Tagged: NASA JPL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:18 pm on January 7, 2015 Permalink | Reply
    Tags: , NASA JPL,   

    From JPL: “NASA Robot Plunges Into Volcano to Explore Fissure” 

    JPL

    January 7, 2015
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    Volcanoes have always fascinated Carolyn Parcheta. She remembers a pivotal moment watching a researcher take a lava sample on a science TV program video in 6th grade.

    “I said to myself, I’m going to do that some day,” said Parcheta, now a NASA postdoctoral fellow based at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    Exploring volcanoes is risky business. That’s why Parcheta and her co-advisor, JPL robotics researcher Aaron Parness, are developing robots that can get into crevices where humans wouldn’t be able to go, gaining new insights about these wondrous geological features.

    “We don’t know exactly how volcanoes erupt. We have models but they are all very, very simplified. This project aims to help make those models more realistic,” Parcheta said.

    Parcheta’s research endeavors were recently honored in National Geographic‘s Expedition Granted campaign, which awards $50,000 to the next “great explorer.” Parcheta was a finalist, and was voted number 2 by online participants for her research proposal for exploring volcanoes with robots.

    “Having Carolyn in the lab has been a great opportunity for our robotics team to collaborate with someone focused on the geology. Scientists and engineers working together on such a small team is pretty rare, but has generated lots of great ideas because our perspectives on the problems are so different,” Parness said.

    The research has implications for extraterrestrial volcanoes. On both Earth and Mars, fissures are the most common physical features from which magma erupts. This is probably also true for the previously active volcanoes on the moon, Mercury, Enceladus and Europa, although the mechanism of volcanic eruption — whether past or present — on these other planetary bodies is unknown, Parcheta said.

    m
    Lava flow on Hawaii. Lava is the extrusive equivalent of magma.

    “In the last few years, NASA spacecraft have sent back incredible pictures of caves, fissures and what look like volcanic vents on Mars and the moon. We don’t have the technology yet to explore them, but they are so tantalizing! Working with Carolyn, we’re trying to bridge that gap using volcanoes here on Earth for practice. We’re learning about how volcanoes erupt here on Earth, too, and that has a lot of benefits in its own right,” Parness said.

    Parcheta, Parness, and JPL co-advisor Karl Mitchell first explored this idea last year using a two-wheeled robot they call VolcanoBot 1, with a length of 12 inches (30 centimeters) and 6.7-inch (17-centimeter) wheels. It is a spinoff of a different robot that Parness’s laboratory developed, the Durable Reconnaissance and Observation Platform (DROP).

    “We took that concept and redesigned it to work inside a volcano,” Parcheta said.

    For their experiments in May 2014, they had VolcanoBot 1 roll down a fissure – a crack that erupts magma – that is now inactive on the active Kilauea volcano in Hawaii.

    Finding preserved and accessible fissures is rare. VolcanoBot 1 was tasked with mapping the pathways of magma from May 5 to 9, 2014. It was able to descend to depths of 82 feet (25 meters) in two locations on the fissure, although it could have gone deeper with a longer tether, as the bottom was not reached on either descent.

    “In order to eventually understand how to predict eruptions and conduct hazard assessments, we need to understand how the magma is coming out of the ground. This is the first time we have been able to measure it directly, from the inside, to centimeter-scale accuracy,” Parcheta said.

    VolcanoBot 1 is enabling the researchers to put together a 3-D map of the fissure. They confirmed that bulges in the rock wall seen on the surface are also present deep in the ground, but the robot also found a surprise: The fissure did not appear to pinch shut, although VolcanoBot 1 didn’t reach the bottom. The researchers want to return to the site and go even deeper to investigate further.

    Specifically, Parcheta and Parness want to explore deeper inside Kilauea with a robot that has even stronger motors and electrical communications, so that more data can be sent back to the surface. They have responded to these challenges with the next iteration: VolcanoBot 2.

    VolcanoBot 2 is smaller and lighter than its predecessor, at a length of 10 inches (25 centimeters). Its vision center can tip up and down, with the ability to turn and look at features around it.

    “It has better mobility, stronger motors and smaller (5 inch, or 12 centimeter) wheels than the VolcanoBot 1. We’ve decreased the amount of cords that come up to the surface when it’s in a volcano,” Parcheta said.

    While VolcanoBot 1 sent data to the surface directly from inside the fissure, data will be stored onboard VolcanoBot 2. VolcanoBot 2 has an electrical connection that is more secure and robust so that researchers can use the 3-D sensor’s live video feed to navigate.

    The team plans to test VolcanoBot 2 at Kilauea in early March.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 1:55 pm on January 6, 2015 Permalink | Reply
    Tags: , NASA JPL   

    From NASA/JPL: What’s Up in January 2015 

    JPL

    Jupiter’s moons are putting on an amazing show this month. The orbital path of the moons is tilting edge-on to Earth and the sun. This lineup makes it possible to watch the moons pass in front of each other and even eclipse each other with their shadows. Get all the details, including where to find Jupiter in the sky this month, in this edition of What’s Up.

    Watch, enjoy, learn.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 11:52 am on December 31, 2014 Permalink | Reply
    Tags: , , NASA JPL   

    From NASA: “NASA Finds Good News on Forests and Carbon Dioxide” 

    JPL

    December 29, 2014
    Carol Rasmussen
    NASA Earth Science News Team

    A new NASA-led study shows that tropical forests may be absorbing far more carbon dioxide than many scientists thought, in response to rising atmospheric levels of the greenhouse gas. The study estimates that tropical forests absorb 1.4 billion metric tons of carbon dioxide out of a total global absorption of 2.5 billion — more than is absorbed by forests in Canada, Siberia and other northern regions, called boreal forests.

    e

    “This is good news, because uptake in boreal forests is already slowing, while tropical forests may continue to take up carbon for many years,” said David Schimel of NASA’s Jet Propulsion Laboratory, Pasadena, California. Schimel is lead author of a paper on the new research, appearing online today in the Proceedings of National Academy of Sciences.

    Forests and other land vegetation currently remove up to 30 percent of human carbon dioxide emissions from the atmosphere during photosynthesis. If the rate of absorption were to slow down, the rate of global warming would speed up in return.

    The new study is the first to devise a way to make apples-to-apples comparisons of carbon dioxide estimates from many sources at different scales: computer models of ecosystem processes, atmospheric models run backward in time to deduce the sources of today’s concentrations (called inverse models), satellite images, data from experimental forest plots and more. The researchers reconciled all types of analyses and assessed the accuracy of the results based on how well they reproduced independent, ground-based measurements. They obtained their new estimate of the tropical carbon absorption from the models they determined to be the most trusted and verified.

    “Until our analysis, no one had successfully completed a global reconciliation of information about carbon dioxide effects from the atmospheric, forestry and modeling communities,” said co-author Joshua Fisher of JPL. “It is incredible that all these different types of independent data sources start to converge on an answer.”

    The question of which type of forest is the bigger carbon absorber “is not just an accounting curiosity,” said co-author Britton Stephens of the National Center for Atmospheric Research, Boulder, Colorado. “It has big implications for our understanding of whether global terrestrial ecosystems might continue to offset our carbon dioxide emissions or might begin to exacerbate climate change.”

    As human-caused emissions add more carbon dioxide to the atmosphere, forests worldwide are using it to grow faster, reducing the amount that stays airborne. This effect is called carbon fertilization. “All else being equal, the effect is stronger at higher temperatures, meaning it will be higher in the tropics than in the boreal forests,” Schimel said.

    But climate change also decreases water availability in some regions and makes Earth warmer, leading to more frequent and larger wildfires. In the tropics, humans compound the problem by burning wood during deforestation. Fires don’t just stop carbon absorption by killing trees, they also spew huge amounts of carbon into the atmosphere as the wood burns.

    For about 25 years, most computer climate models have been showing that mid-latitude forests in the Northern Hemisphere absorb more carbon than tropical forests. That result was initially based on the then-current understanding of global air flows and limited data suggesting that deforestation was causing tropical forests to release more carbon dioxide than they were absorbing.

    In the mid-2000s, Stephens used measurements of carbon dioxide made from aircraft to show that many climate models were not correctly representing flows of carbon above ground level. Models that matched the aircraft measurements better showed more carbon absorption in the tropical forests. However, there were still not enough global data sets to validate the idea of a large tropical-forest absorption. Schimel said that their new study took advantage of a great deal of work other scientists have done since Stephens’ paper to pull together national and regional data of various kinds into robust, global data sets.

    Schimel noted that their paper reconciles results at every scale from the pores of a single leaf, where photosynthesis takes place, to the whole Earth, as air moves carbon dioxide around the globe. “What we’ve had up till this paper was a theory of carbon dioxide fertilization based on phenomena at the microscopic scale and observations at the global scale that appeared to contradict those phenomena. Here, at least, is a hypothesis that provides a consistent explanation that includes both how we know photosynthesis works and what’s happening at the planetary scale.”

    NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

    For more information about NASA’s Earth science activities in the last year, visit:

    http://www.nasa.gov/earthrightnow

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 8:32 pm on December 30, 2014 Permalink | Reply
    Tags: , , NASA JPL   

    From JPL: “Technology Innovations Spin NASA’s SMAP into Space” 

    JPL

    December 30, 2014
    Carol Rasmussen
    NASA Earth Science News Team

    Scheduled for launch on Jan. 29, 2015, NASA’s Soil Moisture Active Passive (SMAP) instrument will measure the moisture lodged in Earth’s soils with an unprecedented accuracy and resolution. The instrument’s three main parts are a radar, a radiometer and the largest rotating mesh antenna ever deployed in space.

    s
    NASA/SMAP

    Remote sensing instruments are called “active” when they emit their own signals and “passive” when they record signals that already exist. The mission’s science instrument ropes together a sensor of each type to corral the highest-resolution, most accurate measurements ever made of soil moisture — a tiny fraction of Earth’s water that has a disproportionately large effect on weather and agriculture.

    To enable the mission to meet its accuracy needs while covering the globe every three days or less, SMAP engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California, designed and built the largest rotating antenna that could be stowed into a space of only one foot by four feet (30 by 120 centimeters) for launch. The dish is 19.7 feet (6 meters) in diameter.

    “We call it the spinning lasso,” said Wendy Edelstein of NASA’s Jet Propulsion Laboratory, Pasadena, California, the SMAP instrument manager. Like the cowboy’s lariat, the antenna is attached on one side to an arm with a crook in its elbow. It spins around the arm at about 14 revolutions per minute (one complete rotation every four seconds). The antenna dish was provided by Northrop Grumman Astro Aerospace in Carpinteria, California. The motor that spins the antenna was provided by the Boeing Company in El Segundo, California.

    “The antenna caused us a lot of angst, no doubt about it,” Edelstein noted. Although the antenna must fit during launch into a space not much bigger than a tall kitchen trash can, it must unfold so precisely that the surface shape of the mesh is accurate within about an eighth of an inch (a few millimeters).

    The mesh dish is edged with a ring of lightweight graphite supports that stretch apart like a baby gate when a single cable is pulled, drawing the mesh outward. “Making sure we don’t have snags, that the mesh doesn’t hang up on the supports and tear when it’s deploying — all of that requires very careful engineering,” Edelstein said. “We test, and we test, and we test some more. We have a very stable and robust system now.”

    SMAP’s radar, developed and built at JPL, uses the antenna to transmit microwaves toward Earth and receive the signals that bounce back, called backscatter. The microwaves penetrate a few inches or more into the soil before they rebound. Changes in the electrical properties of the returning microwaves indicate changes in soil moisture, and also tell whether or not the soil is frozen. Using a complex technique called synthetic aperture radar processing, the radar can produce ultra-sharp images with a resolution of about half a mile to a mile and a half (one to three kilometers).

    SMAP’s radiometer detects differences in Earth’s natural emissions of microwaves that are caused by water in soil. To address a problem that has seriously hampered earlier missions using this kind of instrument to study soil moisture, the radiometer designers at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, developed and built one of the most sophisticated signal-processing systems ever created for such a scientific instrument.

    The problem is radio frequency interference. The microwave wavelengths that SMAP uses are officially reserved for scientific use, but signals at nearby wavelengths that are used for air traffic control, cell phones and other purposes spill over into SMAP’s wavelengths unpredictably. Conventional signal processing averages data over a long time period, which means that even a short burst of interference skews the record for that whole period. The Goddard engineers devised a new way to delete only the small segments of actual interference, leaving much more of the observations untouched.

    Combining the radar and radiometer signals allows scientists to take advantage of the strengths of both technologies while working around their weaknesses. “The radiometer provides more accurate soil moisture but a coarse resolution of about 40 kilometers [25 miles] across,” said JPL’s Eni Njoku, a research scientist with SMAP. “With the radar, you can create very high resolution, but it’s less accurate. To get both an accurate and a high-resolution measurement, we process the two signals together.”

    SMAP will be the fifth NASA Earth science mission launched within the last 12 months.

    For more about the SMAP mission, visit:

    http://www.nasa.gov/smap/

    NASA monitors Earth’s vital signs from space, air and land with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

    For more information about NASA’s Earth science activities this year, visit:

    http://www.nasa.gov/earthrightnow

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 5:17 pm on December 29, 2014 Permalink | Reply
    Tags: , , NASA JPL   

    From JPL: “Small CubeSat Provides Big Space Experience” 

    JPL

    December 22, 2014
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Any way you slice it, space exploration — done right — requires an inordinate range of technical expertise. From designing the spacecraft, the mission proposal and the circuit boards to testing the flight software and putting together budgets, sending something, anything, into the cosmos depends on good people who know their job.

    “Although significantly smaller in size, CubeSats contain analogous payloads and subsystems to larger satellites and require similar technical knowledge and resources to traditional flight projects,” said Shannon Statham, an engineer at NASA’s Jet Propulsion Laboratory in Pasadena, California. “The training and experience gained by working on CubeSats are directly applicable to larger missions.”

    n
    Ncube-2, a Norwegian CubeSat

    Only three years after receiving her graduate degree in engineering, and having logged time in JPL’s Environmental Test Lab, Statham was chosen to become the project manager for NASA’s Radiometer Atmospheric CubeSat Experiment (RACE) mission. The position quickly provided the Georgia Institute of Technology grad all the hands-on experience she could have hoped for — and more.

    “The core team for RACE was comprised of 15 early career hires,” said Statham. “We each had our designated role, but we all wore many hats and contributed to all aspects of taking the mission from proposal, to design, to testing, to launch delivery. With a very ambitious project schedule and budget, it’s what we had to do to get the job done.”

    RACE was a CubeSat, a small satellite no bigger than a loaf of bread, designed to test components of an Earth-observing radiometer that would be used in future missions by larger, more expensive satellites. RACE was designed to “hitch a ride” aboard a rocket that was already tasked with lofting a spacecraft to the International Space Station. Once at the station, RACE would be set free to orbit Earth as its own satellite, measuring the liquid water path and water vapor that is pertinent to the water cycle and Earth’s energy budget from 240 miles up.

    NASA Race Payload
    NASA RACE Payload

    “That is one of the beauties of CubeSats,” said Statham. “They are small and compact, so placing them in the available nooks and crannies of a rocket already set to carry another payload into space can be quite cost-effective.”

    When compared to its larger satellite siblings, just about everything about CubeSats is diminutive. Even transporting them is low-key. While their bigger brethren usually require a specially-equipped, air-cushioned tractor trailer or perhaps a military cargo plane, RACE made its way from the lab into the world via an attaché-sized box that Statham herself placed in the overhead compartment above her airliner seat.

    The RACE team had hoped to show their instrument’s performance could rival that of traditional big satellites, resulting in potential cost savings down the line. On the evening of October 28, 2014, Statham and several other RACE early career hires watched as an Antares rocket carrying their satellite lifted off from the Wallops Flight Facility in Virginia. Moments into the flight, one of the rocket’s main engines failed, sending its space station-destined payload (including RACE) to a fiery end.

    “The launch failure was a disappointment, but I think all of us know that’s a risk you take,” said Statham. “We saw all our hard work effectively go up in flames. But I think everyone on the team is taking this as a very positive experience in general, and we’re all moving on to new and exciting endeavors at JPL.”

    Statham is sticking with CubeSats for the time being. She is working on a JPL concept to fly a space-based radar called “RaInCube.” Others on her team have gone on to other CubeSat projects, while still others are working on more traditional space missions or in one of the research labs at JPL.

    And what of RACE itself? At the time of this writing, the 13.4-inch-long (34-centimeter) spacecraft has not been recovered. But the technology that Statham and her colleagues pushed from concept, to test bed, to launch pad, lives on. The lessons learned developing the radiometer, the instrument that was the heart of the RACE mission, are being applied to a new CubeSat proposal called Temporal Experiment for Storms and Tropical Systems – Demonstrator (TEMPEST-D).

    The next JPL CubeSat is scheduled to fly on January 29 of next year. Called GEO-CAPE ROIC In-Flight Performance Experiment (GRIFEX), the CubeSat will hitch a ride aboard the Soil Moisture Active-Passive (SMAP) launch from Vandenberg Air Force Base, California. GRIFEX is a flight test of advanced technology required for future Earth observers measuring atmospheric composition from geostationary Earth orbit.

    NASA GRIFEX CubeSat
    NASA GRIFEX CubeSat

    JPL has other CubeSat projects in development as well, including missions to the moon, Mars and near-Earth asteroids. JPL recently selected proposals from 10 universities to analyze CubeSat concepts that could enhance a proposed Europa Clipper mission. The concepts will be incorporated into a JPL study on how small probes could be carried as auxiliary payloads.

    NASA Europa Clipper
    NASA/Europa Clipper

    “These tiny spacecraft are great platforms for increasing the technology readiness of new technologies to buy down risk for larger missions in a relatively short time frame and minimal budget. They can also provide resources to larger missions with minimal impacts to cost and mass,” said Statham. “The future looks bright for CubeSats.”

    For more information about CubeSats, visit:

    http://jpl.nasa.gov/cubesat

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 2:58 pm on December 22, 2014 Permalink | Reply
    Tags: , , , , NASA JPL,   

    From JPL: “Sun Sizzles in High-Energy X-Rays” 

    JPL

    December 22, 2014
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    For the first time, a mission designed to set its eyes on black holes and other objects far from our solar system has turned its gaze back closer to home, capturing images of our sun. NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, has taken its first picture of the sun, producing the most sensitive solar portrait ever taken in high-energy X-rays.

    NASA NuSTAR
    NU-STAR

    “NuSTAR will give us a unique look at the sun, from the deepest to the highest parts of its atmosphere,” said David Smith, a solar physicist and member of the NuSTAR team at University of California, Santa Cruz.

    Solar scientists first thought of using NuSTAR to study the sun about seven years ago, after the space telescope’s design and construction was already underway (the telescope launched into space in 2012). Smith had contacted the principal investigator, Fiona Harrison of the California Institute of Technology in Pasadena, who mulled it over and became excited by the idea.

    “At first I thought the whole idea was crazy,” says Harrison. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?” Smith eventually convinced Harrison, explaining that faint X-ray flashes predicted by theorists could only be seen by NuSTAR.

    While the sun is too bright for other telescopes such as NASA’s Chandra X-ray Observatory, NuSTAR can safely look at it without the risk of damaging its detectors. The sun is not as bright in the higher-energy X-rays detected by NuSTAR, a factor that depends on the temperature of the sun’s atmosphere.

    NASA Chandra Telescope
    NASA Chandra schematic
    Chandra X-ray space observatory

    s
    X-rays stream off the sun in this image showing observations from by NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by NASA’s Solar Dynamics Observatory (SDO) .Image credit: NASA/JPL-Caltech/GSFC

    NASA Solar Dynamics Observatory
    NASA Solar Dynamics Observatory schematic

    This first solar image from NuSTAR demonstrates that the telescope can in fact gather data about sun. And it gives insight into questions about the remarkably high temperatures that are found above sunspots — cool, dark patches on the sun. Future images will provide even better data as the sun winds down in its solar cycle.

    “We will come into our own when the sun gets quiet,” said Smith, explaining that the sun’s activity will dwindle over the next few years.

    With NuSTAR’s high-energy views, it has the potential to capture hypothesized nanoflares — smaller versions of the sun’s giant flares that erupt with charged particles and high-energy radiation. Nanoflares, should they exist, may explain why the sun’s outer atmosphere, called the corona, is sizzling hot, a mystery called the “coronal heating problem.” The corona is, on average, 1.8 million degrees Fahrenheit (1 million degrees Celsius), while the surface of the sun is relatively cooler at 10,800 Fahrenheit (6,000 degrees Celsius). It is like a flame coming out of an ice cube. Nanoflares, in combination with flares, may be sources of the intense heat.

    If NuSTAR can catch nanoflares in action, it may help solve this decades-old puzzle.

    “NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said Smith.

    What’s more, the X-ray observatory can search for hypothesized dark matter particles called axions. Dark matter is five times more abundant than regular matter in the universe. Everyday matter familiar to us, for example in tables and chairs, planets and stars, is only a sliver of what’s out there. While dark matter has been indirectly detected through its gravitational pull, its composition remains unknown.

    It’s a long shot, say scientists, but NuSTAR may be able spot axions, one of the leading candidates for dark matter, should they exist. The axions would appear as a spot of X-rays in the center of the sun.

    Meanwhile, as the sun awaits future NuSTAR observations, the telescope is continuing with its galactic pursuits, probing black holes, supernova remnants and other extreme objects beyond our solar system.

    NuSTAR is a Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory, also in Pasadena, for NASA’s Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Virginia. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley; Columbia University, New York; NASA’s Goddard Space Flight Center, Greenbelt, Maryland; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, California; ATK Aerospace Systems, Goleta, California; and with support from the Italian Space Agency (ASI) Science Data Center.

    NuSTAR’s mission operations center is at UC Berkeley, with the ASI providing its equatorial ground station located at Malindi, Kenya. The mission’s outreach program is based at Sonoma State University, Rohnert Park, California. NASA’s Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA.

    For more information, visit:

    http://www.nasa.gov/nustar

    http://www.nustar.caltech.edu

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 2:13 pm on December 18, 2014 Permalink | Reply
    Tags: , , NASA JPL, NASA Orbiting Carbon Observatory-2   

    From JPL: “NASA’s Spaceborne Carbon Counter Maps New Details” 

    JPL

    December 18, 2014
    Carol Rasmussen
    NASA Earth Science News Team

    The first global maps of atmospheric carbon dioxide from NASA’s new Orbiting Carbon Observatory-2 mission demonstrate its performance and promise, showing elevated carbon dioxide concentrations across the Southern Hemisphere from springtime biomass burning.

    At a media briefing today at the American Geophysical Union meeting in San Francisco, scientists from NASA’s Jet Propulsion Laboratory, Pasadena, California; Colorado State University (CSU), Fort Collins; and the California Institute of Technology, Pasadena, presented the maps of carbon dioxide and a related phenomenon known as solar-induced chlorophyll fluorescence and discussed their potential implications.

    A global map covering Oct. 1 through Nov. 17 shows elevated carbon dioxide concentrations in the atmosphere above northern Australia, southern Africa and eastern Brazil.

    g
    Global atmospheric carbon dioxide concentrations from Oct. 1 through Nov. 11, as recorded by NASA’s Orbiting Carbon Observatory-2. Image credit: NASA/JPL-Caltech

    2
    This map shows solar-induced fluorescence, a plant process that occurs during photosynthesis, from Aug. through Oct. 2014 as measured by NASA’s Orbiting Carbon Observatory-2. Image credit: NASA/JPL-Caltech

    “Preliminary analysis shows these signals are largely driven by the seasonal burning of savannas and forests,” said OCO-2 Deputy Project Scientist Annmarie Eldering, of JPL. The team is comparing these measurements with data from other satellites to clarify how much of the observed concentration is likely due to biomass burning.

    The time period covered by the new maps is spring in the Southern Hemisphere, when agricultural fires and land clearing are widespread. The impact of these activities on global carbon dioxide has not been well quantified. As OCO-2 acquires more data, Eldering said, its Southern Hemisphere measurements could lead to an improved understanding of the relative importance in these regions of photosynthesis in tropical plants, which removes carbon dioxide from the atmosphere, and biomass burning, which releases carbon dioxide to the atmosphere.

    The early OCO-2 data hint at some potential surprises to come. “The agreement between OCO-2 and models based on existing carbon dioxide data is remarkably good, but there are some interesting differences,” said Christopher O’Dell, an assistant professor at CSU and member of OCO-2’s science team. “Some of the differences may be due to systematic errors in our measurements, and we are currently in the process of nailing these down. But some of the differences are likely due to gaps in our current knowledge of carbon sources in certain regions — gaps that OCO-2 will help fill in.”

    Carbon dioxide in the atmosphere has no distinguishing features to show what its source was. Elevated carbon dioxide over a region could have a natural cause — for example, a drought that reduces plant growth — or a human cause. At today’s briefing, JPL scientist Christian Frankenberg introduced a map using a new type of data analysis from OCO-2 that can help scientists distinguish the gas’s natural sources.

    Through photosynthesis, plants remove carbon dioxide from the air and use sunlight to synthesize the carbon into food. Plants end up re-emitting about one percent of the sunlight at longer wavelengths. Using one of OCO-2’s three spectrometer instruments, scientists can measure the re-emitted light, known as solar-induced chlorophyll fluorescence (SIF). This measurement complements OCO-2’s carbon dioxide data with information on when and where plants are drawing carbon from the atmosphere.

    “Where OCO-2 really excels is the sheer amount of data being collected within a day, about one million measurements across a narrow swath,” Frankenberg said. “For fluorescence, this enables us, for the first time, to look at features on the five- to 10-kilometer scale on a daily basis.” SIF can be measured even through moderately thick clouds, so it will be especially useful in understanding regions like the Amazon where cloud cover thwarts most spaceborne observations.

    The changes in atmospheric carbon dioxide that OCO-2 seeks to measure are so small that the mission must take unusual precautions to ensure the instrument is free of errors. For that reason, the spacecraft was designed so that it can make an extra maneuver. In addition to gathering a straight line of data like a lawnmower swath, the instrument can point at a single target on the ground for a total of seven minutes as it passes overhead. That requires the spacecraft to turn sideways and make a half cartwheel to keep the target in its sights.

    The targets OCO-2 uses are stations in the Total Carbon Column Observing Network (TCCON), a collaborative effort of multiple international institutions. TCCON has been collecting carbon dioxide data for about five years, and its measurements are fully calibrated and extremely accurate. At the same time that OCO-2 targets a TCCON site, a ground-based instrument at the site makes the same measurement. The extent to which the two measurements agree indicates how well calibrated the OCO-2 sensors are.

    Additional maps released today showed the results of these targeting maneuvers over two TCCON sites in California and one in Australia. “Early results are very promising,” said Paul Wennberg, a professor at Caltech and head of the TCCON network. “Over the next few months, the team will refine the OCO-2 data, and we anticipate that these comparisons will continue to improve.”

    To learn more about OCO-2, visit:

    http://oco2.jpl.nasa.gov/

    NASA monitors Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records and computer analysis tools to better see how our planet is changing. The agency shares this unique knowledge with the global community and works with institutions in the United States and around the world that contribute to understanding and protecting our home planet.

    For more information about NASA’s Earth science activities this year, see:

    http://www.nasa.gov/earthrightnow

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 4:09 pm on December 16, 2014 Permalink | Reply
    Tags: , , , NASA JPL   

    From NASA: “NASA Rover Finds Active, Ancient Organic Chemistry on Mars” 

    NASA

    NASA

    December 16, 2014

    Dwayne Brown
    Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Guy Webster
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6278
    guy.webster@jpl.nasa.gov

    Nancy Neal Jones
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-0039
    nancy.n.jones@nasa.gov

    NASA’s Mars Curiosity rover has measured a tenfold spike in methane, an organic chemical, in the atmosphere around it and detected other organic molecules in a rock-powder sample collected by the robotic laboratory’s drill.

    NASA Mars Curiosity Rover
    Curiosity

    “This temporary increase in methane — sharply up and then back down — tells us there must be some relatively localized source,” said Sushil Atreya of the University of Michigan, Ann Arbor, and Curiosity rover science team. “There are many possible sources, biological or non-biological, such as interaction of water and rock.”

    Researchers used Curiosity’s onboard Sample Analysis at Mars (SAM) laboratory a dozen times in a 20-month period to sniff methane in the atmosphere. During two of those months, in late 2013 and early 2014, four measurements averaged seven parts per billion. Before and after that, readings averaged only one-tenth that level.

    3
    NASA’s Mars rover Curiosity drilled into this rock target, “Cumberland,” during the 279th Martian day, or sol, of the rover’s work on Mars (May 19, 2013) and collected a powdered sample of material from the rock’s interior.
    Image Credit: NASA/JPL-Caltech/MSSS

    Curiosity also detected different Martian organic chemicals in powder drilled from a rock dubbed Cumberland, the first definitive detection of organics in surface materials of Mars. These Martian organics could either have formed on Mars or been delivered to Mars by meteorites.

    8
    This image illustrates possible ways methane might be added to Mars’ atmosphere (sources) and removed from the atmosphere (sinks). NASA’s Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying both types of activity occur on modern Mars.
    Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan

    Organic molecules, which contain carbon and usually hydrogen, are chemical building blocks of life, although they can exist without the presence of life. Curiosity’s findings from analyzing samples of atmosphere and rock powder do not reveal whether Mars has ever harbored living microbes, but the findings do shed light on a chemically active modern Mars and on favorable conditions for life on ancient Mars.

    “We will keep working on the puzzles these findings present,” said John Grotzinger, Curiosity project scientist of the California Institute of Technology in Pasadena (Caltech). “Can we learn more about the active chemistry causing such fluctuations in the amount of methane in the atmosphere? Can we choose rock targets where identifiable organics have been preserved?”

    Researchers worked many months to determine whether any of the organic material detected in the Cumberland sample was truly Martian. Curiosity’s SAM lab detected in several samples some organic carbon compounds that were, in fact, transported from Earth inside the rover. However, extensive testing and analysis yielded confidence in the detection of Martian organics.

    Identifying which specific Martian organics are in the rock is complicated by the presence of perchlorate minerals in Martian rocks and soils. When heated inside SAM, the perchlorates alter the structures of the organic compounds, so the identities of the Martian organics in the rock remain uncertain.

    “This first confirmation of organic carbon in a rock on Mars holds much promise,” said Curiosity participating scientist Roger Summons of the Massachusetts Institute of Technology in Cambridge. “Organics are important because they can tell us about the chemical pathways by which they were formed and preserved. In turn, this is informative about Earth-Mars differences and whether or not particular environments represented by Gale Crater sedimentary rocks were more or less favorable for accumulation of organic materials. The challenge now is to find other rocks on Mount Sharp that might have different and more extensive inventories of organic compounds.”

    Researchers also reported that Curiosity’s taste of Martian water, bound into lakebed minerals in the Cumberland rock more than three billion years ago, indicates the planet lost much of its water before that lakebed formed and continued to lose large amounts after.

    SAM analyzed hydrogen isotopes from water molecules that had been locked inside a rock sample for billions of years and were freed when SAM heated it, yielding information about the history of Martian water. The ratio of a heavier hydrogen isotope, deuterium, to the most common hydrogen isotope can provide a signature for comparison across different stages of a planet’s history.

    “It’s really interesting that our measurements from Curiosity of gases extracted from ancient rocks can tell us about loss of water from Mars,” said Paul Mahaffy, SAM principal investigator of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a report published online this week by the journal Science.

    The ratio of deuterium to hydrogen has changed because the lighter hydrogen escapes from the upper atmosphere of Mars much more readily than heavier deuterium. In order to go back in time and see how the deuterium-to-hydrogen ratio in Martian water changed over time, researchers can look at the ratio in water in the current atmosphere and water trapped in rocks at different times in the planet’s history.

    Martian meteorites found on Earth also provide some information, but this record has gaps. No known Martian meteorites are even close to the same age as the rock studied on Mars, which formed about 3.9 billion to 4.6 billion years ago, according to Curiosity’s measurements.

    The ratio that Curiosity found in the Cumberland sample is about one-half the ratio in water vapor in today’s Martian atmosphere, suggesting much of the planet’s water loss occurred since that rock formed. However, the measured ratio is about three times higher than the ratio in the original water supply of Mars, based on assumption that supply had a ratio similar to that measured in Earth’s oceans. This suggests much of Mars’ original water was lost before the rock formed.

    Curiosity is one element of NASA’s ongoing Mars research and preparation for a human mission to Mars in the 2030s. Caltech manages the Jet Propulsion Laboratory in Pasadena, California, and JPL manages Curiosity rover science investigations for NASA’s Science Mission Directorate in Washington. The SAM investigation is led by Paul Mahaffy of Goddard. Two of SAM instruments key in these discoveries are the Quadrupole Mass Spectrometer, developed at Goddard, and the Tunable Laser Spectrometer, developed at JPL.

    The results of the Curiosity rover investigation into methane detection and the Martian organics in an ancient rock were discussed at a news briefing Tuesday at the American Geophysical Union’s convention in San Francisco. The methane results are described in a paper published online this week in the journal Science by NASA scientist Chris Webster of JPL, and co-authors.

    A report on organics detection in the Cumberland rock by NASA scientist Caroline Freissenet, of Goddard, and co-authors, is pending publication.

    For copies of the new Science papers about Mars methane and water, visit:

    http://go.nasa.gov/1cbk35X

    For more information about Curiosity, visit:

    http://www.nasa.gov/msl

    and

    http://mars.jpl.nasa.gov/msl/

    Learn about NASA’s Journey to Mars at:

    http://www.nasa.gov/content/nasas-journey-to-mars/

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:26 pm on December 15, 2014 Permalink | Reply
    Tags: , , , , NASA JPL,   

    From JPL: “NASA Voyager: ‘Tsunami Wave’ Still Flies Through Interstellar Space” 

    JPL

    December 15, 2014

    Media Contact
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.Landau@jpl.nasa.gov

    •The Voyager 1 spacecraft has experienced three shock waves

    • The most recent shock wave, first observed in February 2014, still appears to be going on

    • One wave, previously reported, helped researchers determine that Voyager 1 had entered interstellar space

    v
    NASA/Voyager

    The “tsunami wave” that NASA’s Voyager 1 spacecraft began experiencing earlier this year is still propagating outward, according to new results. It is the longest-lasting shock wave that researchers have seen in interstellar space.

    “Most people would have thought the interstellar medium would have been smooth and quiet. But these shock waves seem to be more common than we thought,” said Don Gurnett, professor of physics at the University of Iowa in Iowa City. Gurnett presented the new data Monday, Dec. 15 at the American Geophysical Union meeting in San Francisco.

    A “tsunami wave” occurs when the sun emits a coronal mass ejection, throwing out a magnetic cloud of plasma from its surface. This generates a wave of pressure. When the wave runs into the interstellar plasma — the charged particles found in the space between the stars — a shock wave results that perturbs the plasma.

    cme
    CME (Photo: NASA/GSFC/SDO)

    “The tsunami causes the ionized gas that is out there to resonate — “sing” or vibrate like a bell,” said Ed Stone, project scientist for the Voyager mission based at California Institute of Technology in Pasadena.

    This is the third shock wave that Voyager 1 has experienced. The first event was in October to November of 2012, and the second wave in April to May of 2013 revealed an even higher plasma density. Voyager 1 detected the most recent event in February, and it is still going on as of November data. The spacecraft has moved outward 250 million miles (400 million kilometers) during the third event.

    “This remarkable event raises questions that will stimulate new studies of the nature of shocks in the interstellar medium,” said Leonard Burlaga, astrophysicist emeritus at NASA Goddard Spaceflight Center in Greenbelt, Maryland, who analyzed the magnetic field data that were key to these results.

    It is unclear to researchers what the unusual longevity of this particular wave may mean. They are also uncertain as to how fast the wave is moving or how broad a region it covers.

    The second tsunami wave helped researchers determine in 2013 that Voyager 1 had left the heliosphere, the bubble created by the solar wind encompassing the sun and the planets in our solar system. Denser plasma “rings” at a higher frequency, and the medium that Voyager flew through, was 40 times denser than what had been previously measured. This was key to the conclusion that Voyager had entered a frontier where no spacecraft had gone before: interstellar space.

    “The density of the plasma is higher the farther Voyager goes,” Stone said. “Is that because the interstellar medium is denser as Voyager moves away from the heliosphere, or is it from the shock wave itself? We don’t know yet.”

    Gurnett, principal investigator of the plasma wave instrument on Voyager, expects that such shock waves propagate far out into space, perhaps even to twice the distance between the sun and where the spacecraft is right now.

    Voyager 1 and its twin, Voyager 2, were launched 16 days apart in 1977. Both spacecraft flew by Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune. Voyager 2, launched before Voyager 1, is the longest continuously operated spacecraft and is expected to enter interstellar space in a few years.

    JPL, a division of Caltech, built the twin Voyager spacecraft and operates them for the Heliophysics Division within NASA’s Science Mission Directorate in Washington.

    For more information on the Voyager mission, visit:

    http://voyager.jpl.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 2:02 pm on December 10, 2014 Permalink | Reply
    Tags: , , , , , NASA JPL   

    From JPL- “Saturn’s Moons: What a Difference a Decade Makes “ 

    JPL

    December 9, 2014
    Preston Dyches
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-7013
    preston.dyches@jpl.nasa.gov

    Almost immediately after NASA’s twin Voyager spacecraft made their brief visits to Saturn in the early 1980s, scientists were hungry for more. The Voyagers had offered them only a brief glimpse of a family of new worlds — Saturn’s icy moons — and the researchers were eager to spend more time among those bodies.

    NASA Voyager 1
    NASA/Voyager 1

    NASA Voyager 2
    NASA/Voyager 2

    The successor to the Voyagers at Saturn, NASA’s Cassini spacecraft, has spent the past 10 years collecting images and other data as it has toured the Ringed Planet and its family of satellites. New color maps, produced from this trove of data, show that Cassini has essentially fulfilled one of its many mission objectives: producing global maps of Saturn’s six major icy moons.

    NASA Cassini Spacecraft
    NASA/Cassini

    These are the large Saturnian moons, excluding haze-covered Titan, known before the start of the Space Age: Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus. Aside from a gap in the north polar region of Enceladus (to be filled in next year), and some areas of Iapetus, this objective is now more or less complete.

    Before (Voyager)
    m

    After (Cassini)
    a
    Mimas

    Before (Voyager)
    e
    After (Cassini)
    a
    Enceladus.

    Before (Voyager)
    t
    After (Cassini)
    k
    Tethys

    Before (Voyager)
    d
    After (Cassini)
    s
    Dione

    Before (Voyager)
    r
    After (Cassini)
    r
    Rhea

    Before (Voyager)
    l
    After (Cassini)
    j
    Iapetus

    All maps Image Credit: NASA/JPL-Caltech/SSI/LPI

    The new maps are the best global, color maps of these moons to date, and the first to show natural brightness variations and high-resolution color together. Colors in the maps represent a broader range than human vision, extending slightly into infrared and ultraviolet wavelengths. Differences in color across the moons’ surfaces that are subtle in natural-color views become much easier to study in these enhanced colors.

    Cassini’s enhanced color views have yielded several important discoveries about the icy moons. The most obvious are differences in color and brightness between the two hemispheres of Tethys, Dione and Rhea. The dark reddish colors on the moons’ trailing hemispheres are due to alteration by charged particles and radiation in Saturn’s magnetosphere. Except for Mimas and Iapetus, the blander leading hemispheres of these moons — that is, the sides that always face forward as the moons orbit Saturn — are all coated with icy dust from Saturn’s E-ring, formed from tiny particles erupting from the south pole of Enceladus.

    Enceladus itself displays a variety of colorful features. Some of the gas and dust being vented into space from large fractures near the moon’s south pole returns to the surface and paints Enceladus with a fresh coating. The yellow and magenta tones in Cassini’s color map are thought to be due to differences in the thickness of these deposits. Many of the most recently formed fractures on Enceladus, those near the south pole in particular, have a stronger ultraviolet signature, which appears bluish in these maps. Their color may be due to large-grained ice exposed on the surface, not unlike blue ice seen in some places in Earth’s Arctic.

    The new maps were produced by Paul Schenk, a participating scientist with the Cassini imaging team based at the Lunar and Planetary Institute in Houston.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory in Pasadena, California, manages the Cassini and Voyager missions for NASA’s Science Mission Directorate in Washington. The two Voyager spacecraft and the Cassini orbiter, along with its two onboard cameras, were designed, developed and assembled at JPL. The Cassini imaging team consists of scientists from the United States, England, France and Germany. The imaging team is based at the Space Science Institute in Boulder, Colorado.

    More information about Cassini is available at the following sites:

    http://www.nasa.gov/cassini

    http://saturn.jpl.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: