Tagged: NASA NExSS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:25 am on September 5, 2018 Permalink | Reply
    Tags: , , , , , , NASA NExSS   

    From Many Worlds: “A National Strategy for Finding and Understanding Exoplanets (and Possibly Extraterrestrial Life)” 

    NASA NExSS bloc

    NASA NExSS

    Many Words icon

    From Many Worlds

    2018-09-05
    Marc Kaufman

    1
    The National Academies of Science, Engineering and Medicine took an in-depth look at what NASA, the astronomy community and the nation need to grow the burgeoning science of exoplanets — planets outside our solar system that orbit a star. (NAS)

    An extensive, congressionally-directed study of what NASA needs to effectively learn how exoplanets form and whether some may support life was released today, and it calls for major investments in next-generation space and ground telescopes. It also calls for the adoption of an increasingly multidisciplinary approach for addressing the innumerable questions that remain unanswered.

    While the recommendations were many, the top line calls were for a sophisticated new space-based telescope for the 2030s that could directly image exoplanets, for approval and funding of the long-delayed and debated WFIRST space telescope, and for the National Science Foundation and to help fund two of the very large ground-based telescopes now under development.

    The study of exoplanets has seen remarkable discoveries in the past two decades. But the in-depth study from the private, non-profit National Academies of Sciences, Engineering and Medicine concludes that there is much more that we don’t understand than that we do, that our understandings are “substantially incomplete.”

    So the two overarching goals for future exoplanet science are described as these:

    To understand the formation and evolution of planetary systems as products of star formation and characterize the diversity of their architectures, composition, and environments.
    To learn enough about exoplanets to identify potentially habitable environments and search for scientific evidence of life on worlds orbiting other stars.

    Given the challenge, significance and complexity of these science goals, it’s no wonder that young researchers are flocking to the many fields included in exoplanet science. And reflecting that, it is perhaps no surprise that the NAS survey of key scientific questions, goals, techniques, instruments and opportunities runs over 200 pages. (A webcast of a 1:00 pm NAS talk on the report can be accessed here.)

    2
    Artist’s concept showing a young sun-like star surrounded by a planet-forming disk of gas and dust. (NASA/JPL-Caltech/T. Pyle)

    These ambitious goals and recommendations will now be forwarded to the arm of the National Academies putting together 2020 Astronomy and Astrophysics Decadal Survey — a community-informed blueprint of priorities that NASA usually follows.

    This priority-setting is probably most crucial for the two exoplanet direct imaging missions now being studied as possible Great Observatories for the 2030s — the paradigm-changing space telescopes NASA has launched almost every decade since the 1970s.

    HabEx (the Habitable Exoplanet Observatory) and LUVOIR (the Large UV/Optical/IR Surveyor) are two direct-imaging exoplanet projects in conception phase that would indeed significantly change the exoplanet field.

    NASA Habitable Exoplanet Imaging Mission (HabEx) The Planet Hunter

    NASA Large UV Optical Infrared Surveyor (LUVOIR)

    Both would greatly enhance scientists’ ability to detect and characterize exoplanets. But the more ambitious LUVOIR in particular, would not only find many exoplanets in all stages of formation, but could readily read chemical components of the atmospheres and thereby get clear data on whether the planet was habitable or even if it supported life. The LUVOIR would provide either an 8 meter or a record-breaking 15-meter space telescope, while HabEx would send up a 4 meter mirror.

    HabEx and LUVOIR are competing with two other astrophysics projects for that Great Observatory designation, and so NAS support now and prioritizing later is essential if they are to become a reality.

    3
    An artist notional rendering of an approximately 15-meter telescope in space. This image was created for an earlier large space telescope feasibility project called ATLAST, but it is similar to what is being discussed inside and outside of NASA as a possible great observatory after the James Webb Space Telescope and the Wide-Field Infrared Survey Telescope. (NASA)

    These two potential Great Observatories will be costly and would take many years to design and build. As the study acknowledges and explains, “While the committee recognized that developing a direct imaging capability will require large financial investments and a long time scale to see results, the effort will foster the development of the scientific community and technological capacity to understand myriad worlds.”

    So a lot is at stake. But with budget and space priorities in flux, the fate of even the projects given the highest priority in the Decadal Survey remains unclear.

    That’s apparent in the fact that one of the top recommendations of today’s study is the funding of the number one priority put forward in the 2010 Astronomy and Astrophysics Decadal Survey — the Wide Field Infrared Survey Telescope (WFIRST.)

    NASA/WFIRST

    The project — which would boost the search for exoplanets further from their stars than earlier survey missions– was cancelled in the administration’s proposed 2019 federal budget. Congress has continued funding some development of this once top priority, but its future nonetheless remains in doubt.

    WFIRST could have the capability of directly imaging exoplanets if it were built with technology to block out the blinding light of the star around which exoplanets would be orbiting — doing so either with internal coronagraph or a companion starshade. This would be novel technology for a space-based telescope, and the NAS survey recommends it as well.

    4
    An artist’s rendering of a possible “starshade” that could be launched to work with WFIRST or another space telescope and allow the telescope to take direct pictures of other Earth-like planets. (NASA/JPL-Caltech)

    The list of projects the study recommends is long, with these important additions:

    “Ground-based astronomy – enabled by two U.S.-led telescopes – will also play a pivotal role in studying planet formation and potentially terrestrial worlds, the report says. The future Giant Magellan telescope (GMT) and proposed Thirty Meter Telescope (TMT) would allow profound advances in imaging and spectroscopy – absorption and emission of light – of entire planetary systems.

    Giant Magellan Telescope, to be at the Carnegie Institution for Science’s Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high

    TMT-Thirty Meter Telescope, proposed and now approved for Mauna Kea, Hawaii, USA4,207 m (13,802 ft) above sea level

    They also could detect molecular oxygen in temperate terrestrial planets in transit around close and small stars, the report says.

    The committee pointed out that the technology road map to enable the full potential of GMT and TMT in the study of exoplanets is in need of investments, and should leverage the existing network of U.S. centers and laboratories. To that end, the report recommends that the National Science Foundation invest in both telescopes and their exoplanet instrumentation to provide all-sky access to the U.S. community.”

    And for another variety of ground-based observing the study called for the funding of a project to substantially increase the precision of instruments that find and measure exoplanets using the detected “wobble” of the host star. But stars are active with or without a nearby exoplanet, and so it has been difficult to achieve the precision that astronomers using this “radial velocity” technique need to find and characterize smaller exoplanets.

    Several smaller efforts increase this precision are under way in the U.S., and the European Southern Observatory has a much larger project in development.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    While the NAS report gives a lot of attention to instruments and ways to use them, it also focuses as never before on astrobiology — the search for life beyond Earth.

    Much work has been done on how to determine whether life exists on a distant planet through modeling and theorizing about biosignatures. The report encourages scientists to expand that work and embraces it as a central aspect of exoplanet science.

    The study also argues that interdisciplinary science — bringing together researchers from many disciplines — is the necessary way forward. It highlights the role of the Nexus for Exoplanet System Science, a NASA initiative which since 2015 has brought together a limited but broad number of science teams from institutions across the country to learn about each other’s work and collaborate whenever possible.

    The initiative itself has not required much funding, instead bringing in teams that had been supported with other grants.

    But now, the NAS study recommends that “building on the NExSS model, NASA should support a cross-divisional exoplanet research coordination network that includes additional membership opportunities via dedicated proposal calls for interdisciplinary research.”

    The initiative, which I’m proud to say sponsors this column, would potentially grow during this process.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:20 am on June 26, 2018 Permalink | Reply
    Tags: , , , , , NASA Asks: Will We Know Life When We See It?, , NASA NExSS,   

    From JPL-Caltech and U Washington: “NASA Asks: Will We Know Life When We See It?” 

    NASA JPL Banner

    June 25, 2018
    NASA:

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, California
    818-393-1821
    Calla.e.cofield@jpl.nasa.gov

    Felicia Chou
    NASA Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov 2018-147

    U Washington
    Peter Kelley

    From JPL-Caltech

    1
    This image is an artist’s conception of what life could look like on the surface of a distant planet. Credit: NASA

    2
    Life can leave “fingerprints” of its presence in the atmosphere and on the surface of a planet. These potential signs of life, or biosignatures, can be detected with telescopes. Credit: NASA/Aaron Gronstal

    3
    Abiotic processes can fool us into thinking a barren planet is alive. Rather than measuring a single characteristic of a planet, we should consider a suite of traits to build the case for life. Credit: NASA/Aaron Gronstal

    4
    NASA Asks: Will We Know Life When We See It?
    Since the data we collect from planets will be limited, scientists will quantify how likely a planet has life based on all the available evidence. Follow-up observations are required for confirmation. Credit: NASA/Aaron Gronstal

    In the last decade, we have discovered thousands of planets outside our solar system and have learned that rocky, temperate worlds are numerous in our galaxy. The next step will involve asking even bigger questions. Could some of these planets host life? And if so, will we be able to recognize life elsewhere if we see it?

    A group of leading researchers in astronomy, biology and geology has come together under NASA’s Nexus for Exoplanet System Science, or NExSS, to take stock of our knowledge in the search for life on distant planets and to lay the groundwork for moving the related sciences forward.

    “We’re moving from theorizing about life elsewhere in our galaxy to a robust science that will eventually give us the answer we seek to that profound question: Are we alone?” said Martin Still, an exoplanet scientist at NASA Headquarters, Washington.

    In a set of five review papers published last week in the scientific journal Astrobiology, NExSS scientists took an inventory of the most promising signs of life, called biosignatures. The paper authors include four scientists from NASA’s Jet Propulsion Laboratory in Pasadena, California. They considered how to interpret the presence of biosignatures, should we detect them on distant worlds. A primary concern is ensuring the science is strong enough to distinguish a living world from a barren planet masquerading as one.

    The assessment comes as a new generation of space and ground-based telescopes are in development. NASA’s James Webb Space Telescope will characterize the atmospheres of some of the first small, rocky planets. There are plans for other observatories — such as the Giant Magellan Telescope and the Extremely Large Telescope, both in Chile — to carry sophisticated instruments capable of detecting the first biosignatures on faraway worlds.

    Through their work with NExSS, scientists aim to identify the instruments needed to detect potential life for future NASA flagship missions. The detection of atmospheric signatures of a few potentially habitable planets may possibly come before 2030, although determining whether the planets are truly habitable or have life will require more in-depth study.

    Since we won’t be able to visit distant planets and collect samples anytime soon, the light that a telescope observes will be all we have in the search for life outside our solar system. Telescopes can examine the light reflecting off a distant world to show us the kinds of gases in the atmosphere and their “seasonal” variations, as well as colors like green that could indicate life.

    These kinds of biosignatures can all be seen on our fertile Earth from space, but the new worlds we examine will differ significantly. For example, many of the promising planets we have found are around cooler stars, which emit light in the infrared spectrum, unlike our sun’s high emissions of visible-light.

    “What does a living planet look like?” said Mary Parenteau, an astrobiologist and microbiologist at NASA’s Ames Research Center in Silicon Valley and a co-author. “We have to be open to the possibility that life may arise in many contexts in a galaxy with so many diverse worlds — perhaps with purple-colored life instead of the familiar green-dominated life forms on Earth, for example. That’s why we are considering a broad range of biosignatures.”

    The scientists assert that oxygen — the gas produced by photosynthetic organisms on Earth — remains the most promising biosignature of life elsewhere, but it is not foolproof. Abiotic processes on a planet could also generate oxygen. Conversely, a planet lacking detectable levels of oxygen could still be alive – which was exactly the case of Earth before the global accumulation of oxygen in the atmosphere.

    “On early Earth, we wouldn’t be able to see oxygen, despite abundant life,” said Victoria Meadows, an astronomer at the University of Washington in Seattle and lead author of one of the papers. “Oxygen teaches us that seeing, or not seeing, a single biosignature is insufficient evidence for or against life — overall context matters.”

    Rather than measuring a single characteristic, the NExSS scientists argue that we should be looking at a suite of traits. A planet must show itself capable of supporting life through its features, and those of its parent star.

    The NExSS scientists will create a framework that can quantify how likely it is that a planet has life, based on all the available evidence. With the observation of many planets, scientists may begin to more broadly classify the “living worlds” that show common characteristics of life, versus the “non-living worlds.”

    “We won’t have a ‘yes’ or ‘no’ answer to finding life elsewhere,” said Shawn Domagal-Goldman, an astrobiologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author. “What we will have is a high level of confidence that a planet appears alive for reasons that can only be explained by the presence of life.”

    U Washington

    From University of Washington

    June 25, 2018

    For more information, contact
    Victoria Meadows at vsm@astro.washington.edu or
    Catling at dcatling@uw.edu.

    Researchers with the University of Washington-led Virtual Planetary Laboratory are central to a group of papers published by NASA researchers in the journal Astrobiology outlining the history — and suggesting the future — of the search for life on exoplanets, or those orbiting stars other than the sun.

    The research effort is coordinated by NASA’s Nexus for Exoplanet Systems Science, or NExSS, a worldwide network dedicated to finding new ways to study the age-old question: “Are we alone?”

    A theme through the research and the discussions behind it is the need to consider planets in an integrated way, involving multiple disciplines and perspectives.

    “For life to be detectable on a distant world it needs to strongly modify its planet in a way that we can detect,” said UW astronomy professor Victoria Meadows, lead author of one of the papers and principle investigator of the Virtual Planetary Laboratory, or VPL for short. “But for us to correctly recognize life’s impact, we also need to understand the planet and star — that environmental context is key.”

    Work done by NExSS researchers will help identify the measurements and instruments needed to search for life using future NASA flagship missions. The detection of atmospheric signatures of a few potentially habitable planets may possibly come before 2030, although whether the planets are truly habitable or have life will require more in-depth study.

    The papers result from two years of effort by some of the world’s leading researchers in astrobiology, planetary science, Earth science, heliophysics, astrophysics, chemistry and biology, including several from the UW and the Virtual Planetary Laboratory, or VPL. The coordinated work was born of online meetings and an in-person workshop held in Seattle in July of 2016.

    The pace of exoplanet discoveries has been rapid, with over 3,700 detected since 1992. NASA formed the international NExSS network to focus a variety of disciplines on understanding how we can characterize and eventually search for signs of life, called biosignatures, on exoplanets.

    The NExSS network has furthered the field of exoplanet biosignatures and “fostered communication between researchers searching for signs of life on solar system bodies with those searching for signs of life on exoplanets,” said Niki Parenteau, an astrobiologist and microbiologist at NASA’s Ames Research Center, Moffett Field, California, and a VPL team member. “This has allowed for sharing of ‘lessons learned’ by both communities.”

    The first of the papers [links for all papers are below] reviews types of signatures astrobiologists have proposed as ways to identify life on an exoplanet. Scientists plan to look for two major types of signals: One is in the form of gases that life produces, such as oxygen made by plants or photosynthetic microbes. The other could come from the light reflected by life itself, such as the color of leaves or pigments.

    Such signatures can be seen on Earth from orbit, and astronomers are studying designs of telescope concepts that may be able to detect them on planets around nearby stars. Meadows is a co-author, and lead author is Edward Schwieterman, a VPL team member who earned his doctorate in astronomy and astrobiology from the UW and is now a post-doctoral researcher at the University of California, Riverside.

    Meadows is lead author of the second review paper, which discusses recent research on “false positives” and “false negatives” for biosignatures, or ways nature could “trick” scientists into thinking a planet without life was alive, or vice versa.

    In this paper, Meadows and co-authors review ways that a planet could make oxygen abiotically, or without the presence of life, and how planets with life may not have the signature of oxygen that is abundant on modern-day Earth.

    The paper’s purpose, Meadows said, was to discuss these changes in our understanding of biosignatures and suggest “a more comprehensive” treatment. She said: “There are lots of things in the universe that could potentially put two oxygen atoms together, not just photosynthesis — let’s try to figure out what they are. Under what conditions are they are more likely to happen, and how can we avoid getting fooled?”

    Schwieterman is a co-author on this paper, as well as UW doctoral students Jacob Lustig-Yaeger, Russell Deitrick and Andrew Lincowski.

    With such advance thinking, scientists are now better prepared to distinguish false positives from planets that truly do host life.

    Two more papers show how scientists try to formalize the lessons we have learned from Earth, and expand them to the wide diversity of worlds we have yet to discover.

    David Catling, UW professor of Earth and space sciences, is lead author on a paper that proposes a framework for assessing exoplanet biosignatures, considering such variables as the chemicals in the planet’s atmosphere, the presence of oceans and continents and the world’s overall climate. Doctoral student Joshua Krissansen-Totton is a co-author.

    By combining all this information in systematic ways, scientists can analyze whether data from a planet can be better explained statistically by the presence of life, or its absence.

    “If future data from an exoplanet perhaps suggest life, what approach can distinguish whether the existence of life is a near-certainty or whether the planet is really as dead as a doornail?” said Catling. “Basically, NASA asked us to work out how to assign a probability to the presence of exoplanet life, such as a 10, 50 or 90 percent chance. Our paper presents a general method to do this.”

    The data that astronomers collect on exoplanets will be sparse. They will not have samples from these distant worlds, and in many cases will study the planet as a single point of light. By analyzing these fingerprints of atmospheric gases and surfaces embedded in that light, they will discern as much as possible about the properties of that exoplanet.

    “Because life, planet, and parent star change with time together, a biosignature is no longer a single target but a suite of system traits,” said Nancy Kiang, a biometeorologist at NASA’s Goddard Institute for Space Studies in New York and a VPL team member. She said more biologists and geologists will be needed to interpret observations “where life processes will be adapted to the particular environmental context.”

    The final article discusses the ground-based and space-based telescopes that astronomers will use to search for life beyond the solar system. This includes a variety of observatories, from those in operation today to ones that will be built decades in the future.

    Taken together, this cluster of papers explains how the exoplanet community will evolve from their current assessments of the sizes and orbits of these faraway worlds, to thorough analysis of their chemical composition and eventually whether they harbor life.

    “I’m excited to see how this research progresses over the coming decades,” said Shawn Domagal-Goldman, an astrobiologist at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, and a VPL team member. He is also a co-author on four of the five papers.

    “NExSS has created a diverse network of scientists. That network will allow the community to more rigorously assess planets for biosignatures than would have otherwise been possible.”

    NExSS is an interdisciplinary, cross-divisional NASA research coordination network.

    Science papers in journal Astrobiology:

    Exoplanet Biosignatures: At the Dawn of a New Era of Planetary Observations
    Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment
    Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life
    Exoplanet Biosignatures: A Framework for Their Assessment
    Exoplanet Biosignatures: Observational Prospects
    Exoplanet Biosignatures: Future Directions

    See the full NASA article here .
    See the full U Washington article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 10:27 am on November 16, 2017 Permalink | Reply
    Tags: , , , , , , Habitable Worlds, Life in the Ocean, , NASA NExSS, , Our Living Planet Shapes the Search for Life Beyond Earth, Water in Space   

    From JPL-Caltech: “Our Living Planet Shapes the Search for Life Beyond Earth” 

    NASA JPL Banner

    JPL-Caltech

    November 15, 2017
    Alan Buis
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0474
    alan.buis@jpl.nasa.gov

    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.landau@jpl.nasa.gov

    Written by Carol Rasmussen
    NASA’s Earth Science News Team

    1
    Left, an image of Earth from the DSCOVR-EPIC camera. Right, the same image degraded to a resolution of 3 x 3 pixels, similar to what researchers will see in future exoplanet observations. Credit: NOAA/NASA, Stephen Kane

    As a young scientist, Tony del Genio of NASA’s Goddard Institute for Space Studies in New York City met Clyde Tombaugh, the discoverer of Pluto.

    “I thought, ‘Wow, this is a one-time opportunity,'” del Genio said. “I’ll never meet anyone else who found a planet.”

    That prediction was spectacularly wrong. In 1992, two scientists discovered the first planet around another star, or exoplanet, and since then more people have found planets than throughout all of Earth’s preceding history. As of this month, scientists have confirmed more than 3,500 exoplanets in more than 2,700 star systems. Del Genio has met many of these new planet finders.

    Del Genio is now co-lead of a NASA interdisciplinary initiative [NEXSS] to search for life on other worlds. This new position as the lead of this project may seem odd to those who know him professionally. Why? He has dedicated decades to studying Earth, not searching for life elsewhere.

    We know of only one living planet: our own. But we know it very well. As we move to the next stage in the search for alien life, the effort will require the expertise of planetary scientists, heliophysicists and astrophysicists. However, the knowledge and tools NASA has developed to study life on Earth will also be one of the greatest assets to the quest.

    Habitable Worlds

    There are two main questions in the search for life: With so many places to look, how can we focus in on the places most likely to harbor life? What are the unmistakable signs of life — even if it comes in a form we don’t fully understand?

    “Before we go looking for life, we’re trying to figure out what kinds of planets could have a climate that’s conducive to life,” del Genio said. “We’re using the same climate models that we use to project 21st century climate change on Earth to do simulations of specific exoplanets that have been discovered, and hypothetical ones.”

    Del Genio recognizes that life may well exist in forms and places so bizarre that it might be substantially different from Earth. But in this early phase of the search, “We have to go with the kind of life we know,” he said.

    Further, we should make sure we use the detailed knowledge of Earth. In particular, we should make sure of our discoveries on life in various environments on Earth, our knowledge of how our planet and its life have affected each other over Earth history, and our satellite observations of Earth’s climate.

    Above all else, that means liquid water. Every cell we know of — even bacteria around deep-sea vents that exist without sunlight — requires water.

    Life in the Ocean

    Research scientist Morgan Cable of NASA’s Jet Propulsion Laboratory in Pasadena, California, is looking within the solar system for locations that have the potential to support liquid water. Some of the icy moons around Saturn and Jupiter have oceans below the ice crust. These oceans were formed by tidal heating, that is, warming of the ice caused by friction between the surface ice and the core as a result of the gravitational interaction between the planet and the moon.

    “We thought Enceladus was just boring and cold until the Cassini mission discovered a liquid water subsurface ocean,” said Cable. The water is spraying into space, and the Cassini mission found hints in the chemical composition of the spray that the ocean chemistry is affected by interactions between heated water and rocks at the seafloor. The Galileo and Voyager missions provided evidence that Europa also has a liquid water ocean under an icy crust. Observations revealed a jumbled terrain that could be the result of ice melting and reforming.

    As missions to these moons are being developed, scientists are using Earth as a testbed. Just as prototypes for NASA’s Mars rovers made their trial runs on Earth’s deserts, researchers are testing both hypotheses and technology on our oceans and extreme environments.

    Cable gave the example of satellite observations of Arctic and Antarctic ice fields, which are informing the planning for a Europa mission. The Earth observations help researchers find ways to date the origin of jumbled ice. “When we visit Europa, we want to go to very young places, where material from that ocean is being expressed on the surface,” she said. “Anywhere like that, the chances of finding evidence of life goes up — if they’re there.”

    Water in Space

    For any star, it’s possible to calculate the range of distances where orbiting planets could have liquid water on the surface. This is called the star’s habitable zone.

    Astronomers have already located some habitable-zone planets, and research scientist Andrew Rushby, of NASA Ames Research Center, in Moffett Field, California, is studying ways to refine the search. Location alone isn’t enough. “An alien would spot three planets in our solar system in the habitable zone [Earth, Mars and Venus],” Rushby said, “but we know that 67 percent of those planets are not very habitable.” He recently developed a simplified model of Earth’s carbon cycle and combined it with other tools to study which planets in the habitable zone would be the best targets to look at for life, considering probable tectonic activity and water cycles. He found that larger rocky planets are more likely than smaller ones to have surface temperatures where liquid water could exist, given the same amount of light from the star.

    Renyu Hu, of JPL, refined the search for habitable planets in a different way, looking for the signature of a rocky planet. Basic physics tells us that smaller planets must be rocky and larger ones gaseous, but for planets ranging from Earth-sized to about twice that radius, astronomers can’t tell a large rocky planet from a small gaseous planet. Hu pioneered a method to detect surface minerals on bare-rock exoplanets and defined the atmospheric chemical signature of volcanic activity, which wouldn’t occur on a gas planet.

    Vital Signs

    When scientists are evaluating a possible habitable planet, “life has to be the hypothesis of last resort,” Cable said. “You must eliminate all other explanations.” Identifying possible false positives for the signal of life is an ongoing area of research in the exoplanet community. For example, the oxygen in Earth’s atmosphere comes from living things, but oxygen can also be produced by inorganic chemical reactions.

    Shawn Domagal-Goldman, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, looks for unmistakable, chemical signs of life, or biosignatures. One biosignature may be finding two or more molecules in an atmosphere that shouldn’t be there at the same time. He uses this analogy: If you walked into a college dorm room and found three students and a pizza, you could conclude that the pizza had recently arrived, because college students quickly consume pizza. Oxygen “consumes” methane by breaking it down in various chemical reactions. Without inputs of methane from life on Earth’s surface, our atmosphere would become totally depleted of methane within a few decades.

    Earth as Exoplanet

    When humans start collecting direct images of exoplanets, even the closest one will appear as a handful of pixels in the detector – something like the famous “blue dot” image of Earth from Saturn. What can we learn about planetary life from a single dot?

    Stephen Kane of the University of California, Riverside, has come up with a way to answer that question using NASA’s Earth Polychromatic Imaging camera on the National Oceanic and Atmospheric Administration’s Deep Space Climate Observatory (DSCOVR).

    NASA/DSCOVR

    These high-resolution images — 2,000 x 2,000 pixels – document Earth’s global weather patterns and other climate-related phenomena. “I’m taking these glorious pictures and collapsing them down to a single pixel or handful of pixels,” Kane explained. He runs the light through a noise filter that attempts to simulate the interference expected from an exoplanet mission.

    DSCOVR takes a picture every half hour, and it’s been in orbit for two years. Its more than 30,000 images are by far the longest continuous record of Earth from space in existence. By observing how the brightness of Earth changes when mostly land is in view compared with mostly water, Kane has been able to reverse-engineer Earth’s rotation rate — something that has yet to be measured directly for exoplanets.

    When Will We Find Life?

    Every scientist involved in the search for life is convinced it’s out there. Their opinions differ on when we’ll find it.

    “I think that in 20 years we will have found one candidate that might be it,” says del Genio. Considering his experience with Tombaugh, he added, “But my track record for predicting the future is not so good.”

    Rushby, on the other hand, says, “It’s been 20 years away for the last 50 years. I do think it’s on the scale of decades. If I were a betting man, which I’m not, I’d go for Europa or Enceladus.”

    How soon we find a living exoplanet really depends on whether there’s one relatively nearby, with the right orbit and size, and with biosignatures that we are able to recognize, Hu said. In other words, “There’s always a factor of luck.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
    • stewarthoughblog 11:20 pm on November 16, 2017 Permalink | Reply

      “Every scientist involved in the search for life is convinced it’s out there.” This is wishful, faith-based speculation motivated by continued funding prospects. The aphorism of human behavior that we are compelled to trivialize what we do not understand applies. A consensus-driven likelihood of life on other planets does not fair well against the lack of understanding of how life began on Earth but more importantly the true scientific revelations of intractable naturalistic inadequacies and failings to properly specify and empirically verify all required conditions and steps in earth’s origin of life. Speculation about science fiction alternatives cannot be taken seriously.

      Like

    • richardmitnick 7:41 am on November 17, 2017 Permalink | Reply

      Thanks for your comment.

      Like

  • richardmitnick 5:30 am on July 28, 2016 Permalink | Reply
    Tags: , , , , NASA NExSS   

    From Many Worlds: “Coming to Terms With Biosignatures” 

    NASA NExSS bloc

    NASA NExSS

    Many Words icon

    Many Worlds

    2016-07-27
    Marc Kaufman
    marc.kaufman@manyworlds.space

    1
    Exoplanets are much too far away for missions to visit and explore, so scientists are learning about them remotely. That includes the question of whether they might support life — an aspect of exoplanet science that is getting new attention. This is artist Ron Miller’s impression of an exoplanet.

    The search for life beyond our solar system has focused largely on the detection of an ever-increasing number of exoplanets, determinations of whether the planets are in a habitable zone, and what the atmospheres of those planets might look like. It is a sign of how far the field has progressed that scientists are now turning with renewed energy to the question of what might, and what might not, constitute a sign that a planet actually harbors life.

    The field of “remote biosignatures” is still in its early stages, but a NASA-sponsored workshop underway in Seattle has brought together dozens of researchers from diverse fields to dig aggressively into the science and ultimately convey its conclusions back to the exoplanet community and then to the agency.

    While a similar NASA-sponsored biosignatures workshop put together a report in 2002, much has changed since then in terms of understanding the substantial complexities and possibilities of the endeavor. There is also a new sense of urgency based on the observing capabilities of some of the space and ground telescopes scheduled to begin operations in the next decade, and the related need to know with greater specificity what to look for.

    “The astrobiology community has been thinking a lot more about what it means to be a biosignature,” said Shawn Domogal-Goldman of the Goddard Space Flight Center, one of the conveners of the meeting. Some of the reason why is to give advice to those scientists and engineers putting together space telescope missions, but some is the pressing need to maintain scientific rigor for the good of one of humankind’s greatest challenges.

    “We don’t want to spend 20 years of our lives and billions in taxpayer money working for a mission to find evidence of life, and learn too late that our colleagues don’t accept our conclusions,” he told me. “So we’re bringing them all together now so we can all learn from each other about what would be, and what would not be, a real biosignature.”

    2
    How to measure the chemical signatures in the atmosphere of a transiting exoplanet. The total light measured off-transit (B in the lower left figure) decreases during the transit, when only the light from the star is measured (A). By subtracting A from B, we get the planet counterpart, and from this the “chemical fingerprints” of the planet atmosphere can be revealed. ( NASA/JPL-Caltech)

    The 3-day workshop is bringing together some 50 scientists ranging from astronomers, astrobiologists and planetary scientists to microbiologists and specialists in photosynthesis. Organized by NASA’s Nexus for Exoplanet System Science (NExSS) — an initiative created to encourage interdisciplinary collaboration — it has been tasked with putting together a report for the larger exoplanet community and ultimately for NASA.

    The first day of the workshop featured a review of previous work on biosignatures, which initially put forward the presence of oxygen in an exoplanet atmosphere as a strong and almost certain sign that biology was at work below. This is because oxygen, which is a byproduct of much life, bonds quickly with other molecules and so would be undetectable unless it was continuously replenished.

    But as outlined by Victoria Meadows, director of the Virtual Planet Laboratory at the University of Washington, more recent research has shown large amounts of oxygen can be produced without biology under a number of (usually extreme) conditions. There has been a resulting focus on potential false positive signals regarding oxygen and other molecules.

    From another perspective, Tim Lyons, a biogeochemist from the University of California, Riverside, used the early and middle Earth as an example how easy it is to arrive at a false negative result.

    He said that current thinking is that for as long as two billion years, Earth was inhabited but the lifeforms produced little oxygen. If analyzed from afar for all those years, the result would be a complete misreading of life on Earth.

    With these kinds of false positives and negatives in mind, Meadows said that the current approach to understanding biosignatures is to look beyond a single molecule to the broader planetary and solar environment.

    “We have to look not just at single biosignatures, but at their their context on the planet. How might life have modified an environment in a potentially detectable way? And having stepped back a bit, does the biosignature make sense?”

    As one example, while oxygen alone is no longer considered a sure biosignature, oxygen in an atmosphere in the presence of methane would be convincing because of the known results of the chemical interactions of the two.

    3
    Schematic for the concept of considering all small molecules in the search for biosignature gases.
    The goal is to start with chemistry and generate a list of all small molecules and filter them for the set that is stable and volatile in temperature and pressure conditions relevant for exoEarth planetary atmospheres. In the ideal situation, this overall conceptual process would lead to a finite but comprehensive list of molecules that could be considered in the search for exoplanet biosignature gases. (S. Seager and D. Beckner)

    In part because of the false positive/false negative issues involving oxygen, some have begun a concerted effort to produce a list of additional possible biosignatures. William Bains, a member of Sara Seager’s team at the Massachusetts Institute of Technology, described the blunderbuss approach they have adopted: examining some 14,000 compounds simple (fewer than six non-hydrogen atoms) and stable enough to exist in the atmosphere of an exoplanet.

    In their Astrobiology Journal article, Seager, Bains and colleagues wrote that “To maximize our chances of recognizing biosignature gases, we promote the concept that all stable and potentially volatile molecules should initially be considered as viable biosignature gases.”

    Elaborating during the workshop, Bains asked: “Why does life produce the gases that it does? We really don’t know, so we’re bringing in everything as a possibility.” Not surprisingly, he said, “The more you search, the more you find.”

    And as for the possibility of life existing in extreme environments, Bains referred to the microbes known to live in radioactive environments, in plastic, and virtually everywhere else on Earth.

    Because the science of remote biosignatures is still in its early stages, the unknowns can seem to overwhelm the knowns, making the whole endeavor seem near impossible. After all, it’s proven extremely difficult to determine whether there was ever life on “nearby” Mars, and scientists have Martian meteorites to study and rovers sending back information about the geology, the geochemistry, the weather, the atmospheric conditions and the composition of the planet.

    By comparison, learning how to probe the atmospheres of faraway exoplanets and assess what might or might not be a biosignature will have to be done entirely with next generation space telescopes and the massive ground telescopes in development. The information in the photons they collect will tell scientists what compounds are present, whether liquid water is present on the surface, and potentially whether the surface is changing with seasons. And then the interpretation begins.

    That’s why Mary Voytek, the originator of NExSS and the head of the NASA astrobiology program, said at the workshop that the goal was to test and ultimately provide as many biosignatures as possible. She wants many molecules potentially associated with life to be identified and then studied and restudied in the same critical way that oxygen has been — embraced for the biosignature possibilities it offers, and understood for the false positives and false negatives that might mislead.

    “What we need is an arsenal,” she said, as many ways to sniff out the byproducts of exoplanet life as that daunting task demands.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 6:18 pm on May 8, 2016 Permalink | Reply
    Tags: Andrew Rushby, , , , NASA NExSS   

    From Many Worlds: “Out of the Stovepipes and Into the Galaxy” 

    NASA NExSS bloc

    NASA NExSS

    Many Words icon
    Many Worlds

    2016-05-06
    Guest Columnist Andrew Rushby

    1
    NExSS encourages a “systems science” approach to understanding exoplanets, and especially whether they might be habitable. Systems science is inherently interdisciplinary, and so fields such as earth science and planetary science (and many more) provide needed insights into how exoplanets might be explored. (NASA)

    I’m most excited to join NExSS at its one year anniversary, and hope that I can help the network as it advances into, and works to fashion, the exoplanetary future.

    Coming in from the outside, the progress I already see in terms of bringing researchers together to work on interdisciplinary exoplanet science is impressive. But more generally, I see this as a significant juncture in the fast-expanding study of these distant worlds, with NExSS and its members poised to facilitate a potentially revolution in how we look at planets in this solar system and beyond.

    The ‘systems science’ approach to understanding exoplanets is, I believe, the right framework for advancing our understanding. Earth scientists and biogeochemists have been using systems science for some time now to build, test, and improve theories for how the Earth functions as an interconnected system of physical, chemical and biological components — all operating over eons in a complex and tangled evolutionary web that we are only now unraveling.

    It is this method that allows us to better understand the respective roles of the atmosphere, ocean, biosphere, and geosphere in influencing the past and present climate of this planet. It allows us to clearly see the damage we are causing to these systems through the release of industry and transport-created greenhouse gases, and offers opportunities for mitigation. We know the systems science approach works for the Earth, and the time to make it work for exoplanets is now.

    But as Marc pointed out in his previous post about the first year of NExSS, the opportunity to leverage this method for comparative planetology is a relatively new one. We just haven’t had the data for building exoplanet systems models and making testable hypotheses.

    The work that NExSS is doing is extremely relevant to this effort because we recognize that – faced with the gargantuan task of discerning how innumerable planets beyond our solar system can be found, formed, characterized and understood — we have to do something different. The decisions we make and the effort we invest at this still very early stage will determine the future of planet discovery, and build the foundations for how we come to understand the planet system and its evolution.

    We are likely the first of many generations of interdisciplinary exoplanetologists. To build a sturdy foundation for this approach, we will need to further break down the often restrictive scientific “stovepipes” that can keep necessary data known to scientists in one field from others who need it to understand their own data. After the stovepipes have been dismantled (or at least modified), then comes the process of together building the exoplanetary chimney.

    This is not an effort that can be successfully undertaken by individuals alone, or even already formed cross-disciplinary groups.

    By its very nature, exoplanet science needs the insights and energy of the entire community of astrophysicists, heliophysicists, Earth scientists and planetary scientists interested in how their particular field of study fits in to the grand picture beginning to take shape.

    Planets are endlessly complex and dynamic islands at the confluence of the physical, chemical and biological realms, and therefore our approach to making sense of them must be interdisciplinary, inclusive and epistemologically unique.

    I’ve always thought, naively perhaps, of the search for exoplanets and for other life in the universe as a proxy search for our own place.

    With our telescopes we peer ever outward, trying to find other worlds like our own to give meaning to that which we know best – this planet and its biosphere. It’s the next inevitably tumultuous battle in the long and sustained campaign for a greater perspective on ourselves, one that began when we first looked up at the night sky and wondered if what was out there was anything like what was down here.

    It’s difficult, of course, to see how far you’ve already traveled on a journey of unknown length. But his field has come so far already and made so many strides in the last twenty years that analogies to its pace of discovery are difficult to come by.

    As for me, I come from a biogeochemical background and was schooled at the University of East Anglia the UK. I spent my PhD years building models to investigate how the planetary evolution of Earth and Earth-like planets may affect their long-term habitability. But I have also dedicated much time to telling just about anyone who would listen just how very cool exoplanets are. I hope to continue this work too.

    2
    Artist illustration of an exoplanet and a debris disc orbiting their host star. (NASA)

    During my exoplanet talks in the UK – at meetings, science cafes, outreach events, at the pub and online through my blog — I can honestly say I’ve never encountered anyone who didn’t find this science fascinating. Whatever my own speaking skills may be, I know that it’s not difficult to enthuse people about the idea of exotic planets, alien life, and space missions. It’s almost cheating. There’s an optimism inherent in the field – one that says we can learn about these distant, shrouded and endlessly complex planetary systems through our own hard work, cleverness and technology. I think it’s an optimism that people relate to.

    I hope therefore to make some small contribution to this effort through my time with NExSS by helping to build and maintain future and current collaborations among our existing members, growing our network, helping with our upcoming meetings and workshops, and facilitating communication from the network and its members.

    I look forward to both embracing the differences, and identifying the similarities, between my training in the UK and the research culture here in USA. I think other countries would benefit greatly from the ‘NExSS approach’, and I look forward to welcoming the input of international colleagues in making NExSS a truly global enterprise. Many countries may be looking to NExSS’s example: let’s lead the way in showing the world how best to find and understand other worlds.

    3
    A joint NExSS/NASA Astrobiology Institute workshop on biosignatures is scheduled for July in Seattle. The goal is to bring together scientists from many fields, have them bring their knowledge to the subject of exoplanet biosignatures, and then bring the conclusions back to NASA. (NExSS/NAI)

    In addition to on-going PI collaborations, NExSS has some exciting plans for the year ahead, as well as some tasks with significant and formal purposes.

    First is the NExSS Exoplanet Biosignatures Workshop Without Walls in Seattle in July, which will have 30-35 on-site participants and an opportunity for many more to participate online. Insights and conclusions from the Biosignatures Workshop will be exchanged with NASA’s Science Technology Definition Teams (STDTs) for upcoming planet-observing missions.

    In addition, summary reports from the workshop will be circulated to the community for feedback. These reports will then be filed with a dedicated Exoplanet Biosignatures Study Analysis Group (SAG 16) of the Exoplanet Exploration Program Analysis Group (ExoPAG).

    A heliophysics-based workshop (title and details tbc) will also be held in November, with title and details to be announced.

    The second Face-to-Face meeting of all 17 NExSS PIs and associated team members, Co-leads, and NASA HQ representatives will be held at NASA Headquarters and the Carnegie Institution for Science in May. The two-day event offers an opportunity to discuss what worked and what didn’t work so well during the first year of NExSS, to hopefully come up with new collaborations, and to look ahead to the future of the network.

    Over the next two years, the initiative will also continue to engage with the wider exoplanet community through workshops, meetings, and outreach activities in order to grow the network organically while ensuring inclusivity and representation from all of areas of this multidisciplinary field.

    Per unitatem ad astra! (Through unity, to the stars!)

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:32 am on April 26, 2016 Permalink | Reply
    Tags: , , , , , NASA NExSS   

    From Many Worlds: “Breaking Down Exoplanet Stovepipes” 

    NASA NExSS bloc

    NASA NExSS

    Many Worlds

    Many Words icon

    2016-04-25
    Marc Kaufman

    1
    The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA’s NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). (NASA)

    That fields of science can benefit greatly from cross-fertilization with other disciplines is hardly a new idea. We have, after all, long-standing formal disciplines such as biogeochemistry — a mash-up of many fields that has the potential to tell us more about the natural environment than any single approach. Astrobiology in another field that inherently needs expertise and inputs from a myriad of disciplines, and the NASA Astrobiology Institute was founded (in 1998) to make sure that happened.

    Until fairly recently, the world of exoplanet study was not especially interdisciplinary. Astronomers and astrophysicists searched for distant planets and when they succeeded came away with some measures of planetary masses, their orbits, and sometimes their densities. It was only in recent years, with the advent of a serious search for exoplanets with the potential to support life, that it became apparent that chemists (astrochemists, that is), planetary and stellar scientists, cloud specialists, geoscientists and more were needed at the table.

    Universities were the first to create more wide-ranging exoplanet centers and studies, and by now there are a number of active sites here and abroad. NASA formally weighed in one year ago with the creation of the Nexus for Exoplanet System Science (NExSS) — an initiative which brought together 17 university and research center teams with the goal of supercharging exoplanet studies, or at least to see if a formal, national network could produce otherwise unlikely collaborations and science.

    That network is virtual, unpaid, and comes with no promises to the scientists. Still, NASA leaders point to it as an important experiment, and some interesting collabortions, proposals and workshops have come out of it.

    “A year is a very short time to judge an effort like this,” said Douglas Hudgins, program scientist for NASA’s Exoplanet Exploration Program, and one of the NASA people who helped NExSS come into being.

    “Our attitude was to pull together a group of people, do our best to give them tool to work well together, let them have some time to get to know each other, and see what happens. One year down the road, though, I think NExSS is developing and good ideas are coming out of it.”

    2
    Illustration of what a sunset might look like on a moon orbiting Kepler 47c and its two suns. (Softpedia)

    One collaboration resulted in a “White Paper” on how laboratory work today can prepare researchers to better understand future exoplanet measurements coming from new generation missions. Led by NExSS member Jonathan Fortney of the University of Clalfornia, Santa Cruz, it was the result of discussions at the first NExSS meeting in Washington, and was expanded by others from the broader community.

    Another NExSS collaboration between Steven Desch of Arizona State University and Jason Wright of Penn State led to a proposal to NASA to study a planet being pulled apart by the gravitational force a white dwarf star. The interior of the disintegrating planet could potentially be analyzed as its parts scatter.

    Leaders of NExSS say that other collaborations and proposals are in the works but are not ready for public discussion yet.

    In addition, NExSS — along with the NASA Astrobiology Institute (NAI) and the National Science Foundation (NSF) — sponsored an unusual workshop this winter at Arizona State University focused on a novel way to looking at whether an exoplanet might support life. Astrophysicists and geoscientists spent three days discussing and debating how the field might gather and use information about the formation, evolution and insides of exoplanets to determine whether they might be habitable.

    One participant was Shawn Domogal-Goldman, a research space scientist at the Goddard Space Flight Center and a leader of the NExSS group. He’s an expert in ancient earth as well the astrophysics of exoplanets, and his view is that the Earth provides 4.5 billion years of physical, chemical, climatic and biological dynamics that need to be mined for useful insights about exoplanets.

    When the workshop was over he said: “For me, and I think for others, we’ll look back at this meeting years from now and say to ourselves, ‘We were there at the beginning of something big.”

    NExSS has two more workshops coming up, one on “Biosignatures” July 27 t0 29 in Seattle and another on stellar-exoplanet interactions in November. Reflecting the broad reach of NExSS, the biosignatures program has additional sponsors include the NASA Astrobiology Institute (NAI), NASA’s Exoplanet Exploration Program (ExEP), and international partners, including the European Astrobiology Network Association (EANA) and Japan’s Earth-Life Science Institute (ELSI).

    3
    By looking for signs of life, scientists focus on the potential presence of oxygen, ozone, water, carbon dioxide, methane and nitrous oxide, which could indicate plant or bacterial life. The figure above shows how complex Earth’s spectra is compared to Mars or Venus. This is a reflection of the intricate balance and control of elements needed to support life. The upcoming NExSS workshop will focus on what we know, and need to know, about what future missions and observations should be looking for in terms of exoplanet biosignatures. (ESA)

    The initial idea for NExSS came from Mary Voytek, senior scientist for astrobiology in NASA’s Planetary Sciences Division. Interdisciplinary collaboration and solutions are baked into the DNA of astrobiology, so it is not surprising that an interdisciplinary approach to exoplanets would come from that direction. In addition, as the study of exoplanets increasingly becomes a search for possible life or biosignatures on those planets, it falls very much into the realm of astrobiology.

    Hudgins said that while this dynamic is well understood at NASA headquarters, the structure of the agency does not necessarily reflect the convergence. Exoplanet studies are funded through the Division of Astrophysics while astrobiology is in the Planetary Sciences Division.

    NExSS is a beginning effort to bring the overlapping fields closer together within the agency, and more may be on the way. Said Hudgins: “We could very well see some evolution in how NASA approaches the problem, with more bridges between astrobiology and exoplanets.”

    NExSS is led by Natalie Batalha of NASA’s Ames Research Center in Moffett Field, California; Dawn Gelino with NExScI, the NASA Exoplanet Science Institute at the California Institute of Technology in Pasadena; and Anthony Del Genio of NASA’s Goddard Institute for Space Studies in New York City.

    All three see NExSS as an experiment and work in progress, with some promising accomplishments already. And some clear challenges.

    Del Genio, for instance, described the complex dynamics involved in having a team like his own — climate modelers who have spent years understanding the workings of our planet — determine how their expertise can be useful in better understanding exoplanets.

    These are some of his thoughts:

    “This sounds great, but in practice it is very difficult to do for a number of reasons. First, all the disciplines speak different languages. Jargon from one field has to be learned by people in another field, and unlike when I travel to Europe with a Berlitz phrase book, there is no Earth-to-Astrophysics translation guide to consult.

    “Second, we don’t appreciate what the important questions are in each others’ fields, what the limitations of each field are, etc. We have been trying to address these roadblocks in the first year by having roughly monthly webinars where different people present research that their team is doing. But there are 17 teams, so this takes a while to do, and we are only part way through having all the teams present.

    “Third, NExSS is a combination of teams that proposed to different NASA programs for funding, and we are a combination of big and small teams. We are also a combination of teams in areas whose science is more mature, and teams in areas whose science is not yet very mature (and maybe if you asked all of us you’d get 10 different opinions on whose science is mature and whose isn’t).

    What’s more, he wrote, he sees an inevitable imbalance between the astrophysics teams — which have been thinking about exoplanets for a long time — and teams from other disciplines that have mature models and theories for their own work but are now applying those tools to think about exoplanets for the first time.

    But he sees these issues as challenges rather than show-stoppers, and expects to see important — and unpredictable — progress during the three-year life of the initiative.

    Natalie Batalie said that she became involved with NExSS because “I wanted to help expedite the search for life on exoplanets.”

    “Reaching this goal requires interdisciplinary thinking that’s been difficult to achieve given the divisional boundaries within NASA’s science mission directorate. NExSS is an experiment to see if cooperation between the divisions can lead to cross-fertilization of ideas and a deeper understanding of planetary habitability.”

    She said that in the last year, scientists working on planetary habitability both inside and outside of NExSS — and funded by different science divisions within NASA — have had numerous NExSS-sponsored opportunities to interact, learn from each other and begin collaborations.

    The Fortney et al “White Paper” on experimental data gaps, for example, was conceived during one of these gatherings, as was the need for a biosignatures analysis group to support NASA’s Science & Technology Definition Teams studying the possible flagship missions of the future.

    In full disclosure, Many Worlds is funded by NExSS but represents only the views of the writer.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 4:55 pm on January 22, 2016 Permalink | Reply
    Tags: , , , , NASA NExSS   

    From Many Worlds at NExSS: “Movement in The Search For ExoLife” 

    NASA NExSS bloc

    NASA NExSS

    Many Worlds

    Many Words icon

    Temp 2
    A notional version of an observatory for the 2030s that could provide revolutionary direct imaging of exoplanets. GSFC/JPL/STScI

    Assuming for a moment that life exists on some exoplanets, how might researchers detect it?

    This is hardly a new question. More than ten years ago, competing teams of exo-scientists and engineers came up with proposals for a NASA flagship space observatory capable of identifying possible biosignatures on distant planets. No consensus was reached, however, and no mission was developed.

    But early this year, NASA Astrophysics Division Director Paul Hertz announced the formation of four formal Science and Technology Definition Teams to analyze proposals for a grand space observatory for the 2030s. Two of them in particular would make possible the kind of super-high resolution viewing needed to understand the essential characteristics of exoplanets. As now conceived, that would include a capability to detect molecules in distant atmospheres that are associated with living things.

    These two exo-friendly missions are the Large Ultraviolet/Optical/Infrared (LUVOIR) Surveyor and the Habitable Exoplanet (HabEx) Imaging Mission. Both would be on the scale of, and in the tradition of, scientifically and technically ground-breaking space observatories such as the Hubble and the James Webb Space Telescope, scheduled to launch in 2018.

    NASA Hubble Telescope
    NASA/ESA Hubble

    NASA Webb Telescope
    NASA/ESA/CSA Webb

    These flagship missions provide once in a decade opportunities to move space science dramatically forward, and not-surprisingly at a generally steep cost.

    Temp 3
    A simulated spiral galaxy as viewed by Hubble, and as viewed by the kind of high definition space telescope now under study. Hubble detects the bulge and disk, but only the high definition image resolves the galaxy’s star-forming regions and its dwarf satellite. The zoom shows the inner disk region, where only high definition can resolve the star-forming regions and separate them from the redder, more distributed old stellar population. (D. Ceverino, C. Moody, G. Snyder, and Z. Levay (STScI)

    Because the stakes are so high, planning and development takes place over decades — twenty years is the typical time elapsed between the conception of a grand flagship mission and its launch. So while what is happening now with the science and technology definition teams is only a beginning — albeit one with quite a heritage already — it’s an essential, significant and broadly-supported start. Over the next three years, the teams will undertake deep dives into the possibilities and pitfalls of LUVOIR and HabEx, as well as the two other proposals. There’s a decent chance that a version of one of the four will become a reality.

    Aki Roberge, an astrophysicist at the Goddard Space Flight Center and staff scientist of the LUVOIR study, said that the explicit charge to the teams is to cooperate rather than compete. Any of the four observatories under consideration, she said, would enable transformative science. But from an exoplanet perspective, the possibilities she described are pretty remarkable.

    “What we’re aiming for is the capability to really search for the true Earth analogues out there, the Earth-sized planets in the habitable zones of sun-like stars. We need to understand their atmospheres, their climates, their compositions. And ultimately, the goal is to search for life.”

    The co-chair of the HabEx team, Bertrand Menneson of the Jet Propulsion Lab, said the goals are the same: A major jump forward in our ability to understand exoplanets and a serious effort to find life.

    The field of exoplanet detection and research has exploded over the past two decades, with an essential boost from increasingly capable observatories on Earth and in space. With at least three more major exoplanet-friendly space telescopes scheduled (or planned) for the next decade — as well as first light at several enormous ground-based mirrors — the brisk pace of discoveries is sure to continue.

    So why are so many scientists in the field convinced that a grand, Flagship-class NASA space observatory is essential, and that it needs to be developed and built ground-up with exoplanet research in mind? Can’t the instruments in use today, and planned for the next decade, provide the kind of observing power needed to continue making breakthroughs?

    Well, no, they can’t and won’t. That has been the conclusion of numerous studies over the years, and most recently an in-depth effort by the Association of Universities for Research in Astronomy (AURA) http://www.hdstvision.org/report which last summer called for development of a 12-meter (about 44 feet across) High Definition Space Telescope with the super high resolution needed to study exoplanets. Generally speaking, a larger light-collecting mirror allows astronomers and astrophysicists to see further and better.

    Temp 4
    A direct, to-scale, comparison between the primary mirrors of the Hubble Space Telescope, James Webb Space Telescope, and the High Definition Space Telescope (HDST) proposed by the AURA group. In this concept, the HDST primary is composed of 36 1.7 meter segments. The LUVOIR mirror under consideration is in the eight to twelve meters range. C. Godfrey (STScI)

    The group, headed by Julianne Dalcanton of the University of Washington and Sara Seager of MIT, began with this overview of the state of play when it comes to exoplanets, instruments, and what is possible now and might be in the future:

    While we now have a small sample of potentially habitable planets around other stars, our current telescopes lack the power to confirm that these alien worlds are truly able to nurture life. This small crop of worlds may have temperate, hospitable surface conditions, like Earth. But they could instead be so aridly cold that all water is frozen, like on Mars, or so hot that all potential life would be suffocated under a massive blanket of clouds, like on Venus. Our current instruments cannot tell the difference for the few rocky planets known today, nor in general, for the larger samples to be collected in the future. Without better tools, we simply cannot see their atmospheres and surfaces, so our knowledge is limited to only the most basic information about the planet’s mass and/ or size, and an estimate of the energy reaching the top of the planet’s atmosphere. But if we could directly observe exoplanet atmospheres, we could search for habitability indicators (such as water vapor from oceans) or for signs of an atmosphere that has been altered by the presence of life (by searching for oxygen, methane, and/or ozone).

    A central goal for both LUVOIR and HabEx is to provide that “seeing” through much more sophisticated direct imaging — that is, capturing the actual reflected light from exoplanets rather than relying on indirect techniques and measurements. The many indirect methods of finding and studying exoplanets have played and will continue to play an essential role. But there is now a community consensus that next generation direct imaging from space is the gold standard.

    That a major space observatory for the 2030s just might be exoplanet-focused reflects a definite maturing of the field. From a science perspective, the discoveries of the Kepler mission in particular made clear that exoplanets are everywhere, and not infrequently orbiting in habitable zones.

    NASA Kepler Telescope
    NASA/Kepler

    The work of the Curiosity rover on Mars, and especially the conclusion that the planet once was wet and “habitable,” added to the general interest and excitement about possible life beyond Earth.

    NASA Mars Curiosity Rover
    Curiosity

    And then there are the lessons learned from the earlier bruising battles among exoplanet scientists, who had developed a reputation for serious in-fighting. THEIA, the Telescope for Habitable Exoplanets and Interstellar/Intergalactic Astronomy, was put forward as a flagship direct imaging mission in 2010, when the Astronomy and Astrophysics Decadal Survey that sets priorities for the field was being put together by the National Academy of Sciences. But THEIA was not adopted.

    With the 2020 Decadal Survey on the horizon, exoplanet scientists have tried to limit conflicts and to work with the larger astronomy community. The formal NASA/community study group, the Exoplanet Exploration Program Analysis Group (ExoPAG), brought two related groups together and ultimately recommended the intensified study for LUVOIR, HabEx and the two other proposals — which focus on black holes, ancient galaxy formation, and other aspects of the early cosmos. https://exep.jpl.nasa.gov/files/exep/ExoPAG_Large_Missions.pdf

    When completed, the studies will go to the National Academy of Sciences for further review, discussion, and ultimately a recommendation to NASA regarding which project should go forward.

    The leader of the ExoPAG group was astronomer Scott Gaudi of Ohio State University, who specializes in characterizing exoplanets but played no favorites in the ExoPAG report and recommendations.

    “What we want is to set up a fair process of intense review so the most compelling science can be chosen to go forward. At this point, we don’t know if the necessary technologies will be available in time, and we don’t know what the costs will be. There’s only so much money that comes from NASA for our (astrophysics) community, and maybe a top choice will cost more than the community is willing to spend. So there are so many factors to consider.”

    (The LUVOIR mission is generally considered to be somewhat more ambitious than HabEx, and would require a larger telescope mirror — greater than 8 meters across –and more funding. Flagship missions are expensive, as NASA learned once again with the James Webb telescope, which will have cost $8.8 billion by the time of its scheduled launch.)

    I asked Gaudi if the seemingly substantial public interest in exoplanets could play any role in subsequent decision-making, and he replied that it possibly would. “In the past five or ten years, exoplanets have become a prominent topic for sure. And the public is clearly very, very interested in that topic.” But that public interest, he said, won’t mean much if the science and technical feasibility isn’t there.

    We won’t know for some years if the stars will align in a way that will lead to a major observatory with direct imaging and exoplanets at its center. But for those active in the field, the opportunity to take part in a major effort to formally determine its scientific merit and feasibility is irresistible.

    Shawn Domagal-Goldman, a research space scientist at Goddard, was selected to be a deputy on the LUVOIR science and technology team, which he sees as a much-anticipated “proof of concept” effort for the exoplanet research of the future.

    Between 12 and 18 scientists and engineers will be selected by NASA headquarters for each team, and Domagal-Goldman said it’s essential that they make up a broad and inter-disciplinary group, including people from industry. Scientists from abroad not associated with an American institution can’t be formal members, but they can observe and may become more involved if their national space agencies decide to join in the effort. He encourages researchers — from newly minted PhDs to career scientists — to nominate themselves to join.

    “Nobody gets paid for this, it’s a labor of love,” he said. “But what would be more satisfying than having some of your intellectual contribution go into the formulation of missions like these.

    “Direct imaging of exoplanets is clearly a direction where the community is headed. These are the missions of the future in one form or another, and if you’re a PhD or postdoc who’s qualified, this could be your career.”

    Of course, it just might make the greatest discovery of modern science — finding life beyond Earth.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Many Worlds

    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:37 pm on January 12, 2016 Permalink | Reply
    Tags: , , NASA NExSS, The Futire of Exoplanet Research   

    From NEXSS: “How Will We Know What Exoplanets Look Like, and When?” 

    NASA NExSS bloc

    NASA NExSS

    2016-01-08
    Marc Kaufman

    1
    This image of a pair of interacting galaxies called Arp 273 was released to celebrate the 21st anniversary of the launch of the NASA/ESA Hubble Space Telescope.

    NASA Hubble Telescope
    NASA/ESA Hubble

    The distorted shape of the larger of the two galaxies shows signs of tidal interactions with the smaller of the two. It is thought that the smaller galaxy has actually passed through the larger one.

    Let’s face it: the field of exoplanets has a significant deficit when it comes to producing drop-dead beautiful pictures.

    We all know why. Exoplanets are just too small to directly image, other than as a miniscule fraction of a pixel, or perhaps some day as a full pixel. That leaves it up to artists, modelers and the travel poster-makers of the Jet Propulsion Lab to help the public to visualize what exoplanets might be like. Given the dramatic successes of the Hubble Space Telescope in imaging distant galaxies, and of telescopes like those on the Cassini mission to Saturn and the Mars Reconnaissance Orbiter, this is no small competitive disadvantage.

    NASA Cassini Spacecraft
    NASA/Cassini

    NASA Mars Reconnaisence Orbiter
    Mars Reconnaissance Orbiter

    And this explains why the first picture of this column has nothing to do with exoplanets (though billions of them are no doubt hidden in the image somewhere.)

    The problem is all too apparent in these two images of Pluto — one taken by the Hubble and the other by New Horizons telescope as the satellite zipped by.

    2
    3
    Pluto image taken by Hubble Space Telescope (above) and close up taken by New Horizons in 2015. (NASA)

    NASA New Horizons spacecraft
    NASA/New Horizons

    Pluto is about 4.7 billion miles away. The nearest star, and as a result the nearest possible planet, is 25 trillion miles away. Putting aside for a minute the very difficult problem of blocking out the overwhelming luminosity of a star being cross by the orbiting planet you want to image, you still have an enormous challenge in terms of resolving an image from that far away.

    While current detection methods have been successful in confirming more than 2,000 exoplanets in the past 20 years (with another 2,000-plus candidates awaiting confirmation or rejection), they have been extremely limited in terms of actually producing images of those planetary fireflies in very distant headlights. And absent direct images — or more precisely, light from those planets — the amount of information gleaned about the chemical makeup of their atmospheres as been limited, too.

    But despite the enormous difficulties, astronomers and astrophysicists are making some progress in their quest to do what was considered impossible not that long ago, and directly image exoplanets.

    In fact, that direct imaging — capturing light coming directly from the sources — is pretty uniformly embraced as the essential key to understanding the compositions and dynamics of exoplanets. That direct light may not produce a picture of even a very fuzzy exoplanet for a very long time to come, but it will definitely provide spectra that scientists can read to learn what molecules are present in the atmospheres, what might be on the surfaces and as a result if there might be signs of life.

    4
    This diagram illustrates how astronomers using NASA’s Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets.

    NASA Spitzer Telescope
    NASA/Spitzer

    Spectra are an object’s light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light. (NASA/JPL-Caltech)

    There has been lots of technical and scientific debate about how to capture that light, as well as debate about how to convince Congress and NASA to fund the search. What’s more, the exoplanet community has a history of fractious internal debate and competition that has at times undermined its goals and efforts, and that has been another hotly discussed subject. (The image of a circular firing squad used to be a pretty common one for the community.)

    But a seemingly much more orderly strategy has been developed in recently years and was on display at the just-completed American Astronomical Society annual meeting in Florida. The most significant breaking news was probably that NASA has gotten additional funds to support a major exoplanet direct imaging mission in the 2020s, the Wide Field Infrared Survey Telescope (WFIRST), and that the agency is moving ahead with a competition between four even bigger exoplanet or astrophysical missions for the 2030s.

    NASA WFIRST telescope
    NASA/WFIRST

    The director of NASA Astrophysics, Paul Hertz, made the formal announcements during the conference, when he called for the formation of four Science and Technology Definition Teams to assess in great detail the potentials and plausibilities of the four possibilities.

    5
    Paul Hertz, Director of the Astrophysics Division of NASA’s Science Mission Directorate.

    Putting it into a broader perspective, astronomer Natalie Batalha, science lead for the Kepler Space Telescope, told a conference session on next-generation direct imaging that “with modern technology, we don’t have the capability to image a solar system analog.” But, she said, “that’s where we want to go.”

    NASA Kepler Telescope
    NASA/Kepler

    And the road to discovering exoplanets that might actually sustain life may well require a space-based telescope in the range of eight to twelve meters in radius, she and others are convinced. Considering that a very big challenge faced by the engineers of the James Webb Space Telescope (scheduled to launch in 2018) was how to send a 6.5 meter-wide mirror into space, the challenges (and the costs) for a substantially larger space telescope will be enormous.

    We will come back in following post to some of these plans for exoplanet missions in the decades ahead, but first let’s look at a sample of the related work done in recent years and what might become possible before the 2020s. And since direct imaging is all about “seeing” a planet — rather than inferring its existence through dips in starlight when an exoplanet transits, or the wobble of a sun caused by the presence of an orbiting ball of rock (or gas) — showing some of the images produced so far seems appropriate. They may not be breath-taking aesthetically, but they are remarkable.

    There is some debate and controversy over which planets were the first to be directly imaged. But all agree that a major breakthrough came in 2008 with the imaging of the HR8799 system via ground-based observations.

    6
    This 2010 image shows the light from three planets orbiting HR8799, 120 light-years away. The three planets, called HR8799b, c and d, are thought to be gas giants like Jupiter, but more massive. (NASA/JPL-Caltech/Palomar Observatory)

    First, three Jupiter-plus gas giants were identified using the powerful Keck and Gemini North infrared telescopes on Mauna Kea in Hawaii by a team led by Christian Marois of the National Research Council of Canada’s Herzberg Institute of Astrophysics. That detection was followed several years later the discovery of a fourth planet and then by the release of the surprising image above, produced with the quite small (4.9 foot) Hale telescope at the Palomar Observatory outside of San Diego.

    Keck Observatory
    Keck

    NOAO Gemini North
    Gemini North

    That detection was followed several years later the discovery of a fourth planet and then by the release of the surprising image above, produced with the quite small (4.9 foot) Hale telescope at the Palomar Observatory outside of San Diego.

    Caltech Palomar 1.5 meter 60 inch telescope
    Caltech Palomar 1.5 meter telescope

    As is the case for all planets directly imaged, the “pictures” were not taken as we would with our own cameras, but rather represent images produced with information that is crunched in a variety of necessary technical ways before their release. Nonetheless, they are images in a way similar the iconic Hubble images that also need a number of translating steps to come alive.

    Because light from the host star has to be blocked out for direct imaging to work, the technique now identifies only planets with very long orbits. In the case of HR8799, the planets orbit respectively at roughly 24, 38 and 68 times the distance between our Earth and sun. Jupiter orbits at about 5 times the Earth-sun distance.

    In the same month as the HR8799 announcement, another milestone was made public with the detection of a planet orbiting the star Formalhaut. That, too, was done via direct imagining, this time with the Hubble Space Telescope.

    7
    The Hubble images the the star Formalhaut and planet Formalhaut b were taken with the Space Telescope Imaging Spectrograph in 2010 and 2012. This false-color composite image reveals the orbital motion of the Fomalhaut b. Based on these observations, astronomers calculated that the planet is in a 2,000-year-long, highly elliptical orbit. The black circle at the center of the image blocks out light from the very bright star, allowed reflected light from the belt and planet to be captured. Credit: NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute)

    Signs of the planet were first detected in 2004 and 2006 by a group headed by Paul Kalas at the University of California, Berkeley, and they made the announcement in 2008. The discovery was confirmed several years later and tantalizing planetary dynamics began to emerge from the images (all in false color.) For instance, the planet appears to be on a path to cross a vast belt of debris around the star roughly 20 years from now. If the planet’s orbit lies in the same plane with the belt, icy and rocky debris could crash into the planet’s atmosphere and cause interesting damage.

    The region around Fomalhaut’s location is black because astronomers used a coronagraph to block out the star’s bright glare so that the dim planet could be seen. This is essential since Fomalhaut b is 1 billion times fainter than its star. The radial streaks are scattered starlight. Like all the planets detected so far using some form of direct imaging, Fomalhaut b if far from its host star and completes an orbit every 872 years.

    Adaptive optics of the Gemini Planet Imager, at the Gemini South Observatory in Chile, has been successful in imaging exoplanets as well. The GPI grew out of a proposal by the Center for Adaptive Optics, now run by the University of California system, to inspire and see developed innovative optical technology. Some of the same breakthroughs now used in treating human eyes found their place in exoplanet astronomy.

    NOAO Gemini Planet Imager
    GPI

    Gemini South telescope
    Gemini South

    The GPI grew out of a proposal by the Center for Adaptive Optics, now run by the University of California system, to inspire and see developed innovative optical technology. Some of the same breakthroughs now used in treating human eyes found their place in exoplanet astronomy.

    8
    Discovery image of 51 Eri b with the Gemini Planet Imager taken in the near-infrared light on December 18, 2014. The bright central star has been mostly removed by a hardware and software mask to enable the detection of the exoplanet one million times fainter. Credits: J. Rameau (UdeM) and C. Marois (NRC Herzberg).

    The Imager, which began operation in 2014, was specifically created to discern and evaluate dim, newer planets orbiting bright stars using a different kind of direct imaging. It is adept at detecting young planets, for instance, because they still retain heat from their formation, remain luminous and visible. Using the GPI to study the area around the y0ung (20-million-year-old) star 51 Eridiani, the team made their first exoplanet discovery in 2014.

    By studying its thermal emissions, the team gained insights into the planet’s atmospheric composition and found that — much like Jupiter’s — it is dominated by methane. To date, methane signatures have been weak or absent in directly imaged exoplanets.

    James Graham, an astronomer at the University of California, Berkeley, is the project leader for a three-year GPI survey of 600 stars to find young gas giant planets, Jupiter-size and above.

    “The key motivation for the experiment is that if you can detect heat from the planet, if you can directly image it, then by using basic science you can learn about formation processes for these planets.” So by imaging the planets using these very sophisticated optical advances, scientists go well beyond detecting exoplanets to potentially unraveling deep mysteries (even if we still won’t know what the planets “look like” from an image-of-the-day perspective.

    The GPI has also detected a second exoplanet, shown here at different stages of its orbit:

    9
    The animation is a series of images taken between November 2013 and April 2015 with the Gemini Planet Imager (GPI) on the Gemini South telescope in Chile, and shows the exoplanet β Pictoris b, which is more than 60 lightyears from Earth. The star is the black area on the left edge of the frame and is hidden by the Gemini Planet Imager’s coronagraph. (M. Millar-Blanchaer, University of Toronto; F. Marchis, SETI Institute)

    A next big step in direct imaging of exoplanets will come with the launch of the James Webb Space Telescope in 2018. While not initially designed to study exoplanets — in fact, exoplanets were just first getting discovered when the telescope was under early development — it does now include a coronagraph which will substantially increase its usefulness in imaging exoplanets.

    10
    An rendering of the James Webb Space Telescope, which has the capability to move forward the science of characterizing exoplanets. (NASA)

    As explained by Joel Green, a project scientist for the Webb at the Space Telescope Science Institute in Baltimore, the new observatory will be able to capture light — in the form of infrared radiation– that will be coming from more distant and much colder environments than what Hubble can probe.

    “It’s sensitive to dimmer things, smaller planets that are more earth-sized. And because it can see fainter objects, it will be more help in understanding the demographics of exoplanets. It uses the infrared region of the spectrum, and so it can look better into the cloud levels of the planets than any telescope so far and see deeper.”

    These capabilities and more are going to be a boon to exoplanet researchers and will no doubt advance the direct imaging effort and potentially change basic understandings about exoplanets. But it is not expected produce gorgeous or bizarre exoplanet pictures for the public, as Hubble did for galaxies and nebulae. Indeed, unlike the Hubble — which sees primarily in visible light — Webb sees in what Green said is, in effect, night vision. And so researchers are still working on how they will produce credible images using the information from Webb’s infrared cameras and translating them via a color scheme into pictures for scientists and the public.

    Another compelling exoplanet-imaging technology under study by NASA is the starshade, or external occulter, a metal disk in the shape of a sunflower that might some day be used to block out light from host stars in order to get a look at faraway orbiting planets. MIT’s Sara Seager led a NASA study team that reported back on the starshade last year in a report that concluded it was technologically possible to build and launch, and would be scientifically most useful. If approved, the starshade — potentially 100 feet across — could be used with the WFIRST telescope in the 2020s. The two components would fly far separately, as much as 35,000 miles away from each other, and together could produce breakthrough exoplanet direct images.

    11
    An artist’s depiction of a sunflower-shaped starshade that could help space telescopes find and characterize alien planets. Credit: NASA/JPL/Caltech

    Here is a link to an animation of the starshade being deployed: http://planetquest.jpl.nasa.gov/video/15

    The answer, then, to the question posed in the title to this post — “How Will We Know What Exoplanets Look Like, and When?”– is complex, evolving and involves a science-based definition of what “looking like” means. It would be wonderful to have images of exoplanets that show cloud formations, dust and maybe some surface features, but “direct imaging” is really about something different. It’s about getting light from exoplanets that can tell scientists about the make-up of those exoplanets and their atmospheres, and ultimately that’s a lot more significant than any stunning or eerie picture.

    And with that difference between beauty and science in mind, this last image is one of the more striking ones I’ve seen in some time.

    12
    Moon glow over Las Campanas Observatory, operated by the Carnegie Institution of Science, in Chile. (Yuri Beretsky)

    It was taken at the Las Campanas Observatory in Chile last year, during a night of stargazing. Although the observatory is in the Atacama Desert, enough moisture was present in the atmosphere to create this lovely moon-glow.

    But working in the observatory that night was Carnegie’s pioneer planet hunter Paul Butler, who uses the radial velocity method to detect exoplanets. But to do that he needs to capture light from those distant systems. So the night — despite the beautiful moon-glow — was scientifically useless.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:33 pm on November 28, 2015 Permalink | Reply
    Tags: , , , NASA NExSS   

    From NASA NExSS: “NExSS Coalition to Lead Search for Life on Distant Worlds” April 2015 but Important 

    NASA NExSS bloc

    NASA NExSS

    Last Updated: July 30, 2015
    Editor: Sarah Loff

    1
    The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA’s NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right). Credits: NASA

    NASA is bringing together experts spanning a variety of scientific fields for an unprecedented initiative dedicated to the search for life on planets outside our solar system.

    The Nexus for Exoplanet System Science, or “NExSS”, hopes to better understand the various components of an exoplanet, as well as how the planet stars and neighbor planets interact to support life.

    “This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” says Jim Green, NASA’s Director of Planetary Science. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

    The study of exoplanets – planets around other stars – is a relatively new field. The discovery of the first exoplanet around a star like our sun was made in 1995. Since the launch of NASA’s Kepler space telescope six years ago, more than 1,000 exoplanets have been found, with thousands of additional candidates waiting to be confirmed.

    NASA Kepler Telescope
    Kepler

    Scientists are developing ways to confirm the habitability of these worlds and search for biosignatures, or signs of life.

    The key to this effort is understanding how biology interacts with the atmosphere, geology, oceans, and interior of a planet, and how these interactions are affected by the host star. This “system science” approach will help scientists better understand how to look for life on exoplanets.

    NExSS will tap into the collective expertise from each of the science communities supported by NASA’s Science Mission Directorate:

    Earth scientists develop a systems science approach by studying our home planet.
    Planetary scientists apply systems science to a wide variety of worlds within our solar system.
    Heliophysicists add another layer to this systems science approach, looking in detail at how the Sun interacts with orbiting planets.
    Astrophysicists provide data on the exoplanets and host stars for the application of this systems science framework.

    NExSS will bring together these prominent research communities in an unprecedented collaboration, to share their perspectives, research results, and approaches in the pursuit of one of humanity’s deepest questions: Are we alone?

    The team will help classify the diversity of worlds being discovered, understand the potential habitability of these worlds, and develop tools and technologies needed in the search for life beyond Earth.

    Dr. Paul Hertz, Director of the Astrophysics Division at NASA notes, “NExSS scientists will not only apply a systems science approach to existing exoplanet data, their work will provide a foundation for interpreting observations of exoplanets from future exoplanet missions such as TESS, JWST, and WFIRST.”

    NASA TESS
    TESS

    NASA Webb Telescope
    JWST

    NASA WFIRST telescope
    WFIRST

    The Transiting Exoplanet Survey Satellite (TESS) is working toward a 2017 launch, with the James Webb Space Telescope (JWST) scheduled for launch in 2018. The Wide-field Infrared Survey Telescope is currently being studied by NASA for a launch in the 2020’s.

    NExSS will be led by Natalie Batalha of NASA’s Ames Research Center, Dawn Gelino with NExScI, the NASA Exoplanet Science Institute, and Anthony del Genio of NASA’s Goddard Institute for Space Studies. The NExSS project will also include team members from 10 different universities and two research institutes. These teams were selected from proposals submitted across NASA’s Science Mission Directorate.

    The Berkeley/Stanford University team is led by James Graham. This “Exoplanets Unveiled” group will focus on this question: “What are the properties of exoplanetary systems, particularly as they relate to their formation, evolution, and potential to harbor life?”

    http://astro.berkeley.edu/p/Berkeley-NExSS

    Daniel Apai leads the Earths in Other Solar Systems team from the University of Arizona. The EOS team will combine astronomical observations of exoplanets and forming planetary systems with powerful computer simulations and cutting-edge microscopic studies of meteorites from the early solar system to understand how Earth-like planets form and how biocritical ingredients — C, H, N, O-containing molecules — are delivered to these worlds.

    http://otherearths.org

    The Arizona State University team will take a similar approach. Led by Steven Desch, this research group will place planetary habitability in a chemical context, with the goal of producing a “periodic table of planets”. Additionally, the outputs from this team will be critical inputs to other teams modeling the atmospheres of other worlds.

    Researchers from Hampton University will be exploring the sources and sinks for volatiles on habitable worlds. The Living, Breathing Planet Team, led by William B. Moore, will study how the loss of hydrogen and other atmospheric compounds to space has profoundly changed the chemistry and surface conditions of planets in the solar system and beyond. This research will help determine the past and present habitability of Mars and even Venus, and will form the basis for identifying habitable and eventually living planets around other stars.

    http://sol.hamptonu.edu/project/the-living-breathing-planet/

    The team centered at NASA’s Goddard Institute for Space Studies will investigate habitability on a more local scale. Led by Tony Del Genio, it will examine the habitability of solar system rocky planets through time, and will use that foundation to inform the detection and characterization of habitable exoplanets in the future.

    http://www.giss.nasa.gov/projects/astrobio/

    The NASA Astrobiology Institute’s Virtual Planetary Laboratory, based at the University of Washington, was founded in 2001 and is a heritage team of the NExSS network. This research group, led by Dr. Victoria Meadows, will combine expertise from Earth observations, Earth system science, planetary science, and astronomy to explore factors likely to affect the habitability of exoplanets, as well as the remote detectability of global signs of habitability and life.

    Five additional teams were chosen from the Planetary Science Division portion of the Exoplanets Research Program (ExRP). Each brings a unique combination of expertise to understand the fundamental origins of exoplanetary systems, through laboratory, observational, and modeling studies.

    A group led by Neal Turner at NASA’s Jet Propulsion Laboratory, California Institute of Technology, will work to understand why so many exoplanets orbit close to their stars. Were they born where we find them, or did they form farther out and spiral inward? The team will investigate how the gas and dust close to young stars interact with planets, using computer modeling to go beyond what can be imaged with today’s telescopes on the ground and in space.

    A team at the University of Wyoming, headed by Hannah Jang-Condell, will explore the evolution of planet formation, modeling disks around young stars that are in the process of forming their planets. Of particular interest are “transitional” disks, which are protostellar disks that appear to have inner holes or regions partially cleared of gas and dust. These inner holes may be caused in part by planets inside or near the holes.

    A Penn State University team, led by Eric Ford, will strive to further understand planetary formation by investigating the bulk properties of small transiting planets and implications for their formation.

    A second Penn State group, with Jason Wright as principal investigator, will study the atmospheres of giant planets that are transiting hot Jupiters with a novel, high-precision technique called diffuser-assisted photometry. This research aims to enable more detailed characterization of the temperatures, pressures, composition, and variability of exoplanet atmospheres.

    http://science.psu.edu/news-and-events/2015-news/FordWright4-2015

    The University of Maryland and NASA’s Goddard Space Flight Center team, with Wade Henning at the helm, will study tidal dynamics and orbital evolution of terrestrial class exoplanets. This effort will explore how intense tidal heating, such as the temporary creation of magma oceans, can actually save Earth-sized planets from being ejected during the orbital chaos of early solar systems.

    Another University of Maryland project, led by Drake Deming, will leverage a statistical analysis of Kepler data to extract the maximum amount of information concerning the atmospheres of Kepler’s planets.

    The group led by Hiroshi Imanaka from the SETI Institute will be conducting laboratory investigation of plausible photochemical haze particles in hot, exoplanetary atmospheres.

    The Yale University team, headed by Debra Fischer, will design new spectrometers with the stability to reach Earth-detecting precision for nearby stars. The team will also make improvements to Planet Hunters, http://www.planethunters.org, a web interface that allows citizen scientists to search for transiting planets in the NASA Kepler public archive data. Citizen scientists have found more than 100 planets not previously detected; many of these planets are in the habitable zones of host stars.

    A group led by Adam Jensen at the University of Nebraska-Kearney will explore the existence and evolution of exospheres around exoplanets, the outer, ‘unbound’ portion of a planet’s atmosphere. This team previously made the first visible light detection of hydrogen absorption from an exoplanet’s exosphere, indicating a source of hot, excited hydrogen around the planet. The existence of such hydrogen can potentially tell us about the long-term evolution of a planet’s atmosphere, including the effects and interactions of stellar winds and planetary magnetic fields.

    From the University of California, Santa Cruz, Jonathan Fortney’s team will investigate how novel statistical methods can be used to extract information from light which is emitted and reflected by planetary atmospheres, in order to understand their atmospheric temperatures and the abundance of molecules.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:39 pm on April 21, 2015 Permalink | Reply
    Tags: , , , NASA NExSS,   

    From Yale: “Yale joins new NASA team searching for life outside the solar system” 

    Yale University bloc

    Yale University

    April 21, 2015
    Jim Shelton

    1
    Artist’s conception of Kepler-186f, the first validated Earth-size planet to orbit a distant star in the habitable zone.

    2
    The search for life beyond our solar system requires unprecedented cooperation across scientific disciplines. NASA’s NExSS collaboration includes those who study Earth as a life-bearing planet (lower right), those researching the diversity of solar system planets (left), and those on the new frontier, discovering worlds orbiting other stars in the galaxy (upper right).
    Credits: NASA

    NASA is enlisting teams of scientists around the nation, including a group from Yale, to collaborate on a new approach for finding life on planets outside our solar system.

    The joint effort is called Nexus for Exoplanet System Science (NExSS), and it will create a “virtual institute” of scientists from 10 universities, three NASA centers, and two research institutes. NASA selected teams based on proposals from across NASA’s Science Mission Directorate.

    Yale astronomy professor Debra Fischer will lead a team that is building new spectrometers with the stability and precision to detect Earth-like planets orbiting nearby stars. A critical part of the team’s work involves new statistical techniques to distinguish “noise” — velocities in the photospheres of the stars — from the reflex velocities induced by planets.

    Fischer’s team also will continue to enlist amateur astronomers to search NASA’s Kepler public archive data for exoplanets, which are planets orbiting around other stars. Fischer has been at the forefront of citizen science efforts to search for exoplanets via the Planet Hunters program. Citizen scientists have found more than 100 transiting exoplanets not previously detected. Many of these planets orbit in the habitable zones of their host stars.

    Fischer’s team also is analyzing the planet occurrence rates for different types of stars.

    “NExSS is building collaboration and open-sourcing of ideas in ways that have been tried and true in competitive businesses,” Fischer said. “This signals a new era where we spend more time problem-solving and team-building than competing and excluding our colleagues. We have heard from all of the founding partners about their research, and we’ve brainstormed about how our related skills and expertise might enrich their science. It’s a win-win for science and humanity.”

    Since the launch of NASA’s Kepler space telescope six years ago, more than 1,800 exoplanets have been confirmed.

    NASA Kepler Telescope
    Kepler

    There are thousands more exoplanet candidates waiting for confirmation.

    In order to determine the habitability of these planets and look for signs of life on them, NExSS will coordinate scientific research into the various components of exoplanets. It’s a “system science” approach to understanding how biology interacts with the atmosphere, geology, oceans, and interior of a planet, and how the host star affects these interactions.

    NExSS will draw from the scientific expertise in each division of NASA’s Science Mission Directorate. Earth scientists will develop a systems science approach by studying our home planet; planetary scientists will look at other planets in our solar system; heliophysicists will study how the Sun interacts with orbiting planets; and astrophysicists will provide data on exoplanets and host stars.

    “This interdisciplinary endeavor connects top research teams and provides a synthesized approach in the search for planets with the greatest potential for signs of life,” said Jim Green, NASA’s director of planetary science. “The hunt for exoplanets is not only a priority for astronomers, it’s of keen interest to planetary and climate scientists as well.”

    NExSS will be led by scientists from the NASA Ames Research Center, the NASA Exoplanet Science Institute at the California Institute of Technology, and the NASA Goddard Institute for Space Studies.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Yale University Campus

    Yale University comprises three major academic components: Yale College (the undergraduate program), the Graduate School of Arts and Sciences, and the professional schools. In addition, Yale encompasses a wide array of centers and programs, libraries, museums, and administrative support offices. Approximately 11,250 students attend Yale.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: