Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:43 am on July 2, 2019 Permalink | Reply
    Tags: "Atmosphere of Mid-Size Planet Revealed by Hubble and Spitzer", , , , , Mysterious World Is Unlike Anything Found in Our Solar System., , NASA Spitzer, One possible explanation is that the planet formed as a 10-Earth-mass rocky core that then accumulated hydrogen very close to its star rather than migrated in which is the conventional wisdom., Plamet GJ 3470 b, Weighing in at 12.6 Earth masses GJ 3470 b is more massive than Earth but less massive than Neptune   

    From NASA/ESA Hubble Telescope: “Atmosphere of Mid-Size Planet Revealed by Hubble and Spitzer” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    1

    Mysterious World Is Unlike Anything Found in Our Solar System.

    Our solar system contains two major classes of planets. Earth is a rocky terrestrial planet, as are Mercury, Venus, and Mars. At about the distance of the asteroid belt, there is a “frost line” where space is so cold more volatile material, like water, can remain frozen. Out here live the gas giants–Jupiter, Saturn, Uranus, and Neptune–which have bulked up on hydrogen and helium and other volatiles.

    Astronomers are curious about a new class of planet not found in the Solar System. Weighing in at 12.6 Earth masses the planet is more massive than Earth, but less massive than Neptune (hence, intermediate between the rocky and gaseous planets in the Solar System). What’s more, the planet, GJ 3470 b, is so close to its red dwarf star that it completes one orbit in just three days! As odd as it seems, planets in this mass range are likely the most abundant throughout the galaxy, based on surveys by NASA’s Kepler space telescope. But they are not found in our own solar system.

    Astronomers enlisted the combined multi-wavelength capabilities of NASA’s Hubble and Spitzer space telescopes to assemble for the first time a “fingerprint” of the chemical composition of GJ 3470 b’s atmosphere, which turns out to be mostly hydrogen and helium, and surprisingly, largely lacking heavier elements. One possible explanation is that the planet formed as a 10-Earth-mass rocky core that then accumulated hydrogen very close to its star, rather than migrated in which is the conventional wisdom for star-hugging planets.

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Björn Benneke
    University of Montreal, Canada
    bbenneke@astro.umontreal.ca

    2
    About This Image

    Structure of Exoplanet GJ 3470 b

    This artist’s illustration shows the theoretical internal structure of the exoplanet GJ 3470 b. It is unlike any planet found in the Solar System. Weighing in at 12.6 Earth masses the planet is more massive than Earth but less massive than Neptune. Unlike Neptune, which is 3 billion miles from the Sun, GJ 3470 b may have formed very close to its red dwarf star as a dry, rocky object. It then gravitationally pulled in hydrogen and helium gas from a circumstellar disk to build up a thick atmosphere. The disk dissipated many billions of years ago, and the planet stopped growing. The bottom illustration shows the disk as the system may have looked long ago. Observations by NASA’s Hubble and Spitzer space telescopes have chemically analyzed the composition of GJ 3470 b’s very clear and deep atmosphere, yielding clues to the planet’s origin. Many planets of this mass exist in our galaxy.

    Two NASA space telescopes have teamed up to identify, for the first time, the detailed chemical “fingerprint” of a planet between the sizes of Earth and Neptune. No planets like this can be found in our own solar system, but they are common around other stars.

    The planet, Gliese 3470 b (also known as GJ 3470 b), may be a cross between Earth and Neptune, with a large rocky core buried under a deep crushing hydrogen and helium atmosphere. Weighing in at 12.6 Earth masses, the planet is more massive than Earth, but less massive than Neptune (which is more than 17 Earth masses).

    Many similar worlds have been discovered by NASA’s Kepler space telescope, whose mission ended in 2018. In fact, 80% of the planets in our galaxy may fall into this mass range. However, astronomers have never been able to understand the chemical nature of such a planet until now, researchers say.

    By inventorying the contents of GJ 3470 b’s atmosphere, astronomers are able to uncover clues about the planet’s nature and origin.

    “This is a big discovery from the planet formation perspective. The planet orbits very close to the star and is far less massive than Jupiter—318 times Earth’s mass—but has managed to accrete the primordial hydrogen/helium atmosphere that is largely “unpolluted” by heavier elements,” said Björn Benneke of the University of Montreal, Canada. “We don’t have anything like this in the solar system, and that’s what makes it striking.”

    Astronomers enlisted the combined multi-wavelength capabilities NASA’s Hubble and Spitzer space telescopes to do a first-of-a-kind study of GJ 3470 b’s atmosphere.

    NASA/Spitzer Infrared Telescope

    This was accomplished by measuring the absorption of starlight as the planet passed in front of its star (transit) and the loss of reflected light from the planet as it passed behind the star (eclipse).

    Planet transit. NASA/Ames

    All totaled, the space telescopes observed 12 transits and 20 eclipses. The science of analyzing chemical fingerprints based on light is called “spectroscopy.”

    “For the first time we have a spectroscopic signature of such a world,” said Benneke. But he is at a loss for classification: Should it be called a “super-Earth” or “sub-Neptune?” Or perhaps something else?

    Fortuitously, the atmosphere of GJ 3470 b turned out to be mostly clear, with only thin hazes, enabling the scientists to probe deep into the atmosphere.

    “We expected an atmosphere strongly enriched in heavier elements like oxygen and carbon which are forming abundant water vapor and methane gas, similar to what we see on Neptune”, said Benneke. “Instead, we found an atmosphere that is so poor in heavy elements that its composition resembles the hydrogen/helium rich composition of the Sun.”

    Other exoplanets called “hot Jupiters” are thought to form far from their stars, and over time migrate much closer. But this planet seems to have formed just where it is today, says Benneke.

    The most plausible explanation, according to Benneke, is that GJ 3470 b was born precariously close to its red dwarf star, which is about half the mass of our Sun. He hypothesizes that essentially it started out as a dry rock, and rapidly accreted hydrogen from a primordial disk of gas when its star was very young. The disk is called a “protoplanetary disk.”

    “We’re seeing an object that was able to accrete hydrogen from the protoplanetary disk, but didn’t runaway to become a hot Jupiter,” said Benneke. “This is an intriguing regime.”

    One explanation is that the disk dissipated before the planet could bulk up further. “The planet got stuck being a sub-Neptune,” said Benneke.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 10:47 am on June 27, 2019 Permalink | Reply
    Tags: "A Whirlpool 'Warhol' from NASA's Spitzer Telescope", , , , , , NASA Spitzer   

    From JPL-Caltech: “A Whirlpool ‘Warhol’ from NASA’s Spitzer Telescope” 

    NASA JPL Banner

    From JPL-Caltech

    June 26, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    This multipanel image show how different wavelengths of light can reveal different features of a cosmic object. On the left is a visible light image of the Whirlpool galaxy. The next image combines visible and infrared light, while the two on the right show different wavelengths of infrared light. Credit: NASA/JPL-Caltech

    Unlike Andy Warhol’s famous silkscreen grids of repeating images rendered in different colors, the varying hues of this galaxy represent how its appearance changes in different wavelengths of light – from visible light to the infrared light seen by NASA’s Spitzer Space Telescope.

    The Whirlpool galaxy, also known as Messier 51 and NGC 5194/5195, is actually a pair of galaxies that are tugging and distorting each other through their mutual gravitational attraction. Located approximately 23 million light-years away, it resides in the constellation Canes Venatici.

    The leftmost panel (a) shows the Whirlpool in visible light, much as our eye might see it through a powerful telescope. In fact, this image comes from the Kitt Peak National Observatory 2.1-meter (6.8-foot) telescope. The spiraling arms are laced with dark threads of dust that radiate little visible light and obscure stars positioned within or behind them.

    Kitt Peak National Observatory 2.1-meter telescope interior

    Kitt Peak National Observatory 2.1 Meter Telescope Altitude 2,096 m (6,877 ft)

    The second panel from the left (b) includes two visible-light wavelengths (in blue and green) from Kitt Peak but adds Spitzer’s infrared data in red. This emphasizes how the dark dust veins that block our view in visible light begin to light up at these longer, infrared wavelengths.

    Spitzer’s full infrared view can be seen in the right two panels, which cover slightly different ranges of infrared light.

    In the middle-right panel (c), we see three wavelengths of infrared light: 3.6 microns (shown in blue), 4.5 microns (green) and 8 microns (red). The blended light from the billions of stars in the Whirlpool is brightest at the shorter infrared wavelengths and is seen here as a blue haze. The individual blue dots across the image are mostly nearby stars and a few distant galaxies. Red features show us dust composed mostly of carbon that is lit up by the stars in the galaxy.

    This glowing dust helps astronomers see where the densest areas of gas pile up in the spaces between the stars. Dense gas clouds are difficult to see in visible or infrared light, but they will always be present where there is dust.

    The far-right panel (d) expands our infrared view to include light at a wavelength of 24 microns (in red), which is particularly good for highlighting areas where the dust is especially hot. The bright reddish-white spots trace regions where new stars are forming and, in the process, heating their surroundings.

    The infrared views of the Whirlpool galaxy also show how dramatically different its two component parts are: The smaller companion galaxy at the top of the image has been stripped nearly clean of dust features that stand out so brilliantly in the lower spiral galaxy. The faint bluish haze seen around the upper galaxy is likely the blended light from stars thrown out of the galaxies as these two objects pull at each other during their close approach.

    The Kitt Peak visible-light image (a) shows light at 0.4 and 0.7 microns (blue and red). The rightmost two images (c and d) are from Spitzer with red, green and blue corresponding to wavelengths of 3.6, 4.5 and 8.0 microns (middle right) and 3.6, 8.0 and 24 microns (far right). The middle-left (b) image blends visible wavelengths (blue/green) and infrared (yellow/red). All of the data shown here were released as part of the Spitzer Infrared Nearby Galaxies Survey (SINGS) project, captured during Spitzer’s cryogenic and warm missions.

    The Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer and http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 5:15 pm on June 13, 2019 Permalink | Reply
    Tags: "How NASA's Spitzer Has Stayed Alive for So Long", , , , , NASA Spitzer   

    From NASA Spitzer: “How NASA’s Spitzer Has Stayed Alive for So Long” 

    NASA Spitzer


    From NASA Spitzer

    June 13, 2019
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    After nearly 16 years of exploring the cosmos in infrared light, NASA’s Spitzer Space Telescope will be switched off permanently on Jan. 30, 2020. By then, the spacecraft will have operated for more than 11 years beyond its prime mission, thanks to the Spitzer engineering team’s ability to address unique challenges as the telescope slips farther and farther from Earth.

    Managed and operated by NASA’s Jet Propulsion Laboratory in Pasadena, California, Spitzer is a small but transformational observatory. It captures infrared light, which is often emitted by “warm” objects that aren’t quite hot enough to radiate visible light. Spitzer has lifted the veil on hidden objects in nearly every corner of the universe, from a new ring around Saturn to observations of some of the most distant galaxies known. It has spied stars in every stage of life, mapped our home galaxy, captured gorgeous images of nebulas and probed newly discovered planets orbiting distant stars.

    But as Spitzer’s deputy mission manager, Joseph Hunt, said, “You can have a world-class spacecraft, but it doesn’t mean anything if you can’t get the data back home.”

    Spitzer orbits the Sun on a path similar to Earth’s but moves slightly slower. Today it trails about 158 million miles (254 million kilometers) behind our planet – more than 600 times the distance between Earth and the Moon. That distance, along with the curve of Spitzer’s orbit, means that when the spacecraft points its fixed antenna at Earth to download data or receive commands, its solar panels tilt away from the Sun. During those periods, the spacecraft must rely on a combination of solar power and battery power to operate.

    The angle at which the panels point away from the Sun has increased every year that the mission has been operating. These days, to communicate with Earth, Spitzer has to position its panels at a 53-degree angle away from the Sun (90 degrees would be fully facing away), even though the mission planners never intended for it to tilt more than 30 degrees from the Sun. Spitzer can communicate with Earth for about 2.5 hours before it has to turn its solar panels back toward the Sun to recharge its batteries. That communications window would grow shorter year after year if Spitzer continued operating, which means there is a limit to how long it would be possible to operate the spacecraft efficiently.

    An Enduring Effort

    Teaching the spacecraft to accept new conditions – such as the increasing angle of the solar panels during communications with Earth – isn’t as simple as flipping a switch. There are multiple ways these changes could trigger safety mechanisms in the spacecraft’s flight software. For instance, if the panels tilted more than 30 degrees from the Sun during the mission’s early years, the software would have hit “pause,” putting the spacecraft into “safe mode” until the mission team could figure out what was wrong. The changing angle of Spitzer to the Sun could also trigger safety mechanisms intended to prevent spacecraft parts from overheating.

    Entering safe mode can be particularly hazardous for the spacecraft, both because of its growing distance from Earth (which makes communicating more difficult) and because the aging onboard systems might not restart once they shut off.

    To deal with these challenges, the project engineers and scientists at JPL and Caltech have worked with the observatory engineering team at Lockheed Martin Space’s Littleton, Colorado, facility to find a path forward. (Lockheed Martin built the Spitzer spacecraft for NASA.) Bolinda Kahr, Spitzer’s mission manager, leads this multi-center team. Over the years she and her colleagues have successfully figured out how to override safety mechanisms designed for the prime mission while also making sure that such alterations don’t introduce other unwanted side effects.

    But as Spitzer ages and gets farther from Earth, the challenge of keeping the spacecraft operating and the risk that it will suffer a major anomaly are only increasing.

    “I can genuinely say that no one involved in the mission planning thought we’d be running in 2019,” said Lisa Storrie-Lombardi, Spitzer’s project manager. “But we have an incredibly robust spacecraft and an incredible team. And we’ve been lucky. You have to have some luck, because you can’t anticipate everything.”

    Keeping Cool

    Most infrared detectors have to be cooled to very low temperatures, because excess infrared light from “warm” objects – including the Sun, Earth, the spacecraft and even the instruments themselves – can overwhelm the infrared sensors. This cooling is typically done with a chemical coolant.

    The Spitzer planners instead came up with a passive-cooling system that included flying the spacecraft far from Earth (a major infrared heat source). They also chose materials for the spacecraft exterior that would both reflect sunlight away before it could heat the telescope and radiate absorbed heat back into space. In this configuration, coolant is required only to lower the instrument temperatures a few degrees further. Reducing the onboard coolant supply also drastically allowed the engineers to cut the total size of the spacecraft by more than 80% and helped curtail the anticipated mission budget by more than 75%.

    Although Spitzer’s coolant supply ran out in 2009, rendering two of its three instruments unusable, the team was able to keep half of the remaining instrument operating. (The instrument was designed to detect four wavelengths of infrared light; in the “warm” mode, it can still detect two of them.)

    Lasting more than twice as long as the primary mission, Spitzer’s extended mission has yielded some of the observatory’s most transformational results. In 2017, the telescope revealed the presence of seven rocky planets around the TRAPPIST-1 star. In many cases, Spitzer’s exoplanet observations were combined with observations by other missions, including NASA’s Kepler and Hubble space telescopes.

    Spitzer’s final year and a half of science operations include a number of exoplanet-related investigations. One program will investigate 15 dwarf stars (similar to the TRAPPIST-1 star) likely to host exoplanets. An additional 650 hours are dedicated to follow-up observations of planets discovered by NASA’s Transiting Exoplanet Survey Satellite (TESS), which launched just over a year ago.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    Final Voyage

    Every mission must end at some point. As the challenges associated with operating Spitzer continue to grow and as the risk of a mission-ending anomaly on the spacecraft rises, NASA has made the decision to close out the mission in a controlled manner.

    “There have been times when the Spitzer mission could have ended in a way we didn’t plan for,” said Kahr. “I’m glad that in January we’ll be able to retire the spacecraft deliberately, the way we want to do it.”

    While Spitzer’s mission is ending, it has helped set the stage for NASA’s James Webb Space Telescope, set to launch in 2021, which will study the universe in many of the same wavelengths observed by Spitzer.

    NASA/ESA/CSA Webb Telescope annotated

    Webb’s primary mirror is about 7.5 times larger than Spitzer’s mirror, meaning Webb will be able to study many of the same targets in much higher resolution and objects much farther away from Earth than what Spitzer can observe.

    3

    Thirteen science programs have already been selected for Webb’s first five months of operations, four of which build directly on Spitzer observations. Webb will greatly expand on the legacy begun by Spitzer and answer questions that Spitzer has only begun to investigate.

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer

    http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 12:28 pm on May 31, 2019 Permalink | Reply
    Tags: "NASA's Spitzer Captures Stellar Family Portrait", , , , , NASA Spitzer   

    From NASA Spitzer: “NASA’s Spitzer Captures Stellar Family Portrait” 

    NASA/Spitzer Telescope


    From NASA Spitzer

    May 30, 2019
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    A mosaic by NASA’s Spitzer Space Telescope of the Cepheus C and Cepheus B regions. This image combines data from Spitzer’s IRAC and MIPS instruments. Credit: NASA/JPL-Caltech

    2
    An annotated mosaic by NASA’s Spitzer Space Telescope of the Cepheus C and Cepheus B regions. This image combines data from Spitzer’s IRAC and MIPS instruments. Image Credit: NASA/JPL-Caltech

    Full image and caption

    In this large celestial mosaic taken by NASA’s Spitzer Space Telescope, there’s a lot to see, including multiple clusters of stars born from the same dense clumps of gas and dust. Some of these clusters are older than others and more evolved, making this a generational stellar portrait.

    The grand green-and-orange delta filling most of the image is a faraway nebula, or a cloud of gas and dust in space. Though the cloud may appear to flow from the bright white spot at its tip, it is actually what remains of a much larger cloud that has been carved away by radiation from stars. The bright region is illuminated by massive stars, belonging to a cluster that extends above the white spot. The white color is the combination of four colors (blue, green, orange and red), each representing a different wavelength of infrared light, which is invisible to human eyes. Dust that has been heated by the stars’ radiation creates the surrounding red glow.

    On the left side of this image, a dark filament runs horizontally through the green cloud. A smattering of baby stars (the red and yellow dots) appear inside it. Known as Cepheus C, the area is a particularly dense concentration of gas and dust where infant stars form. The dark vein of material will eventually be dispersed by strong winds produced as the stars get older, as well as when they eventually explode and die. This will create an illuminated puffed-up region that will look similar to the bright red-and-white region on the large nebula’s upper-right side. The region is called Cepheus C because it lies in the constellation Cepheus, which can be found near the constellation Cassiopeia. Cepheus C is about 6 light-years long and lies about 40 light-years from the bright spot at the tip of the nebula.

    A second large nebula can be seen on the right side of the image, with a star cluster located just above it. Known as Cepheus B, the cluster sits within a few thousand light-years of our Sun. A study of this region using Spitzer data [ The Astrophyical Journal ] found that the dramatic collection is about 4 million to 5 million years old – slightly older than those in Cepheus C.

    In that way, the mosaic is a veritable family portrait, featuring infants, parents and grandparents of star-forming regions: Stars form in dense clouds of material, like the dark vein that makes up Cepheus C. As the stars grow, they produce winds that blow the gas and dust outward, to form beautiful, illuminated nebulas like the bright white spot at the top of the larger nebula. Finally, the dust and gas disperse, and the star clusters stand alone in space, as with Cepheus B.

    Other Sights to See

    The amazing features in this image don’t end there.

    4
    Annotated image of the Cepheus B and Cepheus C regions by NASA’s Spitzer Space Telescope, using data from the IRAC instrument. Credit: NASA/JPL-Caltech.

    Look closely for the small, red hourglass shape just below Cepheus C. This is V374 Ceph. Astronomers studying this massive star have speculated that it might be surrounded by a nearly edge-on disk of dark, dusty material. The dark cones extending to the right and left of the star are a shadow of that disk.

    The smaller nebula on the right side of the image includes two particularly interesting objects. In the upper-left portion of the nebula, try to find a blue star crowned by a small, red arc of light. This “runaway star” is plowing through the gas and dust at a rapid clip, creating a shock wave, or “bow shock,” in front of itself.

    Also hidden within this second nebula, a small cluster of newborn stars illuminates the dense cloud of gas and dust where they formed. This region is more obvious in the image below, which uses data from just one of Spitzer’s instruments. (The top image includes data from two instruments.) In the image below, this feature appears as a bright teal splash.

    The two-instrument image was compiled using data from the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) during Spitzer’s “cold” mission, before the spacecraft’s liquid helium coolant ran out in 2009. The colors correspond with IRAC wavelengths of 3.6 microns (blue), 4.5 microns (cyan), 8 microns (green) and MIPS at 24 microns (red).

    The one-instrument image shows data from IRAC only, with colors corresponding to wavelengths of 3.6, 4.5, 5.8 and 8.0 ?m (shown as blue, green, orange and red).

    In 2017 and 2016, high school students and teachers contributed to our understanding of the Cepheus C star-forming region. As part of NITARP (NASA/IPAC Teacher Archive Research Program), the students and teachers combed through Spitzer data to identify the presence of young stellar objects. Over two years and with the guidance of astronomer Luisa Rebull of IPAC at Caltech, the students and teachers identified more than 100 such objects that hadn’t been identified in previous studies. Educators interested in participating in NITARP should visit the program website.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer and http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 12:16 pm on May 9, 2019 Permalink | Reply
    Tags: "New Clues About How Ancient Galaxies Lit up the Universe", , , , , , , NASA Spitzer, Observations came from the GREATS survey short for GOODS Re-ionization Era wide-Area Treasury from Spitzer.   

    From JPL-Caltech: “New Clues About How Ancient Galaxies Lit up the Universe” 

    NASA JPL Banner

    From JPL-Caltech

    May 8, 2019
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    This deep-field view of the sky, taken by NASA’s Spitzer Space Telescope, is dominated by galaxies – including some very faint, very distant ones – circled in red. The bottom right inset shows one of those distant galaxies, made visible thanks to a long-duration observation by Spitzer. The wide-field view also includes data from NASA’s Hubble Space Telescope. The Spitzer observations came from the GREATS survey, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS is itself an acronym: Great Observatories Origins Deep Survey.

    NASA’s Spitzer Space Telescope has revealed that some of the universe’s earliest galaxies were brighter than expected. The excess light is a byproduct of the galaxies releasing incredibly high amounts of ionizing radiation. The finding offers clues to the cause of the Epoch of Reionization, a major cosmic event that transformed the universe from being mostly opaque to the brilliant starscape seen today.

    NASA/Spitzer Infrared Telescope

    In a new study [MNRAS], researchers report on observations of some of the first galaxies to form in the universe, less than 1 billion years after the big bang (or a little more than 13 billion years ago). The data show that in a few specific wavelengths of infrared light, the galaxies are considerably brighter than scientists anticipated. The study is the first to confirm this phenomenon for a large sampling of galaxies from this period, showing that these were not special cases of excessive brightness, but that even average galaxies present at that time were much brighter in these wavelengths than galaxies we see today.

    No one knows for sure when the first stars in our universe burst to life. But evidence suggests that between about 100 million and 200 million years after the big bang, the universe was filled mostly with neutral hydrogen gas that had perhaps just begun to coalesce into stars, which then began to form the first galaxies. By about 1 billion years after the big bang, the universe had become a sparkling firmament. Something else had changed, too: Electrons of the omnipresent neutral hydrogen gas had been stripped away in a process known as ionization. The Epoch of Reionization – the changeover from a universe full of neutral hydrogen to one filled with ionized hydrogen – is well documented.

    Before this universe-wide transformation, long-wavelength forms of light, such as radio waves and visible light, traversed the universe more or less unencumbered. But shorter wavelengths of light – including ultraviolet light, X-rays and gamma rays – were stopped short by neutral hydrogen atoms. These collisions would strip the neutral hydrogen atoms of their electrons, ionizing them.

    But what could have possibly produced enough ionizing radiation to affect all the hydrogen in the universe? Was it individual stars? Giant galaxies? If either were the culprit, those early cosmic colonizers would have been different than most modern stars and galaxies, which typically don’t release high amounts of ionizing radiation. Then again, perhaps something else entirely caused the event, such as quasars – galaxies with incredibly bright centers powered by huge amounts of material orbiting supermassive black holes.

    “It’s one of the biggest open questions in observational cosmology,” said Stephane De Barros, lead author of the study and a postdoctoral researcher at the University of Geneva in Switzerland. “We know it happened, but what caused it? These new findings could be a big clue.”

    Looking for Light

    To peer back in time to the era just before the Epoch of Reionization ended, Spitzer stared at two regions of the sky for more than 200 hours each, allowing the space telescope to collect light that had traveled for more than 13 billion years to reach us.

    Reionization era and first stars, Caltech

    As some of the longest science observations ever carried out by Spitzer, they were part of an observing campaign called GREATS, short for GOODS Re-ionization Era wide-Area Treasury from Spitzer. GOODS (itself an acronym: Great Observatories Origins Deep Survey) is another campaign that performed the first observations of some GREATS targets. The study, published in the Monthly Notices of the Royal Astronomical Society, also used archival data from NASA’s Hubble Space Telescope.

    Using these ultra-deep observations by Spitzer, the team of astronomers observed 135 distant galaxies and found that they were all particularly bright in two specific wavelengths of infrared light produced by ionizing radiation interacting with hydrogen and oxygen gases within the galaxies. This implies that these galaxies were dominated by young, massive stars composed mostly of hydrogen and helium. They contain very small amounts of “heavy” elements (like nitrogen, carbon and oxygen) compared to stars found in average modern galaxies.

    These stars were not the first stars to form in the universe (those would have been composed of hydrogen and helium only) but were still members of a very early generation of stars. The Epoch of Reionization wasn’t an instantaneous event, so while the new results are not enough to close the book on this cosmic event, they do provide new details about how the universe evolved at this time and how the transition played out.

    “We did not expect that Spitzer, with a mirror no larger than a Hula-Hoop, would be capable of seeing galaxies so close to the dawn of time,” said Michael Werner, Spitzer’s project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “But nature is full of surprises, and the unexpected brightness of these early galaxies, together with Spitzer’s superb performance, puts them within range of our small but powerful observatory.”

    NASA’s James Webb Space Telescope, set to launch in 2021, will study the universe in many of the same wavelengths observed by Spitzer. But where Spitzer’s primary mirror is only 85 centimeters (33.4 inches) in diameter, Webb’s is 6.5 meters (21 feet) – about 7.5 times larger – enabling Webb to study these galaxies in far greater detail. In fact, Webb will try to detect light from the first stars and galaxies in the universe. The new study shows that due to their brightness in those infrared wavelengths, the galaxies observed by Spitzer will be easier for Webb to study than previously thought.

    “These results by Spitzer are certainly another step in solving the mystery of cosmic reionization,” said Pascal Oesch, an assistant professor at the University of Geneva and a co-author on the study. “We now know that the physical conditions in these early galaxies were very different than in typical galaxies today. It will be the job of the James Webb Space Telescope to work out the detailed reasons why.”

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer and http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:38 am on May 4, 2019 Permalink | Reply
    Tags: , , , , , , NASA Spitzer   

    From JPL-Caltech: “The Giant Galaxy Around the Giant Black Hole” 

    NASA JPL Banner

    From JPL-Caltech

    1

    The galaxy Messier 87, imaged here by NASA’s Spitzer Space Telescope, is home to a supermassive black hole that spews two jets of material out into space at nearly the speed of light. The inset shows a close-up view of the shockwaves created by the two jets.Credit: NASA/JPL-Caltech/IPAC

    NASA/Spitzer Infrared Telescope

    On April 10, 2019, the Event Horizon Telescope (EHT) unveiled the first-ever image of a black hole’s event horizon, the area beyond which light cannot escape the immense gravity of the black hole.

    The first image of a black hole, Messier 87 Credit Event Horizon Telescope Collaboration, via NSF and ERC 4.10.19

    That giant black hole, with a mass of 6.5 billion Suns, is located in the elliptical galaxy Messier 87. EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

    This image from NASA’s Spitzer Space Telescope shows the entire M87 galaxy in infrared light. The EHT image, by contrast, relied on light in radio wavelengths and showed the black hole’s shadow against the backdrop of high-energy material around it.

    EHT map

    Located about 55 million light-years from Earth, Messier 87 has been a subject of astronomical study for more than 100 years and has been imaged by many NASA observatories, including the Hubble Space Telescope, the Chandra X-ray Observatory and NuSTAR.

    NASA/ESA Hubble Telescope

    NASA/Chandra X-ray Telescope

    NASA/DTU/ASI NuSTAR X-ray telescope

    In 1918, astronomer Heber Curtis first noticed “a curious straight ray” extending from the galaxy’s center. This bright jet of high-energy material, produced by a disk of material spinning rapidly around the black hole, is visible in multiple wavelengths of light, from radio waves through X-rays. When the particles in the jet impact the interstellar medium (the sparse material filling the space between stars in M87), they create a shockwave that radiates in infrared and radio wavelengths of light but not visible light. In the Spitzer image, the shockwave is more prominent than the jet itself.

    The brighter jet, located to the right of the galaxy’s center, is traveling almost directly toward Earth. Its brightness is amplified due to its high speed in our direction, but even more so because of what scientists call “relativistic effects,” which arise because the material in the jet is traveling near the speed of light. The jet’s trajectory is just slightly offset from our line of sight with respect to the galaxy, so we can still see some of the length of the jet. The shockwave begins around the point where the jet appears to curve down, highlighting the regions where the fast-moving particles are colliding with gas in the galaxy and slowing down.

    The second jet, by contrast, is moving so rapidly away from us that the relativistic effects render it invisible at all wavelengths. But the shockwave it creates in the interstellar medium can still be seen here.

    Located on the left side of the galaxy’s center, the shockwave looks like an inverted letter “C.” While not visible in optical images, the lobe can also be seen in radio waves, as in this image from the National Radio Astronomy Observatory’s Very Large Array.

    Close-up from VLA of a jet near black hole in Messier 87

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    By combining observations in the infrared, radio waves, visible light, X-rays and extremely energetic gamma rays, scientists can study the physics of these powerful jets. Scientists are still striving for a solid theoretical understanding of how gas being pulled into black holes creates outflowing jets.

    Infrared light at wavelengths of 3.6 and 4.5 microns are rendered in blue and green, showing the distribution of stars, while dust features that glow brightly at 8.0 microns are shown in red. The image was taken during Spitzer’s initial “cold” mission.

    The Jet Propulsion Laboratory in Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space Systems in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech.

    More information on Spitzer can be found at its website: http://www.spitzer.caltech.edu/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:46 am on April 29, 2019 Permalink | Reply
    Tags: , , , , , NASA Spitzer,   

    From NASA Spitzer: “The Giant Galaxy Around the Giant Black Hole” 

    NASA/Spitzer Telescope


    From NASA Spitzer

    04.25.19

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    A composite image showing the galaxy Messier 87 and, in inset, the particle jets emerging from the black hole at its heart. NASA/JPL-Caltech/IPAC/Event Horizon Telescope Collaboration Armstrong Roberts/ClassicStock/Getty Images.

    On April 10, 2019, the Event Horizon Telescope (EHT) unveiled the first-ever image of a black hole’s event horizon, the area beyond which light cannot escape the immense gravity of the black hole. That giant black hole, with a mass of 6.5 billion Suns, is located in the elliptical galaxy Messier 87 (M87). EHT is an international collaboration whose support in the U.S. includes the National Science Foundation.

    This image from NASA’s Spitzer Space Telescope shows the entire Messier 87 galaxy in infrared light. The EHT image, by contrast, relied on light in radio wavelengths and showed the black hole’s shadow against the backdrop of high-energy material around it.

    EHT map

    Located about 55 million light-years from Earth, M87 has been a subject of astronomical study for more than 100 years and has been imaged by many NASA observatories, including the Hubble Space Telescope, the Chandra X-ray Observatory and NuSTAR.

    NASA/ESA Hubble Telescope

    NASA/Chandra X-ray Telescope

    NASA/DTU/ASI NuSTAR X-ray telescope

    In 1918, astronomer Heber Curtis first noticed “a curious straight ray” extending from the galaxy’s center. This bright jet of high-energy material, produced by a disk of material spinning rapidly around the black hole, is visible in multiple wavelengths of light, from radio waves through X-rays. When the particles in the jet impact the interstellar medium (the sparse material filling the space between stars in M87), they create a shockwave that radiates in infrared and radio wavelengths of light but not visible light. In the Spitzer image, the shockwave is more prominent than the jet itself.

    The brighter jet, located to the right of the galaxy’s center, is traveling almost directly toward Earth. Its brightness is amplified due to its high speed in our direction, but even more so because of what scientists call “relativistic effects,” which arise because the material in the jet is traveling near the speed of light. The jet’s trajectory is just slightly offset from our line of sight with respect to the galaxy, so we can still see some of the length of the jet. The shockwave begins around the point where the jet appears to curve down, highlighting the regions where the fast-moving particles are colliding with gas in the galaxy and slowing down.

    The second jet, by contrast, is moving so rapidly away from us that the relativistic effects render it invisible at all wavelengths. But the shockwave it creates in the interstellar medium can still be seen here.

    Located on the left side of the galaxy’s center, the shockwave looks like an inverted letter “C.” While not visible in optical images, the lobe can also be seen in radio waves, as in this image from the National Radio Astronomy Observatory’s Very Large Array.

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    By combining observations in the infrared, radio waves, visible light, X-rays and extremely energetic gamma rays, scientists can study the physics of these powerful jets. Scientists are still striving for a solid theoretical understanding of how gas being pulled into black holes creates outflowing jets.

    Infrared light at wavelengths of 3.6 and 4.5 microns are rendered in blue and green, showing the distribution of stars, while dust features that glow brightly at 8.0 microns are shown in red. The image was taken during Spitzer’s initial “cold” mission.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 12:13 pm on March 27, 2019 Permalink | Reply
    Tags: "'Space Butterfly' Is Home to Hundreds of Baby Stars", , NASA Spitzer, Officially named W40 the butterfly is a nebula - a giant cloud of gas and dust in space where new stars may form., Serpens South   

    From JPL-Caltech: “‘Space Butterfly’ Is Home to Hundreds of Baby Stars” 

    NASA JPL Banner

    From JPL-Caltech

    March 27, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1

    What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA’s Spitzer Space Telescope.

    NASA/Spitzer Infrared Telescope

    Officially named W40, the butterfly is a nebula – a giant cloud of gas and dust in space where new stars may form. The butterfly’s two “wings” are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region.

    Besides being beautiful, W40 exemplifies how the formation of stars results in the destruction of the very clouds that helped create them. Inside giant clouds of gas and dust in space, the force of gravity pulls material together into dense clumps. Sometimes these clumps reach a critical density that allows stars to form at their cores. Radiation and winds coming from the most massive stars in those clouds – combined with the material spewed into space when those stars eventually explode – sometimes form bubbles like those in W40. But these processes also disperse the gas and dust, breaking up dense clumps and reducing or halting new star formation.

    The material that forms W40’s wings was ejected from a dense cluster of stars that lies between the wings in the image. The hottest, most massive of these stars, W40 IRS 1a, lies near the center of the star cluster.

    W40 is about 1,400 light-years from the Sun, about the same distance as the well-known Orion nebula, although the two are almost 180 degrees apart in the sky. They are two of the nearest regions in which massive stars – with masses upwards of 10 times that of the Sun – have been observed to be forming.

    Another cluster of stars, named Serpens South, can be seen to the upper right of W40 in this image. Although both Serpens South and the cluster at the heart of W40 are young in astronomical terms (less than a few million years old), Serpens South is the younger of the two. Its stars are still embedded within their cloud but will someday break out to produce bubbles like those of W40. Spitzer has also produced a more detailed image of the Serpens South cluster.

    4

    Stellar members of Serpens South star cluster can be seen as the green, yellow, and orange tinted specks sitting atop the black dust lane running down the center of the image. Like raindrops, stars form when thick patches of cosmic clouds condense.

    Tints of green in the image represent hot hydrogen gas excited when high-speed jets of gas ejected by infant stars collide with the cool gas in the surrounding cloud.

    Wisps of red in the background are organic molecules called polycyclic aromatic hydrocarbons (PAHs), which are being excited by stellar radiation from a neighboring star-forming region located to the east of this image, called W40. On Earth PAHs are found on charred barbeque grills and in the sooty automobile exhaust.

    This Spitzer picture is composed of three images taken with the telescope’s Infrared Array Camera (IRAC) at 3.6 (blue), 4.5 (green), and 5.8 (red) microns.

    A mosaic of Spitzer’s observation of the W40 star-forming region was originally published as part of the Massive Young stellar clusters Study in Infrared and X-rays (MYStIX) survey of young stellar objects.

    The Spitzer picture ‘Space Butterfly’ is composed of four images taken with the telescope’s Infrared Array Camera (IRAC) in different wavelengths of infrared light: 3.6, 4.5, 5.8 and 8.0 µm (shown as blue, green, orange and red). Organic molecules made of carbon and hydrogen, called polycyclic aromatic hydrocarbons (PAHs), are excited by interstellar radiation and become luminescent at wavelengths near 8.0 microns, giving the nebula its reddish features. Stars are brighter at the shorter wavelengths, giving them a blue tint. Some of the youngest stars are surrounded by dusty disks of material, which glow with a yellow or red hue.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 11:47 am on March 15, 2019 Permalink | Reply
    Tags: "Giant Stars in Our Black Hole’s Neighborhood", , , , , , , NASA Spitzer,   

    From AAS NOVA: “Giant Stars in Our Black Hole’s Neighborhood” 

    AASNOVA

    From AAS NOVA

    15 March 2019
    Kerry Hensley

    1
    This infrared view from Spitzer cuts through the dust in the galactic plane to reveal the center of the Milky Way. Infrared observations are critical for studying the stars at the center of the galaxy, which are visible as the bright spot in the center of this image. [NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)]

    NASA/Spitzer Infrared Telescope

    How does a supermassive black hole affect its stellar neighbors? One way to explore this question is by searching for old, giant stars in the extreme environs of the galactic center.

    Crowded Quarters

    3
    Dark dust lanes block the visible light from the galactic center, hiding the dense star cluster located there. [Dave Young]

    The supermassive black hole at the center of our galaxy likely plays a huge role in the evolution and dynamics of stars in its neighborhood, as well as in how they are spatially distributed.

    Theory predicts that old, giant stars near the galactic center should be arrayed in a “cusp”-like distribution, with the number of stars per square arcsecond increasing sharply toward the central black hole. Faint red giants seem to follow the expected distribution, but brighter red giants — which can be probed closer to the center of the galaxy — do not. Instead, these stars appear to follow a “core”-like distribution, with fewer stars than expected within the central arcsecond of the galaxy.

    Many theories have been proposed to explain the apparent lack of bright red giants near the galactic center, from stellar collisions to tidal disruption by the supermassive black hole. While these factors may play a role, it’s also possible that observational challenges have prevented astronomers from fully cataloging the stellar population at the galactic center.

    4
    Giant stars from this study (black stars) on an H-R diagram with the theoretical isochrones used to determine the stellar ages. [Habibi et al. 2019]

    Tracking Down Missing Stars

    Observing stars so close to the galactic center is tricky — it’s crowded there, and starlight is highly extincted by dust clouds in the galactic plane at many wavelengths. In order to probe the stellar population near the galactic center, a team led by Maryam Habibi (Max Planck Institute for Extraterrestrial Physics, Germany) analyzed more than a decade’s worth of near-infrared stellar spectra from the SINFONI spectrograph on ESO’s Very Large Telescope.

    ESO SINFONI installed at the Cassegrain focus of UT3 on the VLT

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    The spectra used in this study were collected with the help of adaptive optics, in which the telescope’s mirror is deformed slightly to correct for the effects of turbulence in Earth’s atmosphere in close to real time — critical for observations of individual stars in a field as crowded as the galactic center!

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT, a major asset of the Adaptive Optics system

    By co-adding multiple epochs of spectra to tease out faint spectral features, the authors derived the effective temperature, spectral type, age, mass, and radius for each target star. Their deeper spectra allowed them to identify old giants that had previously been misclassified as younger stars, bringing the number of known giants to 21.

    Cusp Versus Core

    Combining their new observations of bright giants within the central arcsecond with previously observed giants farther from the galactic center, the authors find that the distribution of bright giants can be described by a power law with an exponent of 0.34 ± 0.04 — definitively ruling out a core-like distribution.

    Does this mean the galactic center’s core–cusp problem has been solved? While many of the missing giants have been found, the authors estimate that there are still stars awaiting discovery in the crowded interior of our galaxy, including some of the brightest red giants. Future observations should help us understand the complex distribution of stellar populations in the galactic center.

    Citation

    “Spectroscopic Detection of a Cusp of Late-type Stars Around the Central Black Hole in the Milky Way,” M. Habibi et al 2019 ApJL 872 L15.
    https://iopscience.iop.org/article/10.3847/2041-8213/ab03cf/meta

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 10:42 am on February 26, 2019 Permalink | Reply
    Tags: , , , , , , ESO WFI at 2.2 meter MPG/ESO, , NASA Spitzer, , What remains of the stars-Past and future generations of stars in NGC 300"   

    From European Space Agency: “What remains of the stars-Past and future generations of stars in NGC 300” 

    ESA Space For Europe Banner

    From European Space Agency

    25/02/2019
    ESA/XMM-Newton (X-rays); MPG/ESO (optical); NASA/Spitzer (infrared). Acknowledgement: S. Carpano, Max-Planck Institute for Extraterrestrial Physics

    ESA/XMM Newton


    MPG/ESO 2.2 meter telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres

    NASA/Spitzer Infrared Telescope

    1

    This swirling palette of colours portrays the life cycle of stars in a spiral galaxy known as NGC 300.

    Located some six million light-years away, NGC 300 is relatively nearby. It is one of the closest galaxies beyond the Local Group – the hub of galaxies to which our own Milky Way galaxy belongs. Due to its proximity, it is a favourite target for astronomers to study stellar processes in spiral galaxies.

    The population of stars in their prime is shown in this image in green hues, based on optical observations performed with the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at La Silla, Chile.

    ESO WFI LaSilla 2.2-m MPG/ESO telescope at La Silla, 600 km north of Santiago de Chile at an altitude of 2400 metres

    Red colours indicate the glow of cosmic dust in the interstellar medium that pervades the galaxy: this information derives from infrared observations made with NASA’s Spitzer space telescope, and can be used to trace stellar nurseries and future stellar generations across NGC 300.

    A complementary perspective on this galaxy’s composition comes from data collected in X-rays by ESA’s XMM-Newton space observatory, shown in blue. These represent the end points of the stellar life cycle, including massive stars on the verge of blasting out as supernovas, remnants of supernova explosions, neutron stars, and black holes. Many of these X-ray sources are located in NGC 300, while others – especially towards the edges of the image – are foreground objects in our own Galaxy, or background galaxies even farther away.

    The sizeable blue blob immediately to the left of the galaxy’s centre is especially interesting, featuring two intriguing sources that are part of NGC 300 and shine brightly in X-rays.

    One of them, known as NGC 300 X-1, is in fact a binary system, consisting of a Wolf-Rayet star – an ageing hot, massive and luminous type star that drives strong winds into its surroundings – and a black hole, the compact remains of what was once another massive, hot star. As matter from the star flows towards the black hole, it is heated up to temperatures of millions of degrees or more, causing it to shine in X-rays.

    The other source, dubbed NGC 300 ULX1, was originally identified as a supernova explosion in 2010. However, later observations prompted astronomers to reconsider this interpretation, indicating that this source also conceals a binary system comprising a very massive star and a compact object – a neutron star or a black hole – feeding on material from its stellar companion.

    Data obtained in 2016 with ESA’s XMM-Newton and NASA’s NuSTAR observatories revealed regular variations in the X-ray signal of NGC 300 ULX1, suggesting that the compact object in this binary system is a highly magnetized, rapidly spinning neutron star, or pulsar.

    NASA/DTU/ASI NuSTAR X-ray telescope

    The large blue blob in the upper left corner is a much more distant object: a cluster of galaxies more than one billion light years away, whose X-ray glow is caused by the hot diffuse gas interspersed between the galaxies.

    Explore NGC 300 in ESASky

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: