Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:16 pm on May 9, 2019 Permalink | Reply
    Tags: "New Clues About How Ancient Galaxies Lit up the Universe", , , , , , , NASA Spitzer, Observations came from the GREATS survey short for GOODS Re-ionization Era wide-Area Treasury from Spitzer.   

    From JPL-Caltech: “New Clues About How Ancient Galaxies Lit up the Universe” 

    NASA JPL Banner

    From JPL-Caltech

    May 8, 2019
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    This deep-field view of the sky, taken by NASA’s Spitzer Space Telescope, is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows one of those distant galaxies, made visible thanks to a long-duration observation by Spitzer. The wide-field view also includes data from NASA’s Hubble Space Telescope. The Spitzer observations came from the GREATS survey, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS is itself an acronym: Great Observatories Origins Deep Survey.

    NASA’s Spitzer Space Telescope has revealed that some of the universe’s earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today.

    NASA/Spitzer Infrared Telescope

    In a new study [MNRAS], researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago). The data show that in a few specific wavelengths of infrared light, the galaxies are considerably brighter than scientists anticipated. The study is the first to confirm this phenomenon for a large sampling of galaxies from this period, showing that these were not special cases of excessive brightness, but that even average galaxies present at that time were much brighter in these wavelengths than galaxies we see today.

    No one knows for sure when the first stars in our universe burst to life. But evidence suggests that between about 100 million and 200 million years after the big bang, the universe was filled mostly with neutral hydrogen gas that had perhaps just begun to coalesce into stars, which then began to form the first galaxies. By about 1 billion years after the big bang, the universe had become a sparkling firmament. Something else had changed, too: Electrons of the omnipresent neutral hydrogen gas had been stripped away in a process known as ionization. The Epoch of Reionization – the changeover from a universe full of neutral hydrogen to one filled with ionized hydrogen – is well documented.

    Before this universe-wide transformation, long-wavelength forms of light, such as radio waves and visible light, traversed the universe more or less unencumbered. But shorter wavelengths of light – including ultraviolet light, X-rays and gamma rays – were stopped short by neutral hydrogen atoms. These collisions would strip the neutral hydrogen atoms of their electrons, ionizing them.

    But what could have possibly produced enough ionizing radiation to affect all the hydrogen in the universe? Was it individual stars? Giant galaxies? If either were the culprit, those early cosmic colonizers would have been different than most modern stars and galaxies, which typically don’t release high amounts of ionizing radiation. Then again, perhaps something else entirely caused the event, such as quasars – galaxies with incredibly bright centers powered by huge amounts of material orbiting supermassive black holes.

    “It’s one of the biggest open questions in observational cosmology,” said Stephane De Barros, lead author of the study and a postdoctoral researcher at the University of Geneva in Switzerland. “We know it happened, but what caused it? These new findings could be a big clue.”

    Looking for Light

    To peer back in time to the era just before the Epoch of Reionization ended, Spitzer stared at two regions of the sky for more than 200 hours each, allowing the space telescope to collect light that had traveled for more than 13 billion years to reach us.

    Reionization era and first stars, Caltech

    As some of the longest science observations ever carried out by Spitzer, they were part of an observing campaign called GREATS, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS (itself an acronym: Great Observatories Origins Deep Survey) is another campaign that performed the first observations of some GREATS targets. The study, published in the Monthly Notices of the Royal Astronomical Society, also used archival data from NASA’s Hubble Space Telescope.

    Using these ultra-deep observations by Spitzer, the team of astronomers observed 135 distant galaxies and found that they were all particularly bright in two specific wavelengths of infrared light produced by ionizing radiation interacting with hydrogen and oxygen gases within the galaxies. This implies that these galaxies were dominated by young, massive stars composed mostly of hydrogen and helium. They contain very small amounts of “heavy” elements (like nitrogen, carbon and oxygen) compared to stars found in average modern galaxies.

    These stars were not the first stars to form in the universe (those would have been composed of hydrogen and helium only) but were still members of a very early generation of stars. The Epoch of Reionization wasn’t an instantaneous event, so while the new results are not enough to close the book on this cosmic event, they do provide new details about how the universe evolved at this time and how the transition played out.

    “We did not expect that Spitzer, with a mirror no larger than a Hula-Hoop, would be capable of seeing galaxies so close to the dawn of time,” said Michael Werner, Spitzer’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “But nature is full of surprises, and the unexpected brightness of these early galaxies, together with Spitzer’s superb performance, puts them within range of our small but powerful observatory.”

    NASA’s James Webb Space Telescope, set to launch in 2021, will study the universe in many of the same wavelengths observed by Spitzer. But where Spitzer’s primary mirror is only 85 centimeters (33.4 inches) in diameter, Webb’s is 6.5 meters (21 feet) – about 7.5 times larger – enabling Webb to study these galaxies in far greater detail. In fact, Webb will try to detect light from the first stars and galaxies in the universe. The new study shows that due to their brightness in those infrared wavelengths, the galaxies observed by Spitzer will be easier for Webb to study than previously thought.

    “These results by Spitzer are certainly another step in solving the mystery of cosmic reionization,” said Pascal Oesch, an assistant professor at the University of Geneva and a co-author on the study. “We now know that the physical conditions in these early galaxies were very different than in typical galaxies today. It will be the job of the James Webb Space Telescope to work out the detailed reasons why.”

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer and http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:38 am on May 4, 2019 Permalink | Reply
    Tags: , , , , , , NASA Spitzer   

    From JPL-Caltech: “The Giant Galaxy Around the Giant Black Hole” 

    NASA JPL Banner

    From JPL-Caltech

    1

    The galaxy Messier 87, imaged here by NASA’s Spitzer Space Telescope, is home to a supermassive black hole that spews two jets of material out into space at nearly the speed of light. The inset shows a close-up view of the shockwaves created by the two jets.Credit: NASA/JPL-Caltech/IPAC

    NASA/Spitzer Infrared Telescope

    On April 10, 2019, the Event Horizon Telescope (EHT) unveiled the first-ever image of a black hole’s event horizon, the area beyond which light cannot escape the immense gravity of the black hole.

    The first image of a black hole, Messier 87 Credit Event Horizon Telescope Collaboration, via NSF and ERC 4.10.19

    That giant black hole, with a mass of 6.5 billion Suns, is located in the elliptical galaxy Messier 87. EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

    This image from NASA’s Spitzer Space Telescope shows the entire M87 galaxy in infrared light. The EHT image, by contrast, relied on light in radio wavelengths and showed the black hole’s shadow against the backdrop of high-energy material around it.

    EHT map

    Located about 55 million light-years from Earth, Messier 87 has been a subject of astronomical study for more than 100 years and has been imaged by many NASA observatories, including the Hubble Space Telescope, the Chandra X-ray Observatory and NuSTAR.

    NASA/ESA Hubble Telescope

    NASA/Chandra X-ray Telescope

    NASA/DTU/ASI NuSTAR X-ray telescope

    In 1918, astronomer Heber Curtis first noticed “a curious straight ray” extending from the galaxy’s center. This bright jet of high-energy material, produced by a disk of material spinning rapidly around the black hole, is visible in multiple wavelengths of light, from radio waves through X-rays. When the particles in the jet impact the interstellar medium (the sparse material filling the space between stars in M87), they create a shockwave that radiates in infrared and radio wavelengths of light but not visible light. In the Spitzer image, the shockwave is more prominent than the jet itself.

    The brighter jet, located to the right of the galaxy’s center, is traveling almost directly toward Earth. Its brightness is amplified due to its high speed in our direction, but even more so because of what scientists call “relativistic effects,” which arise because the material in the jet is traveling near the speed of light. The jet’s trajectory is just slightly offset from our line of sight with respect to the galaxy, so we can still see some of the length of the jet. The shockwave begins around the point where the jet appears to curve down, highlighting the regions where the fast-moving particles are colliding with gas in the galaxy and slowing down.

    The second jet, by contrast, is moving so rapidly away from us that the relativistic effects render it invisible at all wavelengths. But the shockwave it creates in the interstellar medium can still be seen here.

    Located on the left side of the galaxy’s center, the shockwave looks like an inverted letter “C.” While not visible in optical images, the lobe can also be seen in radio waves, as in this image from the National Radio Astronomy Observatory’s Very Large Array.

    Close-up from VLA of a jet near black hole in Messier 87

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    By combining observations in the infrared, radio waves, visible light, X-rays and extremely energetic gamma rays, scientists can study the physics of these powerful jets. Scientists are still striving for a solid theoretical understanding of how gas being pulled into black holes creates outflowing jets.

    Infrared light at wavelengths of 3.6 and 4.5 microns are rendered in blue and green, showing the distribution of stars, while dust features that glow brightly at 8.0 microns are shown in red. The image was taken during Spitzer’s initial “cold” mission.

    The Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech.

    More information on Spitzer can be found at its website: http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:46 am on April 29, 2019 Permalink | Reply
    Tags: , , , , , NASA Spitzer,   

    From NASA Spitzer: “The Giant Galaxy Around the Giant Black Hole” 

    NASA/Spitzer Telescope


    From NASA Spitzer

    04.25.19

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    A composite image showing the galaxy Messier 87 and, in inset, the particle jets emerging from the black hole at its heart. NASA/JPL-Caltech/IPAC/Event Horizon Telescope Collaboration Armstrong Roberts/ClassicStock/Getty Images.

    On April 10, 2019, the Event Horizon Telescope (EHT) unveiled the first-ever image of a black hole’s event horizon, the area beyond which light cannot escape the immense gravity of the black hole. That giant black hole, with a mass of 6.5 billion Suns, is located in the elliptical galaxy Messier 87 (M87). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

    This image from NASA’s Spitzer Space Telescope shows the entire Messier 87 galaxy in infrared light. The EHT image, by contrast, relied on light in radio wavelengths and showed the black hole’s shadow against the backdrop of high-energy material around it.

    EHT map

    Located about 55 million light-years from Earth, M87 has been a subject of astronomical study for more than 100 years and has been imaged by many NASA observatories, including the Hubble Space Telescope, the Chandra X-ray Observatory and NuSTAR.

    NASA/ESA Hubble Telescope

    NASA/Chandra X-ray Telescope

    NASA/DTU/ASI NuSTAR X-ray telescope

    In 1918, astronomer Heber Curtis first noticed “a curious straight ray” extending from the galaxy’s center. This bright jet of high-energy material, produced by a disk of material spinning rapidly around the black hole, is visible in multiple wavelengths of light, from radio waves through X-rays. When the particles in the jet impact the interstellar medium (the sparse material filling the space between stars in M87), they create a shockwave that radiates in infrared and radio wavelengths of light but not visible light. In the Spitzer image, the shockwave is more prominent than the jet itself.

    The brighter jet, located to the right of the galaxy’s center, is traveling almost directly toward Earth. Its brightness is amplified due to its high speed in our direction, but even more so because of what scientists call “relativistic effects,” which arise because the material in the jet is traveling near the speed of light. The jet’s trajectory is just slightly offset from our line of sight with respect to the galaxy, so we can still see some of the length of the jet. The shockwave begins around the point where the jet appears to curve down, highlighting the regions where the fast-moving particles are colliding with gas in the galaxy and slowing down.

    The second jet, by contrast, is moving so rapidly away from us that the relativistic effects render it invisible at all wavelengths. But the shockwave it creates in the interstellar medium can still be seen here.

    Located on the left side of the galaxy’s center, the shockwave looks like an inverted letter “C.” While not visible in optical images, the lobe can also be seen in radio waves, as in this image from the National Radio Astronomy Observatory’s Very Large Array.

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    By combining observations in the infrared, radio waves, visible light, X-rays and extremely energetic gamma rays, scientists can study the physics of these powerful jets. Scientists are still striving for a solid theoretical understanding of how gas being pulled into black holes creates outflowing jets.

    Infrared light at wavelengths of 3.6 and 4.5 microns are rendered in blue and green, showing the distribution of stars, while dust features that glow brightly at 8.0 microns are shown in red. The image was taken during Spitzer’s initial “cold” mission.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 12:13 pm on March 27, 2019 Permalink | Reply
    Tags: "'Space Butterfly' Is Home to Hundreds of Baby Stars", , NASA Spitzer, Officially named W40 the butterfly is a nebula - a giant cloud of gas and dust in space where new stars may form., Serpens South   

    From JPL-Caltech: “‘Space Butterfly’ Is Home to Hundreds of Baby Stars” 

    NASA JPL Banner

    From JPL-Caltech

    March 27, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1

    What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA’s Spitzer Space Telescope.

    NASA/Spitzer Infrared Telescope

    Officially named W40, the butterfly is a nebula – a giant cloud of gas and dust in space where new stars may form. The butterfly’s two “wings” are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region.

    Besides being beautiful, W40 exemplifies how the formation of stars results in the destruction of the very clouds that helped create them. Inside giant clouds of gas and dust in space, the force of gravity pulls material together into dense clumps. Sometimes these clumps reach a critical density that allows stars to form at their cores. Radiation and winds coming from the most massive stars in those clouds – combined with the material spewed into space when those stars eventually explode – sometimes form bubbles like those in W40. But these processes also disperse the gas and dust, breaking up dense clumps and reducing or halting new star formation.

    The material that forms W40’s wings was ejected from a dense cluster of stars that lies between the wings in the image. The hottest, most massive of these stars, W40 IRS 1a, lies near the center of the star cluster.

    W40 is about 1,400 light-years from the Sun, about the same distance as the well-known Orion nebula, although the two are almost 180 degrees apart in the sky. They are two of the nearest regions in which massive stars – with masses upwards of 10 times that of the Sun – have been observed to be forming.

    Another cluster of stars, named Serpens South, can be seen to the upper right of W40 in this image. Although both Serpens South and the cluster at the heart of W40 are young in astronomical terms (less than a few million years old), Serpens South is the younger of the two. Its stars are still embedded within their cloud but will someday break out to produce bubbles like those of W40. Spitzer has also produced a more detailed image of the Serpens South cluster.

    4

    Stellar members of Serpens South star cluster can be seen as the green, yellow, and orange tinted specks sitting atop the black dust lane running down the center of the image. Like raindrops, stars form when thick patches of cosmic clouds condense.

    Tints of green in the image represent hot hydrogen gas excited when high-speed jets of gas ejected by infant stars collide with the cool gas in the surrounding cloud.

    Wisps of red in the background are organic molecules called polycyclic aromatic hydrocarbons (PAHs), which are being excited by stellar radiation from a neighboring star-forming region located to the east of this image, called W40. On Earth PAHs are found on charred barbeque grills and in the sooty automobile exhaust.

    This Spitzer picture is composed of three images taken with the telescope’s Infrared Array Camera (IRAC) at 3.6 (blue), 4.5 (green), and 5.8 (red) microns.

    A mosaic of Spitzer’s observation of the W40 star-forming region was originally published as part of the Massive Young stellar clusters Study in Infrared and X-rays (MYStIX) survey of young stellar objects.

    The Spitzer picture ‘Space Butterfly’ is composed of four images taken with the telescope’s Infrared Array Camera (IRAC) in different wavelengths of infrared light: 3.6, 4.5, 5.8 and 8.0 µm (shown as blue, green, orange and red). Organic molecules made of carbon and hydrogen, called polycyclic aromatic hydrocarbons (PAHs), are excited by interstellar radiation and become luminescent at wavelengths near 8.0 microns, giving the nebula its reddish features. Stars are brighter at the shorter wavelengths, giving them a blue tint. Some of the youngest stars are surrounded by dusty disks of material, which glow with a yellow or red hue.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 11:47 am on March 15, 2019 Permalink | Reply
    Tags: "Giant Stars in Our Black Hole’s Neighborhood", , , , , , , NASA Spitzer,   

    From AAS NOVA: “Giant Stars in Our Black Hole’s Neighborhood” 

    AASNOVA

    From AAS NOVA

    15 March 2019
    Kerry Hensley

    1
    This infrared view from Spitzer cuts through the dust in the galactic plane to reveal the center of the Milky Way. Infrared observations are critical for studying the stars at the center of the galaxy, which are visible as the bright spot in the center of this image. [NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)]

    NASA/Spitzer Infrared Telescope

    How does a supermassive black hole affect its stellar neighbors? One way to explore this question is by searching for old, giant stars in the extreme environs of the galactic center.

    Crowded Quarters

    3
    Dark dust lanes block the visible light from the galactic center, hiding the dense star cluster located there. [Dave Young]

    The supermassive black hole at the center of our galaxy likely plays a huge role in the evolution and dynamics of stars in its neighborhood, as well as in how they are spatially distributed.

    Theory predicts that old, giant stars near the galactic center should be arrayed in a “cusp”-like distribution, with the number of stars per square arcsecond increasing sharply toward the central black hole. Faint red giants seem to follow the expected distribution, but brighter red giants — which can be probed closer to the center of the galaxy — do not. Instead, these stars appear to follow a “core”-like distribution, with fewer stars than expected within the central arcsecond of the galaxy.

    Many theories have been proposed to explain the apparent lack of bright red giants near the galactic center, from stellar collisions to tidal disruption by the supermassive black hole. While these factors may play a role, it’s also possible that observational challenges have prevented astronomers from fully cataloging the stellar population at the galactic center.

    4
    Giant stars from this study (black stars) on an H-R diagram with the theoretical isochrones used to determine the stellar ages. [Habibi et al. 2019]

    Tracking Down Missing Stars

    Observing stars so close to the galactic center is tricky — it’s crowded there, and starlight is highly extincted by dust clouds in the galactic plane at many wavelengths. In order to probe the stellar population near the galactic center, a team led by Maryam Habibi (Max Planck Institute for Extraterrestrial Physics, Germany) analyzed more than a decade’s worth of near-infrared stellar spectra from the SINFONI spectrograph on ESO’s Very Large Telescope.

    ESO SINFONI installed at the Cassegrain focus of UT3 on the VLT

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    The spectra used in this study were collected with the help of adaptive optics, in which the telescope’s mirror is deformed slightly to correct for the effects of turbulence in Earth’s atmosphere in close to real time — critical for observations of individual stars in a field as crowded as the galactic center!

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system

    By co-adding multiple epochs of spectra to tease out faint spectral features, the authors derived the effective temperature, spectral type, age, mass, and radius for each target star. Their deeper spectra allowed them to identify old giants that had previously been misclassified as younger stars, bringing the number of known giants to 21.

    Cusp Versus Core

    Combining their new observations of bright giants within the central arcsecond with previously observed giants farther from the galactic center, the authors find that the distribution of bright giants can be described by a power law with an exponent of 0.34 ± 0.04 — definitively ruling out a core-like distribution.

    Does this mean the galactic center’s core–cusp problem has been solved? While many of the missing giants have been found, the authors estimate that there are still stars awaiting discovery in the crowded interior of our galaxy, including some of the brightest red giants. Future observations should help us understand the complex distribution of stellar populations in the galactic center.

    Citation

    “Spectroscopic Detection of a Cusp of Late-type Stars Around the Central Black Hole in the Milky Way,” M. Habibi et al 2019 ApJL 872 L15.
    https://iopscience.iop.org/article/10.3847/2041-8213/ab03cf/meta

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 10:42 am on February 26, 2019 Permalink | Reply
    Tags: , , , , , , ESO WFI at 2.2 meter MPG/ESO, , NASA Spitzer, , What remains of the stars-Past and future generations of stars in NGC 300"   

    From European Space Agency: “What remains of the stars-Past and future generations of stars in NGC 300” 

    ESA Space For Europe Banner

    From European Space Agency

    25/02/2019
    ESA/XMM-Newton (X-rays); MPG/ESO (optical); NASA/Spitzer (infrared). Acknowledgement: S. Carpano, Max-Planck Institute for Extraterrestrial Physics

    ESA/XMM Newton


    MPG/ESO 2.2 meter telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres

    NASA/Spitzer Infrared Telescope

    1

    This swirling palette of colours portrays the life cycle of stars in a spiral galaxy known as NGC 300.

    Located some six million light-years away, NGC 300 is relatively nearby. It is one of the closest galaxies beyond the Local Group – the hub of galaxies to which our own Milky Way galaxy belongs. Due to its proximity, it is a favourite target for astronomers to study stellar processes in spiral galaxies.

    The population of stars in their prime is shown in this image in green hues, based on optical observations performed with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at La Silla, Chile.

    ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla, 600 km north of Santiago de Chile at an altitude of 2400 metres

    Red colours indicate the glow of cosmic dust in the interstellar medium that pervades the galaxy: this information derives from infrared observations made with NASA’s Spitzer space telescope, and can be used to trace stellar nurseries and future stellar generations across NGC 300.

    A complementary perspective on this galaxy’s composition comes from data collected in X-rays by ESA’s XMM-Newton space observatory, shown in blue. These represent the end points of the stellar life cycle, including massive stars on the verge of blasting out as supernovas, remnants of supernova explosions, neutron stars, and black holes. Many of these X-ray sources are located in NGC 300, while others – especially towards the edges of the image – are foreground objects in our own Galaxy, or background galaxies even farther away.

    The sizeable blue blob immediately to the left of the galaxy’s centre is especially interesting, featuring two intriguing sources that are part of NGC 300 and shine brightly in X-rays.

    One of them, known as NGC 300 X-1, is in fact a binary system, consisting of a Wolf-Rayet star – an ageing hot, massive and luminous type star that drives strong winds into its surroundings – and a black hole, the compact remains of what was once another massive, hot star. As matter from the star flows towards the black hole, it is heated up to temperatures of millions of degrees or more, causing it to shine in X-rays.

    The other source, dubbed NGC 300 ULX1, was originally identified as a supernova explosion in 2010. However, later observations prompted astronomers to reconsider this interpretation, indicating that this source also conceals a binary system comprising a very massive star and a compact object – a neutron star or a black hole – feeding on material from its stellar companion.

    Data obtained in 2016 with ESA’s XMM-Newton and NASA’s NuSTAR observatories revealed regular variations in the X-ray signal of NGC 300 ULX1, suggesting that the compact object in this binary system is a highly magnetized, rapidly spinning neutron star, or pulsar.

    NASA/DTU/ASI NuSTAR X-ray telescope

    The large blue blob in the upper left corner is a much more distant object: a cluster of galaxies more than one billion light years away, whose X-ray glow is caused by the hot diffuse gas interspersed between the galaxies.

    Explore NGC 300 in ESASky

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 11:26 am on January 28, 2019 Permalink | Reply
    Tags: , , , , , NASA Spitzer, NASA Webb MIRI instrument in the future, Stars shrouded in iron dust   

    From Instituto de Astrofísica de Canarias – IAC: “Stars shrouded in iron dust” 

    IAC

    From Instituto de Astrofísica de Canarias – IAC

    Flavia Dell’Agli
    fdellagli@iac.es

    Aníbal García Hernández
    agarcia@iac.es

    Manu Astrónomus


    From Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    1
    Infrared image of the Large Magellanic Cloud (LMC) obtained with the Spitzer Space Telescope.

    NASA/Spitzer Infrared Telescope

    top panel: comparing the spectrum Spitzer / IRS (line solid black) Star SSID 4486 and the theoretical spectrum of best fit of a star AGB 5 solar masses (continuous red line) wrapped by ~ 70% powder iron; green dashed line refers to the theoretical spectrum for the same model but iron powder. lower box: Artistic impression of a giant star ejecting AGB matter to the interstellar medium. Credit: Image LMC: Aladin-color Spitzer software; Artistic Image: Jaxa.

    The Institute de Astrofísica (IAC) in a study presented by the discovery of a group of very poor stars metals and high fraction of iron powder, located in the LMC. To carry out this work have combined theoretical models of dust formation in circumstellar envelopes with infrared observations made with the Spitzer Space Telescope and predictions for the future James Webb Space Telescope.

    The stars with masses between one to eight times the mass of the Sun evolve through the asymptotic giant branch (AGB, the acronym ‘Asymptotic Giant Branch’) before ending their lives as white dwarfs. It is during this evolutionary, rapid but crucial phase, when the stars are expanded to gigantic proportions and cooled, losing almost all of its mass due to strong stellar winds. The low temperature and high density wind provide perfect conditions to favor the condensation of the powder grains in their circumstellar envelopes.

    The powder supplied by AGB stars in its stage the interstellar medium is key to the life of galaxies, as this is essential for the formation of new stars and planets element. Thus, characterizing the type of dust (organic solid compounds against inorganic) and the amount of dust produced by these giant stars is very interesting for the astronomical community.

    The journal The Astrophysical Journal Letters published today a study in which the mystery of a peculiar group of massive AGB stars, located in the Large Magellanic Cloud is resolved. Comparing infrared observations from the Spitzer Space Telescope (and predictions for the future James Webb Space Telescope) with theoretical models developed by this team have discovered that these stars have masses around 5 solar masses, formed about 100 million years ago and are poor metals (metals such as Fe, Mg and Si. Iron, magnesium and silicon). Unexpectedly, the team has found that their spectral energy distributions, in the infrared range, can only be reproduced if the iron powder is the main species of dust in their circumstellar envelopes. This situation is rare around AGB massive stars. It was previously known to produce mainly silicates. That is, powder grains rich in oxygen, magnesium and silicon. But this finding is even more surprising considering the metal – poor environment surrounding the stars studied.

    “We first characterized this kind of star with unique spectral properties. The low metallicity of these giant stars is the essential ingredient that provides a peculiar conditions which allow the formation of larger amounts of iron powder” explains Ester Marini, lead author article and doctoral student at the University Roma Tre. He adds: “In fact, metal-poor environments, complex active stellar nucleosynthesis within the massive AGB stars is so advanced that runs almost all the magnesium and oxygen necessary to form other species such as silicates dust.”

    Under these particular conditions, the iron powder becomes the main component powder consisting of these stars. “This result represents an important theoretical confirmation for the formation of iron powder in poor environments metals, as evoked by independent observational evidence,” the IAC researcher Aníbal García Hernández, co-author and one of the founders of the fruitful collaboration between the IAC and Astronomico Osservatorio di Roma (INAF-OAR) for this type of study in giant stars in the AGB phase.

    “The arrival of the James Webb Space Telescope (JWST) will open new possibilities to investigate this case in depth,” says Flavia Dell’Agli, postdoctoral researcher at the IAC and second author of the article adds. “This future facility will greatly increase the number of AGB stars extragalactic resolved “and that the MIRI instrument that will be housed on the JWST will be” ideal to identify this class of stars in other galaxies in the Local Group “.

    NASA Webb MIRI schematic


    NASA Webb MIRI


    NASA/ESA/CSA Webb Telescope annotated

    See the full article here.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Instituto de Astrofísica de Canarias(IAC) is an international research centre in Spain which comprises:

    The Instituto de Astrofísica, the headquarters, which is in La Laguna (Tenerife).
    The Centro de Astrofísica en La Palma (CALP)
    The Observatorio del Teide (OT), in Izaña (Tenerife).

    These centres, with all the facilities they bring together, make up the European Northern Observatory(ENO).

    The IAC is constituted administratively as a Public Consortium, created by statute in 1982, with involvement from the Spanish Government, the Government of the Canary Islands, the University of La Laguna and Spain’s Science Research Council (CSIC).

    The International Scientific Committee (CCI) manages participation in the observatories by institutions from other countries. A Time Allocation Committee (CAT) allocates the observing time reserved for Spain at the telescopes in the IAC’s observatories.

    The exceptional quality of the sky over the Canaries for astronomical observations is protected by law. The IAC’s Sky Quality Protection Office (OTPC) regulates the application of the law and its Sky Quality Group continuously monitors the parameters that define observing quality at the IAC Observatories.

    The IAC’s research programme includes astrophysical research and technological development projects.

    The IAC is also involved in researcher training, university teaching and outreachactivities.

    The IAC has devoted much energy to developing technology for the design and construction of a large 10.4 metre diameter telescope, the ( Gran Telescopio CANARIAS, GTC), which is sited at the Observatorio del Roque de los Muchachos.



    Gran Telescopio Canarias at the Roque de los Muchachos Observatory on the island of La Palma, in the Canaries, SpainGran Telescopio CANARIAS, GTC

     
  • richardmitnick 10:02 am on December 17, 2018 Permalink | Reply
    Tags: 'Oumuamua studies, , , , , , NASA Spitzer   

    From Spitzer via Manu Garcia: “Umuamua intergalactic visitor”. 


    From Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    News Media Contact
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, California.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    NASA/Spitzer Telescope


    From Spitzer

    NASA learns more about the interstellar visitors’ Oumuamua.

    1
    An artistic concept of interstellar asteroid 1I / 2017 U1 ( ‘Oumuamua) while passing through the solar system after its discovery in October 2017. The observations of’ Oumuamua indicate that must be very long due to its dramatic brightness variations as fell space. Image Credit: European Southern Observatory / M. Kornmesser.

    ‘Oumuamua was too weak to detect when Spitzer looked more than two months after the closest to Earth the object approach in early September. However, the “no detection” put a new limit on the size of the foreign object. The results are reported in a new study published today in Astronomical Journal and coauthor of scientists at the Jet Propulsion Laboratory of NASA in Pasadena, California, The Astronomical Journal.

    The new size limit is consistent with the findings of a research paper published earlier this year, suggesting that the degassing was responsible for slight changes in speed and direction of ‘Oumuamua as were screened last year: authors of this paper concluded that the expelled gas acted as a small pusher gently pushing the object. That determination depended on ‘Oumuamua is relatively smaller than typical comets in the solar system. (The conclusion that ‘Oumuamua experienced degassing suggested consisted of frozen gases, comet-like.)

    ‘Oumuamua has been full of surprises from the first day, so we were eager to see what Spitzer could show,” said David Trilling, senior author of the new study and a professor of astronomy at the University of Northern Arizona. “The fact that ‘Oumuamua was too small to detect what Spitzer is actually a very valuable result.”

    ‘Oumuamua was first detected by the Pan-STARRS 1 telescope at the University of Hawaii at Haleakala, Hawaii (the object name is a Hawaiian word meaning “visitor from afar come first”) in October 2017, while the telescope was looking for asteroids near Earth.

    Pann-STARSR1 Telescope, U Hawaii, Mauna Kea, Hawaii, USA, Altitude 3,052 m (10,013 ft)

    Subsequent detailed observations made by multiple ground-based telescopes and the Hubble Space Telescope detected NASA sunlight reflected on the surface of Oumuamua.

    NASA/ESA Hubble Telescope

    Large variations in the brightness of the object suggested that ‘Oumuamua is highly elongated and probably less than half a mile (2,600 feet or 800 meters) at its longest dimension.

    But Spitzer tracks asteroids and comets using infrared energy, or heat, radiating, which can provide more specific information about the size of an object optical observations of sunlight reflected.

    The fact that ‘Oumuamua was too weak to detect Spitzer sets a limit on the total surface area of ​​the object. However, since non-detection can not be used to infer the shape, size limits are presented as what the diameter if spherical Oumuamua. Using three separate models that slightly different assumptions about the composition of the object, the non-detection of Spitzer limited the “spherical diameter” of Oumuamua to 1,440 feet (440 meters), 460 feet (140 meters) or perhaps as little as 320 feet (100 meters) . The wide range of results stems from assumptions about the composition of ‘Oumuamua, which influences how visible (or weak) would seem to Spitzer if a particular size.

    2
    Scientists have concluded that the vents on the surface of ‘Oumuamua must have emitted gas jets, which gave the object a slight increase in speed, the researchers detected by measuring the position of the object as it passed through the earth in 2017. Credit: NASA / JPL -Caltech.

    Small but thoughtful.

    The new study also suggests that ‘Oumuamua can be up to 10 times more reflective than comets reside in our solar system, a surprising result, according to the authors of the article. Because infrared light is largely the heat radiation produced by the “hot” objects, can be used to determine the temperature of a comet or asteroid; in turn, this can be used to determine the reflectivity of the object surface, which scientists call albedo. Like a dark shirt to sunlight warms up faster than a light, an object with low reflectivity retains more heat than an object with high reflectivity. So a lower temperature means higher albedo.

    The albedo of a comet can change throughout your life. When passing near the Sun, ice comet is heated and converted directly into a gas, sweeping dust and dirt from the surface of the comet and revealing more reflective ice.

    ‘Oumuamua has been traveling through interstellar space for millions of years, far from any star that could cool its surface. But it may have had its renewed surface through such “degassing” when he made an extremely close approach to the Sun, a little more than five weeks before it was discovered. In addition to sweep the dust and dirt of the released gas may have covered the surface of ‘Oumuamua with a reflective layer of ice and snow, a phenomenon also observed in comets of our solar system.

    ‘Oumuamua are leaving our solar system, almost as far from the Sun as the orbit of Saturn, and is far beyond the reach of existing telescopes.

    “Usually, if we get a measure of a comet is something strange, we go back and measure again until we understand what we’re seeing,” said Davide Farnocchia, Study Center Near-Earth Object (CNEOS) at JPL . and co-author on both papers. “But this is gone forever, probably know as much as ever know.”

    Links of interest:

    The VLT reveals a dark red and very elongated object.
    The first interstellar visitor Solar System dazzles scientists.
    ESO’s VLT sees `Oumuamua gaining momentum.
    Hubble sees’ Oumuamua is getting a boost, the new findings indicate that interstellar nomad is a comet.
    Chasing ‘Oumuamua.
    A new study shows what interstellar visitors’ Oumuamua can teach.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 11:30 am on October 23, 2018 Permalink | Reply
    Tags: , , , , , NASA Spitzer, Newborn Stars Blow Bubbles in the Cat's Paw Nebula   

    From JPL-Caltech: “Newborn Stars Blow Bubbles in the Cat’s Paw Nebula” 

    NASA JPL Banner

    From JPL-Caltech

    October 23, 2018

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    The Cat’s Paw Nebula, imaged here by NASA’s Spitzer Space Telescope using the MIPS and IRAC instruments, is a star-forming region that lies inside the Milky Way Galaxy. New stars may heat up the surrounding gas, which can expand to form “bubbles.” Image Credit: NASA/JPL-Caltech

    NASA/Spitzer Infrared Telescope

    This image from NASA’s Spitzer Space Telescope shows the Cat’s Paw Nebula, so named for the large, round features that create the impression of a feline footprint. The nebula is a star-forming region in the Milky Way galaxy, located in the constellation Scorpius. Estimates of its distance from Earth range from about 4,200 to about 5,500 light-years.

    Framed by green clouds, the bright red bubbles are the dominant feature in the image, which was created using data from two of Spitzer’s instruments. After gas and dust inside the nebula collapse to form stars, the stars may in turn heat up the pressurized gas surrounding them, causing it to expand into space and create bubbles.

    The green areas show places where radiation from hot stars collided with large molecules called “polycyclic aromatic hydrocarbons,” causing them to fluoresce.

    In some cases, the bubbles may eventually “burst,” creating the U-shaped features that are particularly visible in the image below, which was created using data from just one of Spitzer’s instruments.

    2
    The Cat’s Paw Nebula, imaged here by NASA’s Spitzer Space Telescope using the IRAC instrument, is a star-forming region inside the Milky Way Galaxy. The dark filament running through the middle of the nebula is a particularly dense region of gas and dust. Image Credit: NASA/JPL-Caltech

    Spitzer is an infrared telescope, and infrared light is useful to astronomers because it can penetrate thick clouds of gas and dust better than optical light (the kind visible to the human eye). The black filaments running horizontally through the nebula are regions of gas and dust so dense, not even infrared light can pass through them. These dense regions may soon be sites where another generation of stars will form.

    The Cat’s Paw star-forming region is estimated to be between 24 and 27 parsecs (80 and 90 light years) across. It extends beyond the left side of these images and intersects with a similar-sized star-forming region, NGC 6357. That region is also known as the Lobster Nebula – an unlikely companion for a cat.

    The top image was compiled using data from the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) aboard Spitzer. MIPS collects an additional “color” of light in the infrared range, which reveals the red-colored features, created by dust that has been warmed by the hot gas and the light from nearby stars. The second image is based on data from IRAC alone, so this dust is not visible.

    The images were pulled from data collected for the Galactic Legacy Mid-Plane Survey Extraordinaire project (GLIMPSE). Using data from Spitzer, GLIMPSE created the most accurate map ever of the large central bar of the galaxy and showed that the galaxy is riddled with gas bubbles like those seen here.

    More information about Spitzer is available at the following sites:

    http://www.spitzer.caltech.edu/
    https://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/overview.html

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 2:00 pm on August 2, 2018 Permalink | Reply
    Tags: , NASA Spitzer, Supernova remnant HBH3   

    From Spitzer via JPL: “The Fading Ghost of a Long-Dead Star” 

    NASA JPL Banner

    From JPL-Caltech

    via

    NASA/Spitzer Telescope


    Spitzer

    News Media Contact
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-1821
    Calla.e.cofield@jpl.nasa.gov

    1
    Thin, red veins of energized gas mark the location of the supernova remnant HBH3 in this image from NASA’s Spitzer Space Telescope. The puffy, white feature in the image is a portion of the star forming regions W3, W4 and W5. Infrared wavelengths of 3.6 microns have been mapped to blue, and 4.5 microns to red. The white color of the star-forming region is a combination of both wavelengths, while the HBH3 filaments radiate only at the longer 4.5 micron wavelength.Credit: NASA/JPL-Caltech/IPAC

    Thin, red veins of energized gas mark the location of one of the larger supernova remnants in the Milky Way galaxy in this image from NASA’s Spitzer Space Telescope.

    A supernova “remnant” refers to the collective, leftover signs of an exploded star, or supernova. The red filaments in this image belong to a supernova remnant known as HBH 3 that was first observed in 1966 using radio telescopes. Traces of the remnant also radiate optical light. The branches of glowing material are most likely molecular gas that was pummeled by a shockwave generated by the supernova. The energy from the explosion energized the molecules and caused them to radiate infrared light.

    The white, cloud-like formation also visible in the image is part of a complex of star-forming regions, simply named W3, W4 and W5. However, those regions extend far beyond the edge of this image. Both the white star-forming regions and the red filaments are approximately 6,400 light years away and lie inside our Milky Way galaxy.

    HBH 3 is about 150 light-years in diameter, ranking it amongst the largest known supernova remnants. It is also possibly one of the oldest: Astronomers estimate the original explosion may have happened anywhere from 80,000 to one million years ago.

    In 2016, NASA’s Fermi Gamma-Ray Telescope detected very high-energy light — called gamma rays — coming from the region near HBH 3. This emission may be coming from gas in one of the neighboring star-forming regions, excited by powerful particles emitted by the supernova blast.

    The Spitzer Space Telescope is one of NASA’s four Great Observatories — along with the Hubble Space Telescope, the Chandra X-ray Observatory and the Compton Gamma-Ray Observatory — and will celebrate its 15th birthday in space on Aug. 25. Spitzer sees the universe in infrared light, which is slightly less energetic than the optical light we can see with our eyes. In this image, taken in March 2010, infrared wavelengths of 3.6 microns have been mapped to blue, and 4.5 microns to red. The white color of the star-forming region is a combination of both wavelengths, while the HBH3 filaments radiate only at the longer 4.5-micron wavelength.

    More information on Spitzer can be found at its website:

    http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: