Tagged: NASA Juno Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:20 am on July 23, 2018 Permalink | Reply
    Tags: , , , , , NASA Juno, NASA Juno data indicate another possible volcano on Jupiter moon Io   

    From JPL-Caltech: “NASA Juno data indicate another possible volcano on Jupiter moon Io” 

    NASA JPL Banner

    From JPL-Caltech

    7.13.18

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    JoAnna Wendel
    NASA Headquarters, Washington
    202-358-1003
    joanna.r.wendel@nasa.gov

    Deb Schmid
    Southwest Research Institute, San Antonio
    210-522-2254
    dschmid@swri.org

    1

    This annotated image highlights the location of the new heat source close to the south pole of Io. The image was generated from data collected on Dec. 16, 2017, by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard NASA’s Juno mission when the spacecraft was about 290,000 miles (470,000 kilometers) from the Jovian moon. The scale to the right of image depicts of the range of temperatures displayed in the infrared image. Higher recorded temperatures are characterized in brighter colors — lower temperatures in darker colors.

    Data collected by NASA’s Juno spacecraft using its Jovian InfraRed Auroral Mapper (JIRAM) instrument point to a new heat source close to the south pole of Io that could indicate a previously undiscovered volcano on the small moon of Jupiter. The infrared data were collected on Dec. 16, 2017, when Juno was about 290,000 miles (470,000 kilometers) away from the moon.

    “The new Io hotspot JIRAM picked up is about 200 miles (300 kilometers) from the nearest previously mapped hotspot,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “We are not ruling out movement or modification of a previously discovered hot spot, but it is difficult to imagine one could travel such a distance and still be considered the same feature.”

    The Juno team will continue to evaluate data collected on the Dec. 16 flyby, as well as JIRAM data that will be collected during future (and even closer) flybys of Io. Past NASA missions of exploration that have visited the Jovian system (Voyagers 1 and 2, Galileo, Cassini and New Horizons), along with ground-based observations, have located over 150 active volcanoes on Io so far. Scientists estimate that about another 250 or so are waiting to be discovered.

    Juno has logged nearly 146 million miles (235 million kilometers) since entering Jupiter’s orbit on July 4, 2016. Juno’s 13th science pass will be on July 16.

    Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida. During its mission of exploration, Juno soars low over the planet’s cloud tops — as close as about 2,100 miles (3,400 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

    JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. The Italian Space Agency (ASI), contributed two instruments, a Ka-band frequency translator (KaT) and the Jovian Infrared Auroral Mapper (JIRAM). Lockheed Martin Space, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena, California.

    More information on the Juno mission is available at:

    https://www.nasa.gov/juno

    https://www.missionjuno.swri.edu

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

    Advertisements
     
  • richardmitnick 9:04 am on March 8, 2018 Permalink | Reply
    Tags: , , , , , , NASA Juno   

    From JPL-Caltech: “NASA Juno Findings – Jupiter’s Jet-Streams Are Unearthly” 

    NASA JPL Banner

    JPL-Caltech

    March 7, 2018

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    1
    A New View on Jupiter’s North Pole
    This composite image, derived from data collected by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard NASA’s Juno mission to Jupiter, shows the central cyclone at the planet’s north pole and the eight cyclones that encircle it. Credits: NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

    This computer-generated image is based on an infrared image of Jupiter’s north polar region that was acquired on February 2, 2017, by the Jovian Infrared Auroral Mapper (JIRAM) instrument aboard Juno during the spacecraft’s fourth pass over Jupiter.

    The image shows the structure of the cyclonic pattern observed over Jupiter’s North pole: a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers) across.

    JIRAM is able to collect images in the infrared wavelengths around 5 micrometers (µm) by measuring the intensity of the heat coming out of the planet. The heat from a planet that is radiated into space is called the radiance.

    This image is an enhancement of the original JIRAM image. In order to give the picture a 3-D shape, the enhancement starts from the idea that where the radiance has its highest value, there are no clouds and JIRAM can see deeper into the atmosphere. Consequently, all the other areas of the image are originally shaded more or less by clouds of different thickness. Then, to create these pictures, the originals have been inverted to give the thicker clouds the whitish color and the third dimension as the clouds we normally see here in the Earth’s atmosphere.

    More information about Juno is online at http://www.nasa.gov/juno and http://missionjuno.swri.edu.

    Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. Caltech in Pasadena, California, manages JPL for NASA.

    NASA /Juno

    Data collected by NASA’s Juno mission to Jupiter indicate that the atmospheric winds of the gas-giant planet run deep into its atmosphere and last longer than similar atmospheric processes found here on Earth. The findings will improve understanding of Jupiter’s interior structure, core mass and, eventually, its origin.

    Other Juno science results released today include that the massive cyclones that surround Jupiter’s north and south poles are enduring atmospheric features and unlike anything else encountered in our solar system. The findings are part of a four-article collection on Juno science results being published in the March 8 edition of the journal Nature.

    “These astonishing science results are yet another example of Jupiter’s curve balls, and a testimony to the value of exploring the unknown from a new perspective with next-generation instruments. Juno’s unique orbit and evolutionary high-precision radio science and infrared technologies enabled these paradigm-shifting discoveries,” said Scott Bolton, principal investigator of Juno from the Southwest Research Institute, San Antonio. “Juno is only about one third the way through its primary mission, and already we are seeing the beginnings of a new Jupiter.”

    The depth to which the roots of Jupiter’s famous zones and belts extend has been a mystery for decades. Gravity measurements collected by Juno during its close flybys of the planet have now provided an answer.

    “Juno’s measurement of Jupiter’s gravity field indicates a north-south asymmetry, similar to the asymmetry observed in its zones and belts,” said Luciano Iess, Juno co-investigator from Sapienza University of Rome, and lead author on a Nature paper on Jupiter’s gravity field.

    On a gas planet, such an asymmetry can only come from flows deep within the planet; and on Jupiter, the visible eastward and westward jet streams are likewise asymmetric north and south. The deeper the jets, the more mass they contain, leading to a stronger signal expressed in the gravity field. Thus, the magnitude of the asymmetry in gravity determines how deep the jet streams extend.

    “Galileo viewed the stripes on Jupiter more than 400 years ago,” said Yohai Kaspi, Juno co-investigator from the Weizmann Institute of Science, Rehovot, Israel, and lead author of a Nature paper on Jupiter’s deep weather layer. “Until now, we only had a superficial understanding of them and have been able to relate these stripes to cloud features along Jupiter’s jets. Now, following the Juno gravity measurements, we know how deep the jets extend and what their structure is beneath the visible clouds. It’s like going from a 2-D picture to a 3-D version in high definition.”

    The result was a surprise for the Juno science team because it indicated that the weather layer of Jupiter was more massive, extending much deeper than previously expected. The Jovian weather layer, from its very top to a depth of 1,900 miles (3,000 kilometers), contains about one percent of Jupiter’s mass (about 3 Earth masses).


    For hundreds of years, this gaseous giant planet appeared shrouded in colorful bands of clouds extending from dusk to dawn, referred to as zones and belts. The bands were thought to be an expression of Jovian weather, related to winds blowing eastward and westward at different speeds. This animation illustrates a recent discovery by Juno that demonstrates these east-west flows, also known as jet-streams penetrate deep into the planet’s atmosphere, to a depth of about 1,900 miles (3,000 kilometers). Due to Jupiter’s rapid rotation (Jupiter’s day is about 10 hours), these flows extend into the interior parallel to Jupiter’s axis of rotation, in the form of nested cylinders. Below this layer the flows decay, possibly slowed by Jupiter’s strong magnetic field. The depth of these flows surprised scientists who estimate the total mass involved in these jet streams to be about 1% of Jupiter’s mass (Jupiter’s mass is over 300 times that of Earth). This discovery was revealed by the unprecedented accuracy of Juno’s measurements of the gravity field. Credits: NASA/JPL-Caltech

    “By contrast, Earth’s atmosphere is less than one millionth of the total mass of Earth,” said Kaspi “The fact that Jupiter has such a massive region rotating in separate east-west bands is definitely a surprise.”

    The finding is important for understanding the nature and possible mechanisms driving these strong jet streams. In addition, the gravity signature of the jets is entangled with the gravity signal of Jupiter’s core.

    Another Juno result released today suggests that beneath the weather layer, the planet rotates nearly as a rigid body. “This is really an amazing result, and future measurements by Juno will help us understand how the transition works between the weather layer and the rigid body below,” said Tristan Guillot, a Juno co-investigator from the Université Côte d’Azur, Nice, France, and lead author of the paper on Jupiter’s deep interior. “Juno’s discovery has implications for other worlds in our solar system and beyond. Our results imply that the outer differentially-rotating region should be at least three times deeper in Saturn and shallower in massive giant planets and brown dwarf stars.”

    A truly striking result released in the Nature papers is the beautiful new imagery of Jupiter’s poles captured by Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument. Imaging in the infrared part of the spectrum, JIRAM captures images of light emerging from deep inside Jupiter equally well, night or day. JIRAM probes the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter’s cloud tops.

    “Prior to Juno we did not know what the weather was like near Jupiter’s poles. Now, we have been able to observe the polar weather up-close every two months,” said Alberto Adriani, Juno co-investigator from the Institute for Space Astrophysics and Planetology, Rome, and lead author of the paper. “Each one of the northern cyclones is almost as wide as the distance between Naples, Italy and New York City — and the southern ones are even larger than that. They have very violent winds, reaching, in some cases, speeds as great as 220 mph (350 kph). Finally, and perhaps most remarkably, they are very close together and enduring. There is nothing else like it that we know of in the solar system.”

    Jupiter’s poles are a stark contrast to the more familiar orange and white belts and zones encircling the planet at lower latitudes. Its north pole is dominated by a central cyclone surrounded by eight circumpolar cyclones with diameters ranging from 2,500 to 2,900 miles (4,000 to 4,600 kilometers) across. Jupiter’s south pole also contains a central cyclone, but it is surrounded by five cyclones with diameters ranging from 3,500 to 4,300 miles (5,600 to 7,000 kilometers) in diameter. Almost all the polar cyclones, at both poles, are so densely packed that their spiral arms come in contact with adjacent cyclones. However, as tightly spaced as the cyclones are, they have remained distinct, with individual morphologies over the seven months of observations detailed in the paper.

    “The question is, why do they not merge?” said Adriani. “We know with Cassini data that Saturn has a single cyclonic vortex at each pole. We are beginning to realize that not all gas giants are created equal.”

    Abstracts of the March 8 Juno papers can be found online:

    The measurement of Jupiter’s asymmetric gravity field:

    http://nature.com/articles/doi:10.1038/nature25776

    Jupiter’s atmospheric jet-streams extending thousands of kilometers deep:

    http://nature.com/articles/doi:10.1038/nature25793

    A suppression of differential rotation in Jupiter’s deep interior:

    http://nature.com/articles/doi:10.1038/nature25775

    Clusters of Cyclones Encircling Jupiter’s Poles:

    http://nature.com/articles/doi:10.1038/nature25491

    To date, Juno has completed 10 science passes over Jupiter and logged almost 122 million miles (200 million kilometers), since entering Jupiter’s orbit on July 4, 2016. Juno’s 11th science pass will be on April 1.

    Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida. During its mission of exploration, Juno soars low over the planet’s cloud tops — as close as about 2,200 miles (3,500 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet’s origins, structure, weather layer and magnetosphere.

    https://www.nasa.gov/juno

    https://www.missionjuno.swri.edu

    The public can follow the mission on Facebook and Twitter at:

    https://www.facebook.com/NASAJuno

    More information on Jupiter can be found at:

    https://www.nasa.gov/jupiter

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 2:52 pm on February 24, 2018 Permalink | Reply
    Tags: , , , , , NASA Juno,   

    From NASA Spaceflight: “Juno in good health; decision point nears on mission’s end or extension” 

    NASA Spaceflight

    NASA Spaceflight

    February 23, 2018
    Chris Gebhardt

    Overall, NASA’s Juno spacecraft in orbit of Jupiter is in good health and good condition as the probe heads toward its two-Earth year anniversary in orbit of the giant planet this July. The spacecraft’s good health bodes well in terms of NASA’s upcoming decision of whether to end the mission this summer or extend it, a decision that is largely understood to be related to how the spacecraft holds up to Jupiter’s intense radiation field.

    Juno overview:

    Following a flawless launch and cruise to Jupiter, the Juno spacecraft entered orbit of the gas giant on 4 July 2016, entering a 53 day checkout orbit. Juno was supposed to complete two of these checkout orbits before performing an engine burn to reduce the spacecraft’s orbital period and apojove (farthest point in the craft’s orbit of Jupiter) to its planned 14 day science orbit.

    This engine burn, called the Period Reduction Maneuver, was planned for 18 October 2016. However, during the second 53 day checkout orbit and just four days prior to the Period Reduction Maneuver as NASA worked through tests of Juno’s primary engine, engineers saw something in the data that gave them cause for concern.

    At the time, Rick Nybakken, Juno project manager at NASA’s Jet Propulsion Laboratory said, “Telemetry indicates that two helium check valves that play an important role in the firing of the spacecraft’s main engine did not operate as expected during a command sequence that was initiated yesterday. The valves should have opened in a few seconds, but it took several minutes.”

    Ultimately, the data on Jupiter’s helium valves indicated that it was too risky to attempt ignition of the engine, and NASA decided to leave Juno in its 53 day orbit, significantly changing the mission outlook and timing of science operations.

    Juno’s 14 day science orbit had been designed to allow the craft to meet its minimum mission success, defined by Juno’s pre-launch criteria as 12 science gathering dives close to Jupiter’s atmosphere, within six months of entering the science orbit. Now, a year-and-a-half after entering orbit of Jupiter, Juno has completed just nine science dives (11 perijoves – time of closest approach – overall).

    Under the current mission timeline, Juno will not achieve its 12th science dive – assuming every science instrument continues to function – until 16 July 2018 during the 14th overall perijove, a far cry from the planned 34 science dive perijoves that were planned to be completed by this month (February 2018) had Juno entered its proper 14 day science orbit.

    Current status and mission extension decision:

    At the time of launch and through its cruise to Jupiter, mission managers stated that there was no possibility for extending the Juno mission beyond February 2018 because of the radiation environment expected while the craft was in its 14 day science orbit.

    However, at a post Jupiter orbit insertion news conference on 4/5 July, the Juno team acknowledged that there was a potential to extend the Juno mission if the radiation environment experienced by the craft was less than expected and if all the craft’s science instruments and control systems were still in good condition by February 2018.

    But since Juno has remained in a 53 day orbit and has swung well outside Jupiter’s radiation belts during those orbits, the radiation environment the craft has been exposed to has indeed been less than expected.

    2
    The original orbit plan for Juno. (Credit: NASA/JPL)

    “We have found Jupiter’s radiation environment to be less extreme than expected and that has been beneficial for the spacecraft and instruments,” stated NASA in a response to inquiries regarding Juno’s status made by NASASpaceflight. “Everything is currently operating nominally and we expect that to continue for the foreseeable future.”

    In fact, the craft is quite healthy, with NASA noting that “The Juno spacecraft and instruments are continuing to operate in orbit around Jupiter and are providing us with fascinating science data and images. We have learned that Jupiter is more complex than we anticipated and have been genuinely surprised by some of our findings.”

    In short, Juno has returned amazing data that has surprised scientists and enabled them to learn more about the composition of the largest planet in our solar system despite the craft not being in its intended science orbit. Moreover, Juno’s mission to date can be classed as successful, with the craft anticipated to meet minimum mission success in July 2018 without issue.

    3

    But whether the mission will end or be allowed to continue beyond its 12th perijove science dive in July is currently unknown, with NASA needing to make that decision in the coming months.

    “NASA will make and announce the decision on the continuation of the Juno mission within the next few months. The factors being considered include the health of the spacecraft and instruments, the potential to obtain the anticipated science data, and any challenges and benefits from the longer, 53-day orbit,” noted NASA.

    Should the decision be made to end Juno’s mission this year, the craft will, as planned, complete its 12th science perijove, 14th overall perijove, on 16 July 2018 before embarking on its final orbit that will align the spacecraft for a destructive entry into Jupiter’s atmosphere 53 days later.

    Should the mission receive permission – and funding – to continue, Juno will remain in its 53 day current orbit, completing additional perijove science dives and returning that data and images to its science teams back on Earth… all while ensuring spacecraft health for the all-too-important end of mission destructive dive into Jupiter’s atmosphere to protect the planet’s moons.

    Selected science returns thus far:

    However, early science results have revealed Jupiter’s complex, gigantic, turbulent environment, with Earth-sized polar cyclones, plunging storm systems that travel deep into the heart of the gas giant, and a mammoth, lumpy magnetic field that may indicate it was generated closer to the planet’s surface than previously thought.

    “We knew going in that Jupiter would throw us some curves,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute. “There is so much going on here that we didn’t expect that we have had to take a step back and begin to rethink of this as a whole new Jupiter.”

    Among the findings that have so far challenged assumptions are those provided by Juno’s imager, JunoCam. The images show both of Jupiter’s poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together.

    “We’re puzzled as to how they could be formed, how stable the configuration is, and why Jupiter’s north pole doesn’t look like the south pole,” said Bolton. “We’re questioning whether this is a dynamic system, and are we seeing just one stage, and over the next year, we’re going to watch it disappear, or is this a stable configuration and these storms are circulating around one another?”

    4

    Another surprise has come from Juno’s Microwave Radiometer, which samples the thermal microwave radiation from Jupiter’s atmosphere from the top of the ammonia clouds to deep within its atmosphere. Data from the Microwave Radiometer indicates that Jupiter’s iconic atmospheric belts near the equator have ammonia that penetrates as far down as the Microwave Radiometer can see (a few hundred miles/kilometers) while belts and zones at other latitudes seem to evolve into other structures.

    Additionally, measurements of Jupiter’s magnetosphere from Juno’s magnetometer investigation indicate that the planet’s magnetic field is even stronger than models expected and more irregular in shape. The magnetometer data indicates that the magnetic field greatly exceeds expectations at 7.766 Gauss, about 10 times greater than the strongest magnetic field found on Earth.

    “Already we see that the magnetic field looks lumpy: it is stronger in some places and weaker in others,” said Jack Connerney, Juno deputy principal investigator and the lead for the mission’s magnetic field investigation at NASA’s Goddard Space Flight Center. “This uneven distribution suggests that the field might be generated by dynamo action closer to the surface, above the layer of metallic hydrogen.”

    Continuing the investigation of the planet itself, Juno has also returned information on Jupiter’s iconic Great Red Spot – a raging anticyclonic atmospheric storm 1.3 times the width of Earth. In July 2017, Juno flew directly over the Great Red Spot, returning numerous scientific data points on the storm, which indicates that the feature penetrates well below the visible cloud layer.

    “Juno found that the Great Red Spot’s roots go 50 to 100 times deeper than Earth’s oceans (200 miles or 300 kilometers) and are warmer at the base than they are at the top,” said Andy Ingersoll, professor of planetary science at Caltech and a Juno co-investigator. “Winds are associated with differences in temperature, and the warmth of the spot’s base explains the ferocious winds we see at the top of the atmosphere.”

    In addition to discoveries regarding the Great Red Spot, Juno has also detected a new radiation zone around Jupiter’s equator. “The closer you get to Jupiter, the weirder it gets,” said Heidi Becker, Juno’s radiation monitoring investigation lead at JPL.

    5

    “We knew the radiation would probably surprise us, but we didn’t think we’d find a new radiation zone that close to the planet. We only found it because Juno’s unique orbit around Jupiter allows it to get really close to the cloud tops during science collection flybys, and we literally flew through it.”

    The new zone was identified by the Jupiter Energetic Particle Detector Instrument investigation. The particles are believed to be derived from energetic neutral atoms (fast-moving ions with no electric charge) created in the gas around the Jupiter moons Io and Europa. The neutral atoms then become ions as their electrons are stripped away by interaction with the upper atmosphere of Jupiter.

    Moving slightly away from the planet, Juno has also returned exciting data regarding Jupiter’s auroral displays. Presently, Juno scientists have observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras – only not in ways researchers expected.

    7

    Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard Juno, a team led by Barry Mauk of the Johns Hopkins University Applied Physics Laboratory, observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts.

    This is 10 to 30 times higher than the largest auroral potentials observed at Earth. Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What’s puzzling is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.

    “At Jupiter, the brightest auroras are caused by some kind of turbulent acceleration process that we do not understand very well,” said Mauk. “There are hints in our latest data indicating that as the power density of the auroral generation becomes stronger and stronger, the process becomes unstable and a new acceleration process takes over. But we’ll have to keep looking at the data.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASASpaceFlight.com, now in its eighth year of operations, is already the leading online news resource for everyone interested in space flight specific news, supplying our readership with the latest news, around the clock, with editors covering all the leading space faring nations.

    Breaking more exclusive space flight related news stories than any other site in its field, NASASpaceFlight.com is dedicated to expanding the public’s awareness and respect for the space flight industry, which in turn is reflected in the many thousands of space industry visitors to the site, ranging from NASA to Lockheed Martin, Boeing, United Space Alliance and commercial space flight arena.

    With a monthly readership of 500,000 visitors and growing, the site’s expansion has already seen articles being referenced and linked by major news networks such as MSNBC, CBS, The New York Times, Popular Science, but to name a few.

     
  • richardmitnick 12:13 pm on September 9, 2017 Permalink | Reply
    Tags: APL JEDI-built Jupiter Energetic Particle Detector Instrument, Electric potentials, , Jupiter’s Auroras Present a Powerful Mystery, , NASA Juno   

    From JHUAPL: “Jupiter’s Auroras Present a Powerful Mystery” 

    Johns Hopkins
    Johns Hopkins University

    Johns Hopkins Applied Physics Lab bloc
    JHU Applied Physics Lab

    September 6, 2017
    Michael Buckley
    Johns Hopkins Applied Physics Laboratory,
    240-228-7536
    michael.buckley@jhuapl.edu

    D. C. Agle
    NASA Jet Propulsion Laboratory,
    818-393-9011
    david.c.agle@jpl.nasa.gov

    NASA/Juno

    1
    This image, created with data from Juno’s Ultraviolet Spectrograph, marks the path of Juno’s readings of Jupiter’s auroras, highlighting the electron measurements that show the discovery of the so-called discrete auroral acceleration processes indicated by the “inverted Vs” in the lower panel. This signature points to powerful magnetic field-aligned electric potentials that accelerate electrons toward the atmosphere to energies that are far greater than what drive the most intense auroras at Earth — and scientists are looking into why the same processes are not the main factor in Jupiter’s most powerful auroras. Credit: NASA/SwRI/Randy Gladstone

    2
    Ultraviolet auroral images of Jupiter from the Juno Ultraviolet Spectrograph instrument. The images contain intensities from three spectral ranges, false-colored red, green and blue, providing qualitative information on precipitating electron energies (high, medium and low, respectively). Credit: NASA/SwRI/Randy Gladstone

    3
    Reconstructed view of Jupiter’s northern lights through the filters of the Juno Ultraviolet Spectrograph instrument on Dec. 11, 2016, as the Juno spacecraft approached Jupiter, passed over its poles, and plunged toward the equator. Such measurements present a real challenge for the spacecraft’s science instruments: Juno flies over Jupiter’s poles at 30 miles (50 kilometers) per second — more than 100,000 miles per hour — speeding past auroral forms in a matter of seconds. Credit: NASA/Bertrand Bonfond

    Scientists on NASA’s Juno mission have observed massive amounts of energy swirling over Jupiter’s polar regions that contribute to the giant planet’s powerful auroras — only not in ways the researchers expected.

    Examining data collected by the ultraviolet spectrograph and energetic-particle detector instruments aboard the Jupiter-orbiting Juno spacecraft, a team led by Barry Mauk of the Johns Hopkins University Applied Physics Laboratory (APL), Laurel, Maryland, observed signatures of powerful electric potentials, aligned with Jupiter’s magnetic field, that accelerate electrons toward the Jovian atmosphere at energies up to 400,000 electron volts. This is 10 to 30 times higher than the largest auroral potentials observed at Earth, where only several thousands of volts are typically needed to generate the most intense auroras — known as discrete auroras — the dazzling, twisting, snake-like northern and southern lights seen in places like Alaska and Canada, northern Europe, and many other northern and southern polar regions.

    Jupiter has the most powerful auroras in the solar system, so the team was not surprised that electric potentials play a role in their generation. What’s puzzling the researchers, Mauk said, is that despite the magnitudes of these potentials at Jupiter, they are observed only sometimes and are not the source of the most intense auroras, as they are at Earth.

    “At Jupiter, the brightest auroras are caused by some kind of turbulent acceleration process that we do not understand very well,” said Mauk, who leads the investigation team for the APL-built Jupiter Energetic Particle Detector Instrument (JEDI). “There are hints in our latest data indicating that as the power density of the auroral generation becomes stronger and stronger, the process becomes unstable and a new acceleration process takes over. But we’ll have to keep looking at the data.”

    Scientists consider Jupiter to be a physics lab of sorts for worlds beyond our solar system, saying the ability of Jupiter to accelerate charged particles to immense energies has implications for how more distant astrophysical systems accelerate particles. But what they learn about the forces driving Jupiter’s auroras and shaping its space weather environment also has practical implications in our own planetary backyard.

    “The highest energies that we are observing within Jupiter’s auroral regions are formidable. These energetic particles that create the auroras are part of the story in understanding Jupiter’s radiation belts, which pose such a challenge to Juno and to upcoming spacecraft missions to Jupiter under development,” said Mauk. “Engineering around the debilitating effects of radiation has always been a challenge to spacecraft engineers for missions at Earth and elsewhere in the solar system. What we learn here, and from spacecraft like NASA’s Van Allen Probes and MMS that are exploring Earth’s magnetosphere, will teach us a lot about space weather and protecting spacecraft and astronauts in harsh space environments. Comparing the processes at Jupiter and Earth is incredibly valuable in testing our ideas of how planetary physics works.”

    Mauk and colleagues present their findings in the Sept. 7 issue of the journal Nature.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of SwRI. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Applied Physics Lab Campus

    Founded on March 10, 1942—just three months after the United States entered World War II—APL was created as part of a federal government effort to mobilize scientific resources to address wartime challenges.

    APL was assigned the task of finding a more effective way for ships to defend themselves against enemy air attacks. The Laboratory designed, built, and tested a radar proximity fuze (known as the VT fuze) that significantly increased the effectiveness of anti-aircraft shells in the Pacific—and, later, ground artillery during the invasion of Europe. The product of the Laboratory’s intense development effort was later judged to be, along with the atomic bomb and radar, one of the three most valuable technology developments of the war.

    On the basis of that successful collaboration, the government, The Johns Hopkins University, and APL made a commitment to continue their strategic relationship. The Laboratory rapidly became a major contributor to advances in guided missiles and submarine technologies. Today, more than seven decades later, the Laboratory’s numerous and diverse achievements continue to strengthen our nation.

    APL continues to relentlessly pursue the mission it has followed since its first day: to make critical contributions to critical challenges for our nation.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 8:21 am on July 14, 2017 Permalink | Reply
    Tags: , , , , , JunoCam, NASA Juno, The Great Red Spot   

    From JPL-Caltech: “NASA’s Juno Spacecraft Spots Jupiter’s Great Red Spot” Great Citizen Science 

    NASA JPL Banner

    JPL-Caltech

    July 12, 2017
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011 / 818-354-6278
    agle@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    NASA/Juno

    1
    This enhanced-color image of Jupiter’s Great Red Spot was created by citizen scientist Jason Major using data from the JunoCam imager on NASA’s Juno spacecraft. Credits: NASA/JPL-Caltech/SwRI/MSSS/Jason Major

    2
    This enhanced-color image of Jupiter’s Great Red Spot was created by citizen scientist Kevin Gill using data from the JunoCam imager on NASA’s Juno spacecraft. Credits: NASA/JPL-Caltech/SwRI/MSSS/Kevin Gill

    3
    This enhanced-color image of Jupiter’s Great Red Spot was created by citizen scientist Gerald Eichstädt using data from the JunoCam imager on NASA’s Juno spacecraft. Credits: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt

    Images of Jupiter’s Great Red Spot reveal a tangle of dark, veinous clouds weaving their way through a massive crimson oval. The JunoCam imager aboard NASA’s Juno mission snapped pics of the most iconic feature of the solar system’s largest planetary inhabitant during its Monday (July 10) flyby.

    1
    JunoCam. Malin Space Science Systems, Inc. (MSSS), has delivered the camera it has developed for NASA’s 2011 Juno mission to Jupiter. This camera, called Junocam, is designed to take hundreds of color images of the giant planet, some at resolutions never before seen, as the spacecraft orbits Jupiter, coming within 5000 km of the gas giant’s cloudtops

    The images of the Great Red Spot were downlinked from the spacecraft’s memory on Tuesday and placed on the mission’s JunoCam website Wednesday morning.

    “For hundreds of years scientists have been observing, wondering and theorizing about Jupiter’s Great Red Spot,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Now we have the best pictures ever of this iconic storm. It will take us some time to analyze all the data from not only JunoCam, but Juno’s eight science instruments, to shed some new light on the past, present and future of the Great Red Spot.”

    As planned by the Juno team, citizen scientists took the raw images of the flyby from the JunoCam site and processed them, providing a higher level of detail than available in their raw form. The citizen-scientist images, as well as the raw images they used for image processing, can be found at:

    https://www.missionjuno.swri.edu/junocam/processing

    “I have been following the Juno mission since it launched,” said Jason Major, a JunoCam citizen scientist and a graphic designer from Warwick, Rhode Island. “It is always exciting to see these new raw images of Jupiter as they arrive. But it is even more thrilling to take the raw images and turn them into something that people can appreciate. That is what I live for.”

    Measuring in at 10,159 miles (16,350 kilometers) in width (as of April 3, 2017) Jupiter’s Great Red Spot is 1.3 times as wide as Earth. The storm has been monitored since 1830 and has possibly existed for more than 350 years. In modern times, the Great Red Spot has appeared to be shrinking.

    All of Juno’s science instruments and the spacecraft’s JunoCam were operating during the flyby, collecting data that are now being returned to Earth. Juno’s next close flyby of Jupiter will occur on Sept. 1.

    Juno reached perijove (the point at which an orbit comes closest to Jupiter’s center) on July 10 at 6:55 p.m. PDT (9:55 p.m. EDT). At the time of perijove, Juno was about 2,200 miles (3,500 kilometers) above the planet’s cloud tops. Eleven minutes and 33 seconds later, Juno had covered another 24,713 miles (39,771 kilometers), and was passing directly above the coiling, crimson cloud tops of the Great Red Spot. The spacecraft passed about 5,600 miles (9,000 kilometers) above the clouds of this iconic feature.

    Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida. During its mission of exploration, Juno soars low over the planet’s cloud tops — as close as about 2,100 miles (3,400 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet’s origins, structure, atmosphere and magnetosphere.

    Early science results from NASA’s Juno mission portray the largest planet in our solar system as a turbulent world, with an intriguingly complex interior structure, energetic polar aurora, and huge polar cyclones.

    “These highly-anticipated images of Jupiter’s Great Red Spot are the ‘perfect storm’ of art and science. With data from Voyager, Galileo, New Horizons, Hubble and now Juno, we have a better understanding of the composition and evolution of this iconic feature,” said Jim Green, NASA’s director of planetary science. “We are pleased to share the beauty and excitement of space science with everyone.”

    JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena. More information on the Juno mission is available at:

    https://www.nasa.gov/juno

    http://missionjuno.org

    The public can follow the mission on Facebook and Twitter at:

    https://www.facebook.com/NASAJuno

    More information on the Great Red Spot can be found at:

    https://www.nasa.gov/feature/goddard/jupiter-s-great-red-spot-a-swirling-mystery

    https://www.nasa.gov/feature/jupiter-s-great-red-spot-likely-a-massive-heat-source

    More information on Jupiter can be found at:

    https://www.nasa.gov/jupiter

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 6:28 am on July 7, 2017 Permalink | Reply
    Tags: , , , , , NASA Juno,   

    From NASA: “Earth-based Views of Jupiter to Enhance Juno Flyby” 

    NASA image
    NASA

    June 30, 2017

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Guy Webster
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6278
    guy.webster@jpl.nasa.gov

    Deb Schmid
    Southwest Research Institute, San Antonio
    210-522-2254
    dschmid@swri.org

    Yuko Kakazu
    Subaru Telescope, Hilo, Hawaii
    808-934-5960
    kakazu@naoj.org

    Peter Michaud
    Gemini Observatory, Hilo, Hawaii
    808-974-2510
    pmichaud@gemini.edu

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    1
    This animation shows Jupiter as revealed by a powerful telescope and a mid-infrared filter sensitive to the giant planet’s tropospheric temperatures and cloud thickness. It combines observations made on Jan. 14, 2017, using the Subaru Telescope in Hawaii. Credits: NAOJ/NASA/JPL-Caltech

    NAOJ/Subaru Telescope at Mauna Kea Hawaii, USA

    Telescopes in Hawaii have obtained new images of Jupiter and its Great Red Spot, which will assist the first-ever close-up study of the Great Red Spot, planned for July 10. On that date, NASA’s Juno spacecraft will fly directly over the giant planet’s most famous feature at an altitude of only about 5,600 miles (9,000 kilometers).

    2
    This composite, false-color infrared image of Jupiter reveals haze particles over a range of altitudes, as seen in reflected sunlight. It was taken using the Gemini North telescope in Hawaii on May 18, 2017, in collaboration with observations of Jupiter by NASA’s Juno mission. Credits: Gemini Observatory/AURA/NASA/JPL-Caltech

    Gemini/North telescope at Mauna Kea, Hawaii, USA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:45 am on January 24, 2017 Permalink | Reply
    Tags: Experiment resolves mystery about wind flows on Jupiter, , NASA Juno,   

    From UCLA: “Experiment resolves mystery about wind flows on Jupiter” 

    UCLA bloc

    UCLA

    January 23, 2017
    Katherine Kornei

    1
    Views Jupiter’s south pole (upper left and lower right) and images from the lab experiment to re-create the planet’s winds (upper right and lower left). Jonathan Aurnou.

    Jupiter’s colorful, swirling winds known as “jets” have long puzzled astronomers.

    One mystery has been whether the jets exist only in the planet’s upper atmosphere — much like the Earth’s own jet streams — or whether they plunge into Jupiter’s gaseous interior. If the latter is true, it could reveal clues about the planet’s interior structure and internal dynamics.

    Now, UCLA geophysicist Jonathan Aurnou and collaborators in Marseille, France, have simulated Jupiter’s jets in the laboratory for the first time. Their work demonstrates that the winds likely extend thousands of miles below Jupiter’s visible atmosphere.

    This research is published online today in Nature Physics.

    “We can make these features in a computer, but we couldn’t make them happen in a lab,” said Aurnou, a UCLA professor of Earth, planetary and space sciences, who has spent the past decade studying computer models of swirling winds. “If we have a theoretical understanding of a system, we should be able to create an analog model.”

    The challenge to re-creating swirling winds in the lab was building a model of a planet with three key attributes believed to be necessary for jets to form: rapid rotation, turbulence and a “curvature effect” that mimics the spherical shape of a planet. Previous attempts to create jets in a lab often failed because researchers couldn’t spin their models fast enough or create enough turbulence, Aurnou said.

    The breakthrough for Aurnou’s team was a new piece of laboratory equipment. The researchers used a table built on air bearings that can spin at 120 revolutions per minute and support a load of up to 1,000 kilograms (about 2,200 pounds), meaning that it could spin a large tank of fluid at high speed in a way that mimics Jupiter’s rapid rotation.

    The scientists filled an industrial-sized garbage can with 400 liters (about 105 gallons) of water and placed it on the table. When the container spun, water was thrown against its sides, forming a parabola that approximated the curved surface of Jupiter.

    [No image of experimental equipment is available.]

    “The faster it went, the better we mimicked the massively strong effects of rotation and curvature that exists on planets,” Aurnou said. But the team found that 75 revolutions per minute was a practical limit: fast enough to force the liquid into a strongly curved shape but slow enough to keep water from spilling out.

    While the can was spinning, scientists used a pump below its false floor to circulate water through a series of inlet and outlet holes, which created turbulence — one of the three critical conditions for the experiment. That turbulent energy was channeled into making jets, and within minutes the water flow had changed to six concentric flows moving in alternating directions.

    “This is the first time that anyone has demonstrated that strong jets that look like those on Jupiter can develop in a real fluid,” Aurnou said.

    The researchers inferred that the jets were deep because they could see them on the surface of the water, even though they had injected turbulence at the bottom.

    The researchers are looking forward to testing their predictions with real data from Jupiter, and they won’t have to wait long: NASA’s Juno space probe is orbiting Jupiter right now, collecting data about its atmosphere, magnetic field and interior.

    NASA/Juno
    NASA/Juno

    Initial results from the Juno mission were presented at the American Geophysical Union meeting in December in San Francisco, and Aurnou was there.

    “The Juno data from the very first flyby of Jupiter showed that structures of ammonia gas extended over 60 miles into Jupiter’s interior, which was a big shock to the Juno science team,” Aurnou said. “UCLA researchers will be playing an important role in explaining the data.”

    This year, Aurnou and his team will use supercomputers at Argonne National Laboratory in Argonne, Illinois, to simulate the dynamics of Jupiter’s interior and atmosphere.

    ANL Cray Aurora supercomputer
    Cray Aurora supercomputer at the Argonne Leadership Computing Facility

    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility
    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility

    They’ll also continue their work at the laboratory in Marseilles to make the spinning table simulation more complex and more realistic.

    One goal is to add a thin, stable layer of fluid on top of the spinning water, which would function like the thin outer layer of Jupiter’s atmosphere that’s responsible for the planet’s weather. The researchers believe this will help them simulate features like Jupiter’s famous Great Red Spot.

    The research was funded by the National Science Foundation Geophysics Program, the French Agence Nationale pour la Recherche and the Aix-Marseille University Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 2:05 pm on August 26, 2016 Permalink | Reply
    Tags: , , , , NASA Juno   

    From JPL-Caltech: “Jupiter’s Extended Family? A Billion or More” 

    NASA JPL Banner

    JPL-Caltech

    August 26, 2016
    News Media Contact
    Preston Dyches
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-7013
    preston.dyches@jpl.nasa.gov

    Written by Pat Brennan
    NASA Exoplanet Program

    1
    Comparing Jupiter with Jupiter-like planets that orbit other stars can teach us about those distant worlds, and reveal new insights about our own solar system’s formation and evolution. (Illustration) Credit: NASA/JPL-Caltech

    Our galaxy is home to a bewildering variety of Jupiter-like worlds: hot ones, cold ones, giant versions of our own giant, pint-sized pretenders only half as big around.

    Astronomers say that in our galaxy alone, a billion or more such Jupiter-like worlds could be orbiting stars other than our sun. And we can use them to gain a better understanding of our solar system and our galactic environment, including the prospects for finding life.

    It turns out the inverse is also true — we can turn our instruments and probes to our own backyard, and view Jupiter as if it were an exoplanet to learn more about those far-off worlds. The best-ever chance to do this is now, with Juno, a NASA probe the size of a basketball court, which arrived at Jupiter in July to begin a series of long, looping orbits around our solar system’s largest planet. Juno is expected to capture the most detailed images of the gas giant ever seen. And with a suite of science instruments, Juno will plumb the secrets beneath Jupiter’s roiling atmosphere.

    NASA/Juno
    NASA/Juno

    It will be a very long time, if ever, before scientists who study exoplanets — planets orbiting other stars — get the chance to watch an interstellar probe coast into orbit around an exo-Jupiter, dozens or hundreds of light-years away. But if they ever do, it’s a safe bet the scene will summon echoes of Juno.

    “The only way we’re going to ever be able to understand what we see in those extrasolar planets is by actually understanding our system, our Jupiter itself,” said David Ciardi, an astronomer with NASA’s Exoplanet Science Institute (NExSci) at Caltech.

    2

    Not all Jupiters are created equal

    Juno’s detailed examination of Jupiter could provide insights into the history, and future, of our solar system. The tally of confirmed exoplanets so far includes hundreds in Jupiter’s size-range, and many more that are larger or smaller.

    The so-called hot Jupiters acquired their name for a reason: They are in tight orbits around their stars that make them sizzling-hot, completing a full revolution — the planet’s entire year — in what would be a few days on Earth. And they’re charbroiled along the way.

    But why does our solar system lack a “hot Jupiter?” Or is this, perhaps, the fate awaiting our own Jupiter billions of years from now — could it gradually spiral toward the sun, or might the swollen future sun expand to engulf it?

    Not likely, Ciardi says; such planetary migrations probably occur early in the life of a solar system.

    “In order for migration to occur, there needs to be dusty material within the system,” he said. “Enough to produce drag. That phase of migration is long since over for our solar system.”

    Jupiter itself might already have migrated from farther out in the solar system, although no one really knows, he said.

    Looking back in time

    If Juno’s measurements can help settle the question, they could take us a long way toward understanding Jupiter’s influence on the formation of Earth — and, by extension, the formation of other “Earths” that might be scattered among the stars.

    “Juno is measuring water vapor in the Jovian atmosphere,” said Elisa Quintana, a research scientist at the NASA Ames Research Center in Moffett Field, California. “This allows the mission to measure the abundance of oxygen on Jupiter. Oxygen is thought to be correlated with the initial position from which Jupiter originated.”

    If Jupiter’s formation started with large chunks of ice in its present position, then it would have taken a lot of water ice to carry in the heavier elements which we find in Jupiter. But a Jupiter that formed farther out in the solar system, then migrated inward, could have formed from much colder ice, which would carry in the observed heavier elements with a smaller amount of water. If Jupiter formed more directly from the solar nebula, without ice chunks as a starter, then it should contain less water still. Measuring the water is a key step in understanding how and where Jupiter formed.

    That’s how Juno’s microwave radiometer, which will measure water vapor, could reveal Jupiter’s ancient history.

    “If Juno detects a high abundance of oxygen, it could suggest that the planet formed farther out,” Quintana said.

    A probe dropped into Jupiter by NASA’s Galileo spacecraft in 1995 found high winds and turbulence, but the expected water seemed to be absent. Scientists think Galileo’s one-shot probe just happened to drop into a dry area of the atmosphere, but Juno will survey the entire planet from orbit.

    NASA Galileo
    NASA/Galileo

    The chaotic early years

    Where Jupiter formed, and when, also could answer questions about the solar system’s “giant impact phase,” a time of crashes and collisions among early planet-forming bodies that eventually led to the solar system we have today.

    Our solar system was extremely accident-prone in its early history — perhaps not quite like billiard balls caroming around, but with plenty of pileups and fender-benders.

    “It definitely was a violent time,” Quintana said. “There were collisions going on for tens of millions of years. For example, the idea of how the moon formed is that a proto-Earth and another body collided; the disk of debris from this collision formed the moon.

    Theia collision with Earth
    Theia collision with Earth. William K. Hartmann

    And some people think Mercury, because it has such a huge iron core, was hit by something big that stripped off its mantle; it was left with a large core in proportion to its size.”

    Part of Quintana’s research involves computer modeling of the formation of planets and solar systems. Teasing out Jupiter’s structure and composition could greatly enhance such models, she said. Quintana already has modeled our solar system’s formation, with Jupiter and without, yielding some surprising findings.

    “For a long time, people thought Jupiter was essential to habitability because it might have shielded Earth from the constant influx of impacts [during the solar system’s early days] which could have been damaging to habitability,” she said. “What we’ve found in our simulations is that it’s almost the opposite. When you add Jupiter, the accretion times are faster and the impacts onto Earth are far more energetic. Planets formed within about 100 million years; the solar system was done growing by that point,” Quintana said.

    “If you take Jupiter out, you still form Earth, but on timescales of billions of years rather than hundreds of millions. Earth still receives giant impacts, but they’re less frequent and have lower impact energies,” she said.

    Getting to the core

    Another critical Juno measurement that could shed new light on the dark history of planetary formation is the mission’s gravity science experiment. Changes in the frequency of radio transmissions from Juno to NASA’s Deep Space Network will help map the giant planet’s gravitational field.

    NASA Deep Space Network Canberra, Australia
    “NASA Deep Space Network Canberra, Australia, radio telescopes on watch.

    Knowing the nature of Jupiter’s core could reveal how quickly the planet formed, with implications for how Jupiter might have affected Earth’s formation.

    And the spacecraft’s magnetometers could yield more insight into the deep internal structure of Jupiter by measuring its magnetic field.

    “We don’t understand a lot about Jupiter’s magnetic field,” Ciardi said. “We think it’s produced by metallic hydrogen in the deep interior. Jupiter has an incredibly strong magnetic field, much stronger than Earth’s.”

    Mapping Jupiter’s magnetic field also might help pin down the plausibility of proposed scenarios for alien life beyond our solar system.

    Earth’s magnetic field is thought to be important to life because it acts like a protective shield, channeling potentially harmful charged particles and cosmic rays away from the surface.

    4
    Earth’s magnetic field, NASA

    “If a Jupiter-like planet orbits its star at a distance where liquid water could exist, the Jupiter-like planet itself might not have life, but it might have moons which could potentially harbor life,” he said.

    An exo-Jupiter’s intense magnetic field could protect such life forms, he said. That conjures visions of Pandora, the moon in the movie “Avatar” inhabited by 10-foot-tall humanoids who ride massive, flying predators through an exotic alien ecosystem.

    Juno’s findings will be important not only to understanding how exo-Jupiters might influence the formation of exo-Earths, or other kinds of habitable planets. They’ll also be essential to the next generation of space telescopes that will hunt for alien worlds. The Transiting Exoplanet Survey Satellite (TESS) will conduct a survey of nearby bright stars for exoplanets beginning in June 2018, or earlier.

    NASA/TESS
    NASA/TESS

    The James Webb Space Telescope, expected to launch in 2018, and WFIRST (Wide-Field Infrared Survey Telescope), with launch anticipated in the mid-2020s, will attempt to take direct images of giant planets orbiting other stars.

    NASA/ESA/CSA Webb Telescope annotated
    NASA/ESA/CSA Webb Telescope annotated

    NASA/WFIRST
    NASA/WFIRST

    “We’re going to be able to image planets and get spectra,” or light profiles from exoplanets that will reveal atmospheric gases, Ciardi said. Juno’s revelations about Jupiter will help scientists to make sense of these data from distant worlds.

    “Studying our solar system is about studying exoplanets,” he said. “And studying exoplanets is about studying our solar system. They go together.”

    To learn more about a few of the known exo-Jupiters, visit:

    https://exoplanets.nasa.gov/alien-worlds/strange-new-worlds

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    jpl

    NASA image

     
  • richardmitnick 2:37 pm on July 14, 2016 Permalink | Reply
    Tags: Application Specific Integrated Circuits, , , , NASA Juno   

    From Goddard: “Tiny Microchips Enable Extreme Science” 

    NASA Goddard Banner

    NASA Goddard Space Flight Center

    July 12, 2016
    Lina Tran
    kathalina.k.tran@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    The Application Specific Integrated Circuits, or ASICs, are integral to JEDI’s investigation of unique space environments like that surrounding Jupiter. They will measure the speed, energy and position of particles and photons in space with incredible accuracy.
    Credits: NASA’s Goddard Space Flight Center/Joy Ng

    As NASA spacecraft explore deeper into space, onboard computer electronics must not only be smaller and faster, but also be prepared for extreme conditions. A prime example is shown in these images: a family of Application Specific Integrated Circuits, or ASICs, microchips specifically designed to measure the particles in space – the very stuff that can create radiation hazards for satellite computers.

    These tiny, radiation-resistant chips play a crucial role in one of the instruments nestled inside the radiation-shielded electronics vault on NASA’s Juno spacecraft – which entered Jupiter’s orbit on July 4.

    NASA/Juno
    NASA/Juno

    The microchips aboard Juno are part of the Jupiter Energetic Particle Detector Instrument, or JEDI, a cutting-edge instrument that will measure the composition of the immense magnetic system surrounding the planet, called a magnetosphere.

    2
    The image shows the magnetic field of Jupiter based on a realistic model[1] and co–rotation enforcing currents.[2] Positions of the Galilean moons are also shown. Ruslik0

    The ASICs measure the speed, energy and position of particles and photons in space with time accuracy down to a fraction of a billionth of a second. The largest chip is barely the size of a saltine cracker. Without these chips, satellite electronics would be much heavier and require substantially more shielding and power – potential problems for any satellites traveling into space.

    “Before my work, you had electronics that were very big – over two pounds,” said Nikolaos Paschalidis, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Paschalidis conceived of and first developed ASICs when he worked at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “A great deal of my early work was on miniaturization of space instruments and systems with advanced technologies like electronics onto a microchip.”

    Paschalidis is the chief technologist for heliophysics at Goddard. Heliophysics is the study of the sun and how it affects the particles and energy in space. Far from being empty, the space surrounding planets is filled with fast moving particles and a complex electromagnetic system often driven by the sun. Near Jupiter, this system includes intense aurora and giant radiation belts surrounding the gas giant. It’s the job of JEDI, led by Barry Mauk at the Johns Hopkins Applied Physics Laboratory, to observe this complex system.

    Better understanding of a planet’s space environment helps us understand how it was formed and continues to evolve. Moreover, it helps us learn more about how to prepare spacecraft to travel through such harsh radiation conditions.

    Juno isn’t the first spacecraft to carry these microchips. ASICs have been incorporated in many other NASA missions to study a diverse range of space environments from close to the sun to the heart of Earth’s radiation belts to the edge of the solar system. However, the Juno mission required a significant advance in ASIC performance over prior spaceflight electronics: The Juno ASICs were specially developed to be radiation-hardened, enabling them to withstand the harsh, radiative environment of Jupiter’s magnetosphere where high-energy particles constantly bombard objects and deposit large doses of radiation.

    Goddard Heliophysicist Waits Nearly 10 Years for Pluto Flyby

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 5:57 am on July 5, 2016 Permalink | Reply
    Tags: , , , , NASA Juno   

    From JPL: “NASA’s Juno Spacecraft in Orbit Around Mighty Jupiter” 

    NASA JPL Banner

    JPL-Caltech

    July 4, 2016
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Dwayne C. Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    1
    The Juno team celebrates at NASA’s Jet Propulsion Laboratory in Pasadena, California, after receiving data indicating that NASA’s Juno mission entered orbit around Jupiter. Rick Nybakken, Juno project manager at JPL, is seen at the center hugging JPL’s acting director for solar system exploration, Richard Cook. Image Credit: NASA/JPL-Caltech

    After an almost five-year journey to the solar system’s largest planet, NASA’s Juno spacecraft successfully entered Jupiter’s orbit during a 35-minute engine burn. Confirmation that the burn had completed was received on Earth at 8:53 pm. PDT (11:53 p.m. EDT) Monday, July 4.

    NASA/Juno
    Juno

    “Independence Day always is something to celebrate, but today we can add to America’s birthday another reason to cheer — Juno is at Jupiter,” said NASA Administrator Charlie Bolden. “And what is more American than a NASA mission going boldly where no spacecraft has gone before? With Juno, we will investigate the unknowns of Jupiter’s massive radiation belts to delve deep into not only the planet’s interior, but into how Jupiter was born and how our entire solar system evolved.”

    Confirmation of a successful orbit insertion was received from Juno tracking data monitored at the navigation facility at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, as well as at the Lockheed Martin Juno operations center in Denver. The telemetry and tracking data were received by NASA’s Deep Space Network antennas in Goldstone, California, and Canberra, Australia.

    “This is the one time I don’t mind being stuck in a windowless room on the night of the Fourth of July,” said Scott Bolton, principal investigator of Juno from Southwest Research Institute in San Antonio. “The mission team did great. The spacecraft did great. We are looking great. It’s a great day.”

    Preplanned events leading up to the orbital insertion engine burn included changing the spacecraft’s attitude to point the main engine in the desired direction and then increasing the spacecraft’s rotation rate from 2 to 5 revolutions per minute (RPM) to help stabilize it..

    The burn of Juno’s 645-Newton Leros-1b main engine began on time at 8:18 p.m. PDT (11:18 p.m. EDT), decreasing the spacecraft’s velocity by 1,212 mph (542 meters per second) and allowing Juno to be captured in orbit around Jupiter. Soon after the burn was completed, Juno turned so that the sun’s rays could once again reach the 18,698 individual solar cells that give Juno its energy.

    “The spacecraft worked perfectly, which is always nice when you’re driving a vehicle with 1.7 billion miles on the odometer,” said Rick Nybakken, Juno project manager from JPL. “Jupiter orbit insertion was a big step and the most challenging remaining in our mission plan, but there are others that have to occur before we can give the science team members the mission they are looking for.”

    Over the next few months, Juno’s mission and science teams will perform final testing on the spacecraft’s subsystems, final calibration of science instruments and some science collection.

    “Our official science collection phase begins in October, but we’ve figured out a way to collect data a lot earlier than that,” said Bolton. “Which when you’re talking about the single biggest planetary body in the solar system is a really good thing. There is a lot to see and do here.”

    Juno’s principal goal is to understand the origin and evolution of Jupiter. With its suite of nine science instruments, Juno will investigate the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras. The mission also will let us take a giant step forward in our understanding of how giant planets form and the role these titans played in putting together the rest of the solar system. As our primary example of a giant planet, Jupiter also can provide critical knowledge for understanding the planetary systems being discovered around other stars.

    The Juno spacecraft launched on Aug. 5, 2011, from Cape Canaveral Air Force Station in Florida. JPL manages the Juno mission for NASA. Juno is part of NASA’s New Frontiers Program, managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space Systems in Denver built the spacecraft. The California Institute of Technology in Pasadena manages JPL for NASA.

    More information on the Juno mission is available at:

    http://www.nasa.gov/juno

    Follow the mission on Facebook and Twitter at:

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: