Tagged: NASA JPL – Caltech Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:37 pm on June 13, 2017 Permalink | Reply
    Tags: , , , , NASA JPL - Caltech,   

    From JPL: “NuSTAR’s First Five Years in Space” 

    NASA JPL Banner

    JPL-Caltech

    June 13, 2017
    Written by Whitney Clavin, Caltech

    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.landau@jpl.nasa.gov

    Whitney Clavin
    Caltech, Pasadena, Calif.
    626-395-1856
    wclavin@caltech.edu

    1
    This artist’s concept shows NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) spacecraft on orbit. Credit: NASA/JPL-Caltech

    Five years ago, on June 13, 2012, Caltech’s Fiona Harrison, principal investigator of NASA’s NuSTAR mission, watched with her team as their black-hole-spying spacecraft was launched into space aboard a rocket strapped to the belly of an aircraft. The launch occurred over the Kwajalein Atoll in the Marshall Islands. Many members of the team anxiously followed the launch from the mission’s operations center at the University of California, Berkeley, anxious to see what NuSTAR would find.

    Now, Harrison shares her take on five of the mission’s many iconic images and artist concepts — ranging from our flaring sun to distant, buried black holes. NuSTAR is the first telescope capable of focusing high-energy X-rays — and it has taken the most detailed images of the sky in this energy regime to date.

    2
    This artist’s concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech

    3
    Untangling the Remains of Cassiopeia A Image credit: NASA/JPL-Caltech/CXC/SAO

    “This is a beautiful image, and one of the things we built NuSTAR to do — to make the first-ever map of emission from radioactivity in the remnant of an exploded star,” Harrison said. “We spent years developing specialized detectors to have the capability to make this image. From the image, we were able to determine the mechanism that caused the star to explode.” NuSTAR data show high-energy X-rays from radioactive material in blue. Non-radioactive materials are red, yellow and green.

    4
    NuSTAR Finds a Pulse in Cigar Galaxy. Low-energy X-ray data from NASA’s Chandra X-ray Observatory are colored blue, and higher-energy X-ray data from NuSTAR are pink. The bulk of a galaxy called Messier 82 (M82), or the “Cigar galaxy,” is seen in visible-light data captured by the National Optical Astronomy Observatory’s 2.1-meter telescope at Kitt Peak in Arizona. Image credit: NASA/JPL-Caltech/SAO/NOAO

    NASA/Chandra Telescope

    5
    2.1 meter NOAO telescope, Kitt Peak, AZ, USA

    6
    NuSTAR Stares at the Sun. High-energy X-rays from NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan’s Hinode spacecraft are green; and extreme ultraviolet light from NASA’s Solar Dynamics Observatory (SDO) is yellow and red. Image credit: NASA/JPL-Caltech/GSFC/JAXA

    “With NuSTAR, we see flaring, active regions of the sun where high-energy particles are being created. NuSTAR was built as an astrophysics mission, not to study the sun,” Harrison said. “People thought we were crazy at first to point such a sensitive observatory at the sun and potentially ruin it. But now, by studying the sun with much greater sensitivity in high-energy X-rays, we are making important contributions to the field of solar physics.”.

    JAXA/HINODE spacecraft

    NASA/SDO

    “This is a beautiful image, and one of the things we built NuSTAR to do — to make the first-ever map of emission from radioactivity in the remnant of an exploded star,” Harrison said. “We spent years developing specialized detectors to have the capability to make this image. From the image, we were able to determine the mechanism that caused the star to explode.” NuSTAR data show high-energy X-rays from radioactive material in blue. Non-radioactive materials are red, yellow and green.
    NuSTAR Finds a Pulse in Cigar Galaxy

    “This result was one of the biggest surprises from NuSTAR. We detected X-ray pulses from an object in a galaxy that everybody had assumed was a black hole, thereby showing it was actually a stellar remnant called a pulsar. At the time, it was by far the brightest pulsar known. At first nobody believed it, but the signal was so strong and clear,” Harrison said. Since this discovery two other extremely bright pulsars have been found — prompted by NuSTAR’s discovery. High-energy X-rays from the pulsar are seen in pink at the center of the
    image.

    8
    Galaxy NGC 1448 with Active Galactic Nucleus.

    “This image illustrates another major accomplishment NuSTAR was designed for — to find hidden black holes buried by dust and gas,” Harrison said. “This is a wonderful result, led by two graduate students. What they found is that there is a thick layer of gas and dust hiding the active black hole in the galaxy NGC 1448 from our sight.”

    NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

    For more information on NuSTAR, visit:

    https://www.nasa.gov/nustar

    http://www.nustar.caltech.edu

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 1:19 pm on June 8, 2017 Permalink | Reply
    Tags: , , , Caltech's IPAC center, , , , NASA JPL - Caltech, , , Robert Hurt, The Art of Exoplanets, Tim Pyle   

    From JPL: “The Art of Exoplanets” 

    NASA JPL Banner

    JPL-Caltech

    June 8, 2017
    Written by Pat Brennan

    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    Felicia Chou
    NASA Headquarters, Washington
    202-358-1726
    felicia.chou@nasa.gov

    1
    This artist’s concept by Robert Hurt and Tim Pyle shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses and distances from the host star.Credit: NASA/JPL-Caltech

    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile interior


    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile

    2
    This artist’s concept by Tim Pyle allows us to imagine what it would be like to stand on the surface of the exoplanet TRAPPIST-1f, located in the TRAPPIST-1 system in the constellation Aquarius. Credit: NASA/JPL-Caltech

    3
    This artist’s concept by Robert Hurt shows planet KELT-9b orbiting its host star, KELT-9. It is the hottest gas giant planet discovered so far. Image Credit: NASA/JPL-Caltech

    Kelt North Telescope In Arizona at Winer Observatory by Ohio State University

    4
    This illustration shows one possible scenario for the hot, rocky exoplanet called 55 Cancri e, which is nearly two times as wide as Earth. Robert Hurt created this in 2016. Credit: NASA/JPL-Caltech

    5
    NASA’s Kepler mission discovered a world where two suns set over the horizon instead of just one, called Kepler-16b. Robert Hurt did this illustration of this fascinating world. Credit: NASA/JPL-Caltech

    NASA/Kepler Telescope

    The moon hanging in the night sky sent Robert Hurt’s mind into deep space — to a region some 40 light years away, in fact, where seven Earth-sized planets crowded close to a dim, red sun.

    Hurt, a visualization scientist at Caltech’s IPAC center, was walking outside his home in Mar Vista, California, shortly after he learned of the discovery of these rocky worlds around a star called TRAPPIST-1 and got the assignment to visualize them. The planets had been revealed by NASA’s Spitzer Space Telescope and ground-based observatories.

    NASA/Spitzer Telescope

    “I just stopped dead in my tracks, and I just stared at it,” Hurt said in an interview. “I was imagining that could be, not our moon, but the next planet over – what it would be like to be in a system where you could look up and see continental features on the next planet.”

    So began a kind of inspirational avalanche. Hurt and his colleague, multimedia producer Tim Pyle, developed a series of arresting, photorealistic images of what the new system’s tightly packed planets might look like — so tightly packed that they would loom large in each other’s skies. Their visions of the TRAPPIST-1 system would appear in leading news outlets around the world.

    Artists like Hurt and Pyle, who render vibrant visualizations based on data from Spitzer and other missions, are hybrids of sorts, blending expertise in both science and art. From squiggles on charts and columns of numbers, they conjure red, blue and green worlds, with half-frozen oceans or bubbling lava. Or they transport us to the surface of a world with a red-orange sun fixed in place, and a sky full of planetary companions.

    “For the public, the value of this is not just giving them a picture of something somebody made up,” said Douglas Hudgins, a program scientist for the Exoplanet Exploration Program at NASA Headquarters in Washington. “These are real, educated guesses of how something might look to human beings. An image is worth a thousand words.”

    Hurt says he and Pyle are building on the work of artistic pioneers.

    “There’s actually a long history and tradition for space art and science-based illustration,” he said. “If you trace its roots back to the artist Chesley Bonestell (famous in the 1950s and ’60s), he really was the artist who got this idea: Let’s go and imagine what the planets in our solar system might actually look like if you were, say, on Jupiter’s moon, Io. How big would Jupiter appear in the sky, and what angle would we be viewing it from?”

    To begin work on their visualizations, Hurt divided up the seven TRAPPIST-1 planets with Pyle, who shares an office with him at Caltech’s IPAC center in Pasadena, California.

    Hurt holds a Ph.D. in astrophysics, and has worked at the center since he was a post-doctoral researcher in 1996 – when astronomical art was just his hobby.

    “They created a job for me,” he said.

    Pyle, whose background is in Hollywood special effects, joined Hurt in 2004.

    Hurt turns to Pyle for artistic inspiration, while Pyle relies on Hurt to check his science.

    “Robert and I have our desks right next to each other, so we’re constantly giving each other feedback,” Pyle said. “We’re each upping each other’s game, I think.”

    The TRAPPIST-1 worlds offered both of them a unique challenge. The two already had a reputation for illustrating many exoplanets – planets around stars beyond our own — but never seven Earth-sized worlds in a single system. The planets cluster so close to their star that a “year” on each of them — the time they take to complete a single orbit — can be numbered in Earth days.

    And like the overwhelming majority of the thousands of exoplants found in our galaxy so far, they were detected using indirect means. No telescope exists today that is powerful enough to photograph them.

    Real science informed their artistic vision. Using data from the telescopes that reveal each planet’s diameter as well as its “weight,” or mass, and known stellar physics to determine the amount of light each planet would receive, the artists went to work.

    Both consulted closely with the planets’ discovery team as they planned for a NASA announcement to coincide with a report in the journal Nature.

    “When we’re doing these artist’s concepts, we’re never saying, ‘This is what these planets actually look like,'” Pyle said. “We’re doing plausible illustrations of what they could look like, based on what we know so far. Having this wide range of seven planets actually let us illustrate almost the whole breadth of what would be plausible. This was going to be this incredible interstellar laboratory for what could happen on an Earth-sized planet.”

    For TRAPPIST-1b, Pyle took Jupiter’s volcanic moon, Io, as an inspiration, based on suggestions from the science team. For the outermost world, TRAPPIST-1h, he chose two other Jovian moons, the ice-encased Ganymede and Europa.

    After talking to the scientists, Hurt portrayed TRAPPIST-1c as dry and rocky. But because all seven planets are probably tidally locked, forever presenting one face to their star and the other to the cosmos, he placed an ice cap on the dark side.

    TRAPPIST-1d was one of three that fall inside the “habitable zone” of the star, or the right distance away from it to allow possible liquid water on the surface.

    “The researchers told us they would like to see it portrayed as something they called an ‘eyeball world,'” Hurt said. “You have a dry, hot side that’s facing the star and an ice cap on the back side. But somewhere in between, you have (a zone) where the ice could melt and be sustained as liquid water.”

    At this point, Hurt said, art intervened. The scientists rejected his first version of the planet, which showed liquid water intruding far into the “dayside” of TRAPPIST-1d. They argued that the water would most likely be found well within the planet’s dark half.

    “Then I kind of pushed back, and said, ‘If it’s on the dark side, no one can look at it and understand we’re saying there’s water there,'” Hurt said. They struck a compromise: more water toward the dayside than the science team might expect, but a better visual representation of the science.

    The same push and pull between science and art extends to other forms of astronomical visualization, whether it’s a Valentine’s Day cartoon of a star pulsing like a heart in time with its planet, or materials for the blockbuster announcement of the first detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory in February 2016. They’ve also illustrated asteroids, neutron stars, pulsars and brown dwarfs.

    Visualizations based on data can also inform science, leading to genuine scientific insights. The scientists’ conclusions about TRAPPIST-1 at first seemed to suggest the planets would be bathed in red light, potentially obscuring features like blue-hued bodies of water.

    “It makes it hard to really differentiate what is going on,” Hurt said.

    Hurt decided to investigate. A colleague provided him with a spectrum of a red dwarf star similar to TRAPPIST-1. He overlaid that with the “responsivity curves” of the human eye, and found that most of the scientists’ “red” came from infrared light, invisible to human eyes. Subtract that, and what is left is a more reddish-orange hue that we might see standing on the surface of a TRAPPIST-1 world — “kind of the same color you would expect to get from a low-wattage light bulb,” Hurt said. “And the scientists looked at that and said, ‘Oh, ok, great, it’s orange.’ When the math tells you the answer, there really isn’t a lot to argue about.”

    For Hurt, the real goal of scientific illustration is to excite the public, engage them in the science, and provide a snapshot of scientific knowledge.

    “If you look at the whole history of space art, reaching back many, many decades, you will find you have a visual record,” he said. “The art is a historical record of our changing understanding of the universe. It becomes a part of the story, and a part of the research, I think.”

    For more information on exoplanets, visit:

    https://exoplanets.nasa.gov

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:18 pm on June 5, 2017 Permalink | Reply
    Tags: , , , , NASA JPL - Caltech, NASA Near-Earth Object Wide-field Survey Explorer (NEOWISE)   

    From JPL: “NASA’s Asteroid-Hunting Spacecraft a Discovery Machine” 

    NASA JPL Banner

    JPL-Caltech

    June 5, 2017

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    1
    This movie shows the progression of NASA’s Near-Earth Object Wide-field Survey Explorer (NEOWISE) investigation for the mission’s first three years following its restart in December 2013.

    NASA/WISE Telescope

    Green circles represent near-Earth objects (asteroids and comets that come within 1.3 astronomical units of the sun; one astronomical unit is Earth’s distance from the sun). Yellow squares represent comets. Gray dots represent all other asteroids, which are mostly in the main asteroid belt between Mars and Jupiter. The orbits of Mercury, Venus, Earth and Mars are shown.

    The spacecraft has characterized a total of 693 near-Earth objects since the mission was restarted in December 2013. Of these, 114 are new discoveries.

    JPL manages NEOWISE for NASA’s Science Mission Directorate at the agency’s headquarters in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

    For more information about NEOWISE, visit http://www.nasa.gov/neowise

    More information about asteroids and near-Earth objects is at http://www.jpl.nasa.gov/asteroidwatch.

    NASA’s Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) mission has released its third year of survey data, with the spacecraft discovering 97 previously unknown celestial objects in the last year. Of those, 28 were near-Earth objects, 64 were main belt asteroids and five were comets.

    The spacecraft has now characterized a total of 693 near-Earth objects since the mission was re-started in December 2013. Of these, 114 are new. The NEOWISE team has released an animation depicting this solar system survey’s discoveries and characterizations for its third year of operations.

    “NEOWISE is not only discovering previously uncharted asteroids and comets, but it is providing excellent data on many of those already in our catalog,” said Amy Mainzer, NEOWISE principal investigator from NASA’s Jet Propulsion Laboratory in Pasadena, California. “It is also proving to be an invaluable tool in in the refining and perfecting of techniques for near-Earth object discovery and characterization by a space-based infrared observatory.”

    Near-Earth objects (NEOs) are comets and asteroids that have been nudged by the gravitational attraction of the planets in our solar system into orbits that allow them to enter Earth’s neighborhood. Ten of the objects discovered by NEOWISE in the past year have been classified as potentially hazardous asteroids, based on their size and their orbits.

    More than 2.6 million infrared images of the sky were collected in the third year of operations by NEOWISE. These data are combined with the Year 1 and 2 NEOWISE data into a single archive that contains approximately 7.7 million sets of images and a database of more than 57.7 billion source detections extracted from those images.

    A newly discovered Jupiter-like world is so hot, it’s being vaporized by its own star.

    With a dayside temperature of more than 7,800 degrees Fahrenheit (4,600 Kelvin), KELT-9b is a planet that is hotter than most stars. But its blue A-type star, called KELT-9, is even hotter — in fact, it is probably unraveling the planet through evaporation.

    2
    Artist conception of the KELT-9 system. The host star is a hot, rapidly rotating A-type star that is about 2.5 times more massive and almost twice as hot as our sun. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

    “This is the hottest gas giant planet that has ever been discovered,” said Scott Gaudi, astronomy professor at The Ohio State University in Columbus, who led a study on the topic. He worked on this study while on sabbatical at NASA’s Jet Propulsion Laboratory, Pasadena, California. The unusual planet is described in the journal Nature and at a presentation at the American Astronomical Society summer meeting this week in Austin, Texas.

    KELT-9b is 2.8 times more massive than Jupiter, but only half as dense. Scientists would expect the planet to have a smaller radius, but the extreme radiation from its host star has caused the planet’s atmosphere to puff up like a balloon.

    Because the planet is tidally locked to its star — as the moon is to Earth — one side of the planet is always facing toward the star, and one side is in perpetual darkness. Molecules such as water, carbon dioxide and methane can’t form on the dayside because it is bombarded by too much ultraviolet radiation. The properties of the nightside are still mysterious — molecules may be able to form there, but probably only temporarily.

    “It’s a planet by any of the typical definitions of mass, but its atmosphere is almost certainly unlike any other planet we’ve ever seen just because of the temperature of its dayside,” Gaudi said.

    The KELT-9 star is only 300 million years old, which is young in star time. It is more than twice as large, and nearly twice as hot, as our sun. Given that the planet’s atmosphere is constantly blasted with high levels of ultraviolet radiation, the planet may even be shedding a tail of evaporated planetary material like a comet.

    “KELT-9 radiates so much ultraviolet radiation that it may completely evaporate the planet,” said Keivan Stassun, a professor of physics and astronomy at Vanderbilt University, Nashville, Tennessee, who directed the study with Gaudi.

    But this scenario assumes the star doesn’t grow to engulf the planet first.

    “KELT-9 will swell to become a red giant star in a few hundred million years,” said Stassun. “The long-term prospects for life, or real estate for that matter, on KELT-9b are not looking good.”

    The planet is also unusual in that it orbits perpendicular to the spin axis of the star. That would be analogous to the planet orbiting perpendicular to the plane of our solar system. One “year” on this planet is less than two days.

    KELT-9b is nowhere close to habitable, but Gaudi said there’s a good reason to study worlds that are unlivable in the extreme.

    “As has been highlighted by the recent discoveries from the MEarth collaboration, the planet around Proxima Centauri, and the astonishing system discovered around TRAPPIST-1, the astronomical community is clearly focused on finding Earthlike planets around small, cooler stars like our sun.

    Centauris Alpha Beta Proxima 27, February 2012. Skatebiker

    The TRAPPIST-1 star, an ultracool dwarf, is orbited by seven Earth-size planets (NASA).

    They are easy targets and there’s a lot that can be learned about potentially habitable planets orbiting very low-mass stars in general. On the other hand, because KELT-9b’s host star is bigger and hotter than the sun, it complements those efforts and provides a kind of touchstone for understanding how planetary systems form around hot, massive stars,” Gaudi said.

    The KELT-9b planet was found using one of the two telescopes called KELT, or Kilodegree Extremely Little Telescope.

    Kelt North Telescope In Arizona at Winer Observatory by Ohio State University

    In late May and early June 2016, astronomers using the KELT-North telescope at Winer Observatory in Arizona noticed a tiny drop in the star’s brightness — only about half of one percent — which indicated that a planet may have passed in front of the star. The brightness dipped once every 1.5 days, which means the planet completes a “yearly” circuit around its star every 1.5 days.

    Subsequent observations confirmed the signal to be due to a planet, and revealed it to be what astronomers call a “hot Jupiter” — the kind of planet the KELT telescopes are designed to spot.

    Astronomers at Ohio State, Lehigh University in Bethlehem, Pennsylvania, and Vanderbilt jointly operate two KELTs (one each in the northern and southern hemispheres) to fill a large gap in the available technologies for finding exoplanets. Other telescopes are designed to look at very faint stars in much smaller sections of the sky, and at very high resolution.

    KELT South robotic telescope, Southerland, South Africa

    The KELTs, in contrast, look at millions of very bright stars at once, over broad sections of sky, and at low resolution.

    “This discovery is a testament to the discovery power of small telescopes, and the ability of citizen scientists to directly contribute to cutting-edge scientific research,” said Joshua Pepper, astronomer and assistant professor of physics at Lehigh University in Bethlehem, Pennsylvania, who built the two KELT telescopes.

    The astronomers hope to take a closer look at KELT-9b with other telescopes — including NASA’s Spitzer and Hubble space telescopes, and eventually the James Webb Space Telescope, which is scheduled to launch in 2018.

    NASA/Spitzer Telescope

    NASA/ESA Hubble Telescope

    NASA/ESA/CSA Webb Telescope annotated

    Observations with Hubble would enable them to see if the planet really does have a cometary tail, and allow them to determine how much longer that planet will survive its current hellish condition.

    “Thanks to this planet’s star-like heat, it is an exceptional target to observe at all wavelengths, from ultraviolet to infrared, in both transit and eclipse. Such observations will allow us to get as complete a view of its atmosphere as is possible for a planet outside our solar system,” said Knicole Colon, paper co-author who was based at NASA Ames Research Center in California’s Silicon Valley during the time of this study.

    The study was largely funded by the National Science Foundation (NSF) through an NSF CAREER Grant, NSF PAARE Grant and an NSF Graduate Research Fellowship. Additional support came from NASA via the Jet Propulsion Laboratory and the Exoplanet Exploration Program; the Harvard Future Faculty Leaders Postdoctoral Fellowship; Theodore Dunham, Jr., Grant from the Fund for Astronomical Research; and the Japan Society for the Promotion of Science.

    For more information about exoplanets, visit:

    https://exoplanets.nasa.gov

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 1:45 pm on June 2, 2017 Permalink | Reply
    Tags: , , , , , Griffith Observatory, Jeff Nosanov, NASA JPL - Caltech, Solar sail, SSEARS: Background of a NIAC Study   

    From Centauri Dreams: “SSEARS: Background of a NIAC Study” 

    Centauri Dreams

    June 2, 2017
    Paul Gilster

    I always keep an eye on what’s going on at the NASA Innovative Advanced Concepts office, which is where I ran into Jeff Nosanov’s Phase I study for a solar sail called Solar System Escape Architecture for Revolutionary Science. At the Jet Propulsion Laboratory, Jeff managed flight mission proposals and supported the radio isotope power program. He now lives in Washington DC, a technology entrepreneur whose fascination with spacecraft design has never diminished. In the essay below, Jeff explains the background of his first NIAC award (a second, PERIapsis Subsurface Cave Optical Explorer, would lead to Phase I and Phase II grants), and gives us an idea of the ins and outs of making ideas into reality at NIAC and JPL. For more, the website nosanov.com is about to go online, as is Jeff’s own podcast, about which more soon.

    By Jeff Nosanov

    1

    It’s an honor and a privilege to be asked to write about my near-interstellar mission work for the Tau Zero Foundation. Marc’s book and Paul’s writing were very inspiring to me as I began working at JPL and dove into the interstellar mission community. This article will describe my journey to JPL, the process of proposing the mission concept, and the experience of managing the project. The mission concept itself can be read about here.

    In summary, SSEARS (Solar System Escape Architecture for Revolutionary Science) is a solar sail-based mission to return to the heliopause (the edge of the solar system) to continue the Voyager science.

    2
    https://science.nasa.gov/science-news/science-at-nasa/2008/31jul_solarsails

    The driving goal was to determine the fastest possible propulsion method to return to the outer solar system. We concluded that it was possible to get there in about 18 years (half the time it took Voyager) using a very large solar sail system. How did we get to this point? I’ll start at the beginning.

    A Child’s View

    One of my favorite childhood photos was taken at the Griffith Observatory in Los Angeles.

    3

    I don’t quite remember this event, but I do strongly remember a later one, my visit at age 5 in 1987 around the time of the Voyager 2 Neptune encounter.

    NASA Voyager 2

    My dad took me there to look through the big telescope at Neptune, and told me of the spacecraft that was nearing the ice giant planet.

    I distinctly remember the “mind blown” moment of realization that such things were possible. I also learned that day about JPL, the NASA lab just a few dozen miles from the Griffith Observatory where the Voyagers, and so many other spacecraft, were built.

    I didn’t know it until much later but that event turned me into a space guy. I also recall a conversation with my dad from around that time in which he told me that we can visit other planets, but not other stars. That stuck with me.

    As a child it is easy to have a fairly distorted view of what NASA actually is, and what it does. It’s tempting to imagine something out of Star Trek, with wild and amazing technologies in development all around. In reality, only a small part of NASA, the NASA Innovative Advanced Concepts Program (NIAC), embodies that exciting vision, as I discovered as an adult.

    Working at JPL

    About 22 years later I started working at JPL on January 4th, 2010. Suddenly the greatest deep space exploration playground was opened to me. I was extremely eager, giddy even, to learn about this work and discover how I could contribute. I began to learn everything I could about everything I could access. I spent many hours reading books in the library (especially Frontiers of Propulsion Science) and talking to as many people, especially senior people, as possible. I especially stalked the Voyager program people.

    5

    My general knowledge about how NASA missions are developed, selected, funded, built, and operated grew. I began to pay attention to RFPs (Requests for Proposals) and BAAs (Broad Agency Announcements) that came through the daily emails. I eventually pieced together the realization that anyone could propose concepts (at nearly any stage of development) to various programs within NASA. But how to possibly find the right combination of ambition, team, capability, vision, most importantly a receptive NASA program?

    I spent many hours with program managers, scientists and engineers learning about the current challenges and capabilities in deep space exploration. I was extremely grateful at the time, but in retrospect I have even greater appreciation for the time spent with me. It was only through the kind support of managers, engineers, scientists and many others that I developed the general background knowledge to attempt the work that became my project.

    Eventually I came to learn about the NIAC program. That program exists to fund revolutionary concepts that significantly increase exploration capability. This is distinct from the majority of NASA projects, which largely seek to minimize technological risk. The NIAC program exists as a way to ensure that investments in promising, ambitious technology get made, and to reduce technological stagnation as the risk-minimizing forcing functions of most other NASA programs run their course.

    Stalking Voyager

    I knew I wanted to make a dent in interstellar flight, so I spent a lot of time with people from the Voyager program. I tried to learn everything I could about the mission to develop a mission concept that would be worth doing scientifically. Around this time NASA had been planning to fund a technology demonstration mission for a concept called SunJammer. This was to be a solar sail mission to a Lagrange point, using the sail for propulsion and station-keeping.

    LaGrange Points map. NASA

    I decided that a NIAC-worthy proposal would be to start with just how large we could reasonably build a solar sail, and then see how fast such a system could reach the heliopause with a scientifically valuable payload.

    I approached Ed Stone at Caltech with child-like reverence.

    Stone was project scientist for Voyager and a former director of JPL itself. I wanted to ask him what he would do to follow Voyager if he had a limitless budget. To my surprise he accepted my meeting request, and we had several meetings in which he outlined a scientific payload designed entirely for the heliopause region. This became the “mission” that the hypothetical giant solar sail propulsion system would uniquely enable.

    Writing the Proposal

    JPL has several systems in place to help people write successful proposals. Each proposal opportunity announcement from NASA results in a mentoring and guidance resource from the responsible JPL program office. I took great advantage of this resource for the first few proposals of my career and it has made a world of difference.

    The theme across many proposals for many agencies in my experience is the importance of genuine, exciting storytelling. Thinking back, that was all I had for my first effort! The process of writing the proposal exposed me to a great many inner workings of JPL including program management, costing, and even obtaining submission authority. I doggedly, perhaps obsessively, followed the process to ensure that all the rules were followed and I felt a deep sense of relief and excitement once the proposal was fully submitted. However, I did not have any way of estimating my chances for success due to my lack of experience. I moved on with my regular work and hoped.

    Months later I got a most unexpected phone call telling me that my proposal had been selected! I was over the moon, and I felt something very powerful for the first time: My ideas are good and are worth pursuing. I felt a change in responsibility. The proposal development process was partly for my own personal satisfaction and growth. It was a wonderful experience. Now, having been selected, I had the privilege of having the responsibility of discovering something new about the universe and our place in it.

    Outcome

    One of the important lessons I learned is to keep the long term goal in mind. In our case, this specifically meant figuring out the fastest possible way back to the heliopause with a science payload worth taking there. It turned out that we could get there in 18 years with a 250m x 250m solar sail and a “Voyager on steroids” payload.

    This rendering shows our vision for the spacecraft, and a small part of the solar sail behind it.

    6

    Towards the end of the study I made another appointment with Ed Stone. I told him what we had learned. He looked me in the eye and said “Wow.” I’d like to imagine that in that one moment he was the 5 year old looking at the sky, his mind bursting with possibilities, instead of me.

    Impact

    We ultimately submitted a proposal for Phase 2. Unfortunately intervening events ended the possibility in the foreseeable future for significant progress on our work. We had relied upon the NASA excitement in the SunJammer program to chart the course for solar sail work. That program was cancelled and so we did not have a path forward to advance the technology, and without that potential synergy it seemed that a NIAC phase 2 award was unlikely.

    Still, I was satisfied and inspired by our results. I must conclude that the relative impact, in the grand scheme of things, of our study was small, perhaps incremental. However the experience drastically changed my goals and ambition. Ultimately my study is one of many that attempted to explore the limits of what human ingenuity and curiosity can achieve.

    Conclusion

    I became a father on May 4, 2012 in the middle of the study period. This event fundamentally changed the way I think about space exploration and my own role in it. I enjoyed bringing my son to the Griffith Observatory for many reasons. During the Griffith Observatory visit in which this photo of my son was taken I recalled my dad’s statement that we can travel to other planets but not other stars. As of June 2nd, 2017 now that is still true…

    7
    … but we’re working on it.

    8

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Tracking Research into Deep Space Exploration

    Alpha Centauri and other nearby stars seem impossible destinations not just for manned missions but even for robotic probes like Cassini or Galileo. Nonetheless, serious work on propulsion, communications, long-life electronics and spacecraft autonomy continues at NASA, ESA and many other venues, some in academia, some in private industry. The goal of reaching the stars is a distant one and the work remains low-key, but fascinating ideas continue to emerge. This site will track current research. I’ll also throw in the occasional musing about the literary and cultural implications of interstellar flight. Ultimately, the challenge may be as much philosophical as technological: to reassert the value of the long haul in a time of jittery short-term thinking.

     
  • richardmitnick 1:49 pm on May 25, 2017 Permalink | Reply
    Tags: , , , , , , NASA JPL - Caltech   

    From JPL-Caltech: “A Whole New Jupiter: First Science Results from NASA’s Juno Mission” 

    NASA JPL Banner

    JPL-Caltech

    May 25, 2017

    Dwayne Brown
    Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    Laurie Cantillo
    Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Nancy Neal Jones
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-0039
    nancy.n.jones@nasa.gov

    Deb Schmid
    Southwest Research Institute, San Antonio
    210-522-2254
    dschmid@swri.org

    1
    This image shows Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). The oval features are cyclones, up to 600 miles (1,000 kilometers) in diameter. Multiple images taken with the JunoCam instrument on three separate orbits were combined to show all areas in daylight, enhanced color, and stereographic projection.
    Credits: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

    3
    An image of Jupiter taken by the Juno spacecraft. Credit: J.E.P. Connerney et al., Science (2017)phys.org

    3
    Credit: J.E.P. Connerney et al., Science (2017)phys.org

    Early science results from NASA’s Juno mission to Jupiter portray the largest planet in our solar system as a complex, gigantic, turbulent world, with Earth-sized polar cyclones, plunging storm systems that travel deep into the heart of the gas giant, and a mammoth, lumpy magnetic field that may indicate it was generated closer to the planet’s surface than previously thought.

    “We are excited to share these early discoveries, which help us better understand what makes Jupiter so fascinating,” said Diane Brown, Juno program executive at NASA Headquarters in Washington. “It was a long trip to get to Jupiter, but these first results already demonstrate it was well worth the journey.”

    Juno launched on Aug. 5, 2011, entering Jupiter’s orbit on July 4, 2016. The findings from the first data-collection pass, which flew within about 2,600 miles (4,200 kilometers) of Jupiter’s swirling cloud tops on Aug. 27, are being published this week in two papers in the journal Science [http://science.sciencemag.org/cgi/doi/10.1126/science.aal2108] and [http://science.sciencemag.org/cgi/doi/10.1126/science.aam5928] , as well as 44 papers in Geophysical Research Letters [too many to chase down].

    “We knew, going in, that Jupiter would throw us some curves,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “But now that we are here we are finding that Jupiter can throw the heat, as well as knuckleballs and sliders. There is so much going on here that we didn’t expect that we have had to take a step back and begin to rethink of this as a whole new Jupiter.”

    Among the findings that challenge assumptions are those provided by Juno’s imager, JunoCam. The images show both of Jupiter’s poles are covered in Earth-sized swirling storms that are densely clustered and rubbing together.

    “We’re puzzled as to how they could be formed, how stable the configuration is, and why Jupiter’s north pole doesn’t look like the south pole,” said Bolton. “We’re questioning whether this is a dynamic system, and are we seeing just one stage, and over the next year, we’re going to watch it disappear, or is this a stable configuration and these storms are circulating around one another?”

    Another surprise comes from Juno’s Microwave Radiometer (MWR), which samples the thermal microwave radiation from Jupiter’s atmosphere, from the top of the ammonia clouds to deep within its atmosphere. The MWR data indicates that Jupiter’s iconic belts and zones are mysterious, with the belt near the equator penetrating all the way down, while the belts and zones at other latitudes seem to evolve to other structures. The data suggest the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred miles or kilometers.

    Prior to the Juno mission, it was known that Jupiter had the most intense magnetic field in the solar system. Measurements of the massive planet’s magnetosphere, from Juno’s magnetometer investigation (MAG), indicate that Jupiter’s magnetic field is even stronger than models expected, and more irregular in shape. MAG data indicates the magnetic field greatly exceeded expectations at 7.766 Gauss, about 10 times stronger than the strongest magnetic field found on Earth.

    “Juno is giving us a view of the magnetic field close to Jupiter that we’ve never had before,” said Jack Connerney, Juno deputy principal investigator and the lead for the mission’s magnetic field investigation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Already we see that the magnetic field looks lumpy: it is stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action closer to the surface, above the layer of metallic hydrogen. Every flyby we execute gets us closer to determining where and how Jupiter’s dynamo works.”

    Juno also is designed to study the polar magnetosphere and the origin of Jupiter’s powerful auroras—its northern and southern lights. These auroral emissions are caused by particles that pick up energy, slamming into atmospheric molecules. Juno’s initial observations indicate that the process seems to work differently at Jupiter than at Earth.

    Juno is in a polar orbit around Jupiter, and the majority of each orbit is spent well away from the gas giant. But, once every 53 days, its trajectory approaches Jupiter from above its north pole, where it begins a two-hour transit (from pole to pole) flying north to south with its eight science instruments collecting data and its JunoCam public outreach camera snapping pictures. The download of six megabytes of data collected during the transit can take 1.5 days.

    “Every 53 days, we go screaming by Jupiter, get doused by a fire hose of Jovian science, and there is always something new,” said Bolton. “On our next flyby on July 11, we will fly directly over one of the most iconic features in the entire solar system — one that every school kid knows — Jupiter’s Great Red Spot. If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno and her cloud-piercing science instruments.”

    NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the Juno mission for NASA. The principal investigator is Scott Bolton of the Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate. Lockheed Martin Space Systems, in Denver, built the spacecraft.

    More information on the Juno mission is available at:

    https://www.nasa.gov/juno

    http://missionjuno.org

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:11 pm on May 24, 2017 Permalink | Reply
    Tags: , NASA JPL - Caltech,   

    From JPL-Caltech: “NASA Moves Up Launch of Psyche Mission to a Metal Asteroid” 

    NASA JPL Banner

    JPL-Caltech

    May 24, 2017
    D.C. Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Karin Valentine
    Arizona State University School of Earth and Space Exploration, Tempe
    480-965-9345
    karin.valentine@asu.edu

    Laurie Cantillo
    NASA Headquarters, Washington
    202-358-1077
    laura.l.cantillo@nasa.gov

    Dwayne Brown
    NASA Headquarters, Washington
    202-358-1726
    dwayne.c.brown@nasa.gov

    1
    This artist’s-concept illustration depicts the spacecraft of NASA’s Psyche mission near the mission’s target, the metal asteroid Psyche. The artwork was created in May 2017 to show the five-panel solar arrays planned for the spacecraft.
    The spacecraft’s structure will include power and propulsion systems to travel to, and orbit, the asteroid. These systems will combine solar power with electric propulsion to carry the scientific instruments used to study the asteroid through space.
    The mission plans launch in 2022 and arrival at Psyche, between the orbits of Mars and Jupiter, in 2026. This selected asteroid is made almost entirely of nickel-iron metal. It offers evidence about violent collisions that created Earth and other terrestrial planets.
    Image credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin

    Psyche, NASA’s Discovery Mission to a unique metal asteroid, has been moved up one year with launch in the summer of 2022, and with a planned arrival at the main belt asteroid in 2026 — four years earlier than the original timeline.

    “We challenged the mission design team to explore if an earlier launch date could provide a more efficient trajectory to the asteroid Psyche, and they came through in a big way,” said Jim Green, director of the Planetary Science Division at NASA Headquarters in Washington. “This will enable us to fulfill our science objectives sooner and at a reduced cost.”

    The Discovery program announcement of opportunity had directed teams to propose missions for launch in either 2021 or 2023. The Lucy mission was selected for the first launch opportunity in 2021, and Psyche was to follow in 2023. Shortly after selection in January, NASA gave the direction to the Psyche team to research earlier opportunities.

    2
    Lucy

    “The biggest advantage is the excellent trajectory, which gets us there about twice as fast and is more cost effective,” said Principal Investigator Lindy Elkins-Tanton of Arizona State University in Tempe. “We are all extremely excited that NASA was able to accommodate this earlier launch date. The world will see this amazing metal world so much sooner.”

    The revised trajectory is more efficient, as it eliminates the need for an Earth gravity assist, which ultimately shortens the cruise time. In addition, the new trajectory stays farther from the sun, reducing the amount of heat protection needed for the spacecraft. The trajectory will still include a Mars gravity assist in 2023.

    “The change in plans is a great boost for the team and the mission,” said Psyche Project Manager Henry Stone at NASA’s Jet Propulsion Laboratory, Pasadena, California. “Our mission design team did a fantastic job coming up with this ideal launch opportunity.”

    The Psyche spacecraft is being built by Space Systems Loral (SSL), Palo Alto, California. In order to support the new mission trajectory, SSL redesigned the solar array system from a four-panel array in a straight row on either side of the spacecraft to a more powerful five-panel x-shaped design, commonly used for missions requiring more capability. Much like a sports car, by combining a relatively small spacecraft body with a very high-power solar array design, the Psyche spacecraft will speed to its destination at a faster pace than is typical for a larger spacecraft.

    “By increasing the size of the solar arrays, the spacecraft will have the power it needs to support the higher velocity requirements of the updated mission,” said SSL Psyche Program Manager Steve Scott.

    The Psyche Mission

    Psyche, an asteroid orbiting the sun between Mars and Jupiter, is made almost entirely of nickel-iron metal. As such, it offers a unique look into the violent collisions that created Earth and the terrestrial planets.

    The Psyche Mission was selected for flight earlier this year under NASA’s Discovery Program, a series of lower-cost, highly focused robotic space missions that are exploring the solar system.

    The scientific goals of the Psyche mission are to understand the building blocks of planet formation and explore firsthand a wholly new and unexplored type of world. The mission team seeks to determine whether Psyche is the core of an early planet, how old it is, whether it formed in similar ways to Earth’s core, and what its surface is like. The spacecraft’s instrument payload will include magnetometers, multispectral imagers, and a gamma ray and neutron spectrometer.

    For more information about NASA’s Psyche mission go to:

    http://www.nasa.gov/psyche

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 5:28 pm on May 22, 2017 Permalink | Reply
    Tags: Astronomers Confirm Orbital Details of TRAPPIST-1h, NASA JPL - Caltech,   

    From JPL-Caltech: “Astronomers Confirm Orbital Details of TRAPPIST-1h” 

    NASA JPL Banner

    JPL-Caltech

    May 22, 2017
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    Michele Johnson
    Ames Research Center, Moffett Field, Calif.
    650-604-6982
    michele.johnson@nasa.gov

    Written by Michele Johnson

    1
    This artist’s concept shows TRAPPIST-1h, one of seven Earth-size planets in the TRAPPIST-1 planetary system. NASA’s Kepler spacecraft, operating in its K2 mission, obtained data that allowed scientists to determine that the orbital period of TRAPPIST-1h is 19 days.Credit: NASA/JPL-Caltech

    NASA/Kepler Telescope

    Scientists using NASA’s Kepler space telescope identified a regular pattern in the orbits of the planets in the TRAPPIST-1 system that confirmed suspected details about the orbit of its outermost and least understood planet, TRAPPIST-1h.

    The TRAPPIST-1 star, an ultracool dwarf, is orbited by seven Earth-size planets (NASA).

    TRAPPIST-1 is only eight percent the mass of our sun, making it a cooler and less luminous star. It’s home to seven Earth-size planets, three of which orbit in their star’s habitable zone — the range of distances from a star where liquid water could pool on the surface of a rocky planet. The system is located about 40 light-years away in the constellation of Aquarius. The star is estimated to be between 3 billion and 8 billion years old.

    Scientists announced that the system has seven Earth-sized planets at a NASA press conference on Feb. 22. NASA’s Spitzer Space Telescope, the TRAPPIST (Transiting Planets and Planetesimals Small Telescope) in Chile and other ground-based telescopes were used to detect and characterize the planets. But the collaboration only had an estimate for the period of TRAPPIST-1h.

    NASA/Spitzer Telescope

    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile interior


    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile

    Astronomers from the University of Washington have used data from the Kepler spacecraft to confirm that TRAPPIST-1h orbits its star every 19 days. At six million miles from its cool dwarf star, TRAPPIST-1h is located beyond the outer edge of the habitable zone, and is likely too cold for life as we know it. The amount of energy (per unit area) planet h receives from its star is comparable to what the dwarf planet Ceres, located in the asteroid belt between Mars and Jupiter, gets from our sun.

    “It’s incredibly exciting that we’re learning more about this planetary system elsewhere, especially about planet h, which we barely had information on until now,” said Thomas Zurbuchen, associate administrator of NASA’s Science Mission Directorate at Headquarters in Washington. “This finding is a great example of how the scientific community is unleashing the power of complementary data from our different missions to make such fascinating discoveries.”

    “It really pleased me that TRAPPIST-1h was exactly where our team predicted it to be. It had me worried for a while that we were seeing what we wanted to see — after all, things are almost never exactly what you expect them to be in this field,” said Rodrigo Luger, doctoral student at UW in Seattle, and lead author of the study published in the journal Nature Astronomy. “Nature usually surprises us at every turn, but, in this case, theory and observation matched perfectly.”

    Orbital Resonance – Harmony Among Celestial Bodies

    Using the prior Spitzer data, the team recognized a mathematical pattern in the frequency at which each of the six innermost planets orbits their star. This complex but predictable pattern, called an orbital resonance, occurs when planets exert a regular, periodic gravitational tug on each other as they orbit their star.

    To understand the concept of resonance, consider Jupiter’s moons Io, Europa and Ganymede, which is the farthest out of the three. For every time Ganymede orbits Jupiter, Europa orbits twice and Io makes four trips around the planet. This 1:2:4 resonance is considered stable and if one moon were nudged off course, it would self-correct and lock back into a stable orbit. It is this harmonious influence between the seven TRAPPIST-1 siblings that keeps the system stable.

    These relationships, said Luger, suggested that by studying the orbital velocities of its neighboring planets, scientists could predict the exact orbital velocity, and hence also orbital period, of planet h, even before the Kepler observations. The team calculated six possible resonant periods for planet h that would not disrupt the stability of the system, but only one was not ruled out by additional data. The other five possibilities could have been observed in the Spitzer and ground-based data collected by the TRAPPIST team.

    “All of this”, Luger said, “indicates that these orbital relationships were forged early in the life of the TRAPPIST-1 system, during the planet formation process.”

    “The resonant structure is no coincidence, and points to an interesting dynamical history in which the planets likely migrated inward in lock-step,” said Luger. “This makes the system a great laboratory for planet formation and migration theories.”

    Worldwide Real-time Collaboration

    The Kepler spacecraft stared at the patch of sky home to the TRAPPIST-1 system from Dec. 15, 2016, to March 4, 2017. collecting data on the star’s minuscule changes in brightness due to transiting planets as part of its second mission, K2. On March 8, the raw, uncalibrated data was released to the scientific community to begin follow-up studies.

    The work to confirm TRAPPIST-1h’s orbital period immediately began, and scientists from around the world took to social media to share in real-time the new information gleaned about the star’s behavior and its brood of planets. Within two hours of the data release, the team confirmed its prediction of a 19-day orbital period.

    “Pulling results out of data is always stimulating, but it was a rare treat to watch scientists across the world collaborate and share their progress in near-real time on social media as they analyzed the data and identified the transits of TRAPPIST-1h,” said Jessie Dotson, project scientist for the K2 mission at NASA’s Ames Research Center in California’s Silicon Valley. “The creativity and expediency by which the data has been put to use has been a particularly thrilling aspect of K2’s community-focused approach.”

    TRAPPIST-1’s seven-planet chain of resonances established a record among known planetary systems, the previous holders being the systems Kepler-80 and Kepler-223, each with four resonant planets.

    The TRAPPIST-1 system was first discovered in 2016 by the TRAPPIST collaboration, and was thought to have just three planets at that time. Additional planets were found with Spitzer and ground-based telescopes. NASA’s Hubble Space Telescope is following up with atmospheric observations, and the James Webb Space Telescope will be able to probe potential atmospheres in further detail.

    NASA/ESA Hubble Telescope

    “This work was based on 1333 hrs of new observations gathered from the ground with the 60cm telescopes TRAPPIST-South (469 hrs) and TRAPPIST-North (202 hrs), the 8m Very Large Telescope (3 hrs), the 4.2m William Herschel telescope (26 hrs), the 4m UKIRT telescope (25 hrs), the 2m Liverpool telescope (50 hrs), and the 1m SAAO telescope (11 hrs), and from space with Spitzer (518 hrs).

    ESO Belgian robotic Trappist-South National Telescope at Cerro La Silla, Chile

    Trappist-North Telescope in Morocco

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ING 4 meter William Herschel Telescope at Roque de los Muchachos Observatory on La Palma in the Canary Islands

    UKIRT, located on Mauna Kea, Hawai’i, USA as part of Mauna Kea Observatory

    2-metre Liverpool Telescope at La Palma in the Canary Islands

    SAAO 1.9 meter Telescope, at the SAAO observation station 15Kms from the small Karoo town of Sutherland in the Northern Cape, a 4-hour drive from Cape Town.

    Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corp. operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.

    For more information about the Kepler and K2 missions, visit:

    https://www.nasa.gov/kepler

    For more information about the TRAPPIST-1 system, visit:

    http://exoplanets.nasa.gov/trappist1

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 2:07 pm on May 9, 2017 Permalink | Reply
    Tags: , , , , Merging Galaxies Have Enshrouded Black Holes, NASA JPL - Caltech   

    From JPL-Caltech: “Merging Galaxies Have Enshrouded Black Holes” 

    NASA JPL Banner

    JPL-Caltech

    May 9, 2017
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    1
    This illustration compares growing supermassive black holes in two different kinds of galaxies. A growing supermassive black hole in a normal galaxy would have a donut-shaped structure of gas and dust around it (left). In a merging galaxy, a sphere of material obscures the black hole (right). Credit: National Astronomical Observatory of Japan

    Black holes get a bad rap in popular culture for swallowing everything in their environments. In reality, stars, gas and dust can orbit black holes for long periods of time, until a major disruption pushes the material in.

    A merger of two galaxies is one such disruption. As the galaxies combine and their central black holes approach each other, gas and dust in the vicinity are pushed onto their respective black holes. An enormous amount of high-energy radiation is released as material spirals rapidly toward the hungry black hole, which becomes what astronomers call an active galactic nucleus (AGN).

    A study using NASA’s NuSTAR telescope shows that in the late stages of galaxy mergers, so much gas and dust falls toward a black hole that the extremely bright AGN is enshrouded.

    NASA/NuSTAR

    The combined effect of the gravity of the two galaxies slows the rotational speeds of gas and dust that would otherwise be orbiting freely. This loss of energy makes the material fall onto the black hole.

    “The further along the merger is, the more enshrouded the AGN will be,” said Claudio Ricci, lead author of the study published in the Monthly Notices Royal Astronomical Society. “Galaxies that are far along in the merging process are completely covered in a cocoon of gas and dust.”

    Ricci and colleagues observed the penetrating high-energy X-ray emission from 52 galaxies. About half of them were in the later stages of merging. Because NuSTAR is very sensitive to detecting the highest-energy X-rays, it was critical in establishing how much light escapes the sphere of gas and dust covering an AGN.

    The study was published in the Monthly Notices of the Royal Astronomical Society. Researchers compared NuSTAR observations of the galaxies with data from NASA’s Swift and Chandra and ESA’s XMM-Newton observatories, which look at lower energy components of the X-ray spectrum. If high-energy X-rays are detected from a galaxy, but low-energy X-rays are not, that is a sign that an AGN is heavily obscured.

    NASA/SWIFT Telescope

    NASA/Chandra Telescope

    ESA/XMM Newton

    The study helps confirm the longstanding idea that an AGN’s black hole does most of its eating while enshrouded during the late stages of a merger.

    “A supermassive black hole grows rapidly during these mergers,” Ricci said. “The results further our understanding of the mysterious origins of the relationship between a black hole and its host galaxy.”

    NuSTAR is a Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

    For more information on NuSTAR, visit:

    http://www.nasa.gov/nustar

    http://www.nustar.caltech.edu

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 12:44 pm on May 9, 2017 Permalink | Reply
    Tags: , , , , , , Detecting infrared light, , , NASA JPL - Caltech   

    From JPL-Caltech: “NASA Delivers Detectors for ESA’s Euclid Spacecraft” 

    NASA JPL Banner

    JPL-Caltech

    May 9, 2017
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    Giuseppe Racca
    Euclid Project Manager
    Directorate of Science
    European Space Agency
    giuseppe.racca@esa.int

    René Laureijs
    Euclid Project Scientist
    Directorate of Science
    European Space Agency
    Rene.Laureijs@esa.int

    ESA/Euclid spacecraft

    Three detector systems for the Euclid mission, led by ESA (European Space Agency), have been delivered to Europe for the spacecraft’s near-infrared instrument. The detector systems are key components of NASA’s contribution to this upcoming mission to study some of the biggest questions about the universe, including those related to the properties and effects of dark matter and dark energy — two critical, but invisible phenomena that scientists think make up the vast majority of our universe.

    “The delivery of these detector systems is a milestone for what we hope will be an extremely exciting mission, the first space mission dedicated to going after the mysterious dark energy,” said Michael Seiffert, the NASA Euclid project scientist based at NASA’s Jet Propulsion Laboratory, Pasadena, California, which manages the development and implementation of the detector systems.

    Euclid will carry two instruments: a visible-light imager (VIS) and a near-infrared spectrometer and photometer (NISP). A special light-splitting plate on the Euclid telescope enables incoming light to be shared by both instruments, so they can carry out observations simultaneously.

    The spacecraft, scheduled for launch in 2020, will observe billions of faint galaxies and investigate why the universe is expanding at an accelerating pace. Astrophysicists think dark energy is responsible for this effect, and Euclid will explore this hypothesis and help constrain dark energy models. This census of distant galaxies will also reveal how galaxies are distributed in our universe, which will help astrophysicists understand how the delicate interplay of the gravity of dark matter, luminous matter and dark energy forms large-scale structures in the universe.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    Additionally, the location of galaxies in relation to each other tells scientists how they are clustered. Dark matter, an invisible substance accounting for over 80 percent of matter in our universe, can cause subtle distortions in the apparent shapes of galaxies. That is because its gravity bends light that travels from a distant galaxy toward an observer, which changes the appearance of the galaxy when it is viewed from a telescope.

    Gravitational Lensing NASA/ESA

    Euclid’s combination of visible and infrared instruments will examine this distortion effect and allow astronomers to probe dark matter and the effects of dark energy.

    Detecting infrared light, which is invisible to the human eye, is especially important for studying the universe’s distant galaxies. Much like the Doppler effect for sound, where a siren’s pitch seems higher as it approaches and lower as it moves away, the frequency of light from an astronomical object gets shifted with motion. Light from objects that are traveling away from us appears redder, and light from those approaching us appears bluer. Because the universe is expanding, distant galaxies are moving away from us, so their light gets stretched out to longer wavelengths. Between 6 and 10 billion light-years away, galaxies are brightest in infrared light.

    JPL procured the NISP detector systems, which were manufactured by Teledyne Imaging Sensors of Camarillo, California. They were tested at JPL and at NASA’s Goddard Space Flight Center, Greenbelt, Maryland, before being shipped to France and the NISP team.

    Each detector system consists of a detector, a cable and a “readout electronics chip” that converts infrared light to data signals read by an onboard computer and transmitted to Earth for analysis. Sixteen detectors will fly on Euclid, each composed of 2040 by 2040 pixels. They will cover a field of view slightly larger than twice the area covered by a full moon. The detectors are made of a mercury-cadmium-telluride mixture and are designed to operate at extremely cold temperatures.

    “The U.S. Euclid team has overcome many technical hurdles along the way, and we are delivering superb detectors that will enable the collection of unprecedented data during the mission,” said Ulf Israelsson, the NASA Euclid project manager, based at JPL.

    Delivery to ESA of the next set of detectors for NISP is planned in early June. The Centre de Physique de Particules de Marseille, France, will provide further characterization of the detector systems. The final detector focal plane will then be assembled at the Laboratoire d’Astrophysique de Marseille, and integrated with the rest of NISP for instrument tests.

    For more information about Euclid, visit:

    http://sci.esa.int/Euclid

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 12:39 pm on May 4, 2017 Permalink | Reply
    Tags: NASA JPL - Caltech, , New Movie Shows Cassini's First Dive over Saturn   

    From JPL-Caltech: “New Movie Shows Cassini’s First Dive over Saturn” 

    NASA JPL Banner

    JPL-Caltech

    May 3, 2017
    Preston Dyches
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-7013
    preston.dyches@jpl.nasa.gov

    Steve Mullins
    CICLOPS/Space Science Institute, Boulder, Colo.
    720-974-5859
    media@ciclops.org

    1
    Cassini took a movie sequence of images during its first dive between Saturn and its rings on April 26, 2017. Credit: NASA/JPL-Caltech

    A new movie sequence of images from NASA’s Cassini spacecraft shows the view as the spacecraft swooped over Saturn during the first of its Grand Finale dives between the planet and its rings on April 26.

    The movie comprises one hour of observations as the spacecraft moved southward over Saturn. It begins with a view of the swirling vortex at the planet’s north pole, then heads past the outer boundary of the hexagon-shaped jet stream and beyond.

    “I was surprised to see so many sharp edges along the hexagon’s outer boundary and the eye-wall of the polar vortex,” said Kunio Sayanagi, an associate of the Cassini imaging team based at Hampton University in Virginia, who helped produce the new movie. “Something must be keeping different latitudes from mixing to maintain those edges,” he said.

    Toward the end of the movie, the camera frame rotates as the spacecraft reorients to point its large, saucer-shaped antenna in the direction of the spacecraft’s motion. The antenna was used as a protective shield during the crossing of Saturn’s ring plane.

    As the movie frames were captured, the Cassini spacecraft’s altitude above the clouds dropped from 45,000 to 4,200 miles (72,400 to 6,700 kilometers). As this occurred, the smallest resolvable features in the atmosphere changed from 5.4 miles (8.7 kilometers) per pixel to 0.5 mile (810 meters) per pixel.

    “The images from the first pass were great, but we were conservative with the camera settings. We plan to make updates to our observations for a similar opportunity on June 28 that we think will result in even better views,” said Andrew Ingersoll, a member of the Cassini imaging team based at Caltech in Pasadena, California.

    The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: