Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:39 am on May 12, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer,   

    From Hubble: “NASA’s Great Observatories Celebrate International Year of Astronomy” old but worth it. 

    NASA Hubble Telescope

    Hubble

    November 10, 2009
    CONTACT

    Donna Weaver / Ray Villard
    Space Telescope Science Institute, Baltimore, Md.
    410-338-4493 / 410-338-4514
    dweaver@stsci.edu / villard@stsci.edu

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609.

    1
    In celebration of the International Year of Astronomy 2009, NASA’s Great Observatories — the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory — have collaborated to produce an unprecedented image of the central region of our Milky Way galaxy.

    In this spectacular image, observations using infrared light and X-ray light see through the obscuring dust and reveal the intense activity near the galactic core. Note that the center of the galaxy is located within the bright white region to the right of and just below the middle of the image. The entire image width covers about one-half a degree, about the same angular width as the full moon.

    Each telescope’s contribution is presented in a different color:

    • Yellow represents the near-infrared observations of Hubble. These observations outline the energetic regions where stars are being born as well as reveal hundreds of thousands of stars.
    • Red represents the infrared observations of Spitzer.

    NASA Spitzer Telescope
    Spitzer

    The radiation and winds from stars create glowing dust clouds that exhibit complex structures from compact, spherical globules to long, stringy filaments.

    • Blue and violet represent the X-ray observations of Chandra.

    NASA Chandra Telescope
    Chandra

    X-rays are emitted by gas heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole in the galaxy’s center. The bright blue blob on the left side is emission from a double star system containing either a neutron star or a black hole.

    When these views are brought together, this composite image provides one of the most detailed views ever of our galaxy’s mysterious core.

    In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country.

    The sites will unveil a giant, 6-foot-by-3-foot print of the bustling hub of our galaxy that combines a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope, and an X-ray view from the Chandra X-ray Observatory into one multiwavelength picture. Experts from all three observatories carefully assembled the final image from large mosaic photo surveys taken by each telescope. This composite image provides one of the most detailed views ever of our galaxy’s mysterious core.

    Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of the Milky Way’s center on a second large panel measuring 3 feet by 4 feet. Each image shows the telescope’s different wavelength view of the galactic center region, illustrating not only the unique science each observatory conducts, but also how far astronomy has come since Galileo.

    The composite image features the spectacle of stellar evolution: from vibrant regions of star birth, to young hot stars, to old cool stars, to seething remnants of stellar death called black holes. This activity occurs against a fiery backdrop in the crowded, hostile environment of the galaxy’s core, the center of which is dominated by a supermassive black hole nearly four million times more massive than our Sun. Permeating the region is a diffuse blue haze of X-ray light from gas that has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and by stellar explosions. Infrared light reveals more than a hundred thousand stars along with glowing dust clouds that create complex structures including compact globules, long filaments, and finger-like “pillars of creation,” where newborn stars are just beginning to break out of their dark, dusty cocoons.

    The unveilings will take place at 152 institutions nationwide, reaching both big cities and small towns. Each institution will conduct an unveiling celebration involving the public, schools, and local media.

    The Astrophysics Division of NASA’s Science Mission Directorate supports the International Year of Astronomy Great Observatories image unveiling. The project is a collaboration among the Space Telescope Science Institute in Baltimore, Md., the Spitzer Science Center in Pasadena, Calif., and the Chandra X-ray Center in Cambridge, Mass.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 6:41 am on February 24, 2015 Permalink | Reply
    Tags: , , , NASA Spitzer   

    From ESA: “Exploring the colours of the Small Magellanic Cloud” 

    ESASpaceForEuropeBanner
    European Space Agency

    Feb 23, 2015
    No Writer Credit

    1

    Astronomical images often look like works of art. This picture of one of our nearest neighbouring galaxies, the Small Magellanic Cloud, is certainly no exception!

    The scene is actually a collaboration between two cosmic artists — ESA’s Herschel space observatory and NASA’s Spitzer space telescope.

    ESA Herschel
    Herschel

    NASA Spitzer Telescope
    Spitzer

    The image is reminiscent of an artistic stipple or pointillist painting, with lots of small, distinct dots coming together to create a striking larger-scale view.

    The colours within this image provide information about the temperature of the dust mixed with the gas throughout the galaxy. The slight green tint stretching towards the left of the frame and the red hue of the main body of the galaxy are from the Herschel observations, which highlight cold material, down to a chilly –260 degrees Celsius .

    The brighter patches of blue were captured by Spitzer. These regions are made up of ‘warmer’ —about –150 degrees Celsius — gas and dust, and within some of these areas new stars are being born. These newborn stars in turn warm up their surroundings, resulting in intense clumps of heated gas and dust within the galaxy.

    These clumps show up brightly in this image, tracing the shape of the galaxy clearly — the SMC is made up of a central ‘bar’ of star formation, visible on the right hand side, and then a more extended ‘wing’, stretching out towards the left of the frame.

    Overall, the Small Magellanic Cloud is about 1/20th of the size of the Milky Way. It can be seen shining in the night sky of the southern hemisphere, and its brightest regions are easily visible to the naked eye. It is a satellite galaxy of our own — it orbits around the Milky Way along with its bigger companion, the Large Magellanic Cloud. These two galaxies have been extensively studied because of their proximity to us; astronomers can observe them relatively easily to explore how star formation and galactic evolution works in galaxies other than our own.

    The data in this image are from Herschel’s Spectral and Photometric Imaging Receiver (SPIRE), Photodetector Array Camera and Spectrometer (PACS), and Spitzer’s Multiband Imaging Photometer (MIPS).

    This image was previously published by NASA/JPL.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 3:37 pm on January 27, 2015 Permalink | Reply
    Tags: , , , , , , NASA Spitzer   

    From JPL: “Citizen Scientists Lead Astronomers to Mystery Objects in Space” 

    JPL

    January 27, 2015
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, California
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    1
    Volunteers using the web-based Milky Way Project brought star-forming features nicknamed “yellowballs” to the attention of researchers, who later showed that they are a phase of massive star formation. The yellow balls — which are several hundred to thousands times the size of our solar system — are pictured here in the center of this image taken by NASA’s Spitzer Space Telescope. Infrared light has been assigned different colors; yellow occurs where green and red overlap. The yellow balls represent an intermediary stage of massive star formation that takes place before massive stars carve out cavities in the surrounding gas and dust (seen as green-rimmed bubbles with red interiors in this image).

    Infrared light of 3.6 microns is blue; 8-micron light is green; and 24-micron light is red.

    2
    This series of images show three evolutionary phases of massive star formation, as pictured in infrared images from NASA’s Spitzer Space Telescope. The stars start out in thick cocoon of dust (left), evolve into hotter features dubbed “yellowballs” (center); and finally, blow out cavities in the surrounding dust and gas, resulting in green-rimmed bubbles with red centers (right). The process shown here takes roughly a million years. Even the oldest phase shown here is fairly young, as massive stars live a few million years. Eventually, the stars will migrate away from their birth clouds.

    In this image, infrared light of 3.6 microns is blue; 8-micron light is green; and 24-micron light is red.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

    NASA Spitzer Telescope
    Spitzer

    Milkyway@home
    MilkyWay@home

    Milkyway@Home uses the BOINC platform to harness volunteered computing resources, creating a highly accurate three dimensional model of the Milky Way galaxy using data gathered by the Sloan Digital Sky Survey (SDSS). This project enables research in both astroinformatics and computer science.

    SDSS Telescope
    SDSS Telescope

    BOINC

    In computer science, the project is investigating different optimization methods which are resilient to the fault-prone, heterogeneous and asynchronous nature of Internet computing; such as evolutionary and genetic algorithms, as well as asynchronous newton methods. While in astroinformatics, Milkyway@Home is generating highly accurate three dimensional models of the Sagittarius stream, which provides knowledge about how the Milky Way galaxy was formed and how tidal tails are created when galaxies merge.

    Milkyway@Home is a joint effort between Rensselaer Polytechnic Institute‘s departments of Computer Science and Physics, Applied Physics and Astronomy. Feel free to contact us via our forums, or email astro@cs.lists.rpi.edu.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
    • academix2015 4:22 pm on January 27, 2015 Permalink | Reply

      Web based Milky Way project would open up new opportunities for amateur astronomers. Thank you.

      Like

    • academix2015 4:22 pm on January 27, 2015 Permalink | Reply

      Reblogged this on Academic Avenue and commented:
      How about studying the intricacies of the astronomical processes and phenomena in the Milky Way?

      Like

  • richardmitnick 7:07 am on January 13, 2015 Permalink | Reply
    Tags: , NASA Spitzer   

    From Spitzer: “Ring of Stellar Fire” 



    Spitzer

    10.22.14
    1

    A new image from NASA’s Spitzer Space Telescope, taken in infrared light, shows where the action is taking place in galaxy NGC 1291. The outer ring, colored red in this view, is filled with new stars that are igniting and heating up dust that glows with infrared light. The stars in the central area produce shorter-wavelength infrared light than that seen in the ring, and are colored blue. This central area is where older stars live, having long ago gobbled up the available gas supply, or fuel, for making new stars.

    The galaxy is about 12 billion years old and is located 33 million light years away in the Eridanus constellation. It is known as a barred galaxy because a central bar of stars (which looks like a blue “S” in this view) dominates its center.

    When galaxies are young and gas-rich, stellar bars drive gas toward the center, feeding star formation. Over time, as the star-making fuel runs out, the central regions become quiescent and star-formation activity shifts to the outskirts of a galaxy. There, spiral density waves and resonances induced by the central bar help convert gas to stars. The outer ring, seen here in red, is one such resonance location, where gas has been trapped and ignited into a star-forming frenzy.

    Infrared light at wavelengths of 3.4 and 4.5 microns are rendered in blue and green, showing the distribution of stars, while dust features that glow brightly at 8.0 microns are shown in red.

    See the full article here.

    Another view:

    2
    NASA/JPL-Caltech/Yale University/H. Crowl (Yale University)
    This composite image of NGC 1291 is processed primarily from data collected by NASA’s Galaxy Evolution Explorer in December 2003. The blue in this image is ultraviolet light captured by GALEX’s long wavelength detector, the green is ultraviolet light detected by its short wavelength detector, and the red in the image is visible light courtesy of data from the Cerro Tololo Inter-American Observatory[telescope(s) not identified] in Chile.

    NASA Galex telescope

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

     
  • richardmitnick 3:48 pm on December 19, 2014 Permalink | Reply
    Tags: , , , Much More, NASA Spitzer   

    From JPL: “Horsehead of a Different Color” 

    JPL

    December 19, 2014
    No Writer Credit

    Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA’s Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance on the far right side of the image, but is almost unrecognizable in this infrared view. In visible-light images, the nebula has a distinctively dark and dusty horse-shaped silhouette, but when viewed in infrared light, dust becomes transparent and the nebula appears as a wispy arc.

    1
    2

    NASA Spitzer Telescope
    NASA Spitzer schematic
    NASA/Spitzer

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

    For more information about Spitzer, visit http://spitzer.caltech.edu and http://www.nasa.gov/spitzer.

    See the full article here.

    Further material

    The Horsehead is only one small feature in the Orion Molecular Cloud Complex, dominated in the center of this view by the brilliant Flame nebula (NGC 2024). The smaller, glowing cavity falling between the Flame nebula and the Horsehead is called NGC 2023. These regions are about 1,200 light-years away.

    3
    Photo taken by Rogelio Bernal Andreo in October 2010 of the Orion constellation showing the surrounding nebulas of the Orion Molecular Cloud complex. Also captured is the red supergiant Betelgeuse (top left) and the famous belt of Orion composed of the OB stars Altitak, Alnilam and Mintaka. To the bottom right can be found the star Rigel. The red crescent shape is Barnard’s Loop. The photograph appeared as the Astronomy Picture of the Day on October 23, 2010.

    4
    Flame Nebula
    Stars are often born in clusters, in giant clouds of gas and dust. Astronomers have studied two star clusters using NASA’s Chandra X-ray Observatory and infrared telescopes and the results show that the simplest ideas for the birth of these clusters cannot work, as described in our latest press release. This composite image shows one of the clusters, NGC 2024, which is found in the center of the so-called Flame Nebula about 1,400 light years from Earth. In this image, X-rays from Chandra are seen as purple, while infrared data from NASA’s Spitzer Space Telescope are colored red, green, and blue. A study of NGC 2024 and the Orion Nebula Cluster, another region where many stars are forming, suggest that the stars on the outskirts of these clusters are older than those in the central regions. This is different from what the simplest idea of star formation predicts, where stars are born first in the center of a collapsing cloud of gas and dust when the density is large enough. The research team developed a two-step process to make this discovery. First, they used Chandra data on the brightness of the stars in X-rays to determine their masses. Next, they found out how bright these stars were in infrared light using data from Spitzer, the 2MASS telescope, and the United Kingdom Infrared Telescope.

    2MASS Telescope
    2MASS telescope interior
    2MASS

    UKIRT
    UKIRT interior
    UKIRT

    By combining this information with theoretical models, the ages of the stars throughout the two clusters could be estimated. According to the new results, the stars at the center of NGC 2024 were about 200,000 years old while those on the outskirts were about 1.5 million years in age. In Orion, the age spread went from 1.2 million years in the middle of the cluster to nearly 2 million years for the stars toward the edges.
    Explanations for the new findings can be grouped into three broad categories. The first is that star formation is continuing to occur in the inner regions. This could have happened because the gas in the outer regions of a star-forming cloud is thinner and more diffuse than in the inner regions. Over time, if the density falls below a threshold value where it can no longer collapse to form stars, star formation will cease in the outer regions, whereas stars will continue to form in the inner regions, leading to a concentration of younger stars there. Another suggestion is that old stars have had more time to drift away from the center of the cluster, or be kicked outward by interactions with other stars. Finally, the observations could be explained if young stars are formed in massive filaments of gas that fall toward the center of the cluster. The combination of X-rays from Chandra and infrared data is very powerful for studying populations of young stars in this way. With telescopes that detect visible light, many stars are obscured by dust and gas in these star-forming regions, as shown in this optical image of the region.
    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra’s science and flight operations.
    Date 8 May 2014

    NASA Chandra Telescope
    NASA Chandra schematic
    NASA/Chandra

    The two carved-out cavities of the Flame nebula and NGC 2023 were created by the destructive glare of recently formed massive stars within their confines. They can be seen tracing a spine of glowing dust that runs through the image.

    The Flame nebula sits adjacent to the star Alnitak, the westernmost star in Orion’s belt, seen here as the bright blue dot near the top of the nebula.

    In this infrared image from Spitzer, blue represents light emitted at a wavelength of 3.6-microns, and cyan (blue-green) represents 4.5-microns, both of which come mainly from hot stars. Green represents 8-micron light and red represents 24-micron light. Relatively cooler objects, such as the dust of the nebulae, appear green and red. Some regions along the top and bottom of the image extending beyond Spitzer’s observations were filled in using data from NASA’s Wide-field Infrared Survey Explorer, or WISE, which covered similar wavelengths across the whole sky.

    NASA Wise Telescope
    NASA/WISE

    The visible-light image (see inset), from the European Southern Observatory’s Very Large Telescope facility, can be found online at http://www.eso.org/public/images/eso0202a/.

    ESO VLT Interferometer
    ESO VLT Interior
    ESO/VLT

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 8:15 am on November 11, 2014 Permalink | Reply
    Tags: , , , NASA Spitzer   

    From NASA/Spitzer: “Follow the Dust to Find Planets” 



    Spitzer

    dust

    Researchers studying what appears to be a beefed-up version of our solar system have discovered that it is encased in a halo of fine dust. The findings are based on infrared data from NASA’s Spitzer Space Telescope and the European Space Agency’s Herschel Space Observatory, in which NASA is a partner.

    ESA Herschel
    ESA Herschel schematic
    ESA/Herschel

    The dusty star system, called HD 95086, is located 295 light-years from Earth in the constellation Carina. It is thought to include two belts of dust, which lie within the newfound outer dust halo. One of these belts is warm and closer to its star, as is the case with our solar system’s asteroid belt, while the second belt is cooler and farther out, similar to our own Kuiper belt of icy comets.

    “By looking at other star systems like these, we can piece together how our own solar system came to be,” said Kate Su, an associate astronomer at the University of Arizona, Tucson, and lead author of the paper.

    Within our solar system, the planets Jupiter, Saturn, Uranus and Neptune are sandwiched between the two dust belts. Scientists think something similar is happening in the star system HD 95086, only on larger scales. One planet, about five times the mass of Jupiter, is already known to sit right inside HD 95086’s cooler belt. Other massive planets may be lurking between the two dust belts, waiting to be discovered.

    Studies like this from Spitzer and Herschel point the way for ground-based telescopes to snap pictures of such planets in hiding, a technique referred to as direct imaging. The one planet known to exist in HD 95086 was, in fact, discovered and imaged using this technique in 2013. The images aren’t sharp because the planets are so faint and far away, but they reveal new information about the global architecture of a planetary system.

    “By knowing where the debris is, plus the properties of the known planet in the system, we can get an idea of what other kinds of planets can be there,” said Sarah Morrison, a co-author of the paper and a PhD student at the University of Arizona. She ran computer models to constrain the possibilities of how many planets are likely to inhabit the system. “We know that we should be looking for multiple planets instead of a single giant planet.”

    To learn what HD 95086 looks like, the astronomers turned to a similar star system called HR 8799. It too has an inner and outer belt of debris surrounded by a large halo of fine dust, and four known planets between the belts — among the first exoplanets, or planets beyond our solar system, to be directly imaged.

    8799
    HR8799
    Description
    English: This is an up to date image of the HR8799 planetary system from the December 2010 press release. To be used on the HR8799 page. From W. M. Keck Observatory per [1]
    Date 21 December 2011
    Source http://newsroom.ucla.edu/portal/ucla/artwork/8/6/4/4/6/186446/Benjamin_Zuckerman_HR_8799_planets_image_Dec._2010_.jpg
    Author Ben Zuckerman

    Comparing data from the two star systems hints that HD95086, like its cousin HR 8799, is a possible home to multiple planets that have yet to be seen. Ground-based telescopes might be able to take pictures of the family of planets.

    Both HD 95086 and HR 8799 are much younger and dustier than our solar system. When planetary systems are young and still forming, collisions between growing planetary bodies, asteroids and comets kick up dust. Some of the dust coagulates into planets, some winds up in the belts, and the rest is either blown out into a halo, or funneled onto the star.

    Herschel and Spitzer are ideally suited to study the dust structures in these systems, which glow at the infrared wavelengths the telescopes detect.

    The researchers will present the findings at the Division for Planetary Science Meeting of the American Astronomical Society held in Tucson, Arizona from Nov. 8 to 15.

    Read more about the research at: http://uanews.org/story/baby-photos-of-a-scaled-up-solar-system

    Other coauthors of the paper include Zoltan Balog at the Max-Planck Institute of Astronomy, Heidelberg, Germany, and Renu Malhotra, Paul Smith and George Rieke of the University of Arizona.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 3:48 pm on October 22, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “Galactic Wheel of Life Shines in Infrared” 



    Spitzer

    10.22.14
    No Writer Credit

    It might look like a spoked wheel or even a “Chakram” weapon wielded by warriors like “Xena,” from the fictional TV show, but this ringed galaxy is actually a vast place of stellar life. A newly released image from NASA’s Spitzer Space Telescope shows the galaxy NGC 1291. Though the galaxy is quite old, roughly 12 billion years, it is marked by an unusual ring where newborn stars are igniting.

    “The rest of the galaxy is done maturing,” said Kartik Sheth of the National Radio Astronomy Observatory of Charlottesville, Virginia. “But the outer ring is just now starting to light up with stars.”

    NGC 1291 is located about 33 million light-years away in the constellation Eridanus. It is what’s known as a barred galaxy, because its central region is dominated by a long bar of stars (in the new image, the bar is within the blue circle and looks like the letter “S”).

    The bar formed early in the history of the galaxy. It churns material around, forcing stars and gas from their original circular orbits into large, non-circular, radial orbits. This creates resonances — areas where gas is compressed and triggered to form new stars. Our own Milky Way galaxy has a bar, though not as prominent as the one in NGC 1291.

    Sheth and his colleagues are busy trying to better understand how bars of stars like these shape the destinies of galaxies. In a program called Spitzer Survey of Stellar Structure in Galaxies, or S4G, Sheth and his team of scientists are analyzing the structures of more than 3,000 galaxies in our local neighborhood. The farthest galaxy of the bunch lies about 120 million light-years away — practically a stone’s throw in comparison to the vastness of space.

    lg
    Local Group

    The astronomers are documenting structural features, including bars. They want to know how many of the local galaxies have bars, as well as the environmental conditions in a galaxy that might influence the formation and structure of bars.

    “Now, with Spitzer we can measure the precise shape and distribution of matter within the bar structures,” said Sheth. “The bars are a natural product of cosmic evolution, and they are part of the galaxies’ endoskeleton. Examining this endoskeleton for the fossilized clues to their past gives us a unique view of their evolution.”

    In the Spitzer image, shorter-wavelength infrared light has been assigned the color blue, and longer-wavelength light, red. The stars that appear blue in the central, bulge region of the galaxy are older; most of the gas, or star-making fuel, there was previously used up by earlier generations of stars. When galaxies are young and gas-rich, stellar bars drive gas toward the center, feeding star formation.

    ngc

    Over time, as the fuel runs out, the central regions become quiescent and star-formation activity shifts to the outskirts of a galaxy. There, spiral density waves and resonances induced by the central bar help convert gas to stars. The outer ring, seen here in red, is one such resonance area, where gas has been trapped and ignited into star-forming frenzy.

    See the full article here.

    Another view of NGC 1291
    ngc1291
    This composite image of NGC 1291 is processed primarily from data collected by NASA’s Galaxy Evolution Explorer in December 2003. The blue in this image is ultraviolet light captured by GALEX’s long wavelength detector, the green is ultraviolet light detected by its short wavelength detector, and the red in the image is visible light courtesy of data from the Cerro Tololo Inter-American Observatory in Chile

    NASA Galex telescope
    NASA GALEX

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 11:45 am on August 23, 2014 Permalink | Reply
    Tags: , , , , , NASA Spitzer,   

    From NASA: The Three Great Observatories 

    NASA

    NASA

    Described as the “three great observatories, Spitzer, Hubble and Chandra have each revolutionized our view of the Universe. Please watch, enjoy and learn.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble,
    Chandra, Spitzer ]and associated programs. NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:24 pm on August 21, 2014 Permalink | Reply
    Tags: , , , , NASA Spitzer   

    From NASA/Spitzer: “Supernova Seen In Two Lights” 



    Spitzer

    08.21.14

    The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASAs Spitzer Space Telescope and Chandra X-Ray Observatory, and the European Space Agency’s XMM-Newton.

    NASA Chandra Telescope
    NASA/Chandra

    ESA XMM Newton
    ESA/XMM-Newton

    image
    Credit
    NASA/ESA/JPL-Caltech/GSFC/IAFE

    The bubbly cloud is an irregular shock wave, generated by a supernova that would have been witnessed on Earth 3,700 years ago. The remnant itself, called Puppis A, is around 7,000 light-years away, and the shock wave is about 10 light-years across.

    The pastel hues in this image reveal that the infrared and X-ray structures trace each other closely. Warm dust particles are responsible for most of the infrared light wavelengths, assigned red and green colors in this view. Material heated by the supernovas shock wave emits X-rays, which are colored blue. Regions where the infrared and X-ray emissions blend together take on brighter, more pastel tones.

    The shock wave appears to light up as it slams into surrounding clouds of dust and gas that fill the interstellar space in this region.

    From the infrared glow, astronomers have found a total quantity of dust in the region equal to about a quarter of the mass of our sun. Data collected from Spitzer’s infrared spectrograph reveal how the shock wave is breaking apart the fragile dust grains that fill the surrounding space.

    Supernova explosions forge the heavy elements that can provide the raw material from which future generations of stars and planets will form. Studying how supernova remnants expand into the galaxy and interact with other material provides critical clues into our own origins.

    Infrared data from Spitzers multiband imaging photometer (MIPS) at wavelengths of 24 and 70 microns are rendered in green and red. X-ray data from XMM-Newton spanning an energy range of 0.3 to 8 keV (kiloelectron volts) are shown in blue.

    See the full article here.

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.
    i1 i2

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 8:55 am on July 24, 2014 Permalink | Reply
    Tags: , , , , , , NASA Spitzer   

    From NASA/JPL at Caltech: “The Most Precise Measurement of an Alien World’s Size” 

    NASA/JPL

    Thanks to NASA’s Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the radius of a planet outside our solar system. The size of the exoplanet, dubbed Kepler-93b, is now known to an uncertainty of just 74 miles (119 kilometers) on either side of the planetary body.

    art
    Using data from NASA’s Kepler and Spitzer Space Telescopes, scientists have made the most precise measurement ever of the size of a world outside our solar system, as illustrated in this artist’s conception.

    NASA Kepler Telescope
    NASA/Kepler

    NASA Spitzer Telescope
    NASA/Spitzer

    The findings confirm Kepler-93b as a “super-Earth” that is about one-and-a-half times the size of our planet. Although super-Earths are common in the galaxy, none exist in our solar system. Exoplanets like Kepler-93b are therefore our only laboratories to study this major class of planet.

    With good limits on the sizes and masses of super-Earths, scientists can finally start to theorize about what makes up these weird worlds. Previous measurements, by the Keck Observatory in Hawaii, had put Kepler-93b’s mass at about 3.8 times that of Earth. The density of Kepler-93b, derived from its mass and newly obtained radius, indicates the planet is in fact very likely made of iron and rock, like Earth.

    “With Kepler and Spitzer, we’ve captured the most precise measurement to date of an alien planet’s size, which is critical for understanding these far-off worlds,” said Sarah Ballard, a NASA Carl Sagan Fellow at the University of Washington in Seattle and lead author of a paper on the findings published in the Astrophysical Journal.

    “The measurement is so precise that it’s literally like being able to measure the height of a six-foot tall person to within three quarters of an inch — if that person were standing on Jupiter,” said Ballard.

    Kepler-93b orbits a star located about 300 light-years away, with approximately 90 percent of the sun’s mass and radius. The exoplanet’s orbital distance — only about one-sixth that of Mercury’s from the sun — implies a scorching surface temperature around 1,400 degrees Fahrenheit (760 degrees Celsius). Despite its newfound similarities in composition to Earth, Kepler-93b is far too hot for life.

    To make the key measurement about this toasty exoplanet’s radius, the Kepler and Spitzer telescopes each watched Kepler-93b cross, or transit, the face of its star, eclipsing a tiny portion of starlight. Kepler’s unflinching gaze also simultaneously tracked the dimming of the star caused by seismic waves moving within its interior. These readings encode precise information about the star’s interior. The team leveraged them to narrowly gauge the star’s radius, which is crucial for measuring the planetary radius.

    Spitzer, meanwhile, confirmed that the exoplanet’s transit looked the same in infrared light as in Kepler’s visible-light observations. These corroborating data from Spitzer — some of which were gathered in a new, precision observing mode — ruled out the possibility that Kepler’s detection of the exoplanet was bogus, or a so-called false positive.

    Taken together, the data boast an error bar of just one percent of the radius of Kepler-93b. The measurements mean that the planet, estimated at about 11,700 miles (18,800 kilometers) in diameter, could be bigger or smaller by about 150 miles (240 kilometers), the approximate distance between Washington, D.C., and Philadelphia.

    Spitzer racked up a total of seven transits of Kepler-93b between 2010 and 2011. Three of the transits were snapped using a “peak-up” observational technique. In 2011, Spitzer engineers repurposed the spacecraft’s peak-up camera, originally used to point the telescope precisely, to control where light lands on individual pixels within Spitzer’s infrared camera.

    The upshot of this rejiggering: Ballard and her colleagues were able to cut in half the range of uncertainty of the Spitzer measurements of the exoplanet radius, improving the agreement between the Spitzer and Kepler measurements.

    “Ballard and her team have made a major scientific advance while demonstrating the power of Spitzer’s new approach to exoplanet observations,” said Michael Werner, project scientist for the Spitzer Space Telescope at NASA’s Jet Propulsion Laboratory, Pasadena, California.

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

    NASA’s Ames Research Center in Moffett Field, California, is responsible for Kepler’s ground system development, mission operations and science data analysis. JPL managed Kepler mission development. Ball Aerospace & Technologies Corp. in Boulder, Colorado, developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA’s 10th Discovery Mission and was funded by the agency’s Science Mission Directorate.

    See the full article here.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 443 other followers

%d bloggers like this: