Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:47 am on April 17, 2016 Permalink | Reply
    Tags: 2MASS, , , , NASA Spitzer   

    From JPL-Caltech: “A Space Spider Watches Over Young Stars” 

    NASA JPL Banner

    JPL-Caltech

    1

    The spider part of The Spider and the Fly” nebulae, IC 417 abounds in star formation, as seen in this infrared image from NASA’s Spitzer Space Telescope and the Two Micron All Sky Survey (2MASS).

    NASA/Spitzer Telescope
    NASA/Spitzer Telescope

    Caltech 2MASS Telescope
    Caltech 2MASS telescope interior
    Caltech 2MASS Telescope

    Located in the constellation Auriga, IC 417 lies about 10,000 light-years away. It is in the outer part of the Milky Way, almost exactly in the opposite direction from the galactic center. This region was chosen as the subject of a research project by a group of students, teachers and scientists as part of the NASA/IPAC Teacher Archive Research Program (NITARP) in 2015.

    A cluster of young stars called “Stock 8” can be seen at center right. The light from this cluster carves out a bowl in the nearby dust clouds, seen here as green fluff. Along the sinuous tail in the center and to the left, groupings of red point sources are also young stars.

    In this image, infrared wavelengths, which are invisible to the unaided eye, have been assigned visible colors. Light with a wavelength of 1.2 microns, detected by Caltech 2MASS Telescope, is shown in blue. The Spitzer wavelengths of 3.6 and 4.5 microns are green and red, respectively.

    Spitzer data used to create this image were obtained during the space telescope’s “warm mission” phase, following its depletion of coolant in mid-2009. Due to its design, Spitzer remains cold enough to operate efficiently at two channels of infrared light. It is now in its 12th year of operation since launch.

    The 2MASS mission was a joint effort between the California Institute of Technology, Pasadena; the University of Massachusetts, Amherst; and NASA’s Jet Propulsion Laboratory, Pasadena, California.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    NASA image

     
  • richardmitnick 3:03 pm on March 30, 2016 Permalink | Reply
    Tags: , , exoplanet 55 Cancri e, NASA Spitzer   

    From Spitzer: “NASA’s Spitzer Maps Climate Patterns on a Super-Earth” 

    NASA Spitzer Telescope

    Spitzer

    March 30, 2016
    Felicia Chou
    Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    The varying brightness of an exoplanet called 55 Cancri e is shown in this plot of infrared data captured by NASA’s Spitzer Space Telescope.
    Credits: NASA/JPL-Caltech/University of Cambridge

    Observations from NASA’s Spitzer Space Telescope have led to the first temperature map of a super-Earth planet — a rocky planet nearly two times as big as ours. The map reveals extreme temperature swings from one side of the planet to the other, and hints that a possible reason for this is the presence of lava flows.

    2
    This animated illustration shows one possible scenario for the rocky exoplanet 55 Cancri e, nearly two times the size of Earth. New Spitzer data show that one side of the planet is much hotter than the other – which could be explained by a possible presence of lava pools. Credits: NASA/JPL-Caltech

    “Our view of this planet keeps evolving,” said Brice Olivier Demory of the University of Cambridge, England, lead author of a new report appearing in the March 30 issue of the journal Nature. “The latest findings tell us the planet has hot nights and significantly hotter days. This indicates the planet inefficiently transports heat around the planet. We propose this could be explained by an atmosphere that would exist only on the day side of the planet, or by lava flows at the planet surface.”

    The toasty super-Earth 55 Cancri e is relatively close to Earth at 40 light-years away. It orbits very close to its star, whipping around it every 18 hours. Because of the planet’s proximity to the star, it is tidally locked by gravity just as our moon is to Earth. That means one side of 55 Cancri, referred to as the day side, is always cooking under the intense heat of its star, while the night side remains in the dark and is much cooler.

    “Spitzer observed the phases of 55 Cancri e, similar to the phases of the moon as seen from the Earth. We were able to observe the first, last quarters, new and full phases of this small exoplanet,” said Demory. “In return, these observations helped us build a map of the planet. This map informs us which regions are hot on the planet.”

    Spitzer stared at the planet with its infrared vision for a total of 80 hours, watching it orbit all the way around its star multiple times. These data allowed scientists to map temperature changes across the entire planet. To their surprise, they found a dramatic temperature difference of 2,340 degrees Fahrenheit (1,300 Kelvin) from one side of the planet to the other. The hottest side is nearly 4,400 degrees Fahrenheit (2,700 Kelvin), and the coolest is 2,060 degrees Fahrenheit (1,400 Kelvin).

    The fact Spitzer found the night side to be significantly colder than the day side means heat is not being distributed around the planet very well. The data argues against the notion that a thick atmosphere and winds are moving heat around the planet as previously thought. Instead, the findings suggest a planet devoid of a massive atmosphere, and possibly hint at a lava world where the lava would become hardened on the night side and unable to transport heat.

    “The day side could possibly have rivers of lava and big pools of extremely hot magma, but we think the night side would have solidified lava flows like those found in Hawaii,” said Michael Gillon, University of Liège, Belgium.

    The Spitzer data also revealed the hottest spot on the planet has shifted over a bit from where it was expected to be: directly under the blazing star. This shift either indicates some degree of heat recirculation confined to the day side, or points to surface features with extremely high temperatures, such as lava flows.

    Additional observations, including from NASA’s upcoming James Webb Space Telescope, will help to confirm the true nature of 55 Cancri e.

    NASA/ESA/CSA Webb telescope annotated
    NASA/ESA/CSA Webb telescope annotated

    The new Spitzer observations of 55 Cancri are more detailed thanks to the telescope’s increased sensitivity to exoplanets. Over the past several years, scientists and engineers have figured out new ways to enhance Spitzer’s ability to measure changes in the brightness of exoplanet systems. One method involves precisely characterizing Spitzer’s detectors, specifically measuring “the sweet spot” — a single pixel on the detector — which was determined to be optimal for exoplanet studies.

    “By understanding the characteristics of the instrument — and using novel calibration techniques of a small region of a single pixel — we are attempting to eke out every bit of science possible from a detector that was not designed for this type of high-precision observation,” said Jessica Krick of NASA’s Spitzer Space Science Center, at the California Institute of Technology in Pasadena.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

     
  • richardmitnick 4:12 pm on January 7, 2016 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From Hubble: “NASA’s Great Observatories Weigh Massive Young Galaxy Cluster” 

    NASA Hubble Telescope

    Hubble

    January 7, 2016
    CONTACT

    Megan Watzke
    Chandra X-ray Center, Cambridge, Massachusetts
    617-496-7998
    mwatzke@cfa.harvard.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    Mark Brodwin
    University of Missouri, Kansas City, Missouri
    brodwinm@umkc.edu

    Temp 1
    Hubble, Chandra, Spitzer Composite of Massive Galaxy Cluster IDCS J1426.5+3508

    Temp 2
    HST Image of Massive Galaxy Cluster IDCS J1426.5+3508

    Temp 3
    Compass and Scale Image of Massive Galaxy Cluster IDCS J1426.5+3508

    Astronomers have used data from three of NASA’s Great Observatories to make the most detailed study yet of an extremely massive young galaxy cluster. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how these megastructures formed and evolved early in the universe.

    The galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), is so far away that the light detected is from when the universe was roughly a quarter of its current age. It is the most massive galaxy cluster detected at such an early age.

    First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance.

    NASA Spitzer Telescope
    NASA/Spitzer

    Keck Observatory
    Keck Observatory Interior
    Keck Observatory

    Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive.

    Caltech Combined Array for Millimeter Astronomy
    Caltech/Combined Array for Millimeter-wave Astronomy

    New data from the Chandra X-ray Observatory confirm the galaxy cluster mass and show that about 90 percent of the mass of the cluster is in the form of dark matter, a mysterious substance detected so far only through its gravitational pull on normal matter composed of atoms.

    NASA Chandra Telescope
    NASA/Chandra

    “We are really pushing the boundaries with this discovery,” said Mark Brodwin of the University of Missouri at Kansas City, who led the study. “As one of the earliest massive structures to form in the universe, this cluster sets a high bar for theories that attempt to explain how clusters and galaxies evolve.”

    Galaxy clusters are the largest objects in the universe bound together by gravity. Because of their sheer size, scientists think it should take several billion years for them to form. The distance of IDCS J1426 means astronomers are observing it when the universe was only 3.8 billion years old, implying that the cluster is seen at a very young age.

    The data from Chandra reveal a bright knot of X-rays near the middle of the cluster, but not exactly at its center. This overdense core has been dislodged from the cluster center, possibly by a merger with another developing cluster 500 million years prior. Such a merger would cause the X-ray-emitting, hot gas to slosh around like wine in a glass that is tipped from side to side.

    “Mergers with other groups and clusters of galaxies should have been more common so early in the history of the universe,” said co-author Michael McDonald of the Massachusetts Institute of Technology in Cambridge, Massachusetts. “That appears to have played an important part in this young cluster’s rapid formation.”

    Aside from this cool core, the hot gas in the rest of the cluster is very smooth and symmetric. This is another indication that IDCS 1426 formed very rapidly. In addition, astronomers found possible evidence that the abundance of elements heavier than hydrogen and helium in the hot gas is unusually low. This suggests that this galaxy cluster might still be in the process of enriching its hot gas with these elements as supernovae create heavier elements and blast them out of individual galaxies.

    “The presence of this massive galaxy cluster in the early universe doesn’t upset our current understanding of cosmology,” said co-author of Anthony Gonzalez of the University of Florida in Gainesville, Florida. “It does, however, give us more information to work with as we refine our models.”

    Evidence for other massive galaxy clusters at early times has been found, but none of these matches IDCS 1426, with its combination of mass and youth. The mass determination used three independent methods: a measurement of the mass needed to confine the hot X-ray-emitting gas to the cluster, the imprint of the cluster’s gaseous mass on the cosmic microwave background radiation [CMB], and the observed distortions in the shapes of galaxies behind the cluster, which are caused by the bending of light from the galaxies by the gravity of the cluster.

    CMB Planck ESA
    CMB per ESA/Planck

    ESA Planck
    ESA/Planck

    These results were presented at the 227th American Astronomical Society meeting being held in Kissimmee, Florida. A paper describing these results has been accepted for publication in The Astrophysical Journal and is available online. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations. The Spitzer Space Telescope is managed by NASA’s Jet Propulsion Laboratory in Pasadena, California. The Spitzer Science Center at the California Institute of Technology in Pasadena conducts science operations. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

    Data Description:

    The HST data were taken from the following proposals: 11663 : M. Brodwin (University of Missouri, Kansas City), P. Eisenhardt (JPL), A. Stanford (UC Davis/LLNL), D. Stern (JPL), L. Moustakas (JPL), A. Dey (NOAO), B. Jannuzi (University of Arizona/NOAO), and A. Gonzalez (University of Florida, Gainesville);

    12203: A. Stanford (UC Davis/LLNL), M. Brodwin (University of Missouri, Kansas City), A. Gonzalez (University of Florida, Gainesville), A. Dey (NOAO), D. Stern (JPL), G. Zeimann (Penn State University), and P. Eisenhardt and L. Moustakas (JPL);

    and 12994: A. Gonzalez (University of Florida, Gainesville), M. Brodwin (University of Missouri, Kansas City), A. Stanford (UC Davis/LLNL), J. Rhodes and D. Stern (JPL), P. Eisenhardt (JPL), C. Fedeli (University of Florida), G. Zeimann (Penn State University), A. Dey (NOAO), and D. Marrone (University of Arizona).

    The science team includes M. Brodwin (University of Missouri, Kansas City), M. McDonald (MIT), A. Gonzalez (University of Florida, Gainesville), A. Stanford (UC Davis/LLNL), P. Eisenhardt and D. Stern (JPL), and G. Zeimann (Penn State University).
    Instruments/Filters:
    ACS/WFC F606W (V)
    ACS//WFC F814W(I)
    WFC3/IR F160W (H)

    NASA Hubble ACS
    ACS

    NASA Hubble WFC3
    WFC3

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 4:28 pm on January 5, 2016 Permalink | Reply
    Tags: , , , NASA Spitzer, , Runaway Stars Leave Infrared Waves in Space   

    From JPL-Caltech: “Runaway Stars Leave Infrared Waves in Space” 

    JPL-Caltech

    January 5, 2016
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    Bow shocks thought to mark the paths of massive, speeding stars are highlighted in these images from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE.
    Cosmic bow shocks occur when massive stars zip through space, pushing material ahead of them in the same way that water piles up in front of a race boat. The stars also produce high-speed winds that smack into this compressed material. The end result is pile-up of heated material that glows in infrared light. In these images, infrared light has been assigned the colored red.
    Green shows wispy dust in the region and blue shows stars.
    The two images at left are from Spitzer, and the one on the right is from WISE.
    The speeding stars thought to be creating the bow shocks can be seen at the center of each arc-shaped feature. The image at right actually consists of two bow shocks and two speeding stars. All the speeding stars are massive, ranging from about 8 to 30 times the mass of our sun.

    Astronomers are finding dozens of the fastest stars in our galaxy with the help of images from NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer, or WISE.

    NASA Spitzer Telescope
    Spitzer

    NASA Wise Telescope
    WISE

    When some speedy, massive stars plow through space, they can cause material to stack up in front of them in the same way that water piles up ahead of a ship. Called bow shocks, these dramatic, arc-shaped features in space are leading researchers to uncover massive, so-called runaway stars.

    “Some stars get the boot when their companion star explodes in a supernova, and others can get kicked out of crowded star clusters,” said astronomer William Chick from the University of Wyoming in Laramie, who presented his team’s new results at the American Astronomical Society meeting in Kissimmee, Florida. “The gravitational boost increases a star’s speed relative to other stars.”

    Our own sun is strolling through our Milky Way galaxy at a moderate pace. It is not clear whether our sun creates a bow shock. By comparison, a massive star with a stunning bow shock, called Zeta Ophiuchi (or Zeta Oph), is traveling around the galaxy faster than our sun, at 54,000 mph (24 kilometers per second) relative to its surroundings. Zeta Oph’s giant bow shock can be seen in this image from the WISE mission:

    2
    Zeta Ophiuchi — Runaway Star Plowing Through Space Dust
    The blue star near the center of this image is Zeta Ophiuchi. When seen in visible light it appears as a relatively dim red star surrounded by other dim stars and no dust. However, in this infrared image taken with NASA’s Wide-field Infrared Survey Explorer, or WISE, a completely different view emerges. Zeta Ophiuchi is actually a very massive, hot, bright blue star plowing its way through a large cloud of interstellar dust and gas.
    Astronomers theorize that this stellar juggernaut was likely once part of a binary star system with an even more massive partner. It’s believed that when the partner exploded as a supernova, blasting away most of its mass, Zeta Ophiuchi was suddenly freed from its partner’s pull and shot away like a bullet moving 24 kilometers per second (54,000 miles per hour). Zeta Ophiuchi is about 20 times more massive and 65,000 times more luminous than the sun. If it weren’t surrounded by so much dust, it would be one of the brightest stars in the sky and appear blue to the eye. Like all stars with this kind of extreme mass and power, it subscribes to the ‘live fast, die young’ motto. It’s already about halfway through its very short 8-million-year lifespan. In comparison, the sun is roughly halfway through its 10-billion-year lifespan. While the sun will eventually become a quiet white dwarf, Zeta Ophiuchi, like its ex-partner, will ultimately die in a massive explosion called a supernova.
    Perhaps the most interesting features in this image are related to the interstellar gas and dust that surrounds Zeta Ophiuchi. Off to the sides of the image and in the background are relatively calm clouds of dust, appearing green and wispy, slightly reminiscent of the northern lights. Near Zeta Ophiuchi, these clouds look quite different. The cloud in all directions around the star is brighter and redder, because the extreme amounts of ultraviolet radiation emitted by the star are heating the cloud, causing it to glow more brightly in the infrared than usual.
    Even more striking, however, is the bright yellow curved feature directly above Zeta Ophiuchi. This is a magnificent example of a bow shock. In this image, the runaway star is flying from the lower right towards the upper left. As it does so, its very powerful stellar wind is pushing the gas and dust out of its way (the stellar wind extends far beyond the visible portion of the star, creating an invisible ‘bubble’ all around it). And directly in front of the star’s path the wind is compressing the gas together so much that it is glowing extremely brightly (in the infrared), creating a bow shock. It is akin to the effect you might see when a boat pushes a wave in front it as it moves through the water. This feature is completely hidden in visible light. Infrared images like this one from WISE shed an entirely new light on the region.
    The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light from 12 and 22 microns, respectively, which is mostly emitted by dust.
    Image credit: NASA/JPL-Caltech/UCLA

    Both the speed of stars moving through space and their mass contribute to the size and shapes of bow shocks. The more massive a star, the more material it sheds in high-speed winds. Zeta Oph, which is about 20 times as massive as our sun, has supersonic winds that slam into the material in front of it.

    The result is a pile-up of material that glows. The arc-shaped material heats up and shines with infrared light. That infrared light is assigned the color red in the many pictures of bow shocks captured by Spitzer and WISE.

    Chick and his team turned to archival infrared data from Spitzer and WISE to identify new bow shocks, including more distant ones that are harder to find. Their initial search turned up more than 200 images of fuzzy red arcs. They then used the Wyoming Infrared Observatory, near Laramie, to follow up on 80 of these candidates and identify the sources behind the suspected bow shocks. Most turned out to be massive stars.

    U Wyoming Infrared Observatory exterior
    U Wyoming Infrared Observatory interior
    U Wyoming Infrared Observatory

    The findings suggest that many of the bow shocks are the result of speedy runaways that were given a gravitational kick by other stars. However, in a few cases, the arc-shaped features could turn out to be something else, such as dust from stars and birth clouds of newborn stars. The team plans more observations to confirm the presence of bow shocks.

    “We are using the bow shocks to find massive and/or runaway stars,” said astronomer Henry “Chip” Kobulnicky, also from the University of Wyoming. “The bow shocks are new laboratories for studying massive stars and answering questions about the fate and evolution of these stars.”

    Another group of researchers, led by Cintia Peri of the Argentine Institute of Radio Astronomy, is also using Spitzer and WISE data to find new bow shocks in space. Only instead of searching for the arcs at the onset, they start by hunting down known speedy stars, and then they scan them for bow shocks.

    “WISE and Spitzer have given us the best images of bow shocks so far,” said Peri. “In many cases, bow shocks that looked very diffuse before, can now be resolved, and, moreover, we can see some new details of the structures.”

    Some of the first bow shocks from runaway stars were identified in the 1980s by David Van Buren of NASA’s Jet Propulsion Laboratory in Pasadena, California. He and his colleagues found them using infrared data from the [Caltech] Infrared Astronomical Satellite (IRAS), a predecessor to WISE that scanned the whole infrared sky in 1983.

    NASA IRAS spacecraft
    IRAS

    Kobulnicky and Chick belong to a larger team of researchers and students studying bow shocks and massive stars, including Matt Povich from the California State Polytechnic University, Pomona. The National Science Foundation funds their research.

    Images from Spitzer, WISE and IRAS are archived at the NASA Infrared Science Archive housed at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena.

    More information about Spitzer is online at:

    http://www.nasa.gov/spitzer

    http://spitzer.caltech.edu

    More information about WISE is at:

    http://www.nasa.gov/wise

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 9:00 pm on December 22, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer,   

    From CSIRO: “Why we’ll be monitoring the heavens on Christmas Day” 

    CSIRO bloc

    Commonwealth Scientific and Industrial Research Organisation

    23rd December 2015
    Eamonn Bermingham

    1
    Our Canberra Deep Space Communication Complex [a NASA facility] has played a major role in exploring space.

    Nice food, new pairs of socks, sniggering while elderly relatives snore on the sofa; Christmas has it all, really. But as you hang out the stocking this Christmas Eve, spare a thought for the star-gazers who’ll be spending their holiday scouring the skies for more than just reindeer and men in red suits.

    Spacecraft never sleep, they don’t take public holidays or celebrate the festive season – so neither do our team at the Canberra Deep Space Communication Complex (CDSCC).

    As you’re gearing up to bust out another Christmas cracker dad joke at the dinner table, robotic exploration vehicles will be orbiting around or on the surface of celestial bodies throughout our solar system and beyond.

    Along with their Earth-bound mission scientists around the world, they require the unique services and expertise of the personnel based at the CSIRO-managed NASA facility to support their success in the exploration of deep space.

    “We’re tracking 40 different spacecraft and you never know if that next track is going to lead to the next Nobel Prize-winning discovery, so it’s vital that we never switch off, even at Christmas,” said Facility Director Ed Kruzins.

    “Essentially we’re part of one massive science program with sensors on every planet in the solar system looking at geology, geography, plasma physics and of course, the markers for life. This data is relayed through space back to ground at locations like CDSCC where we deconvolve it and send it back to NASA, who then use it to analyse readings, look for trends and eventually write science papers. So we’re one node in the chain, but a very critical one,” he said.

    And it’s not just the endless pursuit of scientific discovery that drives the 24/7 manning of our facility. If we go offline, NASA’s whole deep space network suffers.

    “Among the data recovery, we also sometimes need to send regular ‘are you ok?’ signals to the various spacecraft. If they don’t hear from us the spacecraft can go into safe mode or even shut down, so it’s essential that we stay in contact.”

    From beaming images from Pluto, to the discovery of water on Mars, to Stephen Hawking and a Russian billionaire announcing a groundbreaking search for aliens, 2015 was a huge year for astronomy and space science.

    For our team at CDSCC, 2016 is shaping up to be another big one. NASA’s continuing development of human spaceflight could soon see people spending Christmas in the cosmos. Our appetite for Martian knowledge shows no sign of letting up with a new lander ‘Insight’ set to monitor seismology on the red planet. It’s exciting stuff.

    “Australia is set to take on an even more important role in NASA’s operations through a concept called ‘follow the sun’, which will see us become controllers of the deep space ground network during most of Australian daylight hours. We’ll also be completing a new 34-metre antenna (Deep Space Station 36) around October.

    3
    The Deep Space Station 36 antenna dish is lifted into place on Thursday. Photo: Canberra Deep Space Communicatio

    “I feel like I say this every year, but it really is an exciting time to be involved in space exploration, particularly for Australia,” said Dr Kruzins.

    If you’d like to find out more about the work we do at CDSCC, fly by our website.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    CSIRO campus

    CSIRO, the Commonwealth Scientific and Industrial Research Organisation, is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

     
  • richardmitnick 7:54 pm on November 24, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer   

    From NASA: “Strange Star Likely Swarmed by Comets” 

    NASA

    NASA

    Nov. 24, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    Michele Johnson
    Ames Research Center, Moffett Field, Calif.
    650-604-6982
    michele.johnson@nasa.gov

    1
    This illustration shows a star behind a shattered comet. Observations of the star KIC 8462852 by NASA’s Kepler and Spitzer space telescopes suggest that its unusual light signals are likely from dusty comet fragments, which blocked the light of the star as they passed in front of it in 2011 and 2013. The comets are thought to be traveling around the star in a very long, eccentric orbit. Credits: NASA/JPL-Caltech

    A star called KIC 8462852 has been in the news recently for unexplained and bizarre behavior. NASA’s Kepler mission had monitored the star for four years, observing two unusual incidents, in 2011 and 2013, when the star’s light dimmed in dramatic, never-before-seen ways. Something had passed in front of the star and blocked its light, but what?

    NASA Kepler Telescope
    Kepler

    Scientists first reported the findings in September, suggesting a family of comets as the most likely explanation. Other cited causes included fragments of planets and asteroids.

    A new study using data from NASA’s Spitzer Space Telescope addresses the mystery, finding more evidence for the scenario involving a swarm of comets.

    NASA Spitzer Telescope
    Spitzer

    The study, led by Massimo Marengo of Iowa State University, Ames, is accepted for publication in the Astrophysical Journal Letters.

    One way to learn more about the star is to study it in infrared light. Kepler had observed it in visible light. If a planetary impact, or a collision amongst asteroids, were behind the mystery of KIC 8462852, then there should be an excess of infrared light around the star. Dusty, ground-up bits of rock would be at the right temperature to glow at infrared wavelengths.

    At first, researchers tried to look for infrared light using NASA’s Wide-Field Infrared Survey Explorer, or WISE, and found none.

    NASA Wise Telescope
    WISE

    But those observations were taken in 2010, before the strange events seen by Kepler — and before any collisions would have kicked up dust.

    To search for infrared light that might have been generated after the oddball events, researchers turned to Spitzer, which, like WISE, also detects infrared light. Spitzer just happened to observe KIC 8462852 more recently in 2015.

    “Spitzer has observed all of the hundreds of thousands of stars where Kepler hunted for planets, in the hope of finding infrared emission from circumstellar dust,” said Michael Werner, the Spitzer project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and the lead investigator of that particular Spitzer/Kepler observing program.

    But, like WISE, Spitzer did not find any significant excess of infrared light from warm dust. That makes theories of rocky smashups very unlikely, and favors the idea that cold comets are responsible. It’s possible that a family of comets is traveling on a very long, eccentric orbit around the star. At the head of the pack would be a very large comet, which would have blocked the star’s light in 2011, as noted by Kepler. Later, in 2013, the rest of the comet family, a band of varied fragments lagging behind, would have passed in front of the star and again blocked its light.

    By the time Spitzer observed the star in 2015, those comets would be farther away, having continued on their long journey around the star. They would not leave any infrared signatures that could be detected.

    According to Marengo, more observations are needed to help settle the case of KIC 8462852.

    “This is a very strange star,” he said. “It reminds me of when we first discovered pulsars. They were emitting odd signals nobody had ever seen before, and the first one discovered was named LGM-1 after ‘Little Green Men.’”

    In the end, the LGM-1 signals turned out to be a natural phenomenon.

    “We may not know yet what’s going on around this star,” Marengo observed. “But that’s what makes it so interesting.”

    Caltech manages JPL for NASA.

    For more information about Kepler and Spitzer, respectively, visit:

    http://www.nasa.gov/kepler

    http://kepler.nasa.gov

    http://www.nasa.gov/spitzer

    http://www.spitzer.caltech.edu

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 4:19 pm on November 3, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer,   

    From JPL-Caltech: “Whopping Galaxy Cluster Spotted with Help of NASA Telescopes” 

    JPL-Caltech

    November 3, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. Image credit: NASA/JPL-Caltech/Gemini/CARMA

    Astronomers have discovered a giant gathering of galaxies in a very remote part of the universe, thanks to NASA’s Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE).

    NASA Spitzer Telescope
    Spitzer

    NASA Wise Telescope
    WISE

    The galaxy cluster, located 8.5 billion light-years away, is the most massive structure yet found at such great distances.

    Galaxy clusters are gravitationally bound groups of thousands of galaxies, which themselves each contain hundreds of billions of stars. The clusters grow bigger and bigger over time as they acquire new members.

    How did these clusters evolve over time? What did they look like billions of years ago? To answer these questions, astronomers look back in time to our youthful universe. Because light takes time to reach us, we can see very distant objects as they were in the past. For example, we are seeing the newfound galaxy cluster — called Massive Overdense Object (MOO) J1142+1527 — as it existed 8.5 billion years ago, long before Earth formed.

    As light from remote galaxies makes its way to us, it becomes stretched to longer, infrared wavelengths by the expansion of space. That’s where WISE and Spitzer help out.

    For infrared space telescopes, picking out distant galaxies is like plucking ripe cherries from a cherry tree. In the infrared images produced by Spitzer, these distant galaxies stand out as red dots, while closer galaxies look white. Astronomers first combed through the WISE catalog to find candidates for clusters of distant galaxies. WISE catalogued hundreds of millions of objects in images taken over the entire sky from 2010 to 2011.

    They then used Spitzer to narrow in on 200 of the most interesting objects, in a project named the “Massive and Distant Clusters of WISE Survey,” or MaDCoWS. Spitzer doesn’t observe the whole sky like WISE, but can see more detail.

    “It’s the combination of Spitzer and WISE that lets us go from a quarter billion objects down to the most massive galaxy clusters in the sky,” said Anthony Gonzalez of the University of Florida in Gainesville, lead author of a new study published in the Oct. 20 issue of the Astrophysical Journal Letters.

    From these observations, MOO J1142+1527 jumped out as one of the most extreme.

    The W.M. Keck Observatories and Gemini Observatory on Mauna Kea in Hawaii were used to measure the distance to the cluster at 8.5 billion light-years.

    Keck Observatory
    Keck Observatory Interior
    Keck

    Gemini North telescope
    Gemini North Interior
    Gemini North

    Using data from the (CARMA) telescopes near Owens Valley in California, the scientists were then able to determine that the cluster’s mass is a quadrillion times that of our sun — making it the most massive known cluster that far back in space and time.

    CARMA Array
    CARMA Array

    MOO J1142+1527 may be one of only a handful of clusters of this heft in the early universe, according to the scientists’ estimates.

    “Based on our understanding of how galaxy clusters grow from the very beginning of our universe, this cluster should be one of the five most massive in existence at that time,” said co-author Peter Eisenhardt, the project scientist for WISE at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    In the coming year, the team plans to sift through more than 1,700 additional galaxy cluster candidates with Spitzer, looking for biggest of the bunch.

    “Once we find the most massive clusters, we can start to investigate how galaxies evolved in these extreme environments,” said Gonzalez.

    JPL managed and operated WISE for NASA’s Science Mission Directorate in Washington. In September 2013, WISE was reactivated, renamed NEOWISE and assigned a new mission to assist NASA’s efforts to identify potentially hazardous near-Earth objects. JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations and data processing for Spitzer and NEOWISE take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    More information about WISE is online at:

    http://www.nasa.gov/wise

    More information about Spitzer is online at:

    http://www.nasa.gov/spitzer

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 8:10 am on October 5, 2015 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From COSMOS: “Massive galaxies rob gas from little neighbours” 

    Cosmos Magazine bloc

    COSMOS

    5 Oct 2015
    Belinda Smith

    Astronomers discover why the biggest galaxies keep getting bigger.

    1
    At the heart of the Phoenix Cluster (shown), giant galaxies are growing at a prodigious rate, birthing hundreds of new stars each year.Credit: X-ray:NASA / CXC / MIT / M.McDonald et al; Optical: NASA / STScI

    NASA Spitzer Telescope
    NASA/Spitzer

    NASA Hubble Telescope
    NASA/ESA Hubble

    The biggest galaxies in the Universe have perplexed astronomers for decades. How do they continue to make new stars when they should have run out of gas aeons ago? By looking back in time to see galaxies at earlier stages of their development, astronomers may have uncovered their ruthless secret.

    It seems that in their youth, these galaxies are bullies, stealing star-forming gas from their smaller neighbours. Tracy Webb from McGill University in Canada and colleagues describe one such plunderer in The Astrophysical Journal in September.

    Galaxies don’t usually fly solo – they prefer to gather in clusters, bound by gravity. The Universe’s biggest galaxies reside at the heart of these clusters.

    Astronomers can measure the age of these clusters by examining their galaxies. Our Milky Way, for instance, is about 13 billion years old, and clusters around us tend to be around the same age. When astronomers peer into the giant galaxies at the centre of these ancient clusters, they find them to be “red and dead”: their star-forming gas supplies exhausted, they have become vast nursing homes for stellar relics such as red giants. The Milky Way produces new stars at the feeble rate of about one per year.

    But astronomers find clusters look very different when “middle-aged”. Just as palaeontologists dig into layers of the Earth to find how life looked in the past, astronomers get a snapshot of how galaxies looked long ago by pointing their powerful telescopes farther into space. The further away the galaxy, the longer its light travelled to get here. So the image we see records the way it looked at a much earlier stage of its lifecycle.

    When they peered at snapshots of central galaxies in middle-aged clusters, they found nurseries rather than nursing homes. For instance, the central galaxy in the Phoenix Cluster, 5.6 billion light-years away, is forming stars at a tremendous rate: 740 times that of the Milky Way.

    To maintain their prodigious growth, these middle-aged galaxies top up their supplies of star-forming gas by pulling in some of the hot intergalactic gas that makes up around 10% of the collective mass of the entire cluster. It’s like “rivers of fuel” for new star formation, Webb says.

    Having started the family album, researchers wanted to get a snapshot of baby clusters and their central massive galaxies. How did these several-billion-year-old babies feed?

    NASA’s Spitzer Space Telescope, launched in 2003, was up to task. It has collected data on more than 200 galaxy clusters, some billions of light-years away, providing snapshots of these clusters as babies.

    3
    This composite image of galaxy cluster 1049+56, captured using NASA’s Hubble and Spitzer space telescopes, shows galactic bullying at work. Trailing from the biggest galaxy in the cluster (upper right red dot of central pair), a tell-tale trail of gas can be seen.Credit: NASA / STSCI / ESA / JPL-CALTECH / MCGILL

    In 2013, Webb was examining these clusters one by one when she stumbled across something odd. Spitzer’s infrared camera revealed a galaxy at the centre of the young cluster known as “1049+56”, some 9.8 billion light-years away, was pumping out stars at a phenomenal rate. The galaxy was less than four billion years old, but producing stars 860 times as fast as the Milky Way.

    “What’s really exciting is we hadn’t seen this growth, this building up, at such an early time,” Australian Astronomical Observatory astronomer Amanda Bauer says. But where was all the star-forming fuel coming from?

    Infrared telescopes such as Spitzer could reveal the dusty regions where stars are born. But their resolution wasn’t high enough to pinpoint if the gas source was the rivers of intergalactic gas that older galaxies draw on – or something else.

    To find out, Webb and her colleagues pointed the Hubble Space Telescope towards 1049+56, aiming its high-resolution optical lens at the cluster’s centre. But instead of seeing the rivers of hot intergalactic gas feeding the giant galaxy, they caught it in the act of stealing from a small gas-rich neighbouring galaxy.

    Like a cat mid-way through swallowing a mouse, the giant galaxy had already gulped down most of the smaller galaxy’s gas. All that remained was a gas tail, dangling from the galaxy’s maw.

    Hubble could spot little clumps of stars forming along the gas tail where patches of slightly denser gas collapsed in on itself. These star nurseries, or “beads on a string”, were a tell-tale sign the robbed galaxy had been rich in star-forming gases, Webb says.

    Webb and her colleagues are now searching other baby galaxy clusters to see if the massive central galaxy in 1049+56 is a rare gas-pinching bully or if all massive central galaxies were thugs in their youth.

    Bauer, for one, will be watching closely: “I’m thrilled they’ve been able to find this key piece. I’ll be cheering them on.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:06 pm on July 30, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer   

    From JPL: “NASA’s Spitzer Confirms Closest Rocky Exoplanet” 

    JPL

    July 30, 2015
    Felicia Chou NASA Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.b.clavin@jpl.nasa.gov

    1
    This artist’s conception shows the silhouette of a rocky planet, dubbed HD 219134b, as it passes in front of its star. At 21 light-years away, the planet is the closest outside of our solar system that can be seen crossing, or transiting, its star — a bonus for astronomers because transiting planets make ideal specimens for detailed studies of their atmospheres. It was discovered using the HARPS-North instrument on the Italian 3.6-meter National Galileo Telescope in the Canary Islands, and NASA’s Spitzer Space Telescope.

    The planet, which is about 1.6 times the size of Earth, is also the nearest confirmed rocky planet outside our solar system. It orbits a star that is cooler and smaller than our sun, whipping closely around it in a mere three days. The proximity of the planet to the star means that it would be scorching hot and not habitable.

    Transiting planets are ideal targets for astronomers wanting to know more about planetary compositions and atmospheres. As a planet passes in front of its star, it causes the starlight to dim, and telescopes can measure this effect. If molecules are present in the planet’s atmosphere, they can absorb certain wavelengths of light, leaving imprints in the starlight. This type of technique will be used in the future to investigate potentially habitable planets and search for signs of life.

    2
    This sky map shows the location of the star HD 219134 (circle), host to the nearest confirmed rocky planet found to date outside of our solar system. The star lies just off the “W” shape of the constellation Cassiopeia and can be seen with the naked eye in dark skies. It actually has multiple planets, none of which are habitable.

    3
    This artist’s rendition shows one possible appearance for the planet HD 219134b, the nearest confirmed rocky exoplanet found to date outside our solar system. The planet is 1.6 times the size of Earth, and whips around its star in just three days. Scientists predict that the scorching-hot planet — known to be rocky through measurements of its mass and size — would have a rocky, partially molten surface with geological activity, including possibly volcanoes.

    Using NASA’s Spitzer Space Telescope, astronomers have confirmed the discovery of the nearest rocky planet outside our solar system, larger than Earth and a potential gold mine of science data.

    NASA Spitzer Telescope
    Spitzer

    Dubbed HD 219134b, this exoplanet, which orbits too close to its star to sustain life, is a mere 21 light-years away. While the planet itself can’t be seen directly, even by telescopes, the star it orbits is visible to the naked eye in dark skies in the Cassiopeia constellation, near the North Star.

    HD 219134b is also the closest exoplanet to Earth to be detected transiting, or crossing in front of, its star and, therefore, perfect for extensive research.

    “Transiting exoplanets are worth their weight in gold because they can be extensively characterized,” said Michael Werner, the project scientist for the Spitzer mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “This exoplanet will be one of the most studied for decades to come.”

    The planet, initially discovered using the HARPS-North instrument on the Italian 3.6-meter Galileo National Telescope in the Canary Islands, is the subject of a study accepted for publication in the journal Astronomy & Astrophysics

    Telescoipio Nazionale Galileo.
    Galileo National Telescope

    Telescopio Nazionale Galileo - Harps North
    HARPS-North instrument

    Study lead author Ati Motalebi of the Geneva Observatory in Switzerland said she believes the planet is the ideal target for NASA’s James Webb Space Telescope in 2018.

    NASA James Webb Telescope
    Webb

    “Webb and future large, ground-based observatories are sure to point at it and examine it in detail,” Motalebi said.

    Only a small fraction of exoplanets can be detected transiting their stars due to their relative orientation to Earth. When the orientation is just right, the planet’s orbit places it between its star and Earth, dimming the detectable light of its star. It’s this dimming of the star that is actually captured by observatories such as Spitzer and can reveal not only the size of the planet but also clues about its composition.

    “Most of the known planets are hundreds of light-years away. This one is practically a next-door neighbor,” said astronomer and study co-author Lars A. Buchhave of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts. For reference, the closest known planet is GJ674b at 14.8 light-years away; its composition is unknown.

    HD 219134b was first sighted by the HARPS-North instrument and a method called the radial velocity technique, in which a planet’s mass and orbit can be measured by the tug it exerts on its host star. The planet was determined to have a mass 4.5 times that of Earth, and a speedy three-day orbit around its star.

    Spitzer followed up on the finding, discovering the planet transits its star. Infrared measurements from Spitzer revealed the planet’s size, about 1.6 times that of Earth. Combining the size and mass gives it a density of 3.5 ounces per cubic inch (six grams per cubic centimeter) — confirming HD 219134b is a rocky planet.

    Now that astronomers know HD 219134b transits its star, scientists will be scrambling to observe it from the ground and space. The goal is to tease chemical information out of the dimming starlight as the planet passes before it. If the planet has an atmosphere, chemicals in it can imprint patterns in the observed starlight.

    Rocky planets such as this one, with bigger-than-Earth proportions, belong to a growing class of planets termed super-Earths.

    “Thanks to NASA’s Kepler mission, we know super-Earths are ubiquitous in our galaxy, but we still know very little about them,” said co-author Michael Gillon of the University of Liege in Belgium, lead scientist for the Spitzer detection of the transit.

    NASA Kepler Telescope
    Kepler

    “Now we have a local specimen to study in greater detail. It can be considered a kind of Rosetta Stone for the study of super-Earths.”

    Further observations with HARPS-North also revealed three more planets in the same star system, farther than HD 219134b. Two are relatively small and not too far from the star. Small, tightly packed multi-planet systems are completely different from our own solar system, but, like super-Earths, are being found in increasing numbers.

    JPL manages the Spitzer mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Co. in Littleton, Colorado. Data are archived at the Infrared Science Archive, housed at Caltech’s Infrared Processing and Analysis Center.

    For more information about NASA’s Spitzer Space Telescope, visit:

    http://www.nasa.gov/spitzer

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 7:48 am on June 19, 2015 Permalink | Reply
    Tags: , , NASA Spitzer   

    From Spitzer: “Helium-Shrouded Planets May Be Common in Our Galaxy” 



    Spitzer

    06.11.15

    1

    They wouldn’t float like balloons or give you the chance to talk in high, squeaky voices, but planets with helium skies may constitute an exotic planetary class in our Milky Way galaxy. Researchers using data from NASA’s Spitzer Space Telescope propose that warm Neptune-size planets with clouds of helium may be strewn about the galaxy by the thousands.

    “We don’t have any planets like this in our own solar system,” said Renyu Hu, NASA Hubble Fellow at the agency’s Jet Propulsion Laboratory in Pasadena, California, and lead author of a new study on the findings accepted for publication in the Astrophysical Journal. “But we think planets with helium atmospheres could be common around other stars.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 553 other followers

%d bloggers like this: