Tagged: NASA Spitzer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:09 am on May 23, 2018 Permalink | Reply
    Tags: "Antennae" galaxies, , , , , NASA Spitzer   

    From Spitzer via Manu: “Fire Within the Antennae Galaxies” 09.07.04 


    Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    NASA/Spitzer Telescope


    From Spitzer

    1

    This image from NASA’s Spitzer Space Telescope reveals hidden populations of newborn stars at the heart of the colliding “Antennae” galaxies. These two galaxies, known individually as NGC 4038 and 4039, are located around 68 million light-years away and have been merging together for about the last 800 million years. The latest Spitzer observations provide a snapshot of the tremendous burst of star formation triggered in the process of this collision, particularly at the site where the two galaxies overlap.

    The main image is a composite of infrared data from Spitzer and visible-light data from Kitt Peak National Observatory, Tucson, Ariz. Visible light from stars in the galaxies (blue and green) is shown together with infrared light from warm dust clouds heated by newborn stars (red).

    The two nuclei, or centers, of the merging galaxies show up as yellow-white areas, one above the other. The brightest clouds of forming stars lie in the overlap region between and left of the nuclei.

    The upper right panel shows the Spitzer image by itself. This picture was taken by the infrared array camera and is a combination of infrared light ranging from 3.6 microns (shown in blue) to 8.0 microns (shown in red). The dust emission (red) is by far the strongest feature in this image. Starlight was systematically subtracted from the longer wavelength data (red) to enhance dust features.

    The lower right panel shows the true-color, visible-light image by itself. Here, we find a strikingly different view, with the bright star-forming features seen in the Spitzer image buried within dark clouds of dust.

    Throughout the sky, astronomers have identified many of these so-called “interacting” galaxies, whose spiral discs have been stretched and distorted by their mutual gravity as they pass close to one another. The distances involved are so large that the interactions evolve on timescales comparable to geologic changes on Earth. Observations of such galaxies, combined with computer models of these collisions, show that the galaxies often become forever bound to one another, eventually merging into a single, spheroidal-shaped galaxy.

    In the Spitzer image, wavelengths of 3.6 microns are represented in blue, 4.5 microns in green and 5.8-8.0 microns in red. In the composite image, wavelengths of .44 microns are represented in blue, .70 microns in green and 8.0 microns in red. The Spitzer image was taken on Dec. 24, 2003.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.
    stem
    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

    Advertisements
     
  • richardmitnick 12:34 pm on May 9, 2018 Permalink | Reply
    Tags: , , , , , , , NASA Spitzer   

    From NASA Chandra: “Messier 82: Images From Space Telescopes Produce Stunning View of Starburst Galaxy” 2006 

    NASA Chandra Banner

    NASA/Chandra Telescope


    From NASA Chandra

    Release Date April 24, 2006 [In social media 5.8.18

    Messier 82:
    Images From Space Telescopes Produce Stunning View of Starburst Galaxy

    1
    Credit X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

    NASA/ESA Hubble Telescope

    Images from three of NASA’s Great Observatories were combined to create this spectacular, multiwavelength view of the starburst galaxy Messier 82 [Cigar Galaxy]. Optical light from stars (yellow-green/Hubble Space Telescope) shows the disk of a modest-sized, apparently normal galaxy.

    Another Hubble observation designed to image 10,000 degree Celsius hydrogen gas (orange) reveals a startlingly different picture of matter blasting out of the galaxy. The Spitzer Space Telescope infrared image (red) shows that cool gas and dust are also being ejected.

    NASA/Spitzer Infrared Telescope

    Chandra’s X-ray image (blue) reveals gas that has been heated to millions of degrees by the violent outflow. The eruption can be traced back to the central regions of the galaxy where stars are forming at a furious rate, some 10 times faster than in the Milky Way Galaxy.

    Many of these newly formed stars are very massive and race through their evolution to explode as supernovas. Vigorous mass loss from these stars before they explode, and the heat generated by the supernovas drive the gas out of the galaxy at millions of miles per hour. It is thought that the expulsion of matter from a galaxy during bursts of star formation is one of the main ways of spreading elements like carbon and oxygen throughout the universe.

    The burst of star formation in Messier 82 is thought to have been initiated by shock waves generated in a close encounter with a large nearby galaxy, Messier 81, about 100 million years ago. These shock waves triggered the collapse of giant clouds of dust and gas in M82. In another 100 million years or so, most of the gas and dust will have been used to form stars, or blown out of the galaxy, so the starburst will subside.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 8:25 am on April 11, 2018 Permalink | Reply
    Tags: "RCW 108: Massive Young Stars Trigger Stellar Birth, , , , , , NASA Spitzer   

    From NASA Chandra: “RCW 108: Massive Young Stars Trigger Stellar Birth” October 06, 2008 

    NASA Chandra Banner

    NASA/Chandra Telescope


    NASA Chandra

    1
    Credit X-ray: NASA/CXC/CfA/S.Wolk et al; IR: NASA/JPL-Caltech

    RCW 108 is a region where stars are actively forming within the Milky Way galaxy about 4,000 light years from Earth. This is a complicated region that contains young star clusters, including one that is deeply embedded in a cloud of molecular hydrogen. By using data from different telescopes, astronomers determined that star birth in this region is being triggered by the effect of nearby, massive young stars.

    This image is a composite of X-ray data from Chandra (blue) and infrared emission detected by Spitzer (red and orange).

    NASA/Spitzer Infrared Telescope

    More than 400 X-ray sources were identified in Chandra’s observations of RCW 108. About 90% of these X-ray sources are thought to be part of the cluster and not stars that lie in the field-of-view either behind or in front of it. Many of the stars in RCW 108 are experiencing the violent flaring seen in other young star-forming regions such as the Orion Nebula. Gas and dust blocks much of the X-rays from the juvenile stars located in the center of the image, explaining the relative dearth of Chandra sources in this part of the image.

    The Spitzer data show the location of the embedded star cluster, which appears as the bright knot of red and orange just to the left of the center of the image. Some stars from a larger cluster, known as NGC 6193, are also visible on the left side of the image. Astronomers think that the dense clouds within RCW 108 are in the process of being destroyed by intense radiation emanating from hot and massive stars in NGC 6193.

    Taken together, the Chandra and Spitzer data indicate that there are more massive star candidates than expected in several areas of this image. This suggests that pockets within RCW 108 underwent localized episodes of star formation. Scientists predict that this type of star formation is triggered by the effects of radiation from bright, massive stars such as those in NGC 6193. This radiation may cause the interior of gas clouds in RCW 108 to be compressed, leading to gravitational collapse and the formation of new stars.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 7:42 am on March 15, 2018 Permalink | Reply
    Tags: , , , , , , NASA Spitzer   

    From Chandra: “Crab Nebula: A Crab Walks Through Time” 

    NASA Chandra Banner

    NASA/Chandra Telescope


    NASA Chandra

    March 14, 2018

    1
    Composite

    2
    X-ray

    3
    Optical

    4
    Infrared

    Credit X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

    A new composite of the Crab Nebula with Chandra (blue and white), Hubble (purple), and Spitzer (pink) data has been released.

    NASA/ESA Hubble Telescope

    NASA/Spitzer Infrared Telescope

    The star that exploded to create the Crab Nebula was reportedly first seen from Earth in 1054 A.D.

    Since its launch in 1999, Chandra has frequently observed the Crab.

    X-ray observations have helped astronomers better understand this spectacular object.

    Next year marks the 20th anniversary of NASA’s Chandra X-ray Observatory launch into space. The Crab Nebula was one of the first objects that Chandra examined with its sharp X-ray vision, and it has been a frequent target of the telescope ever since.

    There are many reasons that the Crab Nebula is such a well-studied object. For example, it is one of a handful of cases where there is strong historical evidence for when the star exploded. Having this definitive timeline helps astronomers understand the details of the explosion and its aftermath.

    In the case of the Crab, observers in several countries reported the appearance of a “new star” in 1054 A.D. in the direction of the constellation Taurus. Much has been learned about the Crab in the centuries since then. Today, astronomers know that the Crab Nebula is powered by a quickly spinning, highly magnetized neutron star called a pulsar, which was formed when a massive star ran out of its nuclear fuel and collapsed. The combination of rapid rotation and a strong magnetic field in the Crab generates an intense electromagnetic field that creates jets of matter and anti-matter moving away from both the north and south poles of the pulsar, and an intense wind flowing out in the equatorial direction.

    The latest image of the Crab is a composite with X-rays from Chandra (blue and white), NASA’s Hubble Space Telescope (purple) and NASA’s Spitzer Space Telescope (pink). The extent of the X-ray image is smaller than the others because extremely energetic electrons emitting X-rays radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light.

    This new composite adds to a scientific legacy, spanning nearly two decades, between Chandra and the Crab Nebula. Here is a sample of the many insights astronomers have gained about this famous object using Chandra and other telescopes.

    1999: Within weeks of being deployed into orbit from the Space Shuttle Columbia during the summer of 1999, Chandra observed the Crab Nebula. The Chandra data revealed features in the Crab never seen before, including a bright ring of high-energy particles around the heart of the nebula.
    5

    2002: The dynamic nature of the Crab Nebula was vividly revealed in 2002 when scientists produced videos based on coordinated Chandra and Hubble observations made over several months. The bright ring seen earlier consists of about two dozen knots that form, brighten and fade, jitter around, and occasionally undergo outbursts that give rise to expanding clouds of particles, but remain in roughly the same location.

    These knots are caused by a shock wave, similar to a sonic boom, where fast-moving particles from the pulsar are slamming into surrounding gas. Bright wisps originating in this ring are moving outward at half the speed of light to form a second expanding ring further away from the pulsar.
    6

    2006: In 2003, the Spitzer Space Telescope was launched and the space-based infrared telescope joined Hubble, Chandra, and the Compton Gamma-ray Observatory and completed the development of NASA’s “Great Observatory” program.

    7
    Compton Gamma-ray Observatory schematic

    A few years later, the first composite of the Crab with data from Chandra (light blue), Hubble (green and dark blue), and Spitzer (red) was released.
    8

    2008: As Chandra continued to take observations of the Crab, the data provided a clearer picture of what was happening in this dynamic object. In 2008, scientists first reported a view of the faint boundary of the Crab Nebula’s pulsar wind nebula (i.e., a cocoon of high-energy particles surrounding the pulsar).

    The data showed structures that astronomers referred to as “fingers”, “loops”, and “bays”. These features indicated that the magnetic field of the nebula and filaments of cooler matter are controlling the motion of the electrons and positrons. The particles can move rapidly along the magnetic field and travel several light years before radiating away their energy. In contrast, they move much more slowly perpendicular to the magnetic field, and travel only a short distance before losing their energy.
    9

    2011: Time-lapse movies of Chandra data of the Crab have been powerful tools in showing the dramatic variations in the X-ray emission near the pulsar. In 2011, Chandra observations, obtained between September 2010 and April 2011, were obtained to pinpoint the location of remarkable gamma-ray flares observed by NASA’s Fermi Gamma Ray Observatory and Italy’s AGILE Satellite. The gamma-ray observatories were not able to locate the source of the flares within the nebula, but astronomers hoped that Chandra, with its high-resolution images, would.

    Two Chandra observations were made when strong gamma-ray flares occurred, but no clear evidence was seen for correlated flares in the Chandra images.

    Despite this lack of correlation, the Chandra observations helped scientists to home in on an explanation of the gamma-ray flares. Though other possibilities remain, Chandra provided evidence that accelerated particles produced the gamma-ray flares.

    2014: To celebrate the 15th anniversary of Chandra’s launch, several new images of supernova remnants were released, including the Crab Nebula. This was a “three color” image of the Crab Nebula, where the X-ray data were split into three different energy bands. In this image, the lowest-energy X-rays Chandra detects are red, the medium range are green, and the highest-energy X-rays from the Crab are colored blue. Note that the extent of the higher energy X-rays in the image is smaller than the others. This is because the most energetic electrons responsible for the highest energy X-rays radiate away their energy more quickly than the lower-energy electrons.

    10

    2017: Building on the multiwavelength images of the Crab from the past, a highly detailed view of the Crab Nebula was created in 2017 using data from telescopes spanning nearly the entire breadth of the electromagnetic spectrum. Radio waves from the Karl G. Jansky Very Large Array (red), Hubble optical data (green), infrared data from Spitzer (yellow), and X-ray data from XMM-Newton (blue) and Chandra (purple) produced a spectacular new image of the Crab.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 9:19 pm on February 2, 2018 Permalink | Reply
    Tags: , , , , , , NASA Spitzer, SPT-CL J0615-5746   

    From Hubble: “NASA’s Great Observatories Team Up to Find Magnified and Stretched Out Image of Distant Galaxy” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jan 11, 2018

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    1
    Release type: American Astronomical Society Meeting

    Small, Embryonic Galaxy Formed Just 500 Million Years After the Big Bang.

    As powerful as NASA’s Hubble and Spitzer space telescopes are, they need a little help from nature in seeking out the farthest, and hence earliest galaxies that first appeared in the universe after the big bang. This help comes from a natural zoom lens in the universe, formed by the warping of space by intense gravitational fields.

    Gravitational Lensing NASA/ESA

    The most powerful “zoom lenses” out there are formed by very massive foreground clusters that bend space like a bowling ball rolling across a soft mattress. The lens boosts the brightness of distant background objects. The farthest candidates simply appear as red dots in Hubble photos because of their small size and great distance.

    However, astronomers got very lucky when they looked at galaxy cluster SPT-CL J0615-5746. Embedded in the photo is an arc-like structure that is not only the amplified image of a background galaxy, but an image that has been smeared into a crescent-shape. This image allowed astronomers to estimate that the diminutive galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way.

    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang. Hubble’s clarity, combined with Spitzer’s infrared sensitivity to light reddened by the expanding universe, allowed for the object’s vast distance to be calculated.

    The Full Story

    1

    An intensive survey deep into the universe by NASA’s Hubble and Spitzer space telescopes has yielded the proverbial needle-in-a-haystack: the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing.

    NASA/Spitzer Infrared Telescope

    The embryonic galaxy named SPT0615-JD existed when the universe was just 500 million years old. Though a few other primitive galaxies have been seen at this early epoch, they have essentially all looked like red dots given their small size and tremendous distances. However, in this case, the gravitational field of a massive foreground galaxy cluster not only amplified the light from the background galaxy but also smeared the image of it into an arc (about 2 arcseconds long).

    “No other candidate galaxy has been found at such a great distance that also gives you the spatial information that this arc image does. By analyzing the effects of gravitational lensing on the image of this galaxy, we can determine its actual size and shape,” said the study’s lead author Brett Salmon of the Space Telescope Science Institute in Baltimore, Maryland. He is presenting his research at the 231st meeting of the American Astronomical Society in Washington, D.C.

    First predicted by Albert Einstein a century ago, the warping of space by the gravity of a massive foreground object can brighten and distort the images of far more distant background objects. Astronomers use this “zoom lens” effect to go hunting for amplified images of distant galaxies that otherwise would not be visible with today’s telescopes.

    SPT0615-JD was identified in Hubble’s Reionization Lensing Cluster Survey (RELICS) and companion S-RELICS Spitzer program. “RELICS was designed to discover distant galaxies like these that are magnified brightly enough for detailed study,” said Dan Coe, Principal Investigator of RELICS. RELICS observed 41 massive galaxy clusters for the first time in the infrared with Hubble to search for such distant lensed galaxies. One of these clusters was SPT-CL J0615-5746, which Salmon analyzed to make this discovery. Upon finding the lens-arc, Salmon thought, “Oh, wow! I think we’re on to something!”

    By combining the Hubble and Spitzer data, Salmon calculated the lookback time to the galaxy of 13.3 billion years. Preliminary analysis suggests the diminutive galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang.

    The galaxy is right at the limits of Hubble’s detection capabilities, but just the beginning for the upcoming NASA James Webb Space Telescope’s powerful capabilities, said Salmon. “This galaxy is an exciting target for science with the Webb telescope as it offers the unique opportunity for resolving stellar populations in the very early universe.” Spectroscopy with Webb will allow for astronomers to study in detail the firestorm of starbirth activity taking place at this early epoch, and resolve its substructure.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington, D.C. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 1:12 pm on January 20, 2018 Permalink | Reply
    Tags: , , , , , Galaxies Show Order in Chaotic Young Universe, , NASA Spitzer,   

    From Sky & Telescope: “Galaxies Show Order in Chaotic Young Universe” 

    SKY&Telescope bloc

    Sky & Telescope

    January 15, 2018
    Monica Young

    New observations of galaxies in a universe just 800 million years old show that they’ve already settled into rotating disks. They must have evolved quickly to display such surprising maturity.

    1
    Data visualization of the the velocity gradient across the two surprisingly evolved young galaxies.
    Hubble (NASA/ESA), ALMA (ESO/NAOJ/NRAO), P. Oesch (University of Geneva) and R. Smit (University of Cambridge).

    NASA/ESA Hubble Telescope

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Our cosmos was a messy youngster. Hotter and denser than the universe we live in now, it was home to turbulent gas flinging about under the influence of gravity. Theorists think the earliest galaxies built up gradually, first clump by clump, then by mergers with other galaxies.

    Astronomers expected that most galaxies living among this early chaos would be turbulent masses themselves. But new observations have revealed two surprisingly mature galaxies when the universe was only 800 million years old. Renske Smit (University of Cambridge, UK) and colleagues report in the January 11th Nature that these two galaxies have already settled into rotating disks, suggesting they evolved rapidly right after they were born.

    Smit and colleagues first found the two galaxies in deep Spitzer Space Telescope images,

    NASA/Spitzer Infrared Telescope

    then followed up using the Atacama Large Millimeter/submillimeter Array (ALMA), a network of radio dishes high in the Atacama Desert in Chile. ALMA’s incredible resolution enabled the astronomers to measure radiation from ionized carbon — an element associated with forming stars — across the face of these diminutive galaxies.

    Consider for a moment: These galaxies are a fifth the size of the Milky Way, and they’re incredibly far away — their light has traveled 13 billion years to Earth. Even in images taken by the eagle-eyed Hubble Space Telescope, such galaxies appear as small red dots.

    3
    Distant Galaxies in the Hubble Ultra Deep Field
    This Hubble Space Telescope image shows 28 of the more than 500 young galaxies that existed when the universe was less than 1 billion years old. The galaxies were uncovered in a study of two of the most distant surveys of the cosmos, the Hubble Ultra Deep Field (HUDF), completed in 2004, and the Great Observatories Origins Deep Survey (GOODS), made in 2003.

    Just a few years ago, astronomers had not spotted any galaxies that existed significantly less than 1 billion years after the Big Bang. The galaxies spied in the HUDF and GOODS surveys are blue galaxies brimming with star birth.

    The large image at left shows the Hubble Ultra Deep Field, taken by the Hubble telescope. The numbers next to the small boxes correspond to close-up views of 28 of the newly found galaxies at right. The galaxies in the postage-stamp size images appear red because of their tremendous distance from Earth. The blue light from their young stars took nearly 13 billion years to arrive at Earth. During the journey, the blue light was shifted to red light due to the expansion of space.

    Yet astronomers are now able to point an array of radio dishes to not only spot the galaxies themselves but also capture features within them down to a couple thousand light-years across.

    They Grow Up So Fast

    The ALMA observations revealed that these two galaxies aren’t the turbulent free-for-all that astronomers expect for most galaxies in this early time period. Their rotating disks aren’t quite like the Milky Way’s, as spiral arms take time to form. Instead, they look more like the fluffy disk galaxies typically seen at so-called cosmic noon, the universe’s adolescent period of star formation and galaxy growth. That implies rapid evolution, as cosmic noon occurred more than 2 billion years after these two galaxies existed.

    Simulations had predicted that it’s possible for some galaxies to evolve more quickly than their peers, notes Nicolas LaPorte (University College London), but it had never been observed before. “This paper represents a great leap forward in the study of the first galaxies,” he says.

    Smit says that these two galaxies seem to stand out from their cohort, which makes sense given their quick growth: Among other things, they’re forming tens of Suns’ worth of stars every year, more than is typical for their time period. Smit is already planning additional observations to see just how different these galaxies are from their peers.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Sky & Telescope magazine, founded in 1941 by Charles A. Federer Jr. and Helen Spence Federer, has the largest, most experienced staff of any astronomy magazine in the world. Its editors are virtually all amateur or professional astronomers, and every one has built a telescope, written a book, done original research, developed a new product, or otherwise distinguished him or herself.

    Sky & Telescope magazine, now in its eighth decade, came about because of some happy accidents. Its earliest known ancestor was a four-page bulletin called The Amateur Astronomer, which was begun in 1929 by the Amateur Astronomers Association in New York City. Then, in 1935, the American Museum of Natural History opened its Hayden Planetarium and began to issue a monthly bulletin that became a full-size magazine called The Sky within a year. Under the editorship of Hans Christian Adamson, The Sky featured large illustrations and articles from astronomers all over the globe. It immediately absorbed The Amateur Astronomer.

    Despite initial success, by 1939 the planetarium found itself unable to continue financial support of The Sky. Charles A. Federer, who would become the dominant force behind Sky & Telescope, was then working as a lecturer at the planetarium. He was asked to take over publishing The Sky. Federer agreed and started an independent publishing corporation in New York.

    “Our first issue came out in January 1940,” he noted. “We dropped from 32 to 24 pages, used cheaper quality paper…but editorially we further defined the departments and tried to squeeze as much information as possible between the covers.” Federer was The Sky’s editor, and his wife, Helen, served as managing editor. In that January 1940 issue, they stated their goal: “We shall try to make the magazine meet the needs of amateur astronomy, so that amateur astronomers will come to regard it as essential to their pursuit, and professionals to consider it a worthwhile medium in which to bring their work before the public.”

     
  • richardmitnick 12:28 pm on January 11, 2018 Permalink | Reply
    Tags: , , , , Galaxy SPT0615-JD, , , NASA Spitzer, NASA's Great Observatories Team Up to Find Magnified and Stretched Image of Distant Galaxy   

    From JPL-Caltech: “NASA’s Great Observatories Team Up to Find Magnified and Stretched Image of Distant Galaxy” 

    NASA JPL Banner

    JPL-Caltech

    January 11, 2018
    Guy Webster
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6278
    guy.webster@jpl.nasa.gov

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    1
    This Hubble Space Telescope image shows the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing. Credits: NASA , ESA, and B. Salmon (STScI)

    NASA/ESA Hubble Telescope

    NASA/Spitzer Infrared Telescope

    An intensive survey deep into the universe by NASA’s Hubble and Spitzer space telescopes has yielded the proverbial needle-in-a-haystack: the farthest galaxy yet seen in an image that has been stretched and amplified by a phenomenon called gravitational lensing.

    Gravitational Lensing NASA/ESA

    The embryonic galaxy named SPT0615-JD existed when the universe was just 500 million years old. Though a few other primitive galaxies have been seen at this early epoch, they have essentially all looked like red dots, given their small size and tremendous distances. However, in this case, the gravitational field of a massive foreground galaxy cluster not only amplified the light from the background galaxy but also smeared the image of it into an arc (about 2 arcseconds long).

    “No other candidate galaxy has been found at such a great distance that also gives you the spatial information that this arc image does. By analyzing the effects of gravitational lensing on the image of this galaxy, we can determine its actual size and shape,” said the study’s lead author, Brett Salmon of the Space Telescope Science Institute in Baltimore. He is presenting his research at the 231st meeting of the American Astronomical Society in Washington.

    First predicted by Albert Einstein a century ago, the warping of space by the gravity of a massive foreground object can brighten and distort the images of far more distant background objects. Astronomers use this “zoom lens” effect to go hunting for amplified images of distant galaxies that otherwise would not be visible with today’s telescopes.

    SPT0615-JD was identified in Hubble’s Reionization Lensing Cluster Survey (RELICS) and companion S-RELICS Spitzer program. “RELICS was designed to discover distant galaxies like these that are magnified brightly enough for detailed study,” said Dan Coe, principal investigator of RELICS. RELICS observed 41 massive galaxy clusters for the first time in infrared with Hubble to search for such distant lensed galaxies. One of these clusters was SPT-CL J0615-5746, which Salmon analyzed to make this discovery. Upon finding the lens-arc, Salmon thought, “Oh, wow! I think we’re on to something!”

    By combining the Hubble and Spitzer data, Salmon calculated the lookback time to the galaxy of 13.3 billion years. Preliminary analysis suggests the diminutive galaxy weighs in at no more than 3 billion solar masses (roughly 1/100th the mass of our fully grown Milky Way galaxy). It is less than 2,500 light-years across, half the size of the Small Magellanic Cloud, a satellite galaxy of our Milky Way. The object is considered prototypical of young galaxies that emerged during the epoch shortly after the big bang.

    The galaxy is right at the limits of Hubble’s detection capabilities, but just the beginning for the upcoming NASA James Webb Space Telescope’s powerful capabilities, said Salmon. “This galaxy is an exciting target for science with the Webb telescope as it offers the unique opportunity for resolving stellar populations in the very early universe.” Spectroscopy with Webb will allow for astronomers to study in detail the firestorm of starbirth activity taking place at this early epoch, and resolve its substructure.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington, D.C. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 5:04 pm on December 5, 2017 Permalink | Reply
    Tags: Abell 2744, , , , , NASA Spitzer, ,   

    From Hubble: “Hubble’s First Frontier Field Finds Thousands of Unseen, Faraway Galaxies” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jan 7, 2014
    Ray Villard
    Space Telescope Science Institute, Baltimore, Md.
    410-338-4514
    villard@stsci.edu

    1
    Hubble Frontier Field Abell 2744

    2
    Frontier Fields Footprint: Galaxy Cluster Abell 2744

    The first of a set of unprecedented, super-deep views of the universe from an ambitious collaborative program called The Frontier Fields is being released today at the 223rd meeting of the American Astronomical Society in Washington, D.C.

    The long-exposure image taken with NASA’s Hubble Space Telescope is the deepest-ever picture taken of a cluster of galaxies, and also contains images of some of the intrinsically faintest and youngest galaxies ever detected.

    The target is the massive cluster Abell 2744, which contains several hundred galaxies as they looked 3.5 billion years ago. The immense gravity in this foreground cluster is being used as a “gravitational lens,” which warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.

    “The Frontier Fields is an experiment; can we use Hubble’s exquisite image quality and Einstein’s theory of General Relativity to search for the first galaxies?” said Space Telescope Science Institute Director Matt Mountain. “With the other Great Observatories, we are undertaking an ambitious joint program to use galaxy clusters to explore the first billion years of the universe’s history.”

    Simultaneous observations of this field are being done with NASA’s two other Great Observatories, the Spitzer Space Telescope and the Chandra X-ray Observatory.

    NASA/Spitzer Infrared Telescope

    NASA/Chandra Telescope

    The assembly of all this multispectral information is expected to provide new insights into the origin and evolution of galaxies and their accompanying black holes.

    The Hubble exposure reveals nearly 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster. The many background galaxies would otherwise be invisible without the boost from gravitational lensing. Their images not only appear brighter, but also smeared, stretched, and duplicated across the field.

    Thanks to the gravitational lensing phenomenon, the background galaxies are magnified to appear up to 10 to 20 times larger than they would normally appear.

    Gravitational Lensing NASA/ESA

    What’s more, the faintest of these highly magnified objects have intrinsic brightnesses roughly 10 to 20 times fainter than any galaxies ever previously observed.

    The Hubble data are immediately being made available to the worldwide astronomy community where teams of researchers will do a detailed study of the visual crazy quilt of intermingled background and cluster galaxies to better understand the stages of galaxy development.

    Though the foreground cluster Abell 2744 has been intensively studied as one of the most massive clusters in the universe, the Frontier Fields exposure reveals new details of the cluster population. Hubble sees dwarf galaxies in the cluster as small as 1/1,000th the mass of the Milky Way. At the other end of the size spectrum, Hubble detects the extended light from several monster central cluster galaxies that are as much as 100 times more massive than our Milky Way. Also visible is faint intra-cluster light from stars inside the cluster that have been stripped out of galaxies by gravitational interactions. These new deep images will also help astronomers map out the dark matter in the cluster with unprecedented detail, by charting its distorting effects on background light. An unseen form of matter, dark matter makes up the bulk of the mass of the cluster.

    As the Abell cluster was being photographed with Hubble’s Wide Field Camera 3, the telescope’s Advanced Camera for Surveys was trained on a nearby parallel field that is 6 arc minutes away from the cluster.

    NASA/ESA Hubble WFC3

    NASA/ESA Hubble ACS

    In this field, Hubble resolves roughly 10,000 galaxies seen in visible light, most of which are randomly scattered galaxies. The blue galaxies are distant star-forming galaxies seen from up to 8 billion years ago; the handful of larger, red galaxies are in the outskirts of the Abell 2744 cluster.

    Hubble will again view these two Frontier Fields in May 2014, but Hubble’s visible-light and infrared camera will switch targets. This will allow for both fields to be observed over a full range of colors, from ultraviolet light to near-infrared.

    With each new camera installed on Hubble, the space telescope has been used to make successively deeper, groundbreaking views of the universe. To get a better assessment of whether doing more deep field observations was scientifically compelling or urgent, the Space Telescope Science Institute or STScI in Baltimore, Md., chartered a “Hubble Deep Field Initiative” working group. The Hubble Frontier Fields initiative grew out of the working group’s high-level discussions at STScI concerning what important, forward-looking science Hubble should be doing in upcoming years. Despite several deep field surveys, astronomers realized that a lot was still to be learned about the far universe. Such knowledge would help in planning the observing strategy for the upcoming James Webb Space Telescope.

    The astronomers also considered synergies with other observatories, such as Spitzer, Chandra, and the new Atacama Large Millimeter/submillimeter Array or ALMA.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Over the coming years five more pairs of fields will be imaged. The next scheduled target is the massive cluster MACS J0416.1-2403, for which observations are starting this week.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 1:53 pm on November 25, 2017 Permalink | Reply
    Tags: , , , , , , NASA Spitzer,   

    From Spitzer via Manu: “Spitzer Reveals Ancient Galaxies’ Frenzied Starmaking” 


    Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    NASA/Spitzer Telescope


    Spitzer

    10.30.17

    1

    A deep look back to the early universe by NASA’s Spitzer Space Telescope has revealed a surprisingly rowdy bunch of galaxies. Within a large galaxy sample observed 1.5 billion years after the Big Bang, Spitzer witnessed around 15 percent of galaxies undergoing bouts of extreme starmaking, called starbursts. The discovery suggests that starbursts—a rare phenomenon in the modern cosmos—were actually relatively common in the past, and played a major role in creating our universe’s stars.

    Typically, galaxies go with a take-it-slow approach to starmaking. Over billions of years, that unhurried stellar production has been credited with forging almost all stars in existence. The new findings, however, show starburst galaxies cranking out upwards of half of the total new stars in the cosmic era under study. Moving forward, astronomers will have to ensure galactic evolution theories can account for these more frequent frenzies of starmaking.

    “This research shows for the first time that starburst galaxies are much more important than previously thought in the early star formation history of the universe,” said Karina Caputi, an associate professor at the University of Groningen in the Netherlands. Caputi is lead author of a new paper describing the results, published on Oct 30 in The Astrophysical Journal.

    “We have discovered an unknown population of starburst galaxies that could change the way we think many galaxies grow their stars,” said Karina.

    Caputi and her colleagues pored over a voluminous dataset of nearly 6000 distant galaxies observed as part of Spitzer’s Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) program. The scientists looked for a type of light, called H-alpha, emitted by the element hydrogen. This glow marks regions where new groups of stars have just formed from the gravitational collapse of giant clouds of gas and dust. Over vast cosmic distances—like the 12 billion light years to the galaxies in Caputi’s study—the expansion of the universe stretches H-alpha’s visible, pink-reddish light into the infrared wavelengths seen by Spitzer. Researchers can therefore leverage Spitzer as a valuable tool in gauging the levels of star formation in the early universe.

    Prior investigations have focused mostly on starbursts breaking out in galaxies with high masses, usually selected out of small datasets. The catalog of observations Caputi’s team went through offered a more complete picture, though, by capturing numerous intermediate-mass galaxies also flush with the signs of starburst activity. Bringing those overlooked galaxies into the fold boosted the overall starburst percentage from negligible to a significant 15 percent, and with it, over half of the total starmaking at that time in the universe’s chronology. “We analyzed a much larger and more representative galaxy sample,” Caputi says.

    The development of a new star—from cold, diffuse gas cloud to a hot, concentrated ball of matter—is a process that spans tens of millions of years. At any given time in a galaxy, only so many stars-to-be are going through this process; our own Milky Way languidly produces only about one Sun’s-mass-worth of new stars annually. Yet in a starburst galaxy, that rate of stellar creation can be hundreds of times faster.

    As a result, although their quantities differ, slow-poke and fast-pace galaxies ultimately make similar contributions to the overall stellar budget. “There appear to be two types of galaxies which form stars: some are more numerous, but grow more slowly. The others are less numerous, but grow much faster,” Caputi explained. “In the end, both groups can form the same total amount of stars.”

    What exactly is causing all the starbursts remains a mystery. Galaxy mergers, where the diffuse star-forming materials in two galaxies mix into gas clouds dense enough to ignite star formation, stand as highly likely candidates. Gravitational interactions with neighboring galaxies, or encounters with uncommonly thick patches of matter in the barren expanses between galaxies, might also fire up starbursts.

    “We still have a lot of work to do in understanding why galaxies go into a starburst mode,” says Caputi. “Now that we have a sense of just how significant these furious periods of activity are for giving us such a large amount of the universe’s stars, we are highly motivated to get to the bottom of the mystery.”

    This research has been funded by the European Research Council through the Consolidator Grant ID 681627-BUILDUP.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 8:00 pm on November 16, 2017 Permalink | Reply
    Tags: , , , , Exoplanet 55 Cancri e Likely to have Atmosphere, Lava or Not, , NASA Spitzer   

    From JPL-Caltech: “Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere” 

    NASA JPL Banner

    JPL-Caltech

    November 16, 2017
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    1
    The super-Earth exoplanet 55 Cancri e, depicted with its star in this artist’s concept, likely has an atmosphere thicker than Earth’s but with ingredients that could be similar to those of Earth’s atmosphere. Spitzer.

    NASA/Spitzer Infrared Telescope

    Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day and night sides. Based on a 2016 study using data from NASA’s Spitzer Space Telescope, scientists speculated that lava would flow freely in lakes on the starlit side and become hardened on the face of perpetual darkness. The lava on the dayside would reflect radiation from the star, contributing to the overall observed temperature of the planet.

    Now, a deeper analysis of the same Spitzer data finds this planet likely has an atmosphere whose ingredients could be similar to those of Earth’s atmosphere, but thicker. Lava lakes directly exposed to space without an atmosphere would create local hot spots of high temperatures, so they are not the best explanation for the Spitzer observations, scientists said.

    “If there is lava on this planet, it would need to cover the entire surface,” said Renyu Hu, astronomer at NASA’s Jet Propulsion Laboratory, Pasadena, California, and co-author of a study published in The Astronomical Journal. “But the lava would be hidden from our view by the thick atmosphere.”

    Using an improved model of how energy would flow throughout the planet and radiate back into space, researchers find that the night side of the planet is not as cool as previously thought. The “cold” side is still quite toasty by Earthly standards, with an average of 2,400 to 2,600 degrees Fahrenheit (1,300 to 1,400 Celsius), and the hot side averages 4,200 degrees Fahrenheit (2,300 Celsius). The difference between the hot and cold sides would need to be more extreme if there were no atmosphere.

    “Scientists have been debating whether this planet has an atmosphere like Earth and Venus, or just a rocky core and no atmosphere, like Mercury. The case for an atmosphere is now stronger than ever,” Hu said.

    Researchers say the atmosphere of this mysterious planet could contain nitrogen, water and even oxygen — molecules found in our atmosphere, too — but with much higher temperatures throughout. The density of the planet is also similar to Earth, suggesting that it, too, is rocky. The intense heat from the host star would be far too great to support life, however, and could not maintain liquid water.

    Hu developed a method of studying exoplanet atmospheres and surfaces, and had previously only applied it to sizzling, giant gaseous planets called hot Jupiters. Isabel Angelo, first author of the study and a senior at the University of California, Berkeley, worked on the study as part of her internship at JPL and adapted Hu’s model to 55 Cancri e.

    In a seminar, she heard about 55 Cancri e as a potentially carbon-rich planet, so high in temperature and pressure that its interior could contain a large amount of diamond.

    “It’s an exoplanet whose nature is pretty contested, which I thought was exciting,” Angelo said.

    Spitzer observed 55 Cancri e between June 15 and July 15, 2013, using a camera specially designed for viewing infrared light, which is invisible to human eyes. Infrared light is an indicator of heat energy. By comparing changes in brightness Spitzer observed to the energy flow models, researchers realized an atmosphere with volatile materials could best explain the temperatures.

    There are many open questions about 55 Cancri e, especially: Why has the atmosphere not been stripped away from the planet, given the perilous radiation environment of the star?

    › Full image and caption

    Twice as big as Earth, the super-Earth 55 Cancri e was thought to have lava flows on its surface. The planet is so close to its star, the same side of the planet always faces the star, such that the planet has permanent day and night sides. Based on a 2016 study using data from NASA’s Spitzer Space Telescope, scientists speculated that lava would flow freely in lakes on the starlit side and become hardened on the face of perpetual darkness. The lava on the dayside would reflect radiation from the star, contributing to the overall observed temperature of the planet.

    Now, a deeper analysis of the same Spitzer data finds this planet likely has an atmosphere whose ingredients could be similar to those of Earth’s atmosphere, but thicker. Lava lakes directly exposed to space without an atmosphere would create local hot spots of high temperatures, so they are not the best explanation for the Spitzer observations, scientists said.

    “If there is lava on this planet, it would need to cover the entire surface,” said Renyu Hu, astronomer at NASA’s Jet Propulsion Laboratory, Pasadena, California, and co-author of a study published in The Astronomical Journal. “But the lava would be hidden from our view by the thick atmosphere.”

    Using an improved model of how energy would flow throughout the planet and radiate back into space, researchers find that the night side of the planet is not as cool as previously thought. The “cold” side is still quite toasty by Earthly standards, with an average of 2,400 to 2,600 degrees Fahrenheit (1,300 to 1,400 Celsius), and the hot side averages 4,200 degrees Fahrenheit (2,300 Celsius). The difference between the hot and cold sides would need to be more extreme if there were no atmosphere.

    “Scientists have been debating whether this planet has an atmosphere like Earth and Venus, or just a rocky core and no atmosphere, like Mercury. The case for an atmosphere is now stronger than ever,” Hu said.

    Researchers say the atmosphere of this mysterious planet could contain nitrogen, water and even oxygen — molecules found in our atmosphere, too — but with much higher temperatures throughout. The density of the planet is also similar to Earth, suggesting that it, too, is rocky. The intense heat from the host star would be far too great to support life, however, and could not maintain liquid water.

    Hu developed a method of studying exoplanet atmospheres and surfaces, and had previously only applied it to sizzling, giant gaseous planets called hot Jupiters. Isabel Angelo, first author of the study and a senior at the University of California, Berkeley, worked on the study as part of her internship at JPL and adapted Hu’s model to 55 Cancri e.

    In a seminar, she heard about 55 Cancri e as a potentially carbon-rich planet, so high in temperature and pressure that its interior could contain a large amount of diamond.

    “It’s an exoplanet whose nature is pretty contested, which I thought was exciting,” Angelo said.

    Spitzer observed 55 Cancri e between June 15 and July 15, 2013, using a camera specially designed for viewing infrared light, which is invisible to human eyes. Infrared light is an indicator of heat energy. By comparing changes in brightness Spitzer observed to the energy flow models, researchers realized an atmosphere with volatile materials could best explain the temperatures.

    There are many open questions about 55 Cancri e, especially: Why has the atmosphere not been stripped away from the planet, given the perilous radiation environment of the star?

    “Understanding this planet will help us address larger questions about the evolution of rocky planets,” Hu said.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA. For more information about Spitzer, visit:

    http://spitzer.caltech.edu

    https://www.nasa.gov/spitzer

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: