Tagged: NASA/MIT TESS Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:44 pm on April 1, 2019 Permalink | Reply
    Tags: , , , , , , NASA/MIT TESS, The planet TOI 197.01 (TOI is short for “TESS Object of Interest”)   

    From Iowa State University: “Data flows from NASA’s TESS Mission, leads to discovery of Saturn-sized planet” 

    From Iowa State University

    Mar 27, 2019

    Steve Kawaler
    Physics and Astronomy
    515-294-9728
    sdk@iastate.edu

    Mike Krapfl
    News Service
    515-294-4917
    mkrapfl@iastate.edu

    1
    A “hot Saturn” passes in front of its host star in this illustration. Astronomers who study stars used “starquakes” to characterize the star, which provided critical information about the planet. See a video illustration of the planet orbiting the star. llustration by Gabriel Perez Diaz, Instituto de Astrofísica de Canarias.

    Astronomers who study stars are providing a valuable assist to the planet-hunting astronomers pursuing the primary objective of NASA’s new TESS Mission.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    In fact, asteroseismologists – stellar astronomers who study seismic waves (or “starquakes”) in stars that appear as changes in brightness – often provide critical information for finding the properties of newly discovered planets.

    This teamwork enabled the discovery and characterization of the first planet identified by TESS for which the oscillations of its host star can be measured.

    The planet – TOI 197.01 (TOI is short for “TESS Object of Interest”) – is described as a “hot Saturn” in a recently accepted scientific paper [The Astronomical Journal by an international team of 141 astronomers. Daniel Huber, an assistant astronomer at the University of Hawaii at Manoa’s Institute for Astronomy, is the lead author of the paper. Steve Kawaler, a professor of physics and astronomy; and Miles Lucas, an undergraduate student, are co-authors from Iowa State University.]. That’s because the planet is about the same size as Saturn and is also very close to its star, completing an orbit in just 14 days, and therefore very hot.

    “This is the first bucketful of water from the firehose of data we’re getting from TESS,” Kawaler said.

    TESS – the Transiting Exoplanet Survey Satellite, led by astrophysicists from the Massachusetts Institute of Technology – launched from Florida’s Cape Canaveral Air Force Station on April 18, 2018. The spacecraft’s primary mission is to find exoplanets, planets beyond our solar system. The spacecraft’s four cameras are taking nearly month-long looks at 26 vertical strips of the sky – first over the southern hemisphere and then over the northern. After two years, TESS will have scanned 85 percent of the sky.

    Astronomers (and their computers) sort through the images, looking for transits, the tiny dips in a star’s light caused by an orbiting planet passing in front of it.

    Planet transit. NASA/Ames

    NASA’s Kepler Mission – a predecessor to TESS – looked for planets in the same way, but scanned a narrow slice of the Milky Way galaxy and focused on distant stars.

    TESS is targeting bright, nearby stars, allowing astronomers to follow up on its discoveries using other space and ground observations to further study and characterize stars and planets. In another paper recently published online by The Astrophysical Journal Supplement Series, astronomers from the TESS Asteroseismic Science Consortium (TASC) identified a target list of sun-like oscillating stars (many that are similar to our future sun) to be studied using TESS data – a list featuring 25,000 stars.

    Kawaler – who witnessed the launch of Kepler in 2009, and was in Florida for the launch of TESS (but a last-minute delay meant he had to miss liftoff to return to Ames to teach) – is on the seven-member TASC Board. The group is led by Jørgen Christensen-Dalsgaard of Aarhus University in Denmark.

    TASC astronomers use asteroseismic modeling to determine a host star’s radius, mass and age. That data can be combined with other observations and measurements to determine the properties of orbiting planets.

    In the case of host star TOI-197, the asteroseismolgists used its oscillations to determine it’s about 5 billion years old and is a little heavier and larger than the sun. They also determined that planet TOI-197.01 is a gas planet with a radius about nine times the Earth’s, making it roughly the size of Saturn. It’s also 1/13th the density of Earth and about 60 times the mass of Earth.

    Those findings say a lot about the TESS work ahead: “TOI-197 provides a first glimpse at the strong potential of TESS to characterize exoplanets using asteroseismology,” the astronomers wrote in their paper.

    Kawaler is expecting that the flood of data coming from TESS will also contain some scientific surprises.

    “The thing that’s exciting is that TESS is the only game in town for a while and the data are so good that we’re planning to try to do science we hadn’t thought about,” Kawaler said. “Maybe we can also look at the very faint stars – the white dwarfs – that are my first love and represent the future of our sun and solar system.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Iowa State University is a public, land-grant university, where students get a great academic start in learning communities and stay active in 800-plus student organizations, undergrad research, internships and study abroad. They learn from world-class scholars who are tackling some of the world’s biggest challenges — feeding the hungry, finding alternative fuels and advancing manufacturing.

    Iowa Agricultural College and Model Farm (now Iowa State University) was officially established on March 22, 1858, by the legislature of the State of Iowa. Story County was selected as a site on June 21, 1859, and the original farm of 648 acres was purchased for a cost of $5,379. The Farm House, the first building on the Iowa State campus, was completed in 1861, and in 1862, the Iowa legislature voted to accept the provision of the Morrill Act, which was awarded to the agricultural college in 1864.

    Iowa State University Knapp-Wilson Farm House. Photo between 1911-1926

    Iowa Agricultural College (Iowa State College of Agricultural and Mechanic Arts as of 1898), as a land grant institution, focused on the ideals that higher education should be accessible to all and that the university should teach liberal and practical subjects. These ideals are integral to the land-grant university.

    The first official class entered at Ames in 1869, and the first class (24 men and 2 women) graduated in 1872. Iowa State was and is a leader in agriculture, engineering, extension, home economics, and created the nation’s first state veterinary medicine school in 1879.

    In 1959, the college was officially renamed Iowa State University of Science and Technology. The focus on technology has led directly to many research patents and inventions including the first binary computer (the ABC), Maytag blue cheese, the round hay baler, and many more.

    Beginning with a small number of students and Old Main, Iowa State University now has approximately 27,000 students and over 100 buildings with world class programs in agriculture, technology, science, and art.

    Iowa State University is a very special place, full of history. But what truly makes it unique is a rare combination of campus beauty, the opportunity to be a part of the land-grant experiment, and to create a progressive and inventive spirit that we call the Cyclone experience. Appreciate what we have here, for it is indeed, one of a kind.

     
  • richardmitnick 11:17 am on March 29, 2019 Permalink | Reply
    Tags: Ana Humphrey, , , , , , , , NASA/MIT TESS,   

    From NASA AMES: Women in STEM-“High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data” Ana Humphrey 

    NASA Ames Icon

    From NASA AMES

    March 28, 2019
    Frank Tavares
    NASA’s Ames Research Center

    1
    Ana Humphrey

    An 18-year-old high school senior has won a $250,000 prize for calculating the potential for finding more planets outside our solar system, called exoplanets, using data from NASA’s Kepler space telescope.

    NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

    Kepler, whose mission ended in 2018, discovered over 2,600 confirmed exoplanets, with thousands more candidate planets still being considered. But are there more planets that have yet to be found around stars Kepler looked at, leaving traces in the telescope’s data? Ana Humphrey, a student at T.C. Williams High School in Alexandria, Virginia, has developed a mathematical model to find out. Her work calculated that there could be as many as 560 of these hidden planets and identified 96 areas of the sky where they might be found.

    For this research, Humphrey recently won first-place in the Regeneron Science Talent Search, the oldest science and math competition for high school seniors in the United States, produced by the Society for Science & the Public. As a Cuban-American student, she is the first Hispanic winner of the top award in the last 20 years.

    “I think it’s hard for a lot of students to see themselves doing something like astrophysics,” said Humphrey. “I hope my background will allow me to connect with students, especially Hispanic students, and get them to think about going into science.”

    2
    Ana Humphrey (left), Dr. Thomas Zurbuchen (middle) and Sophia Roberts (right) on the NASA Science Live talkshow where they discussed her work using Kepler data to find planets that orbit other stars.

    For Humphrey, winning this award is a dream she’s had since the sixth grade and the culmination of two years of research. Her inspiration for the project was the idea that new worlds could be discovered based on data from other objects, before being directly observed. Neptune, for example, was discovered in 1846 by looking at data from Uranus and its orbit, and there have been recent predictions of a hypothetical ninth planet beyond Pluto, based on the orbits of objects at the very edges of our solar system. Using this concept to search for exoplanets was a natural next step, she said.

    “I was completely fascinated by this idea of finding new planets using mass, based on data that we already had,” said Humphrey. “I think it just shows that even if your data collection is complete, there’s always new questions that can be asked and can be answered.”

    We know exoplanets are abundant – in fact, thanks to Kepler, we know there are more planets than stars in our galaxy. But in order to detect a planet, Kepler had to observe repeated dimmings of the brightness of a star as a planet passed by.

    Planet transit. NASA/Ames

    This is called the “transit method.” There are many planets left to be found that do not “transit” from the viewpoint of our telescopes, which means Kepler could not have found them. But Kepler data can lead to later discoveries of more planets that weren’t immediately obvious.

    Astrophysicist Elisa Quintana at NASA’s Goddard Space Flight Center, Greenbelt, Maryland is working with Humphrey as her mentor, exploring the idea that more planets could fit into systems that are already known. Quintana, who worked on the Kepler mission, also led the first discovery of an Earth-size planet in a habitable zone: Kepler-186f. The habitable zone is the area around a star where a planet could host liquid water. Kepler-186, a red dwarf star, is known to have five planets, but could potentially have more.

    “Take a system like Kepler-186,” Quintana said. “When we discovered the system, we noticed a big space between the four planets really close to the star and outer planet, enough where there could be another planet the size of Earth.”

    Many multi-planetary systems have similar gaps with the potential to house hidden Earth-size planets. Humphrey’s research aims to find out how many extra planets could fit into these systems, without disrupting the orbits we can observe.

    Her mathematical model places an “imagined” planet between two known exoplanets discovered by Kepler. Then, she uses two equations to describe how tight the space between the imagined planet and its two neighbors can be without disrupting their orbits. From this, she can use simple algebra to derive the possible mass and orbital distances of the hypothetical hidden planet. Using statistics, this model can determine not just if such a planet could exist, but the likelihood it’s actually there. When this technique is applied on the scale of a multi-planet star system, it reveals all the places planets might be hidden, and what those planets might look like.

    Humphrey designed her model so that it can be quickly applied to any exoplanet database. That means as more data comes in from the Transiting Exoplanet Survey Satellite (TESS), NASA’s active planet-hunting spacecraft, and other future missions, scientists can predict which planetary systems may have hidden planets there as well.

    NASA/MIT TESS replaced Kepler in search for exoplanets

    She will continue working with Quintana to explore how likely it is that the hidden planets exist, and whether they can be detected with additional observations from other telescopes.

    Even before embarking on an astrophysics degree next year, Humphrey has already added an instrumental piece to the puzzle of searching for another life-harboring Earth in the cosmos. She plans to put her prize money toward her education and future research.

    “My goal going into any project is always to be the best scientist that I can be, to do the best research that I can do,” said Humphrey. “To get recognized by such a great award… I feel incredibly honored.”

    NASA’s Ames Research Center in California’s Silicon Valley manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operated the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

    For more information about the Kepler and K2 missions, visit:

    http://www.nasa.gov/kepler

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 1:30 pm on March 26, 2019 Permalink | Reply
    Tags: , , , , Habitable exoplanets, NASA/MIT TESS, TESS Habitable Zone Star Catalog, Vanderbilt Kelt Telescope South located in Sutherland South Africa 280km 174mi northeast of Cape Town, , VIDA-Vanderbilt Initiative in Data-intensive Astrophysics   

    From Vanderbilt University: “The hunt is on for closest Earth-like planets” 

    Vanderbilt U Bloc

    From Vanderbilt University

    Mar. 26, 2019
    Heidi Hall
    By Linda B. Glaser, a staff writer for Cornell’s College of Arts and Sciences.

    NASA’s new Transiting Exoplanet Survey Satellite (TESS) is designed to ferret out habitable exoplanets, but with hundreds of thousands of sunlike and smaller stars in its camera views, which of those stars could host planets like our own?

    NASA/MIT TESS replaced Kepler in search for exoplanets

    TESS will observe 400,000 stars across the whole sky to catch a glimpse of a planet transiting across the face of its star, one of the primary methods by which exoplanets are identified.

    A team of astronomers from Cornell, Lehigh and Vanderbilt universities has identified the most promising targets for this search in the new “TESS Habitable Zone Star Catalog,” published XX in Astrophysical Journal Letters. Lead author is Lisa Kaltenegger, professor of astronomy and director of Cornell’s Carl Sagan Institute and member of the TESS science team.

    This new catalog draws from one originally developed at Vanderbilt that contains hundreds of millions of stars. Using data from a number of sources, including Vanderbilt’s KELT telescope and the star “flicker” analysis method pioneered at Vanderbilt, Stevenson Professor of Physics and Astronomy Keivan Stassun and his team have been working since 2012 to narrow down the field from 470 million stars visible to TESS to the 250,000 most likely to host a planet like our own.

    Vanderbilt Kelt Telescope South, located in Sutherland, South Africa 280km 174mi northeast of Cape Town

    The work to sift through such a massive volume of data was done by Vanderbilt undergraduates, graduate students and postdoctoral scientists associated with the Vanderbilt Initiative in Data-intensive Astrophysics (VIDA), as well as students, developers, and data visualizers associated with the Frist Center for Autism and Innovation.

    “Our ambition is to not only detect hundreds of Earth-like worlds in other solar systems, but to find them around our closest neighboring solar systems,” Stassun said. “In a few years’ time, we may very well know that there are other habitable planets out there, with breathable atmospheres. Of course, we won’t yet know whether there is anything, or anyone, there breathing it. Still, this is a remarkable time in human history and a huge leap for our understanding of our place in the universe.”

    The catalog identifies 1,823 stars for which TESS is sensitive enough to spot Earth-like planets just a bit larger than Earth that receive radiation from their star equivalent to what Earth receives from our sun. For 408 stars, TESS can glimpse a planet just as small as Earth, with similar irradiation, in one transit alone.

    “Life could exist on all sorts of worlds, but the kind we know can support life is our own, so it makes sense to first look for Earth-like planets,” Kaltenegger said. “This catalog is important for TESS because anyone working with the data wants to know around which stars we can find the closest Earth-analogs.”

    Kaltenegger leads a program on TESS that is observing the catalog’s 1,823 stars in detail, looking for planets. “I have 408 new favorite stars,” says Kaltenegger. “It is amazing that I don’t have to pick just one; I now get to search hundreds of stars.”

    Confirming an exoplanet has been observed and figuring out the distance between it and its star requires detecting two transits across the star. The 1,823 stars the researchers have identified in the catalog are ones from which TESS could detect two planetary transits during its mission. Those orbital periods place them in the middle of the habitable zone of their star.

    The habitable zone is the area around a star at which water can be liquid on a rocky planet’s surface, therefore considered ideal for sustaining life. As the researchers note, planets outside the habitable zone could certainly harbor life, but it would be extremely difficult to detect any signs of life on such frozen planets without flying there.

    The catalog also identifies a subset of 227 stars for which TESS can not only probe for planets that receive the same irradiation as Earth, but for which TESS can also probe out further, covering the full extent of the habitable zone all the way to cooler Mars-like orbits. This will allow astronomers to probe the diversity of potentially habitable worlds around hundreds of cool stars during the TESS mission’s lifetime.

    The stars selected for the catalog are bright, cool dwarfs, with temperatures roughly between 2,700 and 6,000 degrees Kelvin. The stars in the catalog are selected due to their brightness; the closest are only approximately 4 light-years from Earth.

    “We don’t know how many planets TESS will find around the hundreds of stars in our catalog or whether they will be habitable,” Kaltenegger said, “but the odds are in our favor. Some studies indicate that there are many rocky planets in the habitable zone of cool stars, like the ones in our catalog. We’re excited to see what worlds we’ll find.”

    A total of 137 stars in the catalog are within the continuous viewing zone of NASA’s James Webb Space Telescope, now under construction. Webb will be able to observe them to characterize in-depth any planets found by TESS and search for signs of life in their atmospheres.

    Planets TESS identifies may also make excellent targets for observations by ground-based extremely large telescopes currently being built, the researchers note, as the brightness of their host stars would make them easier to characterize.

    In addition to Kaltenegger and Stassun, Joshua Pepper of Lehigh University and Ryan Oelkers of Vanderbilt University contributed to the catalog.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Commodore Cornelius Vanderbilt was in his 79th year when he decided to make the gift that founded Vanderbilt University in the spring of 1873.
    The $1 million that he gave to endow and build the university was the commodore’s only major philanthropy. Methodist Bishop Holland N. McTyeire of Nashville, husband of Amelia Townsend who was a cousin of the commodore’s young second wife Frank Crawford, went to New York for medical treatment early in 1873 and spent time recovering in the Vanderbilt mansion. He won the commodore’s admiration and support for the project of building a university in the South that would “contribute to strengthening the ties which should exist between all sections of our common country.”

    McTyeire chose the site for the campus, supervised the construction of buildings and personally planted many of the trees that today make Vanderbilt a national arboretum. At the outset, the university consisted of one Main Building (now Kirkland Hall), an astronomical observatory and houses for professors. Landon C. Garland was Vanderbilt’s first chancellor, serving from 1875 to 1893. He advised McTyeire in selecting the faculty, arranged the curriculum and set the policies of the university.

    For the first 40 years of its existence, Vanderbilt was under the auspices of the Methodist Episcopal Church, South. The Vanderbilt Board of Trust severed its ties with the church in June 1914 as a result of a dispute with the bishops over who would appoint university trustees.

    From the outset, Vanderbilt met two definitions of a university: It offered work in the liberal arts and sciences beyond the baccalaureate degree and it embraced several professional schools in addition to its college. James H. Kirkland, the longest serving chancellor in university history (1893-1937), followed Chancellor Garland. He guided Vanderbilt to rebuild after a fire in 1905 that consumed the main building, which was renamed in Kirkland’s honor, and all its contents. He also navigated the university through the separation from the Methodist Church. Notable advances in graduate studies were made under the third chancellor, Oliver Cromwell Carmichael (1937-46). He also created the Joint University Library, brought about by a coalition of Vanderbilt, Peabody College and Scarritt College.

    Remarkable continuity has characterized the government of Vanderbilt. The original charter, issued in 1872, was amended in 1873 to make the legal name of the corporation “The Vanderbilt University.” The charter has not been altered since.

    The university is self-governing under a Board of Trust that, since the beginning, has elected its own members and officers. The university’s general government is vested in the Board of Trust. The immediate government of the university is committed to the chancellor, who is elected by the Board of Trust.

    The original Vanderbilt campus consisted of 75 acres. By 1960, the campus had spread to about 260 acres of land. When George Peabody College for Teachers merged with Vanderbilt in 1979, about 53 acres were added.

    Vanderbilt’s student enrollment tended to double itself each 25 years during the first century of the university’s history: 307 in the fall of 1875; 754 in 1900; 1,377 in 1925; 3,529 in 1950; 7,034 in 1975. In the fall of 1999 the enrollment was 10,127.

    In the planning of Vanderbilt, the assumption seemed to be that it would be an all-male institution. Yet the board never enacted rules prohibiting women. At least one woman attended Vanderbilt classes every year from 1875 on. Most came to classes by courtesy of professors or as special or irregular (non-degree) students. From 1892 to 1901 women at Vanderbilt gained full legal equality except in one respect — access to dorms. In 1894 the faculty and board allowed women to compete for academic prizes. By 1897, four or five women entered with each freshman class. By 1913 the student body contained 78 women, or just more than 20 percent of the academic enrollment.

    National recognition of the university’s status came in 1949 with election of Vanderbilt to membership in the select Association of American Universities. In the 1950s Vanderbilt began to outgrow its provincial roots and to measure its achievements by national standards under the leadership of Chancellor Harvie Branscomb. By its 90th anniversary in 1963, Vanderbilt for the first time ranked in the top 20 private universities in the United States.

    Vanderbilt continued to excel in research, and the number of university buildings more than doubled under the leadership of Chancellors Alexander Heard (1963-1982) and Joe B. Wyatt (1982-2000), only the fifth and sixth chancellors in Vanderbilt’s long and distinguished history. Heard added three schools (Blair, the Owen Graduate School of Management and Peabody College) to the seven already existing and constructed three dozen buildings. During Wyatt’s tenure, Vanderbilt acquired or built one-third of the campus buildings and made great strides in diversity, volunteerism and technology.

    The university grew and changed significantly under its seventh chancellor, Gordon Gee, who served from 2000 to 2007. Vanderbilt led the country in the rate of growth for academic research funding, which increased to more than $450 million and became one of the most selective undergraduate institutions in the country.

    On March 1, 2008, Nicholas S. Zeppos was named Vanderbilt’s eighth chancellor after serving as interim chancellor beginning Aug. 1, 2007. Prior to that, he spent 2002-2008 as Vanderbilt’s provost, overseeing undergraduate, graduate and professional education programs as well as development, alumni relations and research efforts in liberal arts and sciences, engineering, music, education, business, law and divinity. He first came to Vanderbilt in 1987 as an assistant professor in the law school. In his first five years, Zeppos led the university through the most challenging economic times since the Great Depression, while continuing to attract the best students and faculty from across the country and around the world. Vanderbilt got through the economic crisis notably less scathed than many of its peers and began and remained committed to its much-praised enhanced financial aid policy for all undergraduates during the same timespan. The Martha Rivers Ingram Commons for first-year students opened in 2008 and College Halls, the next phase in the residential education system at Vanderbilt, is on track to open in the fall of 2014. During Zeppos’ first five years, Vanderbilt has drawn robust support from federal funding agencies, and the Medical Center entered into agreements with regional hospitals and health care systems in middle and east Tennessee that will bring Vanderbilt care to patients across the state.

    Today, Vanderbilt University is a private research university of about 6,500 undergraduates and 5,300 graduate and professional students. The university comprises 10 schools, a public policy center and The Freedom Forum First Amendment Center. Vanderbilt offers undergraduate programs in the liberal arts and sciences, engineering, music, education and human development as well as a full range of graduate and professional degrees. The university is consistently ranked as one of the nation’s top 20 universities by publications such as U.S. News & World Report, with several programs and disciplines ranking in the top 10.

    Cutting-edge research and liberal arts, combined with strong ties to a distinguished medical center, creates an invigorating atmosphere where students tailor their education to meet their goals and researchers collaborate to solve complex questions affecting our health, culture and society.

    Vanderbilt, an independent, privately supported university, and the separate, non-profit Vanderbilt University Medical Center share a respected name and enjoy close collaboration through education and research. Together, the number of people employed by these two organizations exceeds that of the largest private employer in the Middle Tennessee region.

     
  • richardmitnick 12:58 pm on February 22, 2019 Permalink | Reply
    Tags: , , , , , NASA/MIT TESS, Pedro Gerum, Planet discovery,   

    From Rutgers University: “Rutgers Student Helps NASA Discover Planets” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    February 22, 2019
    Cynthia Medina
    c.medina@rutgers.edu

    Pedro Gerum explains how working on railway tracks led to an internship with the space agency.

    1
    Doctoral student Pedro Gerum recently started his internship in NASA’s Ames Research Center, where he will be a part of the TESS satellite mission to help discover new planets.
    Photo: Courtesy of Pedro Gerum

    NASA/MIT TESS

    Pedro Gerum is putting the skills he developed working to improve railroad track inspections in New Jersey as a graduate student toward helping NASA discover new planets outside our solar system.

    The fourth-year industrial and sytems engineering doctoral student at Rutgers-New Brunswick recently started an internship at NASA’s Ames Research Center in California, which is part of the agency’s TESS (Transiting Exoplanet Survey Satellite) mission that collects and analyzes data on exoplanets, those planets outside of our solar system that orbit around other stars but not the sun.

    The space telescope is designed to scan an area of the sky that is 400 times larger than the one covered by the recently retired Kepler mission, which searched for earth-sized planets orbiting stars.

    “My job is to see light curves from the satellite and try to detect if those curves represent a planet or not using computer algorithms,” Gerum said.

    Gerum’s role at NASA will have some similarities to his research at Rutgers under Melike Baykal-Gürsoy, an associate professor in the School of Engineering, working to detect rail track defects. He uses data and statistics to create patterns that can more accurately pinpoint where a problem originates and then develops a computer program to detect those patterns.

    “In the case of railways, I am looking for patterns, and those patterns will help detect the problem areas,’’ Gerum said. “In the case of NASA, I am looking for patterns, and those patterns will help determine whether a light curve indicates the presence of new planets.”

    Baykal-Gürsoy said this process of creating patterns in search of a conclusion is called building a stochastic model, which translates to the expertise NASA needs.

    “The first step in a stochastic model for the railway system is to figure out how to model a defect process found during inspections, and then the second step is to figure out how to predict a behavioral pattern from it,” Baykal-Gürsoy said. “Then you train a computer to detect problems on its own by plugging in examples of these patterns until it learns to do it accurately, and then it does the work for you, even better than you. This is called machine-learning.”


    Watch NASA scientists explain how the TESS satellite works to find undiscovered worlds around bright nearby stars, providing targets where future studies will assess their capacity to harbor life. (Video Courtesy of NASA.)

    Gerum will be doing that exact research with NASA, along with seven other students from across the globe who will be working on other projects. Gerum, originally from Brazil, completed his undergraduate degree at the Federal University of São Carlos and landed the position at NASA as a result of a partnership between the Brazilian Space Agency and NASA. Gerum said Baykal-Gürsoy helped him develop his expertise on data science and optimization and is grateful for how much assistance the university has offered to help him reach his goals.

    “I traveled to Rutgers to meet with Dr. Baykal-Gürsoy and I really liked her expertise in her field and she made me feel welcome,” Gerum said. “As an international student, I was lucky that Rutgers could fund part of my tuition. They really helped me get to where I am.”

    Gerum, who is the first Rutgers student in the industrial and systems engineering program to work at a NASA facility, hopes others from the university will be inspired to use their skills in areas outside of their immediate field of study. He said the relationship between tracking railway defects and discovering planets is more closely related than it seems.

    “There is usually a way to use your skill set in most fields,” said Gerum, who will return to Rutgers to complete his degree after his internship ends in May 2019. “You just have to stay open and get the right support.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 11:14 am on January 11, 2019 Permalink | Reply
    Tags: , , , , NASA's TESS Rounds Up its First Planets Snares Far-flung Supernovae, NASA/MIT TESS   

    From NASA: “NASA’s TESS Rounds Up its First Planets, Snares Far-flung Supernovae” 

    NASA image
    From NASA

    January 7, 2019
    By Francis Reddy
    NASA’s Goddard Space Flight Center

    1

    NASA’s Transiting Exoplanet Survey Satellite (TESS) has found three confirmed exoplanets, or worlds beyond our solar system, in its first three months of observations.

    NASA/MIT TESS

    The mission’s sensitive cameras also captured 100 short-lived changes — most of them likely stellar outbursts — in the same region of the sky. They include six supernova explosions whose brightening light was recorded by TESS even before the outbursts were discovered by ground-based telescopes.

    The new discoveries show that TESS is delivering on its goal of discovering planets around nearby bright stars. Using ground-based telescopes, astronomers are now conducting follow-up observations on more than 280 TESS exoplanet candidates.


    Zoom into the first sky sector observed by NASA’s Transiting Exoplanet Survey Satellite (TESS) and learn more about the new worlds it has discovered. Credit: NASA/MIT/TESS

    2
    Depiction
    The first confirmed discovery is a world called Pi Mensae c about twice Earth’s size. Every six days, the new planet orbits the star Pi Mensae, located about 60 light-years away and visible to the unaided eye in the southern constellation Mensa. The bright star Pi Mensae is similar to the Sun in mass and size.

    “This star was already known to host a planet, called Pi Mensae b, which is about 10 times the mass of Jupiter and follows a long and very eccentric orbit,” said Chelsea Huang, a Juan Carlos Torres Fellow at the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research (MKI) in Cambridge. “In contrast, the new planet, called Pi Mensae c, has a circular orbit close to the star, and these orbital differences will prove key to understanding how this unusual system formed.”

    3
    Depiction
    Next is LHS 3884b, a rocky planet about 1.3 times Earth’s size located about 49 light-years away in the constellation Indus, making it among the closest transiting exoplanets known. The star is a cool M-type dwarf star about one-fifth the size of our Sun. Completing an orbit every 11 hours, the planet lies so close to its star that some of its rocky surface on the daytime side may form pools of molten lava.

    The third — and possibly fourth — planets orbit HD 21749, a K-type star about 80 percent the Sun’s mass and located 53 light-years away in the southern constellation Reticulum.

    The confirmed planet, HD 21749b, is about three times Earth’s size and 23 times its mass, orbits every 36 days, and has a surface temperature around 300 degrees Fahrenheit (150 degrees Celsius). “This planet has a greater density than Neptune, but it isn’t rocky. It could be a water planet or have some other type of substantial atmosphere,” explained Diana Dragomir, a Hubble Fellow at MKI and lead author of a paper describing the find. It is the longest-period transiting planet within 100 light-years of the solar system, and it has the coolest surface temperature of a transiting exoplanet around a star brighter than 10th magnitude, or about 25 times fainter than the limit of unaided human vision.

    What’s even more exciting are hints the system holds a second candidate planet about the size of Earth that orbits the star every eight days. If confirmed, it could be the smallest TESS planet to date.

    TESS’s four cameras, designed and built by MKI and MIT’s Lincoln Laboratory in Lexington, Massachusetts, spend nearly a month monitoring each observing sector, a single swath of the sky measuring 24 by 96 degrees. The primary aim is to look for exoplanet transits, which occur when a planet passes in front of its host star as viewed from TESS’s perspective. This causes a regular dip in the measured brightness of the star that signals a planet’s presence.

    In its primary two-year mission, TESS will observe nearly the whole sky, providing a rich catalog of worlds around nearby stars. Their proximity to Earth will enable detailed characterization of the planets through follow-up observations from space- and ground-based telescopes.

    But in its month-long stare into each sector, TESS records many additional phenomena, including comets, asteroids, flare stars, eclipsing binaries, white dwarf stars and supernovae, resulting in an astronomical treasure trove.


    NASA’s Transiting Exoplanet Survey Satellite (TESS) recorded more than 100 short-lived changes – most of them likely stellar outbursts of various types – in its first observing sector. Six of these events, highlighted in this movie, are supernovae – exploding stars – located in distant galaxies. Credit: NASA/MIT/TESS

    In the first TESS sector alone, observed between July 25 and Aug. 22, 2018, the mission caught dozens of short-lived, or transient, events, including images of six supernovae in distant galaxies that were later seen by ground-based telescopes.

    “Some of the most interesting science occurs in the early days of a supernova, which has been very difficult to observe before TESS,” said Michael Fausnaugh, a TESS researcher at MKI. “NASA’s Kepler space telescope caught six of these events as they brightened during its first four years of operations. TESS found as many in its first month.”

    These early observations hold the key to understanding a class of supernovae that serve as an important yardstick for cosmological studies. Type Ia supernovae form through two channels. One involves the merger of two orbiting white dwarfs, compact remnants of stars like the Sun. The other occurs in systems where a white dwarf draws gas from a normal star, gradually gaining mass until it becomes unstable and explodes. Astronomers don’t know which scenario is more common, but TESS could detect modifications to the early light of the explosion caused by the presence of a stellar companion.

    All science data from the first two TESS observation sectors were recently released to the scientific community through the Mikulski Archive for Space Telescopes (MAST) at the Space Telescope Science Institute in Baltimore.

    More than a million TESS images were downloaded from MAST in the first few days,” said Thomas Barclay, a TESS researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the University of Maryland, Baltimore County. “The astronomical community’s reaction to the early data release showed us that the world is ready to jump in and add to the mission’s scientific bounty.

    George Ricker, the mission’s principal investigator at MKI, said that TESS’s cameras and spacecraft were performing superbly. “We’re only halfway through TESS’s first year of operations, and the data floodgates are just beginning to open,” he said. “When the full set of observations of more than 300 million stars and galaxies collected in the two-year prime mission are scrutinized by astronomers worldwide, TESS may well have discovered as many as 10,000 planets, in addition to hundreds of supernovae and other explosive stellar and extragalactic transients.”

    TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

    Media contact:

    Elizabeth Landau
    NASA Headquarters, Washington
    elandau@jpl.nasa.gov
    (818) 359-3241

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 12:24 pm on January 8, 2019 Permalink | Reply
    Tags: A new planet HD 21749b, , , , , , NASA/MIT TESS   

    From MIT News: “TESS discovers its third new planet, with longest orbit yet” 

    MIT News
    MIT Widget

    From MIT News

    January 7, 2019
    Jennifer Chu

    1
    NASA’s TESS mission, which will survey the entire sky over the next two years, has already discovered three new exoplanets around nearby stars. Image: NASA’s Goddard Space Flight Center, edited by MIT News.

    2
    Using the first three months of publicly available data from NASA’s TESS mission, scientists at MIT and elsewhere have confirmed a new planet, HD 21749b — the third small planet that TESS has so far discovered. HD 21749b orbits a star, about the size of the sun, 53 light years away. Image: NASA/MIT/TESS

    Measurements indicate a dense, gaseous, “sub-Neptune” world, three times the size of Earth.

    NASA’s Transiting Exoplanet Survey Satellite, TESS, has discovered a third small planet outside our solar system, scientists announced this week at the annual American Astronomical Society meeting in Seattle.

    The new planet, named HD 21749b, orbits a bright, nearby dwarf star about 53 light years away, in the constellation Reticulum, and appears to have the longest orbital period of the three planets so far identified by TESS. HD 21749b journeys around its star in a relatively leisurely 36 days, compared to the two other planets — Pi Mensae b, a “super-Earth” with a 6.3-day orbit, and LHS 3844b, a rocky world that speeds around its star in just 11 hours. All three planets were discovered in the first three months of TESS observations.

    The surface of the new planet is likely around 300 degrees Fahrenheit — relatively cool, given its proximity to its star, which is almost as bright as the sun.

    “It’s the coolest small planet that we know of around a star this bright,” says Diana Dragomir, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research, who led the new discovery. “We know a lot about atmospheres of hot planets, but because it’s very hard to find small planets that orbit farther from their stars, and are therefore cooler, we haven’t been able to learn much about these smaller, cooler planets. But here we were lucky, and caught this one, and can now study it in more detail.”

    The planet is about three times the size of Earth, which puts it in the category of a “sub-Neptune.” Surprisingly, it is also a whopping 23 times as massive as the Earth. But it is unlikely that the planet is rocky and therefore habitable; it’s more likely made of gas, of a kind that is much more dense than the atmospheres of either Neptune or Uranus.

    “We think this planet wouldn’t be as gaseous as Neptune or Uranus, which are mostly hydrogen and really puffy,” Dragomir says. “The planet likely has a density of water, or a thick atmosphere.”

    Serendipitously, the researchers have also detected evidence of a second planet, though not yet confirmed, in the same planetary system, with a shorter, 7.8-day orbit. If it is confirmed as a planet, it could be the first Earth-sized planet discovered by TESS.

    In addition to presenting their results at the AAS meeting, the researchers have submitted a paper to The Astrophysical Journal Letters.

    “Something there”

    Since it launched in April 2018, TESS, an MIT-led mission, has been monitoring the sky, sector by sector, for momentary dips in the light of about 200,000 nearby stars. Such dips likely represent a planet passing in front of that star.

    The satellite trains its four onboard cameras on each sector for 27 days, taking in light from the stars in that particular segment before shifting to view the next one. Over its two-year mission, TESS will survey nearly the entire sky by monitoring and piecing together overlapping slices of the night sky. The satellite will spend the first year surveying the sky in the Southern Hemisphere, before swiveling around to take in the Northern Hemisphere sky.

    The mission has released to the public all the data TESS has collected so far from the first three of the 13 sectors that it will monitor in the southern sky. For their new analysis, the researchers looked through this data, collected between July 25 and Oct. 14.

    Within the sector 1 data, Dragomir identified a single transit, or dip, in the light from the star HD 21749. As the satellite only collects data from a sector for 27 days, it’s difficult to identify planets with orbits longer than that time period; by the time a planet passes around again, the satellite may have shifted to view another slice of the sky.

    To complicate matters, the star itself is relatively active, and Dragomir wasn’t sure if the single transit she spotted was a result of a passing planet or a blip in stellar activity. So she consulted a second dataset, collected by the High Accuracy Radial velocity Planet Searcher, or HARPS, a high-precision spectrograph installed on a large ground-based telescope in Chile, which identifies exoplanets by their gravitational tug on their host stars.

    ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.


    ESO/HARPS at La Silla

    “They had looked at this star system a decade ago and never announced anything because they weren’t sure if they were looking at a planet versus the activity of the star,” Dragomir says. “But we had this one transit, and knew something was there.”

    Stellar detectives

    When the researchers looked through the HARPS data, they discovered a repeating signal emanating from HD 21749 every 36 days. From this, they estimated that, if they indeed had seen a transit in the TESS data from sector 1, then another transit should appear 36 days later, in data from sector 3. When that data became publicly available, a momentary glitch created a gap in the data just at the time when Dragomir expected the second transit to occur.

    “Because there was an interruption in data around that time, we initially didn’t see a second transit, and were pretty disappointed,” Dragomir recalls. “But we re-extracted the data and zoomed in to look more carefully, and found what looked like the end of a transit.”

    She and her colleagues compared the pattern to the first full transit they had originally discovered, and found a near perfect match — an indication that the planet passed again in front of its star, in a 36-day orbit.

    “There was quite some detective work involved, and the right people were there at the right time,” Dragomir says. “But we were lucky and we caught the signals, and they were really clear.”

    They also used data from the Planet Finder Spectrograph, an instrument installed on the Magellan Telescope in Chile, to further validate their findings and constrain the planet’s mass and orbit.

    Carnegie Planet Finder Spectrograph on the Magellan Clay telescope at Las Campanas, Chile, Altitude 2,380 m (7,810 ft)

    Las Campanas Clay Magellan telescope, located at Carnegie’s Las Campanas Observatory, Chile, approximately 100 kilometres (62 mi) northeast of the city of La Serena, over 2,500 m (8,200 ft) high

    Once TESS has completed its two-year monitoring of the entire sky, the science team has committed to delivering information on 50 small planets less than four times the size of Earth to the astronomy community for further follow-up, either with ground-based telescopes or the future James Webb Space Telescope.

    NASA/ESA/CSA Webb Telescope annotated

    “We’ve confirmed three planets so far, and there are so many more that are just waiting for telescope and people time to be confirmed,” Dragomir says. “So it’s going really well, and TESS is already helping us to learn about the diversity of these small planets.”

    TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by Goddard. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT Lincoln Laboratory; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes, and observatories worldwide are participants in the mission.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 12:22 pm on January 5, 2019 Permalink | Reply
    Tags: , , , ‘Following the Water’, , , , , Fingerprinting Life, , NASA/MIT TESS, , , The habitable zone serves as a target selection tool, , , UCO Lick Observatory Mt Hamilton in San Jose California, UCR’s Alternative Earths Astrobiology Center   

    From UC Riverside: “Are We Alone?” 

    UC Riverside bloc

    From UC Riverside

    May 24, 2018
    Sarah Nightingale

    1
    Illustration by The Brave Union

    Forty years ago, the Voyager 2 spacecraft launched from Florida’s Cape Canaveral. Over the next decade, it swept across the solar system, sending back images of Jupiter’s volcanoes, Saturn’s rings, and for the first time, the icy atmospheres of Uranus and Neptune.

    NASA/Voyager 2

    2
    UCR’s Tim Lyons, left, and Stephen Kane are some of the only researchers in the world using Earth’s history as a guide to finding life in outer space. (Photo by Kurt Miller)

    The mission was more than enough to encourage Stephen Kane, a teenager growing up in Australia, to study planetary science in college. By the time he’d graduated, scientists had detected the first planet outside our solar system, known as an exoplanet, inspiring him to join the hunt and look for more.

    Over the past two decades, Kane, now an associate professor of planetary astrophysics at UC Riverside, has discovered hundreds of alien planets. At first, he focused on identifying giant Jupiter-like planets, which he describes as “low-hanging fruit” due to their large sizes. But in 2011, the Kepler Space Telescope identified the first rocky planet — Kepler 10b. Unlike gas giants such as Jupiter, rocky planets could potentially harbor life.

    NASA/Kepler Telescope

    With the discovery of more Earth-sized planets on the horizon, Kane realized that astrophysicists would struggle to understand the data they were receiving about terrestrial planets and their atmospheres.

    “During the course of the ongoing Kepler mission, I sought out planetary and Earth scientists because they’ve spent hundreds of years studying the solar system and how the Earth’s atmosphere has been shaped by biological and geophysical processes, so they have a lot to bring to the table,” Kane said.

    In 2017, Kane formalized that collaboration by joining an interdisciplinary research group led by Tim Lyons, a distinguished professor of biogeochemistry in the Department of Earth Sciences and director of UCR’s Alternative Earths Astrobiology Center. Backed by roughly $7.5 million from NASA, the center, one of only a handful like it in the world, brings together geochemists, biologists, planetary scientists, and astrophysicists from UCR and partner institutions to search for life on distant worlds using a template defined by the only known planet with life: Earth.

    3
    Astrobiology researchers study areas on Earth that hold evidence of ancient life, such as these stromatolites at the Hamelin Pool Marine Nature Reserve in Shark Bay, Australia. The rocky, dome-shaped structures formed in shallow water through the trapping of sedimentary grains by communities of microorganisms. (Photo by Mark Boyle)

    Fingerprinting Life

    Since its formation more than 4.5 billion years ago, Earth has undergone immense periods of geological and biological change.

    When the first life appeared — in the form of simple microbes — the sun was fainter, there were no continents, and there was no oxygen in the atmosphere. A new kind of life emerged around 2.7 billion years ago: photosynthetic bacteria that use the sun’s energy to convert carbon dioxide and water into food and oxygen gas. Multicellular life evolved from those bacteria, followed by more familiar lifeforms: fish about 530 million years ago, land plants 470 million years ago, and mammals 200 million years ago.

    “There are periods in the Earth’s past that are as different from one another as Earth is from an exoplanet,” Lyons said. “That is the concept of alternative Earths. You can slice the Earth’s history into chapters, pages, and even paragraphs, and there has been life evolving, thriving, surviving, and dying with each step. If we know what kind of atmospheres were present during the early stages of life on Earth, and their relationships to the evolving continents and oceans, we can look for similar signposts in our search for life on exoplanets.”

    While it might seem impossible to characterize ancient oceans and atmospheres, scientists can glean hints by studying rocks formed billions of years ago.

    “The chemical compositions of rocks are determined by the chemistry of the oceans and their life, and many of the gases in the atmosphere, through exchange with the oceans, are controlled by the same processes,” Lyons said. “These atmospheric fingerprints of life in the underlying oceans, or biosignatures, can be used as markers of life on other planets light years away.”

    The search for alien biosignatures typically centers on the gases produced by living creatures on Earth because they’re the only examples scientists have to work with. But Earth’s many chapters of inhabitation reveal the great number of possible gas combinations. Oxygen gas, ozone, and methane in a planet’s biosignature could all indicate the presence of life — and seeing them together could present an even stronger argument.

    The center’s search for life is different from the hunt for intelligent life. While those researchers probe for signs of alien civilizations, such as radio waves or powerful lasers, Lyons’ team is essentially looking for the byproducts of simple lifeforms.

    “As we’re exploring exoplanets, what we’re really trying to do is characterize their atmospheres,” he said. “If we see certain profiles of gases, then we may be detecting microbial waste products that are accumulating in the atmosphere.”

    The UCR team must also account for processes that produce the same gases without contributions from life, a phenomenon researchers call false positives. For example, a planetary atmosphere with abundant oxygen would be a promising biosignature, but that evidence could be misleading without fully addressing where it came from. Similarly, methane is a key biosignature, but there are many nonbiological ways to produce this gas on Earth. These distinctions require careful considerations of many factors, including seasonal patterns, tectonic activity, the type of planet and its star, among other data.

    False negatives are another concern, Lyons said. In previous research on ancient organic-rich rocks collected in Western Australia and South Africa, his group showed that about two billion years passed between the moment organisms first started producing oxygen on Earth and when it accumulated at levels high enough to be detectable in the atmosphere. In that scenario, a classic biosignature, oxygen, could be missed.

    “It’s also entirely possible that on some planets oxygen is produced through photosynthesis in pockets in the ocean and you’d never see it in the atmosphere,” Lyons said. “We have to be very clever to consider the many possibilities for biosignatures, and Earth’s past gives us many to choose from.”

    3
    Illustration by The Brave Union

    ‘Following the Water’

    With several hundred terrestrial planets confirmed and many more awaiting discovery, the search for life-bearing worlds is an almost overwhelming task.

    Astronomers are narrowing down their search by focusing on habitable zones — the orbital region around stars where it’s neither too hot nor too cold for liquid water to exist on the surface.

    “We know that liquid water is essential for life as we know it, and so we’re beginning our search by looking for planets that are capable of having similar environments to Earth. We call this approach ‘following the water,’” Kane said.

    While the habitable zone serves as a target selection tool, Kane said a planet nestled in this region won’t necessarily show signs of life — or even liquid water. Venus, for example, occupies the inner edge of the Sun’s habitable zone, but its scorching surface temperature has boiled away any liquid water that once existed.

    “We are extremely fortunate to have Venus in our solar system because it reminds us that a planet can be exactly the same size as Earth and still have things go catastrophically wrong,” Kane said.

    Equally important, being in the habitable zone doesn’t mean a planet will boast other factors that make Earth ideal for life. In addition to liquid water, the perfect candidate would have an insulating atmosphere and a protective magnetic field. It would also offer the right chemical ingredients for life and ways of recycling those elements over and over when continents collide, mountains lift up and wear down, and nutrients are swept back to the seas by rivers.

    “People question why we focus so intently on Earth, but the answer is obvious. We only know what we know about life because of what the Earth has given us,” said Lyons, who has spent decades reconstructing the conditions during which life evolved.

    “If I asked you to design a planet with the perfect conditions for life, you would design something just like Earth because it has all of these essential features,” he added. “We are studying how these building blocks have been assembled in different ways during Earth’s history and asking which of them are essential for life, which can be taken away. From that vantage point, we ask how they could be assembled in very different ways on other planets and still sustain life.”

    Kane said a distant planetary system called TRAPPIST-1, which NASA scientists discovered in 2017, could provide clues about the ingredients that are necessary for life.

    A size comparison of the planets of the TRAPPIST-1 system, lined up in order of increasing distance from their host star. The planetary surfaces are portrayed with an artist’s impression of their potential surface features, including water, ice, and atmospheres. NASA

    The TRAPPIST-1 star, an ultracool dwarf, is orbited by seven Earth-size planets (NASA).

    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile


    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile

    Although miniature compared to our own solar system — TRAPPIST-1 would easily fit inside Mercury’s orbit around the sun — it boasts seven planets, three of which are in the habitable zone. However, the planets don’t have moons, and they may not even have atmospheres.

    “We are finding that compact planetary systems orbiting faint stars are much more common than larger systems, so it’s important that we study them and find out if they could have habitable environments,” Kane said.

    4
    An artist’s illustration of the possible surface of TRAPPIST-1f, one of the planets in the TRAPPIST-1 system.

    Remote Observations

    At about 40 light-years (235 trillion miles) from Earth, the TRAPPIST-1 system is relatively close, but we’re never going to go there.

    “The fascinating thing about astronomy as a science is that it’s all based on remote observations,” Kane said. “We are trying to squeeze every piece of information we can out of photons that we are receiving from a very distant object.”

    While scientists have studied the atmospheres of several dozen exoplanets, most are too distant to probe with current instruments. That situation is changing. In April, NASA launched its Transiting Exoplanet Survey Satellite, known as TESS, which will seek Earth-sized planets around more than 500,000 nearby stars.

    NASA/MIT TESS

    In May 2020, NASA plans to launch the James Webb Space Telescope, which will perform atmospheric studies of the rocky worlds discovered by TESS.

    NASA/ESA/CSA Webb Telescope annotated

    Like Kepler, TESS detects exoplanets using the transit method, which measures the minute dimming of a star as an orbiting planet passes between it and the Earth.

    Planet transit. NASA/Ames

    Because light also passes through the atmosphere of planets, scientists will use the Webb telescope to identify the blanket of gases surrounding them through a technique called spectroscopy.

    Kane and Lyons are working with NASA to design missions that will directly image exoplanets in ways that will ensure that interdisciplinary teams such as theirs can properly interpret a wide variety of planetary processes.

    “As we design future missions, we must make sure they are equipped with the right instruments to detect biosignatures and geological processes, such as active volcanoes,” Kane said.

    UCR’s astrobiology team is one of only a few groups in the world studying ancient Earth to create a catalog of biosignatures that will inform mission design in NASA’s search for life on distant worlds. With quintillions — think the number of gallons of water in all of our oceans — of potentially habitable planets in the universe, Lyons said he is optimistic that we’ll find signs of life in the future.

    “Just like the Voyager missions were important because of what they taught us about our solar system — from the discovery of Jupiter’s rings to the first close-up glimpses of Uranus and Neptune — the TESS and James Webb missions, and more importantly the next generation of telescopes planned for the coming decades, are very likely to change our understanding of distant space,” Lyons said. And perhaps nestled in those discoveries will be an answer to the most fundamental of all questions, ‘are we alone?’

    Alternative Earths Astrobiology Center

    Founded in 2015

    One of 12 research teams funded by the NASA Astrobiology Institute, and one of only two using Earth’s history to guide exoplanet exploration

    Awarded $7.5 million over five years to cultivate a “search engine” for life on planets orbiting distant stars using Earth’s evolution over billions of years as a template

    Builds on existing UCR strengths in biogeochemistry, Earth history, and astrophysics

    Unites 66 researchers and staff at 11 institutions around the world, including primary partners led by former UCR graduate students now on the faculty at Yale and Georgia Tech

    4
    A NASA illustration of TESS monitoring stars outside our solar system.

    Through the Looking Glass

    In April, the Transiting Exoplanet Survey Satellite (TESS) Mission launched with the goal of discovering new Earths and super-Earths around nearby stars. As a guest investigator on the TESS Mission, Stephen Kane will use University of California telescopes, including those at the Lick Observatory in Mt. Hamilton to help determine whether candidate exoplanets identified by TESS are actually planets.

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UCSC Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Santa Cruz Shelley Wright at the 1-meter Nickel Telescope NIROSETI


    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer UC Berkeley Jérôme Maire U Toronto, Shelley Wright UCSD Patrick Dorval U Toronto Richard Treffers Richard Treffers Starman Systems. (Image by Laurie Hatch)

    By studying the planet mass data obtained from the ground-based telescopes and planet diameter readings from spacecraft observations, Kane will also help determine the overall composition of the newly identified planets.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Riverside Campus

    The University of California, Riverside is one of 10 universities within the prestigious University of California system, and the only UC located in Inland Southern California.

    Widely recognized as one of the most ethnically diverse research universities in the nation, UCR’s current enrollment is more than 21,000 students, with a goal of 25,000 students by 2020. The campus is in the midst of a tremendous growth spurt with new and remodeled facilities coming on-line on a regular basis.

    We are located approximately 50 miles east of downtown Los Angeles. UCR is also within easy driving distance of dozens of major cultural and recreational sites, as well as desert, mountain and coastal destinations.

     
  • richardmitnick 6:25 pm on December 17, 2018 Permalink | Reply
    Tags: 1.52-m Telescopio Carlos Sánchez at the Teide Observatory Canaries Spain, MuSCAT2-a powerful 4-color simultaneous camera, , NASA/MIT TESS   

    From National Astronomical Observatory of Japan: “MuSCAT2 to find Earth-like Planets in the TESS Era” 

    NAOJ

    From National Astronomical Observatory of Japan

    December 17, 2018

    1
    Newly Developed simultaneous multi-color camera MuSCAT2 on the 1.52-m Telescopio Carlos Sánchez at the Teide Observatory, Canaries, Spain

    2
    3
    1.52-m Telescopio Carlos Sánchez at the Teide Observatory, Canaries, Spain

    A Japan-Spain team has developed a powerful 4-color simultaneous camera named MuSCAT2 for the 1.52-m Telescopio Carlos Sánchez at the Teide Observatory, Canaries, Spain. The instrument aims to find a large number of transiting exoplanets, including Earth-like habitable planets orbiting stars near the Sun, in collaboration with NASA’s Transiting Exoplanet Survey Satellite (TESS) launched in April 2018.

    NASA/MIT TESS

    In April 2018, NASA launched a new satellite named Transiting Exoplanet Survey Satellite (TESS) to discover new exoplanets around stars near the Sun. TESS finds exoplanets by observing planetary transits, a phenomenon in which a planet passes in front of its host star and blocks part of the star’s light.

    Planet transit. NASA/Ames

    Transiting exoplanets are especially valuable targets for exoplanet studies, since they provide information about the true mass, radius, density, orbital obliquity, and atmosphere of such planets.

    However, transiting exoplanet candidates discovered by TESS are not always real planets. An eclipsing binary, a pair of stars orbiting and eclipsing each other, can also produce transit-like signals. For the TESS mission, the false positive rate caused by eclipsing binaries is predicted to be 30-70% depending on the direction observed. Follow up observations can help distinguish actual exoplanets from false positives.

    Multi-color transit observations are one way to separate exoplanets from eclipsing binary stars. This is because in the case of an eclipsing binary, the light coming from the system changes color as it dims, while for an exoplanet transit the light stays the same color as it dims.

    For this reason, an international team, consisting of Japanese researchers from the Astrobiology Center (ABC) and the University of Tokyo and Spanish researchers from the Instituto de Astrofísica de Canarias (IAC), has developed a 4-color simultaneous camera named MuSCAT2 (2nd generation Multi-color Simultaneous Camera for studying Atmospheres of Transiting exoplanets) on the 1.52-m Telescopio Carlos Sánchez at the Teide Observatory, Canaries, Spain.

    The team will use MuSCAT2 more than 162 nights per year until at least 2022. They will work to confirm a large number of new transiting exoplanets, including Earth-like habitable planets orbiting stars near the Sun, in collaboration with the ongoing TESS mission.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NAOJ

    The National Astronomical Observatory of Japan (NAOJ) is an astronomical research organisation comprising several facilities in Japan, as well as an observatory in Hawaii. It was established in 1988 as an amalgamation of three existing research organizations – the Tokyo Astronomical Observatory of the University of Tokyo, International Latitude Observatory of Mizusawa, and a part of Research Institute of Atmospherics of Nagoya University.

    In the 2004 reform of national research organizations, NAOJ became a division of the National Institutes of Natural Sciences.

    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA,4,207 m (13,802 ft) above sea level


    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array
    sft
    Solar Flare Telescope

    Nobeyama Radio Telescope - Copy
    Nobeyama Radio Observatory

    Nobeyama Solar Radio Telescope Array
    Nobeyama Radio Observatory: Solar

    Misuzawa Station Japan
    Mizusawa VERA Observatory

    NAOJ Okayama Astrophysical Observatory Telescope
    Okayama Astrophysical Observatory

     
  • richardmitnick 9:27 am on October 7, 2018 Permalink | Reply
    Tags: , , , , NASA/MIT TESS   

    From NASA/MIT TESS: “NASA’s TESS Shares First Science Image in Hunt to Find New Worlds” via Manu Garcia 


    From Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    Sept. 17, 2018

    Jeanette Kazmierczak
    jeanette.a.kazmierczak@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    From NASA/MIT TESS

    NASA/MIT TESS

    1
    The Transiting Exoplanet Survey Satellite (TESS) took this snapshot of the Large Magellanic Cloud (right) and the bright star R Doradus (left) with just a single detector of one of its cameras on Tuesday, Aug. 7. The frame is part of a swath of the southern sky TESS captured in its “first light” science image as part of its initial round of data collection.
    Credits: NASA/MIT/TESS

    NASA’s newest planet hunter, the Transiting Exoplanet Survey Satellite (TESS), is now providing valuable data to help scientists discover and study exciting new exoplanets, or planets beyond our solar system. Part of the data from TESS’ initial science orbit includes a detailed picture of the southern sky taken with all four of the spacecraft’s wide-field cameras. This “first light” science image captures a wealth of stars and other objects, including systems previously known to have exoplanets.

    “In a sea of stars brimming with new worlds, TESS is casting a wide net and will haul in a bounty of promising planets for further study,” said Paul Hertz, astrophysics division director at NASA Headquarters in Washington. “This first light science image shows the capabilities of TESS’ cameras, and shows that the mission will realize its incredible potential in our search for another Earth.”

    TESS acquired the image using all four cameras during a 30-minute period on Tuesday, Aug. 7. The black lines in the image are gaps between the camera detectors. The images include parts of a dozen constellations, from Capricornus to Pictor, and both the Large and Small Magellanic Clouds, the galaxies nearest to our own. The small bright dot above the Small Magellanic Cloud is a globular cluster — a spherical collection of hundreds of thousands of stars — called NGC 104, also known as 47 Tucanae because of its location in the southern constellation Tucana, the Toucan. Two stars, Beta Gruis and R Doradus, are so bright they saturate an entire column of pixels on the detectors of TESS’s second and fourth cameras, creating long spikes of light.

    “This swath of the sky’s southern hemisphere includes more than a dozen stars we know have transiting planets based on previous studies from ground observatories,” said George Ricker, TESS principal investigator at the Massachusetts Institute of Technology’s (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge.

    3
    The Transiting Exoplanet Survey Satellite (TESS) captured this strip of stars and galaxies in the southern sky during one 30-minute period on Tuesday, Aug. 7. Created by combining the view from all four of its cameras, this is TESS’ “first light,” from the first observing sector that will be used for identifying planets around other stars. Notable features in this swath of the southern sky include the Large and Small Magellanic Clouds and a globular cluster called NGC 104, also known as 47 Tucanae. The brightest stars in the image, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite’s second and fourth cameras. Credits: NASA/MIT/TESS

    TESS’s cameras, designed and built by MIT’s Lincoln Laboratory in Lexington, Massachusetts, and the MIT Kavli Institute, monitor large swaths of the sky to look for transits. Transits occur when a planet passes in front of its star as viewed from the satellite’s perspective, causing a regular dip in the star’s brightness.

    Planet transit. NASA/Ames

    TESS will spend two years monitoring 26 such sectors for 27 days each, covering 85 percent of the sky. During its first year of operations, the satellite will study the 13 sectors making up the southern sky. Then TESS will turn to the 13 sectors of the northern sky to carry out a second year-long survey.

    MIT coordinates with Northrop Grumman in Falls Church, Virginia, to schedule science observations. TESS transmits images every 13.7 days, each time it swings closest to Earth. NASA’s Deep Space Network receives and forwards the data to the TESS Payload Operations Center at MIT for initial evaluation and analysis. Full data processing and analysis takes place within the Science Processing and Operations Center pipeline at NASA’s Ames Research Center in Silicon Valley, California, which provides calibrated images and refined light curves that scientists can analyze to find promising exoplanet transit candidates.

    TESS builds on the legacy of NASA’s Kepler spacecraft, which also uses transits to find exoplanets.

    NASA/Kepler Telescope

    TESS’s target stars are 30 to 300 light-years away and about 30 to 100 times brighter than Kepler’s targets, which are 300 to 3,000 light-years away. The brightness of TESS’ targets make them ideal candidates for follow-up study with spectroscopy, the study of how matter and light interact.


    This animation shows how the Transiting Exoplanet Survey Satellite (TESS) will study 85 percent of the sky in 26 sectors. The spacecraft will observe the 13 sectors that make up the southern sky in the first year and the 13 sectors of the northern sky in the second year.
    Credits: NASA’s Goddard Space Flight Center

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    The James Webb Space Telescope and other space and ground observatories will use spectroscopy to learn more about the planets TESS finds, including their atmospheric compositions, masses and densities.

    TESS has also started observations requested through the TESS Guest Investigator Program, which allows the broader scientific community to conduct research using the satellite.

    “We were very pleased with the number of guest investigator proposals we received, and we competitively selected programs for a wide range of science investigations, from studying distant active galaxies to asteroids in our own solar system,” said Padi Boyd, TESS project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “And of course, lots of exciting exoplanet and star proposals as well. The science community are chomping at the bit to see the amazing data that TESS will produce and the exciting science discoveries for exoplanets and beyond.”

    TESS launched from NASA’s Kennedy Space Center in Cape Canaveral, Florida, on April 18 aboard a SpaceX Falcon 9 rocket and used a flyby of the Moon on May 17 to head toward its science orbit. TESS started collecting scientific data on July 25 after a period of extensive checks of its instruments.

    TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Northrop Grumman, based in Falls Church, Virginia; NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

    NASA image

     
  • richardmitnick 9:33 am on September 22, 2018 Permalink | Reply
    Tags: , , , , , NASA/MIT TESS, NASA/MIT TESS finds 1st two exoplanet candidates during first science orbit, , TESS in excellent health,   

    From NASA Spaceflight: “TESS in excellent health, finds 1st two exoplanet candidates during first science orbit” 

    NASA Spaceflight

    From NASA Spaceflight

    September 20, 2018
    Chris Gebhardt

    1
    The joint NASA / Massachusetts Institute of Technology (MIT) Transiting Exoplanet Survey Satellite, or TESS, has completed its first science orbit after launch and orbital activations/checkouts. Unsurprisingly given TESS’s wide range of view, a team of scientists have already identified the planet-hunting telescope’s first two exoplanet candidates.
    No image credit.

    The yet-to-be-confirmed exoplanets are located 59.5 light years from Earth in the Pi Mensae system and 49 light years away in the LHS 3844 system.

    TESS’s overall health:

    Following a successful launch on 18 April 2018 aboard a SpaceX Falcon 9 rocket from SLC-40 at the Cape Canaveral Air Force Station, Florida, TESS was injected into an orbit aligned for a gravity assist maneuver one month later with the Moon to send the telescope into its operational 13.65-day orbit of Earth.

    TESS’s orbit is highly unique, with the trajectory designed so the telescope is in a 2:1 resonance with the Moon at a 90° phase offset at apogee (meaning the telescope maintains a separation from the Moon so the lunar gravity field doesn’t perturb TESS’ orbit but at the same time keeps the orbit stable) to allow the spacecraft to use as little of its maneuvering fuel as possible to achieve a hoped-for 20 year life.

    At the time of launch, mission scientists and operators noted that first light images were expected from TESS in June 2018 following a 60-day commissioning phase.

    While it is not entirely clear what happened after launch, what is known is that the commissioning phase lasted 27 days longer than expected, stretching to the end of July. TESS’ first science and observational campaign began not in June but on 25 July 2018.

    By 7 August, the halfway point in the first science observation period, TESS took what NASA considers to be the ceremonial “first light” images of the telescope’s scientific ventures.

    TESS acquired the image using all four cameras during a 30-minute period on Tuesday, 7 August. The images include parts of a dozen constellations from Capricornus to Pictor, both the Large and Small Magellanic Clouds, and the galaxies nearest to our own.

    2
    Ceremonial first light image captured by TESS on 7 August 2018 showing the full Sector 1 image (center) and close-ups of each of the four camera groups (left and right) Credit NASA/MIT/TESS

    “In a sea of stars brimming with new worlds, TESS is casting a wide net and will haul in a bounty of promising planets for further study,” said Paul Hertz, astrophysics division director at NASA Headquarters. “This first light science image shows the capabilities of TESS’ cameras and shows that the mission will realize its incredible potential in our search for another Earth.”

    George Ricker, TESS’ principal investigator at the Massachusetts Institute of Technology’s Kavli Institute for Astrophysics and Space Research, added, “This swath of the sky’s southern hemisphere includes more than a dozen stars we know have transiting planets based on previous studies from ground observatories.”

    While TESS orbits Earth every 13.65 days, its data collection phase for each of its 26-planned observation sectors of near-Earth sky lasts for two orbits so the telescope can collect light data from each section for a total of 27.4 days.

    With science operations formerly commencing on 25 July, the first observational campaign stretched to 22 August.

    Unlike some missions which only transmit data back to Earth after observational campaigns end, TESS transmits its data both in the middle and at the end of each campaign when the telescope swings past its perigee (closest orbital approach to Earth).

    On 22 August, after TESS completed its first observation campaign of a section of the Southern Hemisphere sky, the telescope transmitted the second batch of light data to Earth through the Deep Space Network.

    From there, the information was processed and analyzed at NASA’s Science Processing and Operations Center at the Ames Research Center in California – which provided calibrated images and refined light curves for scientists to analyze and find promising exoplanet transit candidates.

    NASA and MIT then made that data available to scientists as they search for the more than 22,000 exoplanets (most of those within a 300 light-year radius of Earth) that TESS is expected to find during the course of its two-year primary mission.

    First TESS exoplanet candidate:

    Given the sheer number of exoplanets TESS is expected to find in the near-Earth neighborhood, it is not surprising that the first observation campaign has already returned potential exoplanet candidates – the first of which was confirmed by NASA via a tweet on Wednesday, 19 September.

    TESS’ first exoplanet candidate is Pi Mensae c – a super-Earth with an orbital period of 6.27 days. According to a draft of the paper announcing the discovery, several methods were used to eliminate the possibility of this being a false detection or the detection of a previously unknown companion star.

    The Pi Mensae system is located 59.5 light years from Earth, and the new exoplanet – if confirmed – would be officially classified Pi Mensae c, the second known exoplanet of the system.

    Exoplanet’s official classifications derive from the name of the star they orbit followed by a lowercase letter indicating the order in which they were discovered in a particular system.

    The order in which exoplanets are discovered does not necessarily match the order (distance from closest to farthest) in which they orbit their parent star.

    Moreover, the lowercase letter designation begins with the letter “b”, not the letter “a”. Thus, the first discovered exoplanet in a particular system will bear the name of its parent star followed by a lowercase “b”.

    Subsequent exoplanets orbiting the same start or stars (as the case may be), regardless of whether they orbit closer to or farther away from the parent star than the first discovered exoplanet will then bear the letters c, d, e, etc.

    3
    NASA/Ames – Wendy Stenzel

    Therefore, confirmation of the new exoplanet candidate in the Pi Mensae system would make the planet Pi Mensae c.

    Pi Mensae b, a superjovian, was discovered on 15 October 2001 using the radial-velocity method of detection via the Anglo-Australian Telescope operated by the Australian Astronomical Observatory at Siding Spring Observatory.

    In the search for exoplanets, two general methods of detection are used – direct observation of a transiting exoplanet that passes between its star and the observation point on or near Earth (the method employed by TESS) and the radial-velocity, or doppler spectroscopy, method of detection which measures the wobble or gravitational tug on a parent star caused by an orbiting planet that does not pass between the star and the observation point on or near Earth.

    Overall, roughly 30% of the total number of known exoplanets have been discovered via the radial-velocity method, with the other 70% being discovered via the transiting method of detection.

    Radial Velocity Method-Las Cumbres Observatory


    Radial velocity Image via SuperWasp http:// http://www.superwasp.org/exoplanets.htm


    Planet transit. NASA/Ames

    Upon Pi Mensae b’s discovery in 2001, the planet was found to be in a highly eccentric 5.89 Earth-year (2,151 day) orbit – coming as close at 1.21 AU and passing as far as 5.54 AU from its star.

    4
    Artist’s depiction of a Super-Juiter orbiting its host star

    With a 1.21 AU periastron, Pi Mensae b passes through its parent star’s habitable zone before arcing out to apastron (which lies farther out than Jupiter’s orbit of our Sun).

    Given the extreme eccentricity and the fact that the planet passes through the habitable zone during each orbit, it would likely have disrupted the orbit of any potentially Earth-like planet in that zone due to its extreme mass of more than 10 times that of Jupiter.

    As for Pi Mensae itself, the star is a 3.4 billion year old (roughly 730 million years younger than the Sun) yellow dwarf that is 1.11 times the mass of the Sun, 1.15 times the Sun’s radius, and 1.5 times the Sun’s luminosity.

    Due to its proximity to Earth and its high luminosity, the star has an apparent magnitude of 5.67 and is visible to the naked eye in dark, clear skies.

    The star’s brightness – unsurprisingly – gives a potential instant “win” for the TESS team, whose stated pre-mission goal was to find near-Earth transiting exoplanets around exceptionally bright stars.

    Pi Mensae is currently the second brightest star to host a confirmed transiting exoplanet, Pi Mensae b.

    As an even greater testament to TESS’ power, just hours before publication of this article, the TESS team confirmed a second exoplanet candidate from the first observation campaign.

    The second exoplanet candidate is LHS 3844 b. It orbits its parent star – an M dwarf – every 11 hours and is located 49 light years from Earth.

    The exoplanet candidate is described by NASA and the TESS team as a “hot Earth.”

    Given the wealth of light data for scientists to pour through from the now-completed first two of 26 observation sectors, it is highly likely that hundreds if not thousands of exoplanets candidates will be identified in the coming months and years — with tens of thousands of candidate planets to follow in the remaining 24 sectors of sky to be searched.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASASpaceFlight.com, now in its eighth year of operations, is already the leading online news resource for everyone interested in space flight specific news, supplying our readership with the latest news, around the clock, with editors covering all the leading space faring nations.

    Breaking more exclusive space flight related news stories than any other site in its field, NASASpaceFlight.com is dedicated to expanding the public’s awareness and respect for the space flight industry, which in turn is reflected in the many thousands of space industry visitors to the site, ranging from NASA to Lockheed Martin, Boeing, United Space Alliance and commercial space flight arena.

    With a monthly readership of 500,000 visitors and growing, the site’s expansion has already seen articles being referenced and linked by major news networks such as MSNBC, CBS, The New York Times, Popular Science, but to name a few.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: