Tagged: NASA/MIT TESS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:39 am on August 19, 2019 Permalink | Reply
    Tags: , , , , , , NASA/MIT TESS, The exoplanet LHS 3844b   

    From NASA JP-Caltech: “NASA Gets a Rare Look at a Rocky Exoplanet’s Surface” 

    From NASA JP-Caltech

    August 19, 2019

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    This artist’s illustration depicts the exoplanet LHS 3844b, which is 1.3 times the mass of Earth and orbits an M dwarf star. The planet’s surface may be covered mostly in dark lava rock, with no apparent atmosphere, according to observations by NASA’s Spitzer Space Telescope. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

    2
    Hot Earth LHS 3844 b in the orbit of a bright red dwarf discovered/
    3

    A new study using data from NASA’s Spitzer Space Telescope provides a rare glimpse of conditions on the surface of a rocky planet orbiting a star beyond the Sun.

    NASA/Spitzer Infrared Telescope

    The study, published today in the journal Nature, shows that the planet’s surface may resemble those of Earth’s Moon or Mercury: The planet likely has little to no atmosphere and could be covered in the same cooled volcanic material found in the dark areas of the Moon’s surface, called mare.

    Discovered in 2018 by NASA’s Transiting Exoplanet Satellite Survey (TESS) mission, planet LHS 3844b is located 48.6 light-years from Earth and has a radius 1.3 times that of Earth.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    It orbits a small, cool type of star called an M dwarf – especially noteworthy because, as the most common and long-lived type of star in the Milky Way galaxy, M dwarfs may host a high percentage of the total number of planets in the galaxy.

    TESS found the planet via the transit method, which involves detecting when the observed light of a parent star dims because of a planet orbiting between the star and Earth.

    Planet transit. NASA/Ames

    Detecting light coming directly from a planet’s surface – another method – is difficult because the star is so much brighter and drowns out the planet’s light.

    But during follow-up observations, Spitzer was able to detect light from the surface of LHS 3844b.

    The planet makes one full revolution around its parent star in just 11 hours. With such a tight orbit, LHS 3844b is most likely “tidally locked,” which is when one side of a planet permanently faces the star. The star-facing side, or dayside, is about 1,410 degrees Fahrenheit (770 degrees Celsius). Being extremely hot, the planet radiates a lot of infrared light, and Spitzer is an infrared telescope. The planet’s parent star is relatively cool (though still much hotter than the planet), making direct observation of LHS 3844b’s dayside possible.

    This observation marks the first time Spitzer data have been able to provide information about the atmosphere of a terrestrial world around an M dwarf.

    The Search for Life

    By measuring the temperature difference between the planet’s hot and cold sides, the team found that there is a negligible amount of heat being transferred between the two. If an atmosphere were present, hot air on the dayside would naturally expand, generating winds that would transfer heat around the planet. On a rocky world with little to no atmosphere, like the Moon, there is no air present to transfer heat.

    “The temperature contrast on this planet is about as big as it can possibly be,” said Laura Kreidberg, a researcher at the Harvard and Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and lead author of the new study. “That matches beautifully with our model of a bare rock with no atmosphere.”

    Understanding the factors that could preserve or destroy planetary atmospheres is part of how scientists plan to search for habitable environments beyond our solar system. Earth’s atmosphere is the reason liquid water can exist on the surface, enabling life to thrive. On the other hand, the atmospheric pressure of Mars is now less than 1% of Earth’s, and the oceans and rivers that once dotted the Red Planet’s surface have disappeared.

    “We’ve got lots of theories about how planetary atmospheres fare around M dwarfs, but we haven’t been able to study them empirically,” Kreidberg said. “Now, with LHS 3844b, we have a terrestrial planet outside our solar system where for the first time we can determine observationally that an atmosphere is not present.”

    Compared to Sun-like stars, M dwarfs emit high levels of ultraviolet light (though less light overall), which is harmful to life and can erode a planet’s atmosphere. They’re particularly violent in their youth, belching up a large number of flares, or bursts of radiation and particles that could strip away budding planetary atmospheres.

    The Spitzer observations rule out an atmosphere with more than 10 times the pressure of Earth’s. (Measured in units called bars, Earth’s atmospheric pressure at sea level is about 1 bar.) An atmosphere between 1 and 10 bars on LHS 3844b has been almost entirely ruled out as well, although the authors note there’s a slim chance it could exist if the stellar and planetary properties were to meet some very specific and unlikely criteria. They also argue that with the planet so close to a star, a thin atmosphere would be stripped away by the star’s intense radiation and outflow of material (often called stellar winds).

    “I’m still hopeful that other planets around M dwarfs could keep their atmospheres,” Kreidberg said. “The terrestrial planets in our solar system are enormously diverse, and I expect the same will be true for exoplanet systems.”

    A Bare Rock

    Spitzer and NASA’s Hubble Space Telescope have previously gathered information about the atmospheres of multiple gas planets, but LHS 3844b appears to be the smallest planet for which scientists have used the light coming from its surface to learn about its atmosphere (or lack thereof). Spitzer previously used the transit method to study the seven rocky worlds around the TRAPPIST-1 star (also an M dwarf) and learn about their possible overall composition; for instance, some of them likely contain water ice.

    A size comparison of the planets of the TRAPPIST-1 system, lined up in order of increasing distance from their host star. The planetary surfaces are portrayed with an artist’s impression of their potential surface features, including water, ice, and atmospheres. NASA

    The authors of the new study went one step further, using LHS 3844b’s surface albedo (or its reflectiveness) to try to infer its composition.

    The Nature study shows that LHS 3844b is “quite dark,” according to co-author Renyu Hu, an exoplanet scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. which manages the Spitzer Space Telescope. He and his co-authors believe the planet is covered with basalt, a kind of volcanic rock. “We know that the mare of the Moon are formed by ancient volcanism,” Hu said, “and we postulate that this might be what has happened on this planet.”

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Space operations are based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    For more information on Spitzer, visit:

    http://www.nasa.gov/spitzer

    http://www.spitzer.caltech.edu/

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

     
  • richardmitnick 7:48 am on August 19, 2019 Permalink | Reply
    Tags: "How many Earth-like planets are around sun-like stars?", , , , , NASA Kepler and K2, NASA/MIT TESS,   

    From Pennsylvania State University: “How many Earth-like planets are around sun-like stars?” 

    Penn State Bloc

    From Pennsylvania State University

    14 August 2019
    Sam Sholtis

    Media Contacts
    Eric B. Ford
    Professor of Astronomy and Astrophysics
    ebf11@psu.edu
    814- 863-5558

    Sam Sholtis
    Science Writer
    samsholtis@psu.edu
    (814) 865-1390

    1
    Artist’s impression of NASA’s Kepler space telescope, which discovered thousands of new planets. New research, using Kepler data, provides the most accurate estimate to date of how often we should expect to find Earth-like planets near sun-like stars. Credit: NASA/Ames Research Center/W. Stenzel/D. Rutter

    A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun. Knowing the rate that these potentially habitable planets occur will be important for designing future astronomical missions to characterize nearby rocky planets around sun-like stars that could support life. A paper describing the model appears August 14, 2019 in The Astronomical Journal.

    Thousands of planets have been discovered by NASA’s Kepler space telescope.

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

    Kepler, which was launched in 2009 and retired by NASA in 2018 when it exhausted its fuel supply, observed hundreds of thousands of stars and identified planets outside of our solar system—exoplanets—by documenting transit events.*

    [On July 14, 2012, one of the spacecraft’s four reaction wheels used for pointing the spacecraft stopped turning, and completing the mission would only be possible if all other reaction wheels remained reliable. Then, on May 11, 2013, a second reaction wheel failed, disabling the collection of science data and threatening the continuation of the mission. This was the origin of the K2 misson.]

    Planet transit. NASA/Ames

    Transits events occur when a planet’s orbit passes between its star and the telescope, blocking some of the star’s light so that it appears to dim. By measuring the amount of dimming and the duration between transits and using information about the star’s properties astronomers characterize the size of the planet and the distance between the planet and its host star.

    “Kepler discovered planets with a wide variety of sizes, compositions and orbits,” said Eric B. Ford, professor of astronomy and astrophysics at Penn State and one of the leaders of the research team. “We want to use those discoveries to improve our understanding of planet formation and to plan future missions to search for planets that might be habitable. However, simply counting exoplanets of a given size or orbital distance is misleading, since it’s much harder to find small planets far from their star than to find large planets close to their star.”

    To overcome that hurdle, the researchers designed a new method to infer the occurrence rate of planets across a wide range of sizes and orbital distances. The new model simulates ‘universes’ of stars and planets and then ‘observes’ these simulated universes to determine how many of the planets would have been discovered by Kepler in each `universe.’

    “We used the final catalog of planets identified by Kepler and improved star properties from the European Space Agency’s Gaia spacecraft to build our simulations,” said Danley Hsu, a graduate student at Penn State and the first author of the paper.

    ESA/GAIA satellite

    “By comparing the results to the planets cataloged by Kepler, we characterized the rate of planets per star and how that depends on planet size and orbital distance. Our novel approach allowed the team to account for several effects that have not been included in previous studies.”

    The results of this study are particularly relevant for planning future space missions to characterize potentially Earth-like planets. While the Kepler mission discovered thousands of small planets, most are so far away that it is difficult for astronomers to learn details about their composition and atmospheres.

    “Scientists are particularly interested in searching for biomarkers—molecules indicative of life—in the atmospheres of roughly Earth-size planets that orbit in the ‘habitable-zone’ of Sun-like stars,” said Ford. “The habitable zone is a range of orbital distances at which the planets could support liquid water on their surfaces. Searching for evidence of life on Earth-size planets in the habitable zone of sun-like stars will require a large new space mission.”

    How large that mission needs to be will depend on the abundance of Earth-size planets. NASA and the National Academies of Science are currently exploring mission concepts that differ substantially in size and their capabilities. If Earth-size planets are rare, then the nearest Earth-like planets are farther away and a large, ambitious mission will be required to search for evidence of life on potentially Earth-like planets. On the other hand, if Earth-size planets are common, then there will be Earth-size exoplanets orbiting stars that are close to the sun and a relatively small observatory may be able to study their atmospheres.

    “While most of the stars that Kepler observed are typically thousands of light years away from the Sun, Kepler observed a large enough sample of stars that we can perform a rigorous statistical analysis to estimate of the rate of Earth-size planets in the habitable zone of nearby sun-like stars.” said Hsu.

    Based on their simulations, the researchers estimate that planets very close to Earth in size, from three-quarters to one-and-a-half times the size of earth, with orbital periods ranging from 237 to 500 days, occur around approximately one in six stars. Importantly, their model quantifies the uncertainty in that estimate. They recommend that future planet-finding missions plan for a true rate that ranges from as low about one planet for every 33 stars to as high as nearly one planet for every two stars.

    “Knowing how often we should expect to find planets of a given size and orbital period is extremely helpful for optimize surveys for exoplanets and the design of upcoming space missions to maximize their chance of success,” said Ford. “Penn State is a leader in bringing state-of-the-art statistical and computational methods to the analysis of astronomical observations to address these sorts of questions. Our Institute for CyberScience (ICS) and Center for Astrostatistics (CASt) provide infrastructure and support that makes these types of projects possible.”

    The Center for Exoplanets and Habitable Worlds at Penn State includes faculty and students who are involved in the full spectrum of extrasolar planet research. A Penn State team built the Habitable Zone Planet Finder, an instrument to search for low-mass planets around cool stars, which recently began science operations at the Hobby-Eberly Telescope, of which Penn State is a founding partner.

    U Texas Austin McDonald Observatory Hobby-Eberly Telescope, Altitude 2,026 m (6,647 ft)

    A second Penn State-built spectrograph is in being tested before it begins a complementary survey to discover and measure the masses of low-mass planets around sun-like stars. This study makes predictions for what such planet surveys will find and will help provide context for interpreting their results.

    In addition to Ford and Hsu, the research team includes Darin Ragozzine and Keir Ashby at Brigham Young University. The research was supported by NASA; the U.S. National Science Foundation (NSF); and the Eberly College of Science, the Department of Astronomy and Astrophysics, the Center for Exoplanets and Habitable Worlds, and the Center for Astrostatistics at Penn State. Advanced computing resources and services were provided by the Penn State Institute for CyberScience, including the NSF funded CyberLAMP cluster.

    • Kepler has been replaced by the TESS spacecraft.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    TESS is designed to search for exoplanets using the transit method in an area 400 times larger than that covered by the Kepler mission.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Penn State Campus

    WHAT WE DO BEST

    We teach students that the real measure of success is what you do to improve the lives of others, and they learn to be hard-working leaders with a global perspective. We conduct research to improve lives. We add millions to the economy through projects in our state and beyond. We help communities by sharing our faculty expertise and research.

    Penn State lives close by no matter where you are. Our campuses are located from one side of Pennsylvania to the other. Through Penn State World Campus, students can take courses and work toward degrees online from anywhere on the globe that has Internet service.

    We support students in many ways, including advising and counseling services for school and life; diversity and inclusion services; social media sites; safety services; and emergency assistance.

    Our network of more than a half-million alumni is accessible to students when they want advice and to learn about job networking and mentor opportunities as well as what to expect in the future. Through our alumni, Penn State lives all over the world.

    The best part of Penn State is our people. Our students, faculty, staff, alumni, and friends in communities near our campuses and across the globe are dedicated to education and fostering a diverse and inclusive environment.

     
  • richardmitnick 12:05 pm on August 18, 2019 Permalink | Reply
    Tags: , , , , , , , NASA/MIT TESS,   

    From Ethan Siegel: “Ask Ethan: What Has TESS Accomplished In Its First Year Of Science Operations?” 

    From Ethan Siegel
    Aug 17, 2019

    1
    An illustration of NASA’s TESS satellite and its capabilities of imaging transiting exoplanets. Kepler has given us more exoplanets than any other mission, and it revealed them all through the transit method.

    Planet transit. NASA/Ames

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

    With TESS, we are looking to extend our capabilities even farther, using the same method with superior equipment and techniques. (NASA)

    After Kepler but before James Webb, TESS is preparing astronomers for the coming exoplanet revolution.

    There are always new discoveries and achievements occurring in science, and certain fields have experienced recent advances that are nothing short of revolutionary. A generation ago, humanity didn’t know if stars beyond our Sun had planets around them; today, we’ve discovered thousands of star systems with planets orbiting them. Planets of varying masses orbit all types of star at a vast range of distances, and astronomers are preparing for the day where we can image Earth-sized exoplanets directly to seek signs of extraterrestrial life. Today, in a post-Kepler but pre-James Webb world, TESS is the leading exoplanet-finding mission. A year into its mission, what has it accomplished? That’s what Patreon supporter Tim Graham wants to know, asking:

    With TESS completing [the] first year of its mission, surveying the southern sky, how does it compare to Kepler?

    TESS is fundamentally different than Kepler, but what it’s found should give us all incredible hope for the 2020s.

    2
    Kepler was designed to look for planetary transits, where a large planet orbiting a star could block a tiny fraction of its light, reducing its brightness by ‘up to’ 1%. The smaller a world is relative to its parent star, the more transits you need to build up a robust signal, and the longer its orbital period, the longer you need to observe to get a detection signal that rises above the noise. Kepler successfully accomplished this for thousands of planets around stars beyond our own. (MATT OF THE ZOONIVERSE/PLANET HUNTERS TEAM)

    There are some similarities between TESS and Kepler in how both missions work.

    Both TESS and Kepler measure the light coming from a target star (or a set of target stars),
    they monitor the total light output over relatively long periods of time,
    they search for periodic dips in the overall flux from the star,
    and if the dips repeat in frequency and magnitude, both extract the radius and orbital distance for a potential candidate planet.

    This is the essence of the transit method in searching for exoplanetary candidates, and it was famously employed by Kepler over its recently-ended mission, beginning in 2009. Thanks largely to Kepler, the number of known exoplanets skyrocketed from a few dozen to many thousands in under a decade.

    3
    Today, we know of over 4,000 confirmed exoplanets, with more than 2,500 of those found in the Kepler data. These planets range in size from larger than Jupiter to smaller than Earth. Yet because of the limitations on the size of Kepler and the duration of the mission, the majority of planets are very hot and close to their star, at small angular separations. TESS has the same issue with the first planets it’s discovering: they’re preferentially hot and in close orbits. Only through dedicates, long-period observations (or direct imaging) will we be able to detect planets with longer period (i.e., multi-year) orbits. (NASA/AMES RESEARCH CENTER/JESSIE DOTSON AND WENDY STENZEL; MISSING EARTH-LIKE WORLDS BY E. SIEGEL)

    The primary mission of Kepler, however, was fundamentally different from the primary mission of TESS. While Kepler’s goal was to characterize the planetary systems of as many stars as possible in as great detail as possible, TESS is particularly concerned with finding and characterizing exoplanetary systems around the closest stars to Earth. Both of these ambitions are scientifically useful and important, but what TESS is doing doesn’t compare to Kepler at all.

    In order to accomplish the goal, Kepler’s primary mission involved the continuous observation of a small region of the sky, along one of the Milky Way’s spiral arms. These observations spanned three years, encapsulating over 100,000 stars located up to some 3,000 light-years away. Thousands of these stars were discovered to exhibit these transits: the same number you’d expect if every star possessed planets that were randomly aligned relative to our line-of-sight.

    4
    Kepler’s field-of-view contains approximately 150,000 stars, but transits have only been observed for a few thousand. In theory, nearly all of these stars should have planets, but only a small percentage of planetary systems should have good enough alignments from our perspective for a transit to be observed. (PAINTING BY JON LOMBERG, KEPLER MISSION DIAGRAM ADDED BY NASA)

    Once its primary mission ended [Kepler’s reaction wheels had failed], however, Kepler switched to an alternate goal: the K2 mission. Instead of pointing at one region of the sky for a long period of time, Kepler would observe a different region of the sky for approximately 30 days, search for transits there, and then move on to another region of sky. This led to some incredible discoveries, particularly around the smallest, coolest stars in the Universe: the M-class red dwarfs.

    The lowest-mass stars are also the smallest in physical size, meaning that even a terrestrial-like, rocky planet can block a significant fraction of the star’s light during a transit: enough to have its flux dip detected by Kepler. In addition, these exoplanets can possess very short periods, meaning that to have Earth-like temperatures on them, they’ll need to be so close that they complete a full orbit in less than a month. Many fascinating systems have been discovered and/or measured precisely by the K2 mission.

    5
    This image montage shows the Maunakea Observatories, the Kepler Space Telescope, and the night sky with various K2 fields-of-view highlighted. Inside each field-of-view there are dots inside, which point out the various planetary systems discovered and measured by the K2 mission. (KAREN TERAMURA (UHIFA); NASA/KEPLER; MILOSLAV DRUCKMÜLLER AND SHADIA HABBAL)

    The K2 mission, perhaps, could be viewed as the best testing ground for TESS, but is still fundamentally different. The Kepler telescope was designed to have a narrow field-of-view but to go relatively deep: measuring flux dips around stars up to thousands of light-years away.

    TESS, on the other hand, was designed to survey practically the entire sky, with a much wider field-of-view. It doesn’t need to go as deep, because its goal is to seek planets around the closest stars to Earth: those within just 200 light-years of us. If there’s a planet orbiting a star with the right orientation to exhibit a transit as viewed from our perspective, TESS will not only find it, but will enable scientists to determine the planet’s orbital distance and physical radius.

    6
    NASA’s TESS satellite will survey the entire sky in 16 chunks-at-a-time that are approximately 12 degrees across apiece, ranging from the galactic poles down to near the galactic equator. As a result of this surveying strategy, the polar regions see more observing time, making TESS more sensitive to smaller and more distant planets in those systems. (NASA/MIT/TESS)

    Every system where an exoplanet is found by TESS will be remarkable, regardless of what type of star it is or what types of planets are found around it. You see, the goal of TESS is not, contrary to what many people think, to find an Earth-like world at the right distance from its parent star to have liquid water (and maybe life) on its surface. Sure, that would be awfully nice, but that’s not the purpose of TESS.

    Instead, the science goal of TESS is to find candidate exoplanets and candidate exoplanetary systems where future observatories ⁠ — like the James Webb Space Telescope ⁠ — can try to take detailed measurements of the planets themselves. This would include the capacity for measuring the atmospheric contents during transit, searching for potential biosignatures, or even, if we get lucky, the possibility of direct exoplanet imaging.

    7
    Hundreds of candidate planets have been discovered so far in the data collected and released by NASA’s Transiting Exoplanet Survey Satellite (TESS). Some of the closest worlds to be discovered by TESS will be candidates for being Earth-like and within the reach of direct imaging. (NASA/MIT/TESS)

    TESS was launched in April of 2018, and began taking its first scientific data in July of last year. It’s now been more than 12 months, which means that half of the sky (13 separate sets of observations of 27 days each) has now been observed by TESS. This coverage of the entire southern sky is unprecedented in terms of searches for nearby exoplanets, and while TESS now is turning to the northern hemisphere, let’s take a look at TESS’s discoveries so far:

    21 new exoplanets have been discovered, already confirmed by ground-based telescopes,

    ranging in size from as small as 0.80 times the size of Earth to larger than Jupiter,

    with an additional 850 candidate exoplanets that have been identified, awaiting ground-based confirmation,
    one system, Beta Pictoris, where exocomets (!) have been observed,

    and a small, super-Earth class planet orbiting very close to a Sun-like star that also possesses an enormous super- Jupiter on an extremely elliptical trajectory.

    8
    The Pi Mensae system was discovered to house an exoplanet way back in 2001: Pi Mensae b, with more than 10 Jupiter masses, and a huge difference between its closest approach (1.21 AU) and farthest distance (5.54 AU) from its parent star. TESS uncovered Pi Mensae c: a super-Earth with an orbital period of just 6.3 days. This marks the first time a nearby and distant planet with such different properties and orbits have been discovered around the same star. (NASA / MIT / TESS)

    But my favorite exoplanetary system investigated by TESS (so far) has to be the one around the nearby star HD 21749. It’s located 53 light-years away, it’s slightly smaller and less massive than our Sun (about 70% the mass and radius), and it now has two known planets around it.

    The first one discovered was HD 21749b, with 2.8 times the radius of Earth and 23.2 times the Earth’s mass. With a 36-day orbit, it should be on the warm side (about 300 °F/150 °C), slightly smaller but significantly denser than Uranus or Neptune. It is the longest-period exoplanet known within 100 light-years of Earth, and one of the best candidates in the TESS field for direct imaging.

    But the second planet, announced in April, is even better: HD 21749c was the first Earth-sized planet discovered by TESS, with Mercury-like temperatures, 90% the radius of Earth, and an orbital period of just 7.8 days.

    7
    An artist’s conception of HD 21749c, the first Earth-sized planet found by NASA’s Transiting Exoplanets Survey Satellite (TESS), as well as its sibling, HD 21749b, a warm sub-Neptune-sized world. (ROBIN DIENEL / CARNEGIE INSTITUTION FOR SCIENCE)

    There are huge advantages to what TESS is doing over what either Kepler or K2 did. Because TESS is preferentially measuring the nearest stars to us, identifying planets and planetary systems where follow-up observations will matter the most. The reason why is simple.

    1.When a planet orbits its star, it will be physically separated from it by some knowable, measurable distance.
    2.Depending on how far away the star is from us, that will correspond to an angular scale, with the planet achieving the largest angular separations from its star when it’s ¼ and ¾ of the way through its orbit relative to the moment of transit.
    3.Therefore, if you can identify the closest exoplanets with well-measured orbital parameters, you can use a high-resolution telescope equipped with a coronagraph to directly image the planet in question.

    As you may have guessed, the James Webb Space Telescope will have exactly the instrumentation and capabilities necessary to directly image many of these worlds.

    8
    The Near Infrared Camera (NIRCam) is Webb’s primary imager that will cover the infrared wavelength range 0.6 to 5 microns. NIRCam is equipped with coronagraphs, instruments that allow astronomers to take pictures of very faint objects around a central bright object, like stellar systems. NIRCam’s coronagraphs work by blocking a brighter object’s light, making it possible to view the dimmer object nearby. (LOCKHEED MARTIN)

    When it’s a bright, sunny day and you want to see an object in the sky that’s very close to the Sun, what do you do? You hold up a finger (or your whole hand) and block out the Sun, and then look for the nearby object that’s much intrinsically fainter than the Sun. This is exactly what telescopes equipped with coronagraphs do.

    With the next generation of telescopes, this will enable us to finally directly-image planets around the closest stars to us, but only if we know where, when, and how to look. This is exactly the type of information that astronomers are gaining from TESS. By the time the James Webb Space Telescope launches in 2021, TESS will have completed its first sweep of the entire sky, providing a rich suite of tantalizing targets suitable for direct imaging. Our first picture of an Earth-like world may well be close on the horizon. Thanks to TESS, we’ll know exactly where to look.

    9
    There are four known exoplanets orbiting the star HR 8799, all of which are more massive than the planet Jupiter. These planets were all detected by direct imaging taken over a period of seven years, with the periods of these worlds ranging from decades to centuries.

    Direct imaging-This false-color composite image traces the motion of the planet Fomalhaut b, a world captured by direct imaging. Credit: NASA, ESA, and P. Kalas (University of California, Berkeley and SETI Institute

    As in our Solar System, the inner planets revolve around their star more rapidly, and the outer planets revolve more slowly, as predicted by the law of gravity. With the next generation of telescopes like JWST, we may be able to measure Earth-like or super-Earth-like planets around the nearest stars to us. (JASON WANG / CHRISTIAN MAROIS)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    “Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

     
  • richardmitnick 2:04 pm on August 1, 2019 Permalink | Reply
    Tags: , , NASA/MIT TESS   

    From Many Worlds: “Exoplanets Discoveries Flood in From TESS” 

    NASA NExSS bloc

    NASA NExSS

    Many Words icon

    From Many Worlds

    August 1, 2019
    Marc Kaufman

    1
    NASA’s Transiting Exoplanet Survey Satellite (TESS) has hundreds of “objects of interest” waiting to be confirmed as planets in the data from the space telescope’s four cameras. These three were the first confirmed TESS discoveries, identified last year during its first three months of observing. By the time the mission is done, TESS’s wide-field cameras will have covered the whole sky in search of transiting exoplanets around 200,000 of the nearest (and brightest) stars. (NASA / MIT / TESS)

    NASA/MIT TESS replaced Kepler in search for exoplanets

    The newest space telescope in the sky–NASA’s Transiting Exoplanet Survey Satellite, TESS — has been searching for exoplanets for less than a year, but already it has quite a collection to its name.

    The TESS mission is to find relatively nearby planets orbiting bright and stable suns, and so expectations were high from the onset about the discovery of important new planets and solar systems. At a meeting this week at the Massachusetts Institute of Technology devoted to TESS results, principal investigator George Ricker pronounced the early verdict.

    The space telescope, he said, “has far exceeded our most optimistic hopes.” The count is up to 21 new planets and 850 additional candidate worlds waiting to be confirmed.

    Equally or perhaps more important is that the planets and solar systems being discovered promise important results. They have not yet included any Earth-sized rocky planet in a sun’s habitable zone — what is generally considered the most likely, though hardly the only, kind of planet to harbor life — but they did include planets that offer a great deal when it comes to atmospheres and how they can be investigated.

    2
    This infographic illustrates key features of the TOI 270 system, located about 73 light-years away in the southern constellation Pictor. The three known planets were discovered by NASA’s Transiting Exoplanet Survey Satellite through periodic dips in starlight caused by each orbiting world. Insets show information about the planets, including their relative sizes, and how they compare to Earth. Temperatures given for TOI 270’s planets are equilibrium temperatures, (NASA’s Goddard Space Flight Center/Scott Wiessinger)

    One of the newest three-planet system is called TOI-270, and it’s about 75 light years from Earth. The star at the center of the system is a red dwarf, a bit less than half the size of the sun.

    Despite its small size, it’s brighter than most of the nearby stars we know host planets. And it’s stable, making its solar system especially valuable. When variations in the star’s light are minimal, and they’re less likely to get in the way of trying to pick up subtle changes caused by its orbiting planets.

    While none of the three planets are likely habitable, more planets may yet be found farther out in the star system, orbiting in more habitable orbits. A paper describing the system was published in the journal Nature Astronomy.

    “This system is exactly what TESS was designed to find — small, temperate planets that pass, or transit, in front of an inactive host star, one lacking excessive stellar activity, such as flares,” said lead researcher Maximilian Günther, a Torres Postdoctoral Fellow at the (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge.

    “This star is quiet and very close to us, and therefore much brighter than the host stars of comparable systems. With extended follow-up observations, we’ll soon be able to determine the make-up of these worlds, establish if atmospheres are present and what gases they contain, and more.”

    This is essential both in terms of understand the particular planet, and in developing methods for reading the atmospheres of exoplanets more generally. Those readings will hopefully some day tell researchers that they have found a planet with an atmosphere out of chemical balance in ways that could only be the result of biology.

    The authors estimate that the James Webb Space Telescope, now scheduled to launch in 2021, will eventually have a view of the system for over half the year, and it should be able to pick out the atmospheric signals for both planets.

    NASA/ESA/CSA Webb Telescope annotated

    As explained in a NASA release, the innermost planet, TOI 270 b, is likely a rocky world about 25% larger than Earth. It orbits the star every 3.4 days at a distance about 13 times closer than Mercury orbits the sun. Based on statistical studies of known exoplanets of similar size, the science team estimates TOI 270 b has a mass around 1.9 times greater than Earth’s.

    Due to its proximity to the star, planet b is an scalding-hot world. Its equilibrium temperature — that is, the temperature based only on energy it receives from the star, which ignores additional warming effects from a possible atmosphere — is around 490 degrees Fahrenheit (254 degrees Celsius).

    The other two planets, TOI 270 c and d, are, respectively, 2.4 and 2.1 times larger than Earth and orbit the star every 5.7 and 11.4 days. Although only about half its size, both may be similar to Neptune in our solar system, with compositions dominated by gases rather than rock. They likely weigh around 7 and 5 times Earth’s mass, respectively.

    All of the planets are expected to be tidally locked to the star, which means they only rotate once every orbit and keep the same side facing the star at all times, just as the Moon does in its orbit around Earth.

    Planet c and d might best be described as mini-Neptunes, a type of planet not seen in our own solar system. The researchers hope further exploration of TOI 270 may help explain how two of these mini-Neptunes formed alongside a nearly Earth-size world.

    “An interesting aspect of this system is that its planets straddle a well-established gap in known planetary sizes,” said co-author Fran Pozuelos, a postdoctoral researcher at the University of Liège in Belgium.

    “It is uncommon for planets to have sizes between 1.5 and two times that of Earth for reasons likely related to the way planets form, but this is still a highly controversial topic. TOI 270 is an excellent laboratory for studying the margins of this gap and will help us better understand how planetary systems form and evolve.”

    4
    Only 31 light-years away from Earth, the exoplanet GJ 357 d catches light from its host star GJ 357, in this artistic rendering.

    And then there’s the planetary system of GJ 357.

    The newly discovered planets orbit an M-type dwarf about one-third the sun’s mass and size and about 40% cooler that our star. The system is located 31 light-years away, which makes it a relatively close neighbor.

    In February, TESS cameras caught the star dimming slightly every 3.9 days, revealing the presence of a transiting exoplanet that passes across the face of its star during every orbit and briefly dims the star’s light. That discovery led to the finding of two more planets [Astronomy and Astrophysics] around the star, including one that may be quite promising.

    “In a way, these planets were hiding in measurements made at numerous observatories over many years,” said Rafael Luque, a doctoral student at the Institute of Astrophysics of the Canary Islands (IAC) on Tenerife, who led the discovery team.

    6
    IAC

    “It took TESS to point us to an interesting star where we could uncover them.”

    But while researchers were looking at ground-based data to confirm the existence of the hot Earth, they uncovered two additional worlds. The farthest-known planet, named GJ 357 d, is the one that really caught their attention.

    “GJ 357 d is located within the outer edge of its star’s habitable zone, where it receives about the same amount of stellar energy from its star as Mars does from the sun,” said co-author Diana Kossakowski at the Max Planck Institute for Astronomy in Heidelberg, Germany.


    Max Planck Institute for Astronomy campus, Heidelberg, Baden-Württemberg, Germany

    “If the planet has a dense atmosphere, which will take future studies to determine, it could trap enough heat to warm the planet and allow liquid water on its surface.”

    This GJ 357 system illustrates well how exoplanet discoveries are gathered, confirmed and then interpreted.

    8
    Transit data are rich with information. By measuring the depth of the dip in brightness and knowing the size of the star, scientists can determine the size or radius of the planet. The orbital period of the planet can be determined by measuring the elapsed time between transits. Once the orbital period is known, Kepler’s Third Law of Planetary Motion can be applied to determine the average distance of the planet from its stars. (NASA Ames)

    A planet orbiting GJ 357 was first identified via the transit method by TESS. Then it was confirmed using the ground-based radial velocity data collected from numerous ground-based telescopes over the years. That data was recoded and re-interpeted (with the assistance of the Carnegie Institution’s Paul Butler (who was part of the team that confirmed the detection of the first exoplanet in 1995) and the additional two planets were identified.

    9
    This artist’s illustration demonstrates the “wobble,” or radial velocity, technique for finding planets. The planet-detection technique relies on the fact that stars wobble back and forth as their planets circle around, tugging on them with their gravity. As a star moves toward us, the color of its light shifts to shorter, or bluer, wavelengths. As the star heads away, its light stretches into longer, or redder, wavelengths. The same principle, called the Doppler effect, causes sound from a speeding train to lower in pitch as it passes by.
    By measuring changes in the wavelength of light from a star, astronomers can track changes in the star’s velocity that arise from circling planets. By measuring the speed of the star and the period of the wobble, they can determine the mass and distance of the unseen planet, respectively. (NASA)

    Then the information was put through models by an interdisciplinary team and this announcement was the result:

    “An international team of astronomers… has characterized the first potentially habitable world outside of our own solar system.” The paper appeared in the journal Astrophysical Journal Letters.

    “This is exciting, as this is humanity’s first nearby super-Earth that could harbor life – uncovered with help from TESS, our small, mighty mission with a huge reach,” said Lisa Kaltenegger, associate professor of astronomy, director of Cornell’s Carl Sagan Institute and a member of the TESS science team.

    The exoplanet is more massive than our planet, and Kaltenegger said the discovery will provide insight into Earth’s heavyweight planetary cousins. “With a thick atmosphere, the planet GJ 357 d could maintain liquid water on its surface like Earth, and we could pick out signs of life with telescopes that will soon be online,” she said.

    How did Kaltenegger and her colleagues get to that conclusion?

    The planet receives little more than a third of the radiation that Earth receives, making it similar to Mars. If the planet released gases present since its formation at a rate similar to Earth, the surface temperature would remain below freezing.

    But as their paper concludes:

    “Geological active worlds, like our Earth, are expected to build up CO2 concentrations due to the feedback of the carbonate-silicate cycle. We model atmospheres (with and without oxygen) as three examples, where we increase CO2 concentration so that the planet’s average surface temperature is above freezing.”

    “The sample reflection, emission and transmission spectra show features of a wide range of chemicals — water, carbon dioxide, methane, ozone and oxygen for Earth-like atmospheres from the Visible to Infrared wavelength — which would indicate habitability for observations with upcoming telescopes.”

    This is how the exoplanet drama works. Each significant discovery makes possible a future discovery, then additional hypotheses are put forward that often need new and more powerful viewing telescopes to prove or disprove. There are many goals in this enterprise, but the big one is clearly the discovery of clear signs of life far beyond Earth.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Many Worlds
    There are many worlds out there waiting to fire your imagination.

    Marc Kaufman is an experienced journalist, having spent three decades at The Washington Post and The Philadelphia Inquirer, and is the author of two books on searching for life and planetary habitability. While the “Many Worlds” column is supported by the Lunar Planetary Institute/USRA and informed by NASA’s NExSS initiative, any opinions expressed are the author’s alone.

    This site is for everyone interested in the burgeoning field of exoplanet detection and research, from the general public to scientists in the field. It will present columns, news stories and in-depth features, as well as the work of guest writers.

    About NExSS

    The Nexus for Exoplanet System Science (NExSS) is a NASA research coordination network dedicated to the study of planetary habitability. The goals of NExSS are to investigate the diversity of exoplanets and to learn how their history, geology, and climate interact to create the conditions for life. NExSS investigators also strive to put planets into an architectural context — as solar systems built over the eons through dynamical processes and sculpted by stars. Based on our understanding of our own solar system and habitable planet Earth, researchers in the network aim to identify where habitable niches are most likely to occur, which planets are most likely to be habitable. Leveraging current NASA investments in research and missions, NExSS will accelerate the discovery and characterization of other potentially life-bearing worlds in the galaxy, using a systems science approach.
    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 7:17 am on August 1, 2019 Permalink | Reply
    Tags: , , , , , NASA/MIT TESS, The new worlds orbit a star named GJ 357 an M-type dwarf about one-third the Sun’s mass and size and about 40% cooler that our star.   

    From NASA/MIT TESS: “Confirmation of Toasty TESS Planet Leads to Surprising Find of Promising World” 

    NASA/MIT TESS replaced Kepler in search for exoplanets

    NASA image
    From NASA/MIT TESS

    July 31, 2019
    Francis Reddy
    francis.j.reddy@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    A piping hot planet discovered by NASA’s Transiting Exoplanet Survey Satellite (TESS) has pointed the way to additional worlds orbiting the same star, one of which is located in the star’s habitable zone. If made of rock, this planet may be around twice Earth’s size.

    The new worlds orbit a star named GJ 357, an M-type dwarf about one-third the Sun’s mass and size and about 40% cooler that our star. The system is located 31 light-years away in the constellation Hydra. In February, TESS cameras caught the star dimming slightly every 3.9 days, revealing the presence of a transiting exoplanet — a world beyond our solar system — that passes across the face of its star during every orbit and briefly dims the star’s light.


    Tour the GJ 357 system, located 31 light-years away in the constellation Hydra. Astronomers confirming a planet candidate identified by NASA’s Transiting Exoplanet Survey Satellite subsequently found two additional worlds orbiting the star. The outermost planet, GJ 357 d, is especially intriguing to scientists because it receives as much energy from its star as Mars does from the Sun. Credits: NASA’s Goddard Space Flight Center

    “In a way, these planets were hiding in measurements made at numerous observatories over many years,” said Rafael Luque, a doctoral student at the Institute of Astrophysics of the Canary Islands (IAC) on Tenerife who led the discovery team. “It took TESS to point us to an interesting star where we could uncover them.”

    The transits TESS observed belong to GJ 357 b, a planet about 22% larger than Earth. It orbits 11 times closer to its star than Mercury does our Sun. This gives it an equilibrium temperature — calculated without accounting for the additional warming effects of a possible atmosphere — of around 490 degrees Fahrenheit (254 degrees Celsius).

    “We describe GJ 357 b as a ‘hot Earth,’” explains co-author Enric Pallé, an astrophysicist at the IAC and Luque’s doctoral supervisor. “Although it cannot host life, it is noteworthy as the third-nearest transiting exoplanet known to date and one of the best rocky planets we have for measuring the composition of any atmosphere it may possess.”

    But while researchers were looking at ground-based data to confirm the existence of the hot Earth, they uncovered two additional worlds. The farthest-known planet, named GJ 357 d, is especially intriguing.

    2
    This diagram shows the layout of the GJ 357 system. Planet d orbits within the star’s so-called habitable zone, the orbital region where liquid water can exist on a rocky planet’s surface. If it has a dense atmosphere, which will take future studies to determine, GJ 357 d could be warm enough to permit the presence of liquid water. Credits: NASA’s Goddard Space Flight Center/Chris Smith

    “GJ 357 d is located within the outer edge of its star’s habitable zone, where it receives about the same amount of stellar energy from its star as Mars does from the Sun,” said co-author Diana Kossakowski at the Max Planck Institute for Astronomy in Heidelberg, Germany.


    Max Planck Institute for Astronomy, Heidelburg, GE

    “If the planet has a dense atmosphere, which will take future studies to determine, it could trap enough heat to warm the planet and allow liquid water on its surface.”

    Without an atmosphere, it has an equilibrium temperature of -64 F (-53 C), which would make the planet seem more glacial than habitable. The planet weighs at least 6.1 times Earth’s mass, and orbits the star every 55.7 days at a range about 20% of Earth’s distance from the Sun. The planet’s size and composition are unknown, but a rocky world with this mass would range from about one to two times Earth’s size.

    Even through TESS monitored the star for about a month, Luque’s team predicts any transit would have occurred outside the TESS observing window.

    GJ 357 c, the middle planet, has a mass at least 3.4 times Earth’s, orbits the star every 9.1 days at a distance a bit more than twice that of the transiting planet, and has an equilibrium temperature around 260 F (127 C). TESS did not observe transits from this planet, which suggests its orbit is slightly tilted — perhaps by less than 1 degree — relative to the hot Earth’s orbit, so it never passes across the star from our perspective.

    To confirm the presence of GJ 357 b and discover its neighbors, Luque and his colleagues turned to existing ground-based measurements of the star’s radial velocity, or the speed of its motion along our line of sight. An orbiting planet produces a gravitational tug on its star, which results in a small reflex motion that astronomers can detect through tiny color changes in the starlight. Astronomers have searched for planets around bright stars using radial velocity data for decades, and they often make these lengthy, precise observations publicly available for use by other astronomers.

    Luque’s team examined ground-based data stretching back to 1998 from the European Southern Observatory and the Las Campanas Observatory in Chile, the W.M. Keck Observatory in Hawaii, and the Calar Alto Observatory in Spain, among many others.

    ESO/Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    Carnegie Las Campanas Observatory in the southern Atacama Desert of Chile in the Atacama Region approximately 100 kilometres (62 mi) northeast of the city of La Serena,near the southern end and over 2,500 m (8,200 ft) high

    Calar Alto Observatory located in Almería province in Spain on Calar Alto, a 2,168-meter-high (7,113 ft) mountain in Sierra de Los Filabres

    A paper describing the findings was published on Wednesday, July 31, in the journal Astronomy & Astrophysics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Transiting Exoplanet Survey Satellite (TESS) will discover thousands of exoplanets in orbit around the brightest dwarf stars in the sky. In a two-year survey of the solar neighborhood, TESS will monitor the brightness of stars for periodic drops caused by planet transits. The TESS mission is finding planets ranging from small, rocky worlds to giant planets, showcasing the diversity of planets in the galaxy.

    Astronomers predict that TESS will discover dozens of Earth-sized planets and up to 500 planets less than twice the size of Earth. In addition to Earth-sized planets, TESS is expected to find some 20,000 exoplanets in its two-year prime mission. TESS will find upwards of 17,000 planets larger than Neptune.

    TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:55 pm on July 29, 2019 Permalink | Reply
    Tags: , NASA/MIT TESS, , The newly announced TOI-270 system consists of three planets with orbits of 11.4 day; 5.7 days and 3.4 days long., The newly found system goes by the name TOI-270 for Tess Object of Interest., The outer two planets are “sub-Neptunes” each slightly more than twice the size of the Earth and with masses at least five times greater according to models., They circle a star so obscure that it is known in catalogs only by various numbers: TOI 270; TIC 259377017; 2MASS J04333970-5157222 and the like., Three new worlds found that orbit a dim red dwarf star only 73 light-years from here in the southern constellation Pictor. The system goes by the name TOI-270: for Tess Object of Interest.   

    From The New York Times: “NASA’s TESS Satellite Spots ‘Missing Link’ Exoplanets” 

    New York Times

    From The New York Times

    July 29, 2019
    Dennis Overbye

    1
    NASA’s Transiting Exoplanet Survey Satellite before its launch in April 2018. It recently spotted three exoplanets 73 light-years away in the constellation Pictor.Credit NASA, via Reuters

    NASA/MIT TESS replaced Kepler in search for exoplanets

    NASA’s new planet-hunting spacecraft, the Transiting Exoplanet Survey Satellite, is now halfway through its first tour of the nearby universe. It has been looking for worlds that might be fit for you, me or some other form of life, and as usual, nature has been generous in its rewards.

    Since its launch in April 2018, TESS has already discovered 21 new planets and 850 more potential worlds that have yet to be confirmed, all residing within a few dozen light years of the sun and our own solar system, according to George Ricker, an M.I.T. researcher who heads the TESS project. So far, he said, TESS “has far exceeded our most optimistic hopes.”

    Dr. Ricker made his announcement on Monday at M.I.T., in Cambridge, Mass., at a meeting devoted to TESS results.

    Some of the discoveries generating the most excitement among the TESS crew were three new worlds that orbit a dim red dwarf star only 73 light-years from here in the southern constellation Pictor. The system goes by the name TOI-270, for Tess Object of Interest.

    “TOI-270 is one of the prime systems TESS was set out to discover,” Maximilian Guenther, an astrophysicist at M.I.T., said in an email. He is the lead author of a paper on the new planets to be published in Nature Astronomy.

    While none of the three planets are likely habitable, more planets may yet be found farther out in the star system, orbiting in more comfortable climes.

    The new system provides a laboratory for studying many of the puzzles of exoplanets, including how they form, why some have atmospheres and whether some might be habitable. “It really ticks all the boxes,” Dr. Guenther said, enthusiastically.

    In addition to planets, TESS has discovered supernova explosions, and even three comets orbiting the star Beta Pictoris, Dr. Ricker’s team announced.

    And there is a whole half of the sky — the half visible to residents of Earth’s northern hemisphere — yet to be explored.

    TESS was launched from Cape Canaveral on April 18, 2018. Two months later it began scanning the southern sky with four large cameras, which stared at overlapping sections for 27 days at a time. They were looking for stars that blinked when planets passed in front of them — a telltale sign of an orbiting exoplanet.

    The satellite is the successor to NASA’s Kepler spacecraft, which employed a similar technique to conduct a census of exoplanets in a small, distant patch of the Milky Way.

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

    Planet transit. NASA/Ames

    It found thousands, suggesting that there is at least one planet for every star in the galaxy, but they were all too far away to study in more detail.

    The job of TESS is to find exoplanets that are close enough to study, by surveying stars within about 300 light-years from Earth. Most of these stars are small, dim and relatively cool objects called red dwarfs. For an exoplanet around any such star to be habitable, with a temperature suitable for liquid water, it would need to be close enough to the star to complete its orbit in just a week or two. That period fits neatly into the 27-day period during which TESS watches and records each star.

    The newly announced TOI-270 system consists of three planets with orbits of 11.4 days, 5.7 days and 3.4 days long. They circle a star so obscure that it is known in catalogs only by various numbers: TOI 270, TIC 259377017, 2MASS J04333970-5157222, and the like.

    The outer two planets are “sub-Neptunes,” each slightly more than twice the size of the Earth, and with masses at least five times greater, according to models. (Neptune is about four times bigger than Earth, and 17 times as massive.) The innermost exoplanet is a “Super Earth,” about 1.2 times the size of our home world.

    3
    A snapshot by TESS of the Large Magellanic Cloud, right, and the bright star R Doradus, left, taken Aug. 7, 2018. The frame is part of a swath of the southern sky captured by TESS during its initial round of data collection.Credit NASA/MIT/TESS

    Dr. Guenther said the TESS team was initially very excited, when the outermost of the three planets, one of the sub-Neptunes, seemed to orbit in the star’s habitable zone; that would have been a first for TESS. But as the analysis advanced, the team concluded that the planet likely had a thick greenhouse atmosphere, with suffocating surface temperatures.

    But any planets orbiting farther from the star could be habitable, Dr. Guenther and his colleagues said. Locating any such planets is made easier by the fact that the star is relatively quiet, free of outbursts and noise that could interfere with searches.

    “Chances are good that we will find more planets further out in the habitable zone,” he said.

    The new system could shed light on a looming planetary mystery: Why are there no planets in the size range between 1.5 and 2 times that of Earth?

    Planets below that size range, including Mars and Venus (and, of course, Earth), are rocky worlds. Planets more than twice the size of Earth have thick gas atmospheres, presumably surrounding rocky cores — like Neptune, but smaller. Our own solar system does not contain any sub-Neptunes; the only known examples are far away, found in the growing catalogs of exoplanets.

    The worlds of TOI-270 crowd either side of this missing-link gap.

    It is intriguing that the innermost planet is also the small rocky one, Dr. Guenther said. Perhaps, he suggested, it was once a gas giant like its siblings, but lost its atmosphere when, in the ceaseless shift of orbits and worlds, it moved too close to its star. If that notion bears out, it could have consequences far beyond the TOI-270 system, including for our own solar system.

    Follow-up observations are already being planned with NASA’s upcoming James Webb Space Telescope to probe the atmospheres of these planets and see what they are made of.

    NASA/ESA/CSA Webb Telescope annotated

    “TOI-270 is a true Disneyland for exoplanet science because it offers something for every research area,” said Dr. Guenther. “It is an exceptional laboratory for not one, but many reasons.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 4:44 pm on April 1, 2019 Permalink | Reply
    Tags: , , , , , , NASA/MIT TESS, The planet TOI 197.01 (TOI is short for “TESS Object of Interest”)   

    From Iowa State University: “Data flows from NASA’s TESS Mission, leads to discovery of Saturn-sized planet” 

    From Iowa State University

    Mar 27, 2019

    Steve Kawaler
    Physics and Astronomy
    515-294-9728
    sdk@iastate.edu

    Mike Krapfl
    News Service
    515-294-4917
    mkrapfl@iastate.edu

    1
    A “hot Saturn” passes in front of its host star in this illustration. Astronomers who study stars used “starquakes” to characterize the star, which provided critical information about the planet. See a video illustration of the planet orbiting the star. llustration by Gabriel Perez Diaz, Instituto de Astrofísica de Canarias.

    Astronomers who study stars are providing a valuable assist to the planet-hunting astronomers pursuing the primary objective of NASA’s new TESS Mission.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    In fact, asteroseismologists – stellar astronomers who study seismic waves (or “starquakes”) in stars that appear as changes in brightness – often provide critical information for finding the properties of newly discovered planets.

    This teamwork enabled the discovery and characterization of the first planet identified by TESS for which the oscillations of its host star can be measured.

    The planet – TOI 197.01 (TOI is short for “TESS Object of Interest”) – is described as a “hot Saturn” in a recently accepted scientific paper [The Astronomical Journal by an international team of 141 astronomers. Daniel Huber, an assistant astronomer at the University of Hawaii at Manoa’s Institute for Astronomy, is the lead author of the paper. Steve Kawaler, a professor of physics and astronomy; and Miles Lucas, an undergraduate student, are co-authors from Iowa State University.]. That’s because the planet is about the same size as Saturn and is also very close to its star, completing an orbit in just 14 days, and therefore very hot.

    “This is the first bucketful of water from the firehose of data we’re getting from TESS,” Kawaler said.

    TESS – the Transiting Exoplanet Survey Satellite, led by astrophysicists from the Massachusetts Institute of Technology – launched from Florida’s Cape Canaveral Air Force Station on April 18, 2018. The spacecraft’s primary mission is to find exoplanets, planets beyond our solar system. The spacecraft’s four cameras are taking nearly month-long looks at 26 vertical strips of the sky – first over the southern hemisphere and then over the northern. After two years, TESS will have scanned 85 percent of the sky.

    Astronomers (and their computers) sort through the images, looking for transits, the tiny dips in a star’s light caused by an orbiting planet passing in front of it.

    Planet transit. NASA/Ames

    NASA’s Kepler Mission – a predecessor to TESS – looked for planets in the same way, but scanned a narrow slice of the Milky Way galaxy and focused on distant stars.

    TESS is targeting bright, nearby stars, allowing astronomers to follow up on its discoveries using other space and ground observations to further study and characterize stars and planets. In another paper recently published online by The Astrophysical Journal Supplement Series, astronomers from the TESS Asteroseismic Science Consortium (TASC) identified a target list of sun-like oscillating stars (many that are similar to our future sun) to be studied using TESS data – a list featuring 25,000 stars.

    Kawaler – who witnessed the launch of Kepler in 2009, and was in Florida for the launch of TESS (but a last-minute delay meant he had to miss liftoff to return to Ames to teach) – is on the seven-member TASC Board. The group is led by Jørgen Christensen-Dalsgaard of Aarhus University in Denmark.

    TASC astronomers use asteroseismic modeling to determine a host star’s radius, mass and age. That data can be combined with other observations and measurements to determine the properties of orbiting planets.

    In the case of host star TOI-197, the asteroseismolgists used its oscillations to determine it’s about 5 billion years old and is a little heavier and larger than the sun. They also determined that planet TOI-197.01 is a gas planet with a radius about nine times the Earth’s, making it roughly the size of Saturn. It’s also 1/13th the density of Earth and about 60 times the mass of Earth.

    Those findings say a lot about the TESS work ahead: “TOI-197 provides a first glimpse at the strong potential of TESS to characterize exoplanets using asteroseismology,” the astronomers wrote in their paper.

    Kawaler is expecting that the flood of data coming from TESS will also contain some scientific surprises.

    “The thing that’s exciting is that TESS is the only game in town for a while and the data are so good that we’re planning to try to do science we hadn’t thought about,” Kawaler said. “Maybe we can also look at the very faint stars – the white dwarfs – that are my first love and represent the future of our sun and solar system.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Iowa State University is a public, land-grant university, where students get a great academic start in learning communities and stay active in 800-plus student organizations, undergrad research, internships and study abroad. They learn from world-class scholars who are tackling some of the world’s biggest challenges — feeding the hungry, finding alternative fuels and advancing manufacturing.

    Iowa Agricultural College and Model Farm (now Iowa State University) was officially established on March 22, 1858, by the legislature of the State of Iowa. Story County was selected as a site on June 21, 1859, and the original farm of 648 acres was purchased for a cost of $5,379. The Farm House, the first building on the Iowa State campus, was completed in 1861, and in 1862, the Iowa legislature voted to accept the provision of the Morrill Act, which was awarded to the agricultural college in 1864.

    Iowa State University Knapp-Wilson Farm House. Photo between 1911-1926

    Iowa Agricultural College (Iowa State College of Agricultural and Mechanic Arts as of 1898), as a land grant institution, focused on the ideals that higher education should be accessible to all and that the university should teach liberal and practical subjects. These ideals are integral to the land-grant university.

    The first official class entered at Ames in 1869, and the first class (24 men and 2 women) graduated in 1872. Iowa State was and is a leader in agriculture, engineering, extension, home economics, and created the nation’s first state veterinary medicine school in 1879.

    In 1959, the college was officially renamed Iowa State University of Science and Technology. The focus on technology has led directly to many research patents and inventions including the first binary computer (the ABC), Maytag blue cheese, the round hay baler, and many more.

    Beginning with a small number of students and Old Main, Iowa State University now has approximately 27,000 students and over 100 buildings with world class programs in agriculture, technology, science, and art.

    Iowa State University is a very special place, full of history. But what truly makes it unique is a rare combination of campus beauty, the opportunity to be a part of the land-grant experiment, and to create a progressive and inventive spirit that we call the Cyclone experience. Appreciate what we have here, for it is indeed, one of a kind.

     
  • richardmitnick 11:17 am on March 29, 2019 Permalink | Reply
    Tags: Ana Humphrey, , , , , , , , NASA/MIT TESS,   

    From NASA AMES: Women in STEM-“High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data” Ana Humphrey 

    NASA Ames Icon

    From NASA AMES

    March 28, 2019
    Frank Tavares
    NASA’s Ames Research Center

    1
    Ana Humphrey

    An 18-year-old high school senior has won a $250,000 prize for calculating the potential for finding more planets outside our solar system, called exoplanets, using data from NASA’s Kepler space telescope.

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

    Kepler, whose mission ended in 2018, discovered over 2,600 confirmed exoplanets, with thousands more candidate planets still being considered. But are there more planets that have yet to be found around stars Kepler looked at, leaving traces in the telescope’s data? Ana Humphrey, a student at T.C. Williams High School in Alexandria, Virginia, has developed a mathematical model to find out. Her work calculated that there could be as many as 560 of these hidden planets and identified 96 areas of the sky where they might be found.

    For this research, Humphrey recently won first-place in the Regeneron Science Talent Search, the oldest science and math competition for high school seniors in the United States, produced by the Society for Science & the Public. As a Cuban-American student, she is the first Hispanic winner of the top award in the last 20 years.

    “I think it’s hard for a lot of students to see themselves doing something like astrophysics,” said Humphrey. “I hope my background will allow me to connect with students, especially Hispanic students, and get them to think about going into science.”

    2
    Ana Humphrey (left), Dr. Thomas Zurbuchen (middle) and Sophia Roberts (right) on the NASA Science Live talkshow where they discussed her work using Kepler data to find planets that orbit other stars.

    For Humphrey, winning this award is a dream she’s had since the sixth grade and the culmination of two years of research. Her inspiration for the project was the idea that new worlds could be discovered based on data from other objects, before being directly observed. Neptune, for example, was discovered in 1846 by looking at data from Uranus and its orbit, and there have been recent predictions of a hypothetical ninth planet beyond Pluto, based on the orbits of objects at the very edges of our solar system. Using this concept to search for exoplanets was a natural next step, she said.

    “I was completely fascinated by this idea of finding new planets using mass, based on data that we already had,” said Humphrey. “I think it just shows that even if your data collection is complete, there’s always new questions that can be asked and can be answered.”

    We know exoplanets are abundant – in fact, thanks to Kepler, we know there are more planets than stars in our galaxy. But in order to detect a planet, Kepler had to observe repeated dimmings of the brightness of a star as a planet passed by.

    Planet transit. NASA/Ames

    This is called the “transit method.” There are many planets left to be found that do not “transit” from the viewpoint of our telescopes, which means Kepler could not have found them. But Kepler data can lead to later discoveries of more planets that weren’t immediately obvious.

    Astrophysicist Elisa Quintana at NASA’s Goddard Space Flight Center, Greenbelt, Maryland is working with Humphrey as her mentor, exploring the idea that more planets could fit into systems that are already known. Quintana, who worked on the Kepler mission, also led the first discovery of an Earth-size planet in a habitable zone: Kepler-186f. The habitable zone is the area around a star where a planet could host liquid water. Kepler-186, a red dwarf star, is known to have five planets, but could potentially have more.

    “Take a system like Kepler-186,” Quintana said. “When we discovered the system, we noticed a big space between the four planets really close to the star and outer planet, enough where there could be another planet the size of Earth.”

    Many multi-planetary systems have similar gaps with the potential to house hidden Earth-size planets. Humphrey’s research aims to find out how many extra planets could fit into these systems, without disrupting the orbits we can observe.

    Her mathematical model places an “imagined” planet between two known exoplanets discovered by Kepler. Then, she uses two equations to describe how tight the space between the imagined planet and its two neighbors can be without disrupting their orbits. From this, she can use simple algebra to derive the possible mass and orbital distances of the hypothetical hidden planet. Using statistics, this model can determine not just if such a planet could exist, but the likelihood it’s actually there. When this technique is applied on the scale of a multi-planet star system, it reveals all the places planets might be hidden, and what those planets might look like.

    Humphrey designed her model so that it can be quickly applied to any exoplanet database. That means as more data comes in from the Transiting Exoplanet Survey Satellite (TESS), NASA’s active planet-hunting spacecraft, and other future missions, scientists can predict which planetary systems may have hidden planets there as well.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    She will continue working with Quintana to explore how likely it is that the hidden planets exist, and whether they can be detected with additional observations from other telescopes.

    Even before embarking on an astrophysics degree next year, Humphrey has already added an instrumental piece to the puzzle of searching for another life-harboring Earth in the cosmos. She plans to put her prize money toward her education and future research.

    “My goal going into any project is always to be the best scientist that I can be, to do the best research that I can do,” said Humphrey. “To get recognized by such a great award… I feel incredibly honored.”

    NASA’s Ames Research Center in California’s Silicon Valley manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operated the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

    For more information about the Kepler and K2 missions, visit:

    http://www.nasa.gov/kepler

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 1:30 pm on March 26, 2019 Permalink | Reply
    Tags: , , , , Habitable exoplanets, NASA/MIT TESS, TESS Habitable Zone Star Catalog, Vanderbilt Kelt Telescope South located in Sutherland South Africa 280km 174mi northeast of Cape Town, , VIDA-Vanderbilt Initiative in Data-intensive Astrophysics   

    From Vanderbilt University: “The hunt is on for closest Earth-like planets” 

    Vanderbilt U Bloc

    From Vanderbilt University

    Mar. 26, 2019
    Heidi Hall
    By Linda B. Glaser, a staff writer for Cornell’s College of Arts and Sciences.

    NASA’s new Transiting Exoplanet Survey Satellite (TESS) is designed to ferret out habitable exoplanets, but with hundreds of thousands of sunlike and smaller stars in its camera views, which of those stars could host planets like our own?

    NASA/MIT TESS replaced Kepler in search for exoplanets

    TESS will observe 400,000 stars across the whole sky to catch a glimpse of a planet transiting across the face of its star, one of the primary methods by which exoplanets are identified.

    A team of astronomers from Cornell, Lehigh and Vanderbilt universities has identified the most promising targets for this search in the new “TESS Habitable Zone Star Catalog,” published XX in Astrophysical Journal Letters. Lead author is Lisa Kaltenegger, professor of astronomy and director of Cornell’s Carl Sagan Institute and member of the TESS science team.

    This new catalog draws from one originally developed at Vanderbilt that contains hundreds of millions of stars. Using data from a number of sources, including Vanderbilt’s KELT telescope and the star “flicker” analysis method pioneered at Vanderbilt, Stevenson Professor of Physics and Astronomy Keivan Stassun and his team have been working since 2012 to narrow down the field from 470 million stars visible to TESS to the 250,000 most likely to host a planet like our own.

    Vanderbilt Kelt Telescope South, located in Sutherland, South Africa 280km 174mi northeast of Cape Town

    The work to sift through such a massive volume of data was done by Vanderbilt undergraduates, graduate students and postdoctoral scientists associated with the Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), as well as students, developers, and data visualizers associated with the Frist Center for Autism and Innovation.

    “Our ambition is to not only detect hundreds of Earth-like worlds in other solar systems, but to find them around our closest neighboring solar systems,” Stassun said. “In a few years’ time, we may very well know that there are other habitable planets out there, with breathable atmospheres. Of course, we won’t yet know whether there is anything, or anyone, there breathing it. Still, this is a remarkable time in human history and a huge leap for our understanding of our place in the universe.”

    The catalog identifies 1,823 stars for which TESS is sensitive enough to spot Earth-like planets just a bit larger than Earth that receive radiation from their star equivalent to what Earth receives from our sun. For 408 stars, TESS can glimpse a planet just as small as Earth, with similar irradiation, in one transit alone.

    “Life could exist on all sorts of worlds, but the kind we know can support life is our own, so it makes sense to first look for Earth-like planets,” Kaltenegger said. “This catalog is important for TESS because anyone working with the data wants to know around which stars we can find the closest Earth-analogs.”

    Kaltenegger leads a program on TESS that is observing the catalog’s 1,823 stars in detail, looking for planets. “I have 408 new favorite stars,” says Kaltenegger. “It is amazing that I don’t have to pick just one; I now get to search hundreds of stars.”

    Confirming an exoplanet has been observed and figuring out the distance between it and its star requires detecting two transits across the star. The 1,823 stars the researchers have identified in the catalog are ones from which TESS could detect two planetary transits during its mission. Those orbital periods place them in the middle of the habitable zone of their star.

    The habitable zone is the area around a star at which water can be liquid on a rocky planet’s surface, therefore considered ideal for sustaining life. As the researchers note, planets outside the habitable zone could certainly harbor life, but it would be extremely difficult to detect any signs of life on such frozen planets without flying there.

    The catalog also identifies a subset of 227 stars for which TESS can not only probe for planets that receive the same irradiation as Earth, but for which TESS can also probe out further, covering the full extent of the habitable zone all the way to cooler Mars-like orbits. This will allow astronomers to probe the diversity of potentially habitable worlds around hundreds of cool stars during the TESS mission’s lifetime.

    The stars selected for the catalog are bright, cool dwarfs, with temperatures roughly between 2,700 and 6,000 degrees Kelvin. The stars in the catalog are selected due to their brightness; the closest are only approximately 4 light-years from Earth.

    “We don’t know how many planets TESS will find around the hundreds of stars in our catalog or whether they will be habitable,” Kaltenegger said, “but the odds are in our favor. Some studies indicate that there are many rocky planets in the habitable zone of cool stars, like the ones in our catalog. We’re excited to see what worlds we’ll find.”

    A total of 137 stars in the catalog are within the continuous viewing zone of NASA’s James Webb Space Telescope, now under construction. Webb will be able to observe them to characterize in-depth any planets found by TESS and search for signs of life in their atmospheres.

    Planets TESS identifies may also make excellent targets for observations by ground-based extremely large telescopes currently being built, the researchers note, as the brightness of their host stars would make them easier to characterize.

    In addition to Kaltenegger and Stassun, Joshua Pepper of Lehigh University and Ryan Oelkers of Vanderbilt University contributed to the catalog.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities. In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
  • richardmitnick 12:58 pm on February 22, 2019 Permalink | Reply
    Tags: , , , , , NASA/MIT TESS, Pedro Gerum, Planet discovery,   

    From Rutgers University: “Rutgers Student Helps NASA Discover Planets” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    February 22, 2019
    Cynthia Medina
    c.medina@rutgers.edu

    Pedro Gerum explains how working on railway tracks led to an internship with the space agency.

    1
    Doctoral student Pedro Gerum recently started his internship in NASA’s Ames Research Center, where he will be a part of the TESS satellite mission to help discover new planets.
    Photo: Courtesy of Pedro Gerum

    NASA/MIT TESS

    Pedro Gerum is putting the skills he developed working to improve railroad track inspections in New Jersey as a graduate student toward helping NASA discover new planets outside our solar system.

    The fourth-year industrial and sytems engineering doctoral student at Rutgers-New Brunswick recently started an internship at NASA’s Ames Research Center in California, which is part of the agency’s TESS (Transiting Exoplanet Survey Satellite) mission that collects and analyzes data on exoplanets, those planets outside of our solar system that orbit around other stars but not the sun.

    The space telescope is designed to scan an area of the sky that is 400 times larger than the one covered by the recently retired Kepler mission, which searched for earth-sized planets orbiting stars.

    “My job is to see light curves from the satellite and try to detect if those curves represent a planet or not using computer algorithms,” Gerum said.

    Gerum’s role at NASA will have some similarities to his research at Rutgers under Melike Baykal-Gürsoy, an associate professor in the School of Engineering, working to detect rail track defects. He uses data and statistics to create patterns that can more accurately pinpoint where a problem originates and then develops a computer program to detect those patterns.

    “In the case of railways, I am looking for patterns, and those patterns will help detect the problem areas,’’ Gerum said. “In the case of NASA, I am looking for patterns, and those patterns will help determine whether a light curve indicates the presence of new planets.”

    Baykal-Gürsoy said this process of creating patterns in search of a conclusion is called building a stochastic model, which translates to the expertise NASA needs.

    “The first step in a stochastic model for the railway system is to figure out how to model a defect process found during inspections, and then the second step is to figure out how to predict a behavioral pattern from it,” Baykal-Gürsoy said. “Then you train a computer to detect problems on its own by plugging in examples of these patterns until it learns to do it accurately, and then it does the work for you, even better than you. This is called machine-learning.”


    Watch NASA scientists explain how the TESS satellite works to find undiscovered worlds around bright nearby stars, providing targets where future studies will assess their capacity to harbor life. (Video Courtesy of NASA.)

    Gerum will be doing that exact research with NASA, along with seven other students from across the globe who will be working on other projects. Gerum, originally from Brazil, completed his undergraduate degree at the Federal University of São Carlos and landed the position at NASA as a result of a partnership between the Brazilian Space Agency and NASA. Gerum said Baykal-Gürsoy helped him develop his expertise on data science and optimization and is grateful for how much assistance the university has offered to help him reach his goals.

    “I traveled to Rutgers to meet with Dr. Baykal-Gürsoy and I really liked her expertise in her field and she made me feel welcome,” Gerum said. “As an international student, I was lucky that Rutgers could fund part of my tuition. They really helped me get to where I am.”

    Gerum, who is the first Rutgers student in the industrial and systems engineering program to work at a NASA facility, hopes others from the university will be inspired to use their skills in areas outside of their immediate field of study. He said the relationship between tracking railway defects and discovering planets is more closely related than it seems.

    “There is usually a way to use your skill set in most fields,” said Gerum, who will return to Rutgers to complete his degree after his internship ends in May 2019. “You just have to stay open and get the right support.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: