to those foreground stars. The red cloud at upper right is gas heated by a group of very young stars.

    Another view
    trifid 2
    Courtesy of by the Hubble Space Telescope (NASA/ESA)

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 11:39 am on December 4, 2013 Permalink | Reply
    Tags: , , , , NASA WISE   

    From NASA WISE: “Massive Black Hole Duo: Possible Sighting by NASA’s WISE” 

    WISE

    December 03, 2013
    Whitney Clavin 818-354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.
    whitney.clavin@jpl.nasa.gov

    Astronomers have spotted what appear to be two supermassive black holes at the heart of a remote galaxy, circling each other like dance partners. The incredibly rare sighting was made with the help of NASA’s Wide-field Infrared Survey Explorer, or WISE.

    tbh
    Two black holes are entwined in a gravitational tango in this artist’s conception. Supermassive black holes at the hearts of galaxies are thought to form through the merging of smaller, yet still massive black holes, such as the ones depicted here. Image credit: NASA

    Follow-up observations with the Australian Telescope Compact Array near Narrabri, Australia, and the Gemini South telescope in Chile, revealed unusual features in the galaxy, including a lumpy jet thought to be the result of one black hole causing the jet of the other to sway.

    “We think the jet of one black hole is being wiggled by the other, like a dance with ribbons,” said Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., who is lead author of a paper on the findings appearing in the Dec. 10 issue of Astrophysical Journal. “If so, it is likely the two black holes are fairly close and gravitationally entwined.”

    The findings could teach astronomers more about how supermassive black holes grow by merging with each other.

    The WISE satellite scanned the entire sky twice in infrared wavelengths before being put into hibernation in 2011. NASA recently gave the spacecraft a second lease on life, waking it up to search for asteroids, in a project called NEOWISE.

    The new study took advantage of previously released all-sky WISE data. Astronomers sifted through images of millions of actively feeding supermassive black holes spread throughout our sky before an oddball, also known as WISE J233237.05-505643.5, jumped out.

    “At first we thought this galaxy’s unusual properties seen by WISE might mean it was forming new stars at a furious rate,” said Peter Eisenhardt, WISE project manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., and a co-author of the study. “But on closer inspection, it looks more like the death spiral of merging giant black holes.”

    Almost every large galaxy is thought to harbor a supermassive black hole filled with the equivalent in mass of up to billions of suns. How did the black holes grow so large? One way is by swallowing ambient materials. Another way is through galactic cannibalism. When galaxies collide, their massive black holes sink to the center of the new structure, becoming locked in a gravitational tango. Eventually, they merge into one even-more-massive black hole.

    The dance of these black hole duos starts out slowly, with the objects circling each other at a distance of about a few thousand light-years. So far, only a few handfuls of supermassive black holes have been conclusively identified in this early phase of merging. As the black holes continue to spiral in toward each other, they get closer, separated by just a few light-years.

    It is these close-knit black holes, also called black hole binaries, that have been the hardest to find. The objects are usually too small to be resolved even by powerful telescopes. Only a few strong candidates have been identified to date, all relatively nearby. The new WISE J233237.05-505643.5 is a new candidate, and located much farther away, at 3.8 billion light-years from Earth.

    Radio images with the Australian Telescope Compact Array were key to identifying the dual nature of WISE J233237.05-505643.5. Supermassive black holes at the cores of galaxies typically shoot out pencil-straight jets, but, in this case, the jet showed a zigzag pattern. According to the scientists, a second massive black hole could, in essence, be pushing its weight around to change the shape of the other black hole’s jet.

    Visible-light spectral data from the Gemini South telescope in Chile showed similar signs of abnormalities, thought to be the result of one black hole causing disk material surrounding the other black hole to clump. Together, these and other signs point to what is probably a fairly close-knit set of circling black holes, though the scientists can’t say for sure how much distance separates them.

    “We note some caution in interpreting this mysterious system,” said Daniel Stern of JPL, a co-author of the study. “There are several extremely unusual properties to this system, from the multiple radio jets to the Gemini data, which indicate a highly perturbed disk of accreting material around the black hole, or holes. Two merging black holes, which should be a common event in the universe, would appear to be simplest explanation to explain all the current observations.”

    The final stage of merging black holes is predicted to send gravitational waves rippling through space and time. Researchers are actively searching for these waves using arrays of dead stars called pulsars in hopes of learning more about the veiled black hole dancers.

    See the full article here.

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 8:50 am on November 16, 2013 Permalink | Reply
    Tags: , , , , NASA WISE   

    From NASA/WISE: “WISE Catalog Just Got Wiser” 

    WISE

    November 14, 2013
    Whitney Clavin (818) 354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.
    whitney.clavin@jpl.nasa.gov

    NASA’s WISE mission has released a new and improved atlas and catalog brimming with data on three-quarters of a billion objects detected during two full scans of the sky.

    wise
    The new AllWISE catalog will bring distant galaxies that were once invisible out of hiding, as illustrated in this image.

    WISE, which stands for Wide-field Infrared Survey Explorer, scanned the entire sky in infrared light in 2010, snapping a dozen pictures of every star and galaxy. By October of that year, the spacecraft ran out of the coolant needed to chill some of its heat-seeking detectors. NASA then decided to fund a second scan of the sky to look for asteroids and comets, in a project called NEOWISE.

    But the images from that second sky scan were designed to catch moving asteroids, not stars and galaxies. Now NASA has funded a project called AllWISE to stack up all the WISE images, including those from the second sky scan, thereby doubling exposure times and making new stars and galaxies visible.

    “By stacking up the data, we have created a monster database with dozens of individual measurements on every one of the infrared sources we detect,” said Ned Wright of UCLA, the principal investigator of WISE.

    One new feature of the enhanced WISE images is the ability to search for nearby stars, especially cooler ones that only show up in infrared light. Objects that are closer to us will appear to move across the sky over time in relation to background stars. This is the same reason why the planets march across our night skies while the stars seem to stay still. With the new atlas, astronomers can look at images of the sky taken six months apart; if something jumps across the images, then it must be located nearby and could be a never-before-seen neighbor.

    The new catalog will also help with studies of distant galaxies, bringing those that were invisible to us before out of hiding.

    “The extra depth of AllWISE lets us see galaxies so distant that their light was emitted in the first half of the history of the universe,” said Peter Eisenhardt, the WISE project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.

    See the full article here.

    NASA’s Jet Propulsion Laboratory, Pasadena, Calif., manages the Wide-field Infrared Survey Explorer for NASA’s Science Mission Directorate, Washington. The mission’s principal investigator, Edward L. (Ned) Wright, is at UCLA. The mission was competitively selected in 2002 under NASA’s Explorers Program managed by the Goddard Space Flight Center, Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory, Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp, Boulder, Colo. Science operations and data processing will take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    The mission’s education and public outreach office is based at the University of California, Berkeley.


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 425 other followers

%d bloggers like this: