Tagged: NASA MMS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:23 am on May 10, 2018 Permalink | Reply
    Tags: , , , , , , NASA MMS, NASA Spacecraft Discovers New Magnetic Process in Turbulent Space   

    From NASA Goddard Space Flight Center: “NASA Spacecraft Discovers New Magnetic Process in Turbulent Space” 

    NASA Goddard Banner
    From NASA Goddard Space Flight Center

    May 9, 2018

    Mara Johnson-Groh
    mara.johnson-groh@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    In a turbulent magnetic environment, magnetic field lines become scrambled. As the field lines cross, intense electric currents (shown here as bright regions) form and eventually trigger magnetic reconnection (indicated by a flash), which is an explosive event that releases magnetic energy accumulated in the current layers and ejects high-speed bi-directional jets of electrons. Credit: NASA Goddard’s Conceptual Image Lab/Lisa Poje; Simulations by: University of Chicago/Colby Haggerty; University of Delaware/Tulasi Parashar

    Though close to home, the space immediately around Earth is full of hidden secrets and invisible processes. In a new discovery reported in the journal Nature, scientists working with NASA’s Magnetospheric Multiscale spacecraft — MMS — have uncovered a new type of magnetic event in our near-Earth environment by using an innovative technique to squeeze extra information out of the data.

    Magnetic reconnection is one of the most important processes in the space — filled with charged particles known as plasma — around Earth. This fundamental process dissipates magnetic energy and propels charged particles, both of which contribute to a dynamic space weather system that scientists want to better understand, and even someday predict, as we do terrestrial weather. Reconnection occurs when crossed magnetic field lines snap, explosively flinging away nearby particles at high speeds. The new discovery found reconnection where it has never been seen before — in turbulent plasma.


    In a new discovery reported in the journal Nature, scientists working with NASA’s Magnetospheric Multiscale spacecraft — MMS — uncovered a new type of magnetic event in our near-Earth environment. Credits: NASA’s Goddard Space Flight Center/Joy Ng

    NASA MMS prior to launch Credit: NASA/ Ben Smegelsky

    NASA MMS satellites in space. Credit: NASA

    “In the plasma universe, there are two important phenomena: magnetic reconnection and turbulence,” said Tai Phan, a senior fellow at the University of California, Berkeley, and lead author on the paper. “This discovery bridges these two processes.”

    Magnetic reconnection has been observed innumerable times in the magnetosphere — the magnetic environment around Earth — but usually under calm conditions. The new event occurred in a region called the magnetosheath, just outside the outer boundary of the magnetosphere, where the solar wind is extremely turbulent. Previously, scientists didn’t know if reconnection even could occur there, as the plasma is highly chaotic in that region. MMS found it does, but on scales much smaller than previous spacecraft could probe.


    In a turbulent magnetic environment, magnetic field lines become scrambled. As the field lines cross, intense electric currents (shown here as bright regions) form and eventually trigger magnetic reconnection (indicated by a flash), which is an explosive event that releases magnetic energy accumulated in the current layers and ejects high-speed bi-directional jets of electrons. NASA’s Magnetospheric Multiscale mission witnessed this process in action as it flew through the electron jets the turbulent boundary just at the edge of Earth’s magnetic environment. Credits: NASA’s Goddard Space Flight Center’s Conceptual Image Lab/Lisa Poje; Simulations by: Colby Haggerty (University of Chicago), Tulasi Parashar (University of Delaware)

    MMS uses four identical spacecraft flying in a pyramid formation to study magnetic reconnection around Earth in three dimensions. Because the spacecraft fly incredibly close together — at an average separation of just four-and-a-half miles, they hold the record for closest separation of any multi-spacecraft formation — they are able to observe phenomena no one has seen before. Furthermore, MMS’s instruments are designed to capture data at speeds a hundred times faster than previous missions.

    Even though the instruments aboard MMS are incredibly fast, they are still too slow to capture turbulent reconnection in action, which requires observing narrow layers of fast moving particles hurled by the recoiling field lines. Compared to standard reconnection, in which broad jets of ions stream out from the site of reconnection, turbulent reconnection ejects narrow jets of electrons only a couple miles wide.

    “The smoking gun evidence is to measure oppositely directed electron jets at the same time, and the four MMS spacecraft were lucky to corner the reconnection site and detect both jets”, said Jonathan Eastwood, a lecturer at Imperial College, London, and a co-author of the paper.

    Crucially, MMS scientists were able to leverage the design of one instrument, the Fast Plasma Investigation, to create a technique to interpolate the data — essentially allowing them to read between the lines and gather extra data points — in order to resolve the jets.

    “The key event of the paper happens in only 45 milliseconds. This would be one data point with the basic data,” said Amy Rager, a graduate student at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the scientist who developed the technique. “But instead we can get six to seven data points in that region with this method, allowing us to understand what is happening.”


    Earth is surrounded by a protective magnetic environment — the magnetosphere — shown here in blue, which deflects a supersonic stream of charged particles from the Sun, known as the solar wind. As the particles flow around Earth’s magnetosphere, it forms a highly turbulent boundary layer called the magnetosheath, shown in yellow. Scientists, like those involved with NASA’s Magnetospheric Multiscale mission, are studying this turbulent region to help us learn more about our dynamic space environment.
    Credits: NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith; NASA Goddard’s Conceptual Image Lab/Josh Masters

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    As the particles flow around Earth’s magnetosphere, it forms a highly turbulent boundary layer called the magnetosheath, shown in yellow [in video]. Scientists, like those involved with NASA’s Magnetospheric Multiscale mission, are studying this turbulent region to help us learn more about our dynamic space environment.
    Credits: NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith; NASA Goddard’s Conceptual Image Lab/Josh Masters

    With the new method, the MMS scientists are hopeful they can comb back through existing datasets to find more of these events, and potentially other unexpected discoveries as well.

    Magnetic reconnection occurs throughout the universe, so that when we learn about it around our planet — where it’s easiest for Earthlings to examine it — we can apply that information to other processes farther away. The finding of reconnection in turbulence has implications, for example, for studies on the Sun. It may help scientists understand the role magnetic reconnection plays in heating the inexplicably hot solar corona — the Sun’s outer atmosphere — and accelerating the supersonic solar wind. NASA’s upcoming Parker Solar Probe mission launches directly to the Sun in the summer of 2018 to investigate exactly those questions — and that research is all the better armed the more we understand about magnetic reconnection near home.

    Related Links

    Learn more about the Magnetospheric Multiscale Mission
    Learn more about NASA’s research on the Sun-Earth environment

    See the full article here.

    See also here.

    See also here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 3:09 pm on January 15, 2018 Permalink | Reply
    Tags: , , , , How we understand the magnetic environment protecting our planet, NASA MMS   

    From Goddard: “Above and Beyond: NASA’s Magnetospheric Multiscale Mission Surpasses Expectations Flying to New Heights in 2017” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Jan. 12, 2018
    Mara Johnson-Groh
    mara.johnson-groh@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    Illustration of MMS spacecraft. Credit: NASA’s Goddard Space Flight Center

    1
    Infographic on NASA’s Magnetospheric Multiscale mission.
    Credits: NASA’s Goddard Space Flight Center/Mary Pat Hrybyk-Keith

    NASA/MMS

    NASA MMS satellites in space

    In the cold vacuum of space, four satellites travel through the darkness, cruising around Earth at speeds up to 22,300 miles per hour. These spacecraft comprise NASA’s Magnetospheric Multiscale mission, called MMS for short. Looking at electric and magnetic fields, hot plasmas, and high-energy particles, they have been charting the dynamic space environment around Earth for over two years. What they’ve discovered in 2017 is changing how we understand the magnetic environment protecting our planet.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    MMS was initially launched into an orbit that passed it through a region of the magnetosphere — the magnetic bubble surrounding Earth — on the side of the planet closest to the Sun, about one fifth of the way to the moon. There it studied an explosive event, called magnetic reconnection, caused by the clash and entanglement of magnetic field lines from Earth and the Sun.

    “MMS is unique because its so much like a laboratory experiment designed to reveal the nature of a single process — magnetic reconnection,” says Bill Paterson, mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Once we understand it in this particular space laboratory near Earth, we will know many of the basics of how it must work in other places, like the Sun.”

    MMS is just one mission in NASA’s Heliophysics fleet, which investigates the complex Earth-Sun environment. Studying heliophysics — the science of understanding the Sun and its interactions with Earth and the solar system — not only helps us understand fundamental processes throughout our universe, but is also a key component of keeping astronauts and spacecraft safe from harmful radiation and space weather.

    Due to MMS’s unique configuration of four spacecraft flying in a tight pyramid shape, the mission is able to observe magnetic field and plasma events in three dimensions. The spacing of the spacecraft – at less than five miles between the probes — allows scientists to unravel complex details in the behavior of fields and particles, such as how energy is transferred from one to the other. Furthermore, the instruments aboard MMS are 100 times faster than any flown on a previous mission, enabling MMS to capture events that happen in the blink of an eye.

    A key discovery MMS revealed in Phase 1 was complex electron motions in the thin layers of electrical current where reconnection happens. The unique dances electrons make in this region allow them to gain additional energy and accelerate the reconnection process. Magnetic reconnection happens across the universe, from the Sun to quasars to nuclear reactors, and MMS’s discoveries in its Earth-space laboratory help scientists understand the phenomenon in all locations.

    After two years of fruitful scientific discoveries surpassing the mission goals of Phase 1, the spacecraft’s orbit was adjusted in the spring of 2017 to bring it into a new region.

    From May until October it passed through the magnetosphere on the dark side of Earth at nearly half the distance to the moon. In this region, magnetic reconnection is thought to be responsible for explosions of the auroras seen above the poles.

    In Phase 2 of the mission, MMS looked at particle and wave interactions in the long region of the magnetosphere trailing behind the Earth called the magnetotail. It also studied how the region becomes turbulent during solar storms, and how the solar wind can affect magnetic reconnection.

    Now beginning a new, extended phase of the mission, MMS is again visiting the dayside, but at twice the original distance from Earth. Looking at reconnection, turbulence, and particle acceleration in the solar wind, it will study the bow shock that stands ahead of our planet deflecting and slowing that stream of particles flowing from the Sun.

    “We are all really excited that MMS will now bring its capabilities to resolve the thinnest structures of reconnection to a new environment upstream of Earth in the solar wind,” said Thomas Moore, senior project scientist for MMS at NASA’s Goddard Space Flight Center.

    To date, MMS data has contributed to over 340 papers led by scientists around the world, and its new orbit, above and beyond its previous circuit, opens the doors to countless new discoveries.

    Related Links

    Learn more about the Magnetospheric Multiscale Mission
    Learn more about NASA’s research on the Sun-Earth environment

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 12:31 pm on May 18, 2017 Permalink | Reply
    Tags: , , , , , NASA Mission Uncovers Dance of Electrons in Spac, NASA MMS   

    From Goddard: “NASA Mission Uncovers Dance of Electrons in Space” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    May 18, 2017
    Mara Johnson-Groh
    mara.johnson-groh@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Media contact: Lina Tran
    kathalina.k.tran@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    From video, via phys.org

    You can’t see them, but swarms of electrons are buzzing through the magnetic environment — the magnetosphere — around Earth. The electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields. When they penetrate into the magnetosphere close enough to Earth, the high-energy electrons can damage satellites in orbit and trigger auroras. Scientists with NASA’s Magnetospheric Multiscale, or MMS, mission study the electrons’ dynamics to better understand their behavior. A new study, published in Journal of Geophysical Research revealed a bizarre new type of motion exhibited by these electrons.

    Electrons in a strong magnetic field usually exhibit a simple behavior: They spin tight spirals along the magnetic field. In a weaker field region, where the direction of the magnetic field reverses, the electrons go free style — bouncing and wagging back and forth in a type of movement called Speiser motion. New MMS results show for the first time what happens in an intermediate strength field. Then these electrons dance a hybrid, meandering motion — spiraling and bouncing about before being ejected from the region. This motion takes away some of the field’s energy and it plays a key role in magnetic reconnection, a dynamic process, which can explosively release large amounts of stored magnetic energy.

    NASA/MMS

    NASA MMS satellites in space


    With no guide field to confine them, electrons (yellow) wiggle back in forth. The electron’s increasing speed is shown by warmer color tracks. Credits: NASA’s Goddard Space Flight Center/Tom Bridgman

    “MMS is showing us the fascinating reality of magnetic reconnection happening out there,” said Li-Jen Chen, lead author of the study and MMS scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    As MMS flew around Earth, it passed through an area of a moderate strength magnetic field where electric currents run in the same direction as the magnetic field. Such areas are known as intermediate guide fields. While inside the region, the instruments recorded a curious interaction of electrons with the current sheet, the thin layer through which the current travels. As the incoming particles encountered the region, they started gyrating in spirals along the guide field, like they do in a strong magnetic field, but in larger spirals. The MMS observations also saw signatures of the particles gaining energy from the electric field. Before long, the accelerated particles escaped the current sheet, forming high-speed jets. In the process, they took away some of the field’s energy, causing it to gradually weaken.


    In an intermediate strength magnetic guide field, the electrons spiral along the field, gaining energy until they are ejected from the reconnection layer. Credits: NASA’s Goddard Space Flight Center/Tom Bridgman

    The magnetic field environment where the electrons’ motions were observed was uniquely created by magnetic reconnection, which caused the current sheet to be tightly confined by bunched-up magnetic fields. The new results help the scientists better understand the role of electrons in reconnection and how magnetic fields lose energy.

    MMS measures the electric and magnetic fields it flies through, and counts electrons and ions to measure their energies and directions of motion. With four spacecraft flying in a compact, pyramid formation, MMS is able to see the fields and particles in three dimensions and look at small-scale particle dynamics, in a way never before achieved.

    “The time resolution of MMS is one hundred times faster than previous missions,” said Tom Moore, senior project scientist for MMS at NASA’s Goddard Space Flight Center. “That means we can finally see what’s going on in such narrow layers and will be able to better predict how fast reconnection occurs in various circumstances.”

    Understanding the speed of reconnection is essential for predicting the intensity of the explosive energy release. Reconnection is an important energy release process across the universe and is thought to be responsible for some shock waves and cosmic rays. Solar flares on the sun, which can trigger space weather, are also caused by magnetic reconnection.

    With two years under its belt, MMS has been revealing new and surprising phenomena near Earth. These discoveries enable us to better understand Earth’s dynamic space environment and how it affects our satellites and technology.

    MMS is now heading to a new orbit which will take it through magnetic reconnection areas on the side of Earth farther from the sun. In this region, the guide field is typically weaker, so MMS may see more of these types of electron dynamics.

    Related Links

    Learn more about NASA’s MMS mission

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 11:54 am on March 31, 2017 Permalink | Reply
    Tags: , , NASA MMS,   

    From Goddard: “NASA Observations Reshape Basic Plasma Wave Physics” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    March 31, 2017
    Mara Johnson-Groh
    mara.johnson-groh@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    When NASA’s Magnetospheric Multiscale — or MMS — mission was launched, the scientists knew it would answer questions fundamental to the nature of our universe — and MMS hasn’t disappointed.


    MMS stacked


    MMS in flight

    A new finding, presented in a paper in Nature Communications, provides observational proof of a 50-year-old theory and reshapes the basic understanding of a type of wave in space known as a kinetic Alfvén wave. The results, which reveal unexpected, small-scale complexities in the wave, are also applicable to nuclear fusion techniques, which rely on minimizing the existence of such waves inside the equipment to trap heat efficiently.


    Credits: NASA’s Goddard Space Flight Center/Genna Duberstein
    Access mp4 video here .

    Kinetic Alfvén waves have long been suspected to be energy transporters in plasmas — a fundamental state of matter composed of charged particles — throughout the universe. But it wasn’t until now, with the help of MMS, that scientists have been able to take a closer look at the microphysics of the waves on the relatively small scales where the energy transfer actually happens.

    “This is the first time we’ve been able to see this energy transfer directly,” said Dan Gershman, lead author and MMS scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland in College Park. “We’re seeing a more detailed picture of Alfvén waves than anyone’s been able to get before.”

    The waves could be studied on a small scale for the first time because of the unique design of the MMS spacecraft. MMS’s four spacecraft fly in a compact 3-D pyramid formation, with just four miles between them — closer than ever achieved before and small enough to fit between two wave peaks. Having multiple spacecraft allowed the scientists to measure precise details about the wave, such as how fast it moved and in what direction it travelled.


    In a typical Alfvén wave, the particles (yellow) move freely along the magnetic field lines (blue).
    Credits: NASA Goddard’s Scientific Visualization Studio/Tom Bridgman, data visualizer
    Access mp4 video here .

    Previous multi-spacecraft missions flew at much larger separations, which didn’t allow them to see the small scales — much like trying to measure the thickness of a piece of paper with a yardstick. MMS’s tight flying formation, however, allowed the spacecraft to investigate the shorter wavelengths of kinetic Alfvén waves, instead of glossing over the small-scale effects.

    “It’s only at these small scales that the waves are able to transfer energy, which is why it’s so important to study them,” Gershman said.

    As kinetic Alfvén waves move through a plasma, electrons traveling at the right speed get trapped in the weak spots of the wave’s magnetic field. Because the field is stronger on either side of such spots, the electrons bounce back and forth as if bordered by two walls, in what is known as a magnetic mirror in the wave. As a result, the electrons aren’t distributed evenly throughout: Some areas have a higher density of electrons, and other pockets are left with fewer electrons. Other electrons, which travel too fast or too slow to ride the wave, end up passing energy back and forth with the wave as they jockey to keep up.


    In a kinetic Alfvén wave, some particles become trapped in the weak spots of the wave’s magnetic field and ride along with the wave as it moves through space.
    Credits: NASA Goddard’s Scientific Visualization Studio/Tom Bridgman, data visualizer
    Access mp4 video here .

    The wave’s ability to trap particles was predicted more than 50 years ago but hadn’t been directly captured with such comprehensive measurements until now. The new results also showed a much higher rate of trapping than expected.

    This method of trapping particles also has applications in nuclear fusion technology. Nuclear reactors use magnetic fields to confine plasma in order to extract energy. Current methods are highly inefficient as they require large amounts of energy to power the magnetic field and keep the plasma hot. The new results may offer a better understanding of one process that transports energy through a plasma.

    “We can produce, with some effort, these waves in the laboratory to study, but the wave is much smaller than it is in space,” said Stewart Prager, plasma scientist at the Princeton Plasma Physics Laboratory in Princeton, New Jersey. “In space, they can measure finer properties that are hard to measure in the laboratory.”

    This work may also teach us more about our sun. Some scientists think kinetic Alfvén waves are key to how the solar wind — the constant outpouring of solar particles that sweeps out into space — is heated to extreme temperatures. The new results provide insight on how that process might work.

    Throughout the universe, kinetic Alfvén waves are ubiquitous across magnetic environments, and are even expected to be in the extra-galactic jets of quasars. By studying our near-Earth environment, NASA missions like MMS can make use of a unique, nearby laboratory to understand the physics of magnetic fields across the universe.

    Related Link

    Learn more about NASA’s MMS Mission

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 2:08 pm on October 23, 2016 Permalink | Reply
    Tags: , NASA MMS,   

    From Science Alert: “Astrophysicists have witnessed plasma ripples moving along Earth’s bow shock” 

    ScienceAlert

    Science Alert

    20 OCT 2016
    JOSH HRALA

    1
    APS/Carin Cain

    These things actually exist.

    Astrophysicists have witnessed tiny ripples forming on Earth’s ‘bow shock’ – the plasma shockwaves produced when solar winds smash into Earth’s magnetic field.

    While the ripples have long been hypothesised, actually finding them in space has proven a challenge. Now, researchers have been able to study them for the first time, and it could help us to finally understand cosmic rays.

    The breakthrough came thanks to thanks to NASA’s Magnetospheric MultiScale satellites (MMS).

    NASA/MMS

    nasa-mms-satellites
    NASA/MMS

    “With the new MMS spacecraft we can, for the first time, resolve the structure of the bow shock at these small scales,” said team leader Andreas Johlander, from the Swedish Institute of Space Physics (IRF).

    So, what are these ripples and where do they come from?

    Much of the visible matter in the Universe is actually plasma, a hot ionised gas. This plasma can produce shockwaves around other objects in space – such as planets, stars, and supernovae – when it interacts with the magnetic fields around them.

    Just imagine it like a wave of water travelling around the bow of a ship, where the water is plasma and the ship’s bow is Earth’s magnetic field (or magnetosphere), sending the plasma rushing to either side as it displaces it.

    These shockwaves are known to act basically like particle accelerators, and shockwaves around supernovae are commonly thought to produce cosmic rays, high energy atoms or particles that travel near the speed of light through space.

    But the thing is, we don’t really understand exactly how the particles in these shockwaves get so fast.

    Based on previously developed mathematical models, researchers think that tiny ripples in these shockwaves might be to blame for this acceleration, though finding and actually witnessing them has been impossible because they are super small and fast, making them hard to spot with traditional technologies.

    That is, until now, because the new team was able to witness these ripples inside Earth’s bow shock.

    To pull off this feat and to analyse these ripples further, the team employed NASA’s MMS – a group of four satellites that fly in a tetrahedral formation around Earth’s magnetosphere to sample plasma activity.

    This represents the first time researchers have been able to successfully witness these ripples, providing proof – once and for all – of their existence other than in mathematical calculations.

    But it’s just the first step – now we have to figure out how they work.

    With further study, the team says that understanding how these ripples in plasma shocks help accelerate and heat particles might shine new light on how cosmic rays form around supernovae.

    “These direct observations of shock ripples in a space plasma allow us to characterise the physical properties of the ripples. This brings us one step closer to understanding how shocks can produce cosmic rays,” said Johlander.

    The team’s work was published in Physical Review Letters.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:16 pm on August 18, 2016 Permalink | Reply
    Tags: , , , NASA MMS   

    From Eos: “First Results from NASA’s Magnetospheric Multiscale Mission” 

    Eos news bloc

    Eos

    8.18.16
    Andrew Yau
    yau@phys.ucalgary.ca

    NASA/MMS
    NASA/MMS

    NASA’s Magnetospheric Multiscale (MMS) mission is a constellation of 4 spacecraft that packs several new, game-changing capabilities to unlock the secrets of magnetic reconnection at an unprecedented level of detail.

    Magnetic reconnection occurs where the Sun and the Earth’s magnetic fields “connect” with each other from opposite directions, resulting in the two canceling each other and the explosive conversion of the magnetic energy stored in the two fields into kinetic energy.

    2
    Illustration of Earth magnetic field with locations for MMS study outlined. NASA

    It is challenging to hit the “bullseye” of magnetic reconnection – the electron diffusion region (EDR) around an X-line where the plasma is believed to become diffusive and the magnetic field lines have an X-shape topology. This is because the EDR is extremely tiny compared to the size of the Earth’s magnetosphere – think of the tip of the foul pole at Yankee Stadium compared to the Bronx.

    Previous satellites, notably NASA’s ISEE (International Sun Earth Explorer) and fleet of THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, and ESA’s fleet of Cluster spacecraft, were able to study the many large-scale consequences of reconnection. However, unlike MMS they lack ultra-fast plasma and field instruments with sufficient measurement speed and capabilities to probe the kinetic processes that cause reconnection in and around the EDR.

    By flying the four spacecraft in a well-controlled tetrahedral formation with an inter-spacecraft distance down to 10 km, MMS was able to capture over 3000 reconnection events in the dayside magnetopause (magnetosphere boundary), each lasting only a few seconds, over a 6-month period!

    A special issue titled, First results from NASA’s Magnetospheric Multiscale (MMS) Mission, published in Geophysical Research Letters features a Frontier Article by Jim Burch and Tai Phan and some 50+ research articles, many of which provide a first glimpse of the several new discoveries in these encounters, including fascinating new features of reconnection on the electron scale and confirmations of important predictions from computer models.

    A persistent theme that emerges from this special collection is the “babushka dolls” nature of magnetic reconnection. As one zooms in on the observation data at increasing spatial and temporal resolution, one uncovers increasingly smaller and fascinating features and structures of reconnection. Burch and Phan (2016) illustrates many of these reconnection babushka dolls and is decidedly a must read.

    The gyro-radius (radius of gyration) of an ion is much larger than that of an electron of the same energy, due to its larger mass. Consequently, the laws of magnetohydrodynamics (MHD) do not apply below the scale of the ion gyro-radius, as the ions and electrons decouple their motions from each other and form an ion-decoupling region (IDR), setting up large electrical currents and (“Hall”) magnetic fields.

    Likewise, cold ions originating from the ionosphere have gyro-radius that is much smaller than that of hot magnetospheric ions, due to their smaller velocity. Such cold ionospheric ions can reach the dayside magnetopause, and remain magnetized and form a sub-region surrounding the EDR inside the IDR.

    In other words, the electron diffusion region (EDR) is embedded within a multi-layered ion decoupling region (IDR). The former is akin to the inner sanctum for the smaller babushka dolls; the latter to the inner and outer courtyards for the larger ones. The two are akin to the home of a wide-ranging variety of “babushka dolls” (manifestations) of reconnection: from crescent-shaped electron velocity distribution, which signifies electron demagnetization, to high-speed electron flows, highly filamentary current sheets, large-amplitude electric fields, and small magnetic holes, to name just a few.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

     
  • richardmitnick 3:19 pm on May 12, 2016 Permalink | Reply
    Tags: , , , , NASA MMS   

    From GIZMODO: “A Major Mystery About Earth’s Magnetic Field Has Just Been Solved” 

    GIZMODO bloc

    GIZMODO

    5.12.16
    Maddie Stone

    NASA/MMS
    NASA/MMS

    1
    NASA MMS in flight. University of Maryland

    For the first time, physicists have observed a mysterious process called magnetic reconnection—wherein opposing magnetic field lines join up, releasing a tremendous burst of energy. The discovery, published* today in Science, may help us unlock the secrets of space weather and learn about some of the weirdest, most magnetic objects in the universe.

    The magnetosphere, an invisible magnetic field surrounding our planet, is a critical shield for life on Earth.

    Magnetosphere of Earth
    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    It protects us from all sorts of high energy particles emitted by the sun on a daily basis. When a particularly large burst of solar energy hits the edge of the magnetosphere (called the magnetopause), it can trigger space weather. This includes geomagnetic storms that light up the northern and southern skies with auroras, occasionally knocking out our satellites and power grids.

    A better understanding of space weather is key to helping us prepare for the next massive geomagnetic storm—a once-in-a-century event that could quite literally cause a global power surge. Magnetic reconnection is at the heart of the mystery, underlying both the formation of solar eruptions and how they interact with our planet.


    Access mp video here .
    Credits: NASA’s Goddard Space Flight Center/Duberstein

    “The process of space weather starts on the sun—reconnection there produces coronal mass ejections and solar flares, both of which lead to space weather at the Earth,” James Burch, a space weather scientist at the Southwest Research Institute told Gizmodo. “When the solar wind and its embedded magnetic field lines collide with Earth’s magnetosphere at a high angle, then you have a direct connection between the sun and the Earth.”

    Now, for the first time, Burch and his colleagues have observed that sun-Earth connection at the subatomic scale, using data collected by NASA’s Magnetospheric Multiscale (MMS) mission. This high-resolution physics laboratory consists of four identical spacecraft that fly in pyramid formation around Earth’s magnetopause, collecting precise information on tiny charged particles every 30 milliseconds.

    2
    Artist’s concept of the four MMS satellites flying in formation. Image: University of Maryland

    Almost as soon as the mission launched in March of 2015, researchers started observing magnetic reconnection at unprecedented resolution. The most detailed of those is the subject of the new paper. “We hit the jackpot,” Roy Torbert, MMS deputy principal investigator said in a statement. “The spacecraft passed directly through the electron dissipation region, and we were able to perform the first-ever physics experiment in this environment.”

    The features of reconnection recorded in the data include a drop in the magnetic field to near zero, and a power spike generated by accelerating electrons. “We realized that the process of reconnection is really driven by electrons,” Burch said. “Before, all measurements had been made at much larger scales. People could see dramatic effects, but these are the result of reconnection, not the cause.”

    Burch and his colleagues are continuing to study five other instances of magnetic reconnection recently observed by the MMS, and they’re hopeful the mission will yield more events for years to come. In addition to shedding light on space weather, magnetic reconnection can help us understand exotic astronomical objects like magnetars, as well as the strong magnetic environments created by fusion reactors.

    “The quality of the MMS data is absolutely inspiring,” said James Drake, a physicist at the University of Maryland and a co-author on the study. “It’s not clear that there will ever be another mission quite like this one.”

    *Science paper:
    Electron-scale measurements of magnetic reconnection in space

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “We come from the future.”

    GIZMOGO pictorial

     
  • richardmitnick 2:02 pm on December 18, 2015 Permalink | Reply
    Tags: , , NASA MMS   

    From NASA Goddard: “NASA’s MMS Delivers Promising Initial Results” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Dec. 17, 2015
    Sarah Frazier
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    NASA MMS
    NASA/MMS

    Just under four months into the science phase of the mission, NASA’s Magnetospheric Multiscale, or MMS, is delivering promising early results on a process called magnetic reconnection — a kind of magnetic explosion that’s related to everything from the northern lights to solar flares.

    2
    The explosive realignment of magnetic fields — known as magnetic reconnection — is a thought to be a common process at the boundaries of Earth’s magnetic bubble. Magnetic reconnection can connect Earth’s magnetic field to the interplanetary magnetic field carried by the solar wind or coronal mass ejections. NASA’s Magnetospheric Multiscale, or MMS, mission studies magnetic reconnection by flying through the boundaries of Earth’s magnetic field. Credits: NASA Goddard/SWRC/CCMC/SWMF

    The unprecedented set of MMS measurements will open up our understanding of the space environment surrounding Earth, allowing us to better understand what drives magnetic reconnection events. These giant magnetic bursts can send particles hurtling at near the speed of light and create oscillations in Earth’s magnetic fields, affecting technology in space and interfering with radio communications. Scientists from the Southwest Research Institute, NASA, the University of Colorado Boulder and the Johns Hopkins University Applied Physics Laboratory presented an overview of MMS science and early results on Dec. 17, 2015, at the American Geophysical Union’s Fall Meeting in San Francisco.

    Planned for more than 10 years, the MMS mission started with the launch of four identical spacecraft on a single rocket in March 2015. Nine months later, the spacecraft are flying through the boundaries of Earth’s magnetic system, the magnetosphere.

    Their initial orbit is taking them through the dayside boundaries of the magnetosphere — known as the magnetopause — where the solar wind and other solar events drive magnetic reconnection. Eventually, their orbit will loop out farther to carry them through the farthest reaches of the magnetosphere on the night side, where magnetic reconnection is thought to be driven by the build-up of stored energy.

    2
    Artistic rendition of the Earth’s magnetopause. The magnetopause is where the pressure from the solar wind and the planet’s magnetic field are equal. The position of the Sun would be far to the left in this image

    “We’ve recorded over 2,000 magnetopause crossings since our science phase began,” said Jim Burch, principal investigator for the MMS mission at Southwest Research Institute in San Antonio, Texas. “In that time, we’ve flown through hundreds of promising events.”

    MMS’ four instrument suites and incredible measurement rates — a hundred times faster than ever before on certain instruments — is giving scientists their best look ever at magnetic reconnection. In fact, the mission’s high resolution produces so much data it requires a scientist on duty during every MMS contact to prioritize which data is sent down from the spacecraft.

    One of the key features of MMS is its scaling ability. The four spacecraft fly in a four-sided, pyramid-shaped formation called a tetrahedron, allowing them to build up three-dimensional views of the regions and events they fly through. Because the four spacecraft are controlled independently, the scale of their formation — and their observations — can be zoomed in or out by a factor of ten.

    Though many people think of space as a completely empty vacuum, it’s actually filled with electrically charged particles and electric and magnetic fields, which form a state of matter called plasma. All of this magnetic and electric energy means that magnetic reconnection plays a huge role in shaping the environment wherever plasma exists — whether that’s on the sun, in interplanetary space, or at the boundaries of Earth’s magnetic system.

    “We can see the effects of reconnection on the sun in the form of coronal mass ejections and solar flares,” said Michael Hesse, lead co-investigator for theory and modeling on the MMS mission at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But with MMS, we’re finally able to observe the process of magnetic reconnection directly.”

    Magnetic reconnection is a process in which magnetic fields reconfigure suddenly, releasing huge amounts of energy. When magnetic field lines snap and join back together in new formations, some of the energy that was stored in the magnetic field is converted to particle energy in the forms of heat and kinetic energy.

    “Reconnection is a fundamental energy release process,” said Hesse. “It impacts both the temperature and speed of particles in a plasma, two of the defining characteristics.”

    Katherine Goodrich, a graduate student at the University of Colorado Boulder, is working with measurements from a suite of six instruments to characterize the behavior of electric and magnetic fields at magnetic reconnection sites. This suite of instruments, the FIELDS suite — duplicated on each of the four MMS spacecraft — contains six sensors that work together to form a three-dimensional picture of the electric and magnetic fields near the spacecraft. This suite has a very high accuracy, in part due to the very long booms on each sensor.

    “The long booms allow us to measure the fields with minimal contamination from the electronics aboard the spacecraft,” said Goodrich. Along the spin plane, the booms measure 400 feet from end to end — longer than a regulation soccer field. The booms on the axis of spin measure 100 feet from end to end.

    Using FIELDS observations, Goodrich is looking for one of the smoking guns of magnetic reconnection, called a parallel electric field.

    “What we’re looking for is an alignment of electric and magnetic fields,” said Goodrich. “This condition is impossible with a simplified understanding of plasma, but magnetic reconnection is anything but simple.”

    In the simplest view of plasma — known as ideal plasma — the charged particles spinning along magnetic field lines carry enough current to instantaneously short out any electric field parallel to the magnetic field. But in actuality, plasma doesn’t ever behave quite that simply, so scientists must consider a more detailed, complex version of the physics to understand how and why reconnection is able to occur. Such rigorous models — known as non-ideal plasmas — open up the possibility for the creation of gaps in these zooming charged particles, allowing parallel electric fields to form for an observable length of time.

    “These events would have to combine energy dissipation, particle acceleration, and sudden changes in magnetic topology,” said Goodrich. “Magnetic reconnection fits the bill perfectly.”

    Goodrich presented observations from MMS that showed how the FIELDS suite can spot examples of parallel electric fields at time scales down to half a second. Such observations show that MMS is flying directly through areas of interest that will help us better characterize the space environment around Earth.

    Ian Cohen, a postdoctoral fellow at Johns Hopkins University Applied Physics Laboratory, or APL, uses a different instrument suite to identify and study the telltale particle behaviors that come with magnetic reconnection. Cohen works with two particle detectors aboard MMS: the Fly’s Eye Energetic Particle Sensor, or FEEPS, and the Energetic Ion Spectrometer. The measurements are providing evidence for a mechanism by which particles can escape the Earth system and join the interplanetary medium.

    When magnetic reconnection happens on the day-side, magnetic field lines from the sun connect directly to Earth’s magnetic field.

    “The linking of these magnetic fields means that particles can drift from within the magnetosphere to the boundary between Earth’s magnetic field and the solar wind,” said Cohen. “Once they get to that boundary, further reconnection events allow them to escape and float along the interplanetary magnetic field.”

    This magnetic sun-Earth connection also means that particles disrupted by magnetic reconnection spiral along these newly linked magnetic field lines toward Earth, allowing the evidence of magnetic reconnection to be seen even from tens of thousands of miles away.

    Cohen presented MMS observations that are clearly able to distinguish between the directions the particles are moving, which will help scientists better understand what mechanisms drive magnetic reconnection.

    “All in all, the data we have gotten so far has just been astounding,” said Burch. “Now we’re sifting through those observations and we’re going to be able to understand the drivers behind magnetic reconnection in a way never before possible.”

    MMS is the fourth NASA Solar Terrestrial Probes, or STP, program mission. Goddard built, integrated and tested the four MMS spacecraft and is responsible for overall mission management and mission operations. The Southwest Research Institute in San Antonio, Texas, leads the Instrument Suite Science Team, with the University of New Hampshire leading the FIELDS instrument suite. Science operations planning and instrument command sequence development will be performed at the MMS Science Operations Center at the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.

    Related Link

    NASA’s MMS mission website

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 9:24 am on March 12, 2015 Permalink | Reply
    Tags: , , NASA MMS,   

    From NASA Goddard: “MMS: Studying Magnetic Reconnection Near Earth” 

    NASA Goddard Banner

    Goddard Space Flight Center

    March 10, 2015

    The Magnetospheric Multiscale, or MMS, mission is scheduled to launch into space on March 12, 2015. The mission consists of four spacecraft to observe a phenomenon called magnetic reconnection — which doesn’t happen naturally on Earth all that often, but is a regular occurrence in space. At the heart of magnetic reconnection is a fundamental physics process in which magnetic field lines come together and explosively realign, often sending the particles in the area flying off near the speed of light.

    NASA MMS
    MMS spacecraft stacked with fairing open.

    The process may sound a bit abstract, but it is at the heart of some very concrete events in space. Take, for example, a giant explosion on the sun that occurred on July 12, 2012, causing colorful aurora and space weather near Earth a few days later. Magnetic reconnection catalyzed numerous events along the way.

    It all began at 12:11 p.m. EDT on July 12, 2012, when magnetic reconnection in the sun’s atmosphere, the corona, led to a solar flare. Scientists don’t yet know exactly what sets off one of these gigantic explosions of light and x-rays, but they know that magnetic reconnection – initiated in areas of complex and intense magnetic fields on the sun — is ultimately responsible.

    1
    Solar flares – such as this one captured by NASA’s SDO on July 12, 2012, are initiated by a phenomenon called magnetic reconnection. Image Credit: NASA/SDO

    NASA Solar Dynamics Observatory
    NASA/SDO

    Solar eruptions such as flares often occur in conjunction with a different kind of explosion that is also a consequence of reconnection called a coronal mass ejection, or CME. CMEs are giant clouds of solar material that erupt upward fast enough to achieve escape velocity and zoom out into space.

    2
    Solar eruptive events caused by magnetic reconnection on the sun can lead to giant ejections of solar material, called coronal mass ejections. This one, as observed by the joint ESA/NASA Solar and Heliospheric Observatory, traveled through space toward Earth in July 2012. Image Credit: ESA&NASA/SOHO

    NASA SOHO
    NASA/ESA SOHO

    On July 12, that CME sped out from the sun with an initial velocity of 850 miles per second and headed straight toward Earth, as can be seen in this simulation of the CME created with a model, called an Enlil model, via the Community Coordinated Modeling Center at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    4
    A graph of data from NASA’s Advanced Composition Explorer shows how magnetic fields are aligned just outside Earth’s protective magnetic bubble, the magnetosphere. When below zero, as it was July 15-16, 2012, the graph indicates potential for magnetic reconnection and increased space weather.
    Image Credit: NASA/ACE

    The material in a CME is made of very hot, charged particles, also known as plasma. This plasma carries embedded magnetic fields along for the ride. On July 14, 2012 at around 2 p.m. EDT, after traveling for two days, those magnetic field lines collided with the magnetic field that naturally surrounds Earth, a giant bubble called the magnetosphere where it soon experienced another bout of magnetic reconnection.

    The magnetosphere’s field lines naturally point from Earth’s south magnetic pole to its north pole. Sometimes, the magnetic field lines inside a CME are pointed in the same direction and the collision is a reasonably gentle one: Solar material from the CME is rebuffed, and the magnetosphere itself doesn’t feel much effect.

    But this was not the case for this CME. The magnetic field lines in the plasma were pointed in the opposite direction of the field’s lines around Earth – as can be seen in this graph from NASA’s Advanced Composition Explorer, or ACE, which sits 1 million miles closer to the sun than Earth, just outside our magnetosphere. This type of graph from ACE shows just how much of a north/south magnetic field component is present at any given time. Above the midline, the graph shows magnetic fields that point north like Earth’s do; below the midline indicates magnetic fields that point south. Note, in this case, the extended period of strong southward magnetic field on July 15 and 16. Over and over during this time period, whenever the CME’s oppositely directed magnetic fields collided with Earth’s magnetospheric lines, magnetic reconnection occurred right at the boundary of the magnetosphere.

    NASA ACE Advanced Composition Explorer
    NASA/ACE

    5
    Viewed as if looking down from the top of the sun, this model – called an Enlil model – shows how a coronal mass ejection, or CME, traveled from the sun toward Earth July 12-15, 2012. Magnetic reconnection events occurring as the CME arrived at Earth set up space weather in near-Earth space.
    Image Credit: NASA/Goddard/CCMC/Bridgman

    During this period of repeated magnetic reconnection, surges of solar material breached the magnetosphere, zooming into near-Earth space. In this visualization of the magnetosphere, you can see how the magnetic fields lines at the front of the magnetosphere realign, peeling back like layers of an onion. As more lines are peeled back, more energy is dumped in the tail end of the magnetosphere, the magnetotail, giving rise to what’s called a geomagnetic storm.


    A visualization of Earth’s magnetosphere on July 15-16, 2012, shows how constant magnetic reconnection caused by an arriving coronal mass ejection, or CME, from the sun disrupted the magnetosphere, causing a geomagnetic storm.
    Image Credit: NASA/CCMC/Bridgman

    This visualization shows how excited the magnetosphere became after the CME passed by. Such space weather events can compress the front of the magnetosphere so satellites are left exposed to the more harsh radiation outside the magnetosphere. The magnetic variation can also initiate electric currents flowing through grid lines on Earth, with the potential to damage transformers and disrupt utility power grids.

    In the visualization, you can also see field lines connecting and realigning on the right side of Earth, in the magnetotail. As the magnetotail gets increasingly unstable, we see additional examples of magnetic reconnection. The reconnection events sent particles shooting off down the tail, and also toward Earth, where they collided with particles in the atmosphere to create aurora. This image shows the red purple aurora that occurred in Missouri on July 15, 2012.

    6
    An aurora in the early hours of July 15, 2012, seen in Albany, Missouri shows a colorful result of magnetic reconnection.
    Image Credit: Courtesy of Dan Bush

    The orbit for MMS will carry it through the magnetic reconnection at the nose of the magnetosphere for over a year, and then switch to flying through areas of magnetic reconnection in the magnetotail. MMS will offer us our first ever three-dimensional view of this process as it is happening, which will provide unprecedented amounts of information to help scientists better understand what sets it off and what effects it causes near Earth. Groups like NASA’s Community Coordinated Modeling Center can then take that information to improve models such as those seen here, which can be used by NOAA’s Space Weather Prediction Center — the U.S. government’s official source for space weather forecasts, alerts, watches and warnings – uses to forecast space weather.

    MMS is the fourth NASA Solar Terrestrial Probes Program mission. NASA Goddard built, integrated, and tested the four MMS spacecraft and is responsible for overall mission management and mission operations. The Southwest Research Institute in San Antonio, Texas, leads the Instrument Suite Science Team. Science operations planning and instrument command sequence development will be performed at the MMS Science Operations Center at the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. 


    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 4:54 pm on December 10, 2014 Permalink | Reply
    Tags: , , , , , NASA MMS,   

    From NASA Goddard: MMS Mission 

    NASA Goddard Banner

    Scientists Michael Hesse and John Dorelli explain the science objectives of the MMS mission.

    The [NASA] Magnetospheric Multiscale (MMS) mission is comprised of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth’s magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as “space weather.”

    Learn more about MMS at http://www.nasa.gov/mms

    Watch, enjoy, learn.

    4
    All four MMS spacecraft are stacked and ready for transport to the vibration chamber for environmental tests. Although they will be disassembled again later this month, this image is a sneak preview of what will be the final flight configuration of the MMS fleet.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus

    NASA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: