Tagged: NASA JPL – Caltech Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:07 pm on May 10, 2023 Permalink | Reply
    Tags: "NASA’s Webb Takes Closest Look Yet at Mysterious Planet", , , , NASA JPL - Caltech, , , The planet called GJ 1214 b   

    From NASA JPL-Caltech And The NASA/ESA/CSA James Webb Space Telescope: “NASA’s Webb Takes Closest Look Yet at Mysterious Planet” 

    From NASA JPL-Caltech

    And

    NASA Webb Header

    National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

    The NASA/ESA/CSA James Webb Space Telescope

    5.10.23
    News Media Contact
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    Written by Pat Brennan

    1
    This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy. Credit: NASA/JPL-Caltech/R. Hurt (IPAC)

    A science team gains new insight into the atmosphere of a “mini-Neptune,” a class of planet common in the galaxy but about which little is known.

    NASA’s James Webb Space Telescope has observed a distant planet outside our solar system – and unlike anything in it – to reveal what is likely a highly reflective world with a steamy atmosphere. It’s the closest look yet at the mysterious world, a “mini-Neptune” that was largely impenetrable to previous observations.

    And while the planet, called GJ 1214 b, is too hot to harbor liquid-water oceans, water in vaporized form still could be a major part of its atmosphere.

    “The planet is totally blanketed by some sort of haze or cloud layer,” said Eliza Kempton, a researcher at the University of Maryland and lead author of a new paper, published in Nature [below], on the planet. “The atmosphere just remained totally hidden from us until this observation.” She noted that, if indeed water-rich, the planet could have been a “water world,” with large amounts of watery and icy material at the time of its formation.

    To penetrate such a thick barrier, the research team took a chance on a novel approach: In addition to making the standard observation – capturing the host star’s light that has filtered through the planet’s atmosphere – they tracked GJ 1214 b through nearly its entire orbit around the star.

    The observation demonstrates the power of Webb’s Mid-Infrared Instrument (MIRI) [below], which views wavelengths of light outside the part of the electromagnetic spectrum that human eyes can see. Using MIRI, the research team was able to create a kind of “heat map” of the planet as it orbited the star. The heat map revealed – just before the planet’s orbit carried it behind the star, and as it emerged on the other side – both its day and night sides, unveiling details of the atmosphere’s composition.

    “The ability to get a full orbit was really critical to understand how the planet distributes heat from the day side to the night side,” Kempton said. “There’s a lot of contrast between day and night. The night side is colder than the day side.” In fact, the temperatures shifted from 535 to 326 degrees Fahrenheit (from 279 to 165 degrees Celsius).

    Such a big shift is only possible in an atmosphere made up of heavier molecules, such as water or methane, which appear similar when observed by MIRI. That means the atmosphere of GJ 1214 b is not composed mainly of lighter hydrogen molecules, Kempton said, which is a potentially important clue to the planet’s history and formation – and perhaps its watery start.

    “This is not a primordial atmosphere,” she said. “It does not reflect the composition of the host star it formed around. Instead, it either lost a lot of hydrogen, if it started with a hydrogen-rich atmosphere, or it was formed from heavier elements to begin with – more icy, water-rich material.”

    Cooler Than Expected

    And while the planet is hot by human standards, it is much cooler than expected, Kempton noted. That’s because its unusually shiny atmosphere, which came as a surprise to the researchers, reflects a large fraction of the light from its parent star rather than absorbing it and growing hotter.

    The new observations could open the door to deeper knowledge of a planet type shrouded in uncertainty. Mini-Neptunes – or sub-Neptunes as they’re called in the paper – are the most common type of planet in the galaxy, but mysterious to us because they don’t occur in our solar system. Measurements so far show they are broadly similar to, say, a downsized version of our own Neptune. Beyond that, little is known.

    “For the last almost decade, the only thing we really knew about this planet was that the atmosphere was cloudy or hazy,” said Rob Zellem, an exoplanet researcher who works with co-author and fellow exoplanet researcher Tiffany Kataria at NASA’s Jet Propulsion Laboratory in Southern California. “This paper has really cool implications for additional detailed climate interpretations – to look at the detailed physics happening inside this planet’s atmosphere.”

    The new work suggests the planet might have formed farther from its star, a type known as a red dwarf, then spiraled gradually inward to its present, close orbit. The planet’s year – one orbit around the star – takes only 1.6 Earth days.

    “The simplest explanation, if you find a very water-rich planet, is that it formed farther away from the host star,” Kempton said.

    Further observations will be needed to pin down more details about GJ 1214 b as well as the formation histories of other planets in the mini-Neptune class. While a watery atmosphere seems likely for this planet, a significant methane component also is possible. And drawing broader conclusions about how mini-Neptunes form will require more of them to be observed in depth.

    “By observing a whole population of objects like this, hopefully we can build up a consistent story,” Kempton said.

    MIRI was developed through a 50-50 partnership between NASA and ESA. NASA’s Jet Propulsion Laboratory led the U.S. efforts for MIRI, and a multinational consortium of European astronomical institutes contributes for ESA. George Rieke with the University of Arizona is the MIRI science team lead. Gillian Wright is the MIRI European principal investigator. Alistair Glasse with UK ATC is the MIRI instrument scientist, and Michael Ressler is the U.S. project scientist at JPL. Laszlo Tamas with UK ATC manages the European Consortium. The MIRI cryocooler development was led and managed by JPL, in collaboration with Northrop Grumman in Redondo Beach, California, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Caltech manages JPL for NASA.

    For more information about the Webb mission, visit:

    https://www.nasa.gov/webb

    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The NASA/ESA/CSA James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror. Webb was finally launched December 25, 2021, ten years late. Webb will be the premier observatory of the next decade, serving thousands of astronomers worldwide. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.

    Webb is the world’s largest, most powerful, and most complex space science telescope ever built. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it.

    Webb was formerly known as the “Next Generation Space Telescope” (NGST); it was renamed in Sept. 2002 after a former NASA administrator, James Webb.

    Webb is an international collaboration between National Aeronautics and Space Administration, the European Space Agency (ESA), and the Canadian Space Agency (CSA). The NASA Goddard Space Flight Center managed the development effort. The main industrial partner is Northrop Grumman; the Space Telescope Science Institute operates Webb.

    Several innovative technologies have been developed for Webb. These include a folding, segmented primary mirror, adjusted to shape after launch; ultra-lightweight beryllium optics; detectors able to record extremely weak signals, microshutters that enable programmable object selection for the spectrograph; and a cryocooler for cooling the mid-IR detectors to 7K.

    There are four science instruments on Webb: The Near InfraRed Camera (NIRCam), The Near InfraRed Spectrograph (NIRspec), The Mid-InfraRed Instrument (MIRI), and The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS-NIRISS).

    Webb’s instruments are designed to work primarily in the infrared range of the electromagnetic spectrum, with some capability in the visible range. It will be sensitive to light from 0.6 to 28 micrometers in wavelength.
    National Aeronautics Space Agency Webb NIRCam.

    The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Webb MIRI schematic.

    Webb has four main science themes: The End of the Dark Ages: First Light and Reionization, The Assembly of Galaxies, The Birth of Stars and Protoplanetary Systems, and Planetary Systems and the Origins of Life.

    Launch was December 25, 2021, ten years late, on an Ariane 5 rocket. The launch was from Arianespace’s ELA-3 launch complex at European Spaceport located near Kourou, French Guiana. Webb is located at the second Lagrange point, about a million miles from the Earth.

    ESA50 Logo large

    Canadian Space Agency

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:49 pm on May 9, 2023 Permalink | Reply
    Tags: "JPL’s Snake-Like EELS Slithers Into New Robotics Terrain", A versatile robot that would autonomously map and traverse and explore previously inaccessible destinations., , Called "EELS" - short for Exobiology Extant Life Surveyor, EELS creates a 3D map of its surroundings using four pairs of stereo cameras and lidar., EELS is designed to autonomously sense its environment and calculate risk and travel and gather data with yet-to-be-determined science instruments., In its final form the robot will contain 48 actuators – little motors – that give it the flexibility to assume multiple configurations but add complexity for both the hardware and software teams., , NASA JPL - Caltech, , The project team began building the first prototype in 2019 and has been making continual revisions., The robot has been put to the test in sandy and snowy and icy environments., When you’re going places where you don’t know what you’ll find you want to send a versatile and risk-aware robot that’s prepared for uncertainty – and can make decisions on its own.   

    From NASA JPL-Caltech: “JPL’s Snake-Like EELS Slithers Into New Robotics Terrain” 

    From NASA JPL-Caltech

    5.8.23
    Melissa Pamer
    Jet Propulsion Laboratory, Pasadena, Calif
    626-314-4928
    melissa.pamer@jpl.nasa.gov

    1
    Snake robot called EELSs. EELS in snow with team. JPL.

    null
    Tests in sandy terrain. EELS in Mars Yard curled. JPL.

    A versatile robot that would autonomously map, traverse, and explore previously inaccessible destinations is being put to the test at NASA’s Jet Propulsion Laboratory.

    How do you create a robot that can go places no one has ever seen before – on its own, without real-time human input? A team at NASA’s Jet Propulsion Laboratory that’s creating a snake-like robot for traversing extreme terrain is taking on the challenge with the mentality of a startup: Build quickly, test often, learn, adjust, repeat.

    Called “EELS” (short for Exobiology Extant Life Surveyor), the self-propelled, autonomous robot was inspired by a desire to look for signs of life in the ocean hiding below the icy crust of Saturn’s moon Enceladus by descending narrow vents in the surface that spew geysers into space. Although testing and development continue, designing for such a challenging destination has resulted in a highly adaptable robot. EELS could pick a safe course through a wide variety of terrain on Earth, the Moon, and far beyond, including undulating sand and ice, cliff walls, craters too steep for rovers, underground lava tubes, and labyrinthine spaces within glaciers.

    “It has the capability to go to locations where other robots can’t go. Though some robots are better at one particular type of terrain or other, the idea for EELS is the ability to do it all,” said JPL’s Matthew Robinson, EELS project manager. “When you’re going places where you don’t know what you’ll find, you want to send a versatile, risk-aware robot that’s prepared for uncertainty – and can make decisions on its own.”


    Testing Out JPL’s New Snake Robot. JPL.

    The project team began building the first prototype in 2019 and has been making continual revisions. Since last year, they’ve been conducting monthly field tests and refining both the hardware and the software that allows EELS to operate autonomously. In its current form, dubbed EELS 1.0, the robot weighs about 220 pounds (100 kilograms) and is 13 feet (4 meters) long. It’s composed of 10 identical segments that rotate, using screw threads for propulsion, traction, and grip. The team has been trying out a variety of screws: white, 8-inch-diameter (20-centimeter-diameter) 3D-printed plastic screws for testing on looser terrain, and narrower, sharper black metal screws for ice.

    The robot has been put to the test in sandy, snowy, and icy environments, from the Mars Yard at JPL to a “robot playground” created at a ski resort in the snowy mountains of Southern California, even at a local indoor ice rink.

    “We have a different philosophy of robot development than traditional spacecraft, with many quick cycles of testing and correcting,” said Hiro Ono, EELS principal investigator at JPL. “There are dozens of textbooks about how to design a four-wheel vehicle, but there is no textbook about how to design an autonomous snake robot to boldly go where no robot has gone before. We have to write our own. That’s what we’re doing now.”

    How EELS Thinks and Moves

    Because of the communications lag time between Earth and deep space, EELS is designed to autonomously sense its environment, calculate risk, travel, and gather data with yet-to-be-determined science instruments. When something goes wrong, the goal is for the robot to recover on its own, without human assistance.

    3
    EELS lowering head on Athabasca glacier. JPL.

    4
    EELS screw examples. JPL.

    “Imagine a car driving autonomously, but there are no stop signs, no traffic signals, not even any roads. The robot has to figure out what the road is and try to follow it,” said the project’s autonomy lead, Rohan Thakker. “Then it needs to go down a 100-foot drop and not fall.”

    EELS creates a 3D map of its surroundings using four pairs of stereo cameras and lidar, which is similar to radar but employs short laser pulses instead of radio waves. With the data from those sensors, navigation algorithms figure out the safest path forward. The goal has been to create library of “gaits,” or ways the robot can move in response to terrain challenges, from sidewinding to curling in on itself, a move the team calls “banana.”

    In its final form, the robot will contain 48 actuators – essentially little motors – that give it the flexibility to assume multiple configurations but add complexity for both the hardware and software teams. Thakker compares the actuators to “48 steering wheels.” Many of them have built-in force-torque sensing, working like a kind of skin so EELS can feel how much force it’s exerting on terrain. That helps it to move vertically in narrow chutes with uneven surfaces, configuring itself to push against opposing walls at the same time like a rock climber.

    Last year, the EELS team got to experience those kinds of challenging spaces when they lowered the robot’s perception head – the segment with the cameras and lidar – into a vertical shaft called a moulin at Athabasca Glacier in the Canadian Rockies. In September, they’re returning to the location, which is in many ways an analog for icy moons in our solar system, with a version of the robot designed to test subsurface mobility. The team will drop a small sensor suite – to monitor glacier chemical and physical properties – that EELS will eventually be able to deploy to remote sites.

    “Our focus so far has been on autonomous capability and mobility, but eventually we’ll look at what science instruments we can integrate with EELS,” Robinson said. “Scientists tell us where they want to go, what they’re most excited about, and we’ll provide a robot that will get them there. How? Like a startup, we just have to build it.”

    More About the Project

    EELS is funded by the Office of Technology Infusion and Strategy at NASA’s Jet Propulsion Laboratory in Southern California through a technology accelerator program called JPL Next. JPL is managed for NASA by Caltech in Pasadena, California. The EELS team has worked with a number of university partners on the project, including Arizona State University, Carnegie Mellon University, and University of California, San Diego. The robot is not currently part of any NASA mission.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:15 am on April 24, 2023 Permalink | Reply
    Tags: "NASA’s Voyager Will Do More Science With New Power Strategy", , , , , , NASA JPL - Caltech,   

    From NASA JPL-Caltech: “NASA’s Voyager Will Do More Science With New Power Strategy” 

    From NASA JPL-Caltech

    4.26.23
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    The plan will keep Voyager 2’s science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

    1
    The Voyager proof test model, shown in a space simulator chamber at JPL in 1976, was a replica of the twin Voyager space probes that launched in 1977. The model’s scan platform stretches to the right, holding several of the spacecraft’s science instruments in their deployed positions.
    Credit: NASA/JPL-Caltech.

    Launched in 1977, the Voyager 2 spacecraft is more than 12 billion miles (20 billion kilometers) from Earth, using five science instruments to study interstellar space. To help keep those instruments operating despite a diminishing power supply, the aging spacecraft has begun using a small reservoir of backup power set aside as part of an onboard safety mechanism. The move will enable the mission to postpone shutting down a science instrument until 2026, rather than this year.

    Voyager 2 and its twin Voyager 1 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun.

    The probes are helping scientists answer questions about the shape of the heliosphere and its role in protecting Earth from the energetic particles and other radiation found in the interstellar environment.

    “The science data that the Voyagers are returning gets more valuable the farther away from the Sun they go, so we are definitely interested in keeping as many science instruments operating as long as possible,” said Linda Spilker, Voyager’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for NASA.

    Power to the Probes

    Both Voyager probes power themselves with radioisotope thermoelectric generators (RTGs), which convert heat from decaying plutonium into electricity. The continual decay process means the generator produces slightly less power each year. So far, the declining power supply hasn’t impacted the mission’s science output, but to compensate for the loss, engineers have turned off heaters and other systems that are not essential to keeping the spacecraft flying.

    2
    Each of NASA’s Voyager probes are equipped with three radioisotope thermoelectric generators (RTGs), including the one shown here. The RTGs provide power for the spacecraft by converting the heat generated by the decay of plutonium-238 into electricity. Credit: NASA/JPL-Caltech.

    With those options now exhausted on Voyager 2, one of the spacecraft’s five science instruments was next on their list. (Voyager 1 is operating one less science instrument than its twin because an instrument failed early in the mission.

    As a result, the decision about whether to turn off an instrument on Voyager 1 won’t come until sometime next year.)

    In search of a way to avoid shutting down a Voyager 2 science instrument, the team took a closer look at a safety mechanism designed to protect the instruments in case the spacecraft’s voltage – the flow of electricity – changes significantly. Because a fluctuation in voltage could damage the instruments, Voyager is equipped with a voltage regulator that triggers a backup circuit in such an event. The circuit can access a small amount of power from the RTG that’s set aside for this purpose. Instead of reserving that power, the mission will now be using it to keep the science instruments operating.

    Although the spacecraft’s voltage will not be tightly regulated as a result, even after more than 45 years in flight, the electrical systems on both probes remain relatively stable, minimizing the need for a safety net. The engineering team is also able to monitor the voltage and respond if it fluctuates too much. If the new approach works well for Voyager 2, the team may implement it on Voyager 1 as well.

    “Variable voltages pose a risk to the instruments, but we’ve determined that it’s a small risk, and the alternative offers a big reward of being able to keep the science instruments turned on longer,” said Suzanne Dodd, Voyager’s project manager at JPL. “We’ve been monitoring the spacecraft for a few weeks, and it seems like this new approach is working.”

    The Voyager mission was originally scheduled to last only four years, sending both probes past Saturn and Jupiter. NASA extended the mission so that Voyager 2 could visit Neptune and Uranus; it is still the only spacecraft ever to have encountered the ice giants. In 1990, NASA extended the mission again, this time with the goal of sending the probes outside the heliosphere. Voyager 1 reached the boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:07 am on April 9, 2023 Permalink | Reply
    Tags: "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources", , , , , Exotic cosmic objects known as ultra-luminous X-ray sources produce about 10 million times more energy than the Sun., NASA JPL - Caltech, Ultra-luminous X-ray sources (ULXs for short) regularly exceed the "Eddington limit" which puts a cap on how bright an object can be based on its mass by 100 to 500 times leaving scientists puzzled.   

    From NASA JPL-Caltech: “NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources” 

    From NASA JPL-Caltech

    4.6.23
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    In this illustration of an ultra-luminous X-ray source, two rivers of hot gas are pulled onto the surface of a neutron star. Strong magnetic fields, shown in green, may change the interaction of matter and light near neutron stars’ surface, increasing how bright they can become. Credit: NASA/JPL-Caltech.

    These objects are more than 100 times brighter than they should be. Observations by the agency’s NuSTAR X-ray telescope support a possible solution to this puzzle.

    Exotic cosmic objects known as ultra-luminous X-ray sources produce about 10 million times more energy than the Sun. They’re so radiant, in fact, that they appear to surpass a physical boundary called the “Eddington limit”, which puts a cap on how bright an object can be based on its mass. Ultra-luminous X-ray sources (ULXs, for short) regularly exceed this limit by 100 to 500 times, leaving scientists puzzled.

    In a recent study published in The Astrophysical Journal [below], researchers report a first-of-its-kind measurement of a ULX taken with NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR). The finding confirms that these light emitters are indeed as bright as they seem and that they break the Eddington limit. A hypothesis suggests this limit-breaking brightness is due to the ULX’s strong magnetic fields. But scientists can test this idea only through observations: Up to billions of times more powerful than the strongest magnets ever made on Earth, ULX magnetic fields can’t be reproduced in a lab.

    Breaking the Limit

    Particles of light, called photons, exert a small push on objects they encounter. If a cosmic object like a ULX emits enough light per square foot, the outward push of photons can overwhelm the inward pull of the object’s gravity. When this happens, an object has reached the Eddington limit, and the light from the object will theoretically push away any gas or other material falling toward it.

    That switch – when light overwhelms gravity – is significant, because material falling onto a ULX is the source of its brightness. This is something scientists frequently observe in black holes: When their strong gravity pulls in stray gas and dust, those materials can heat up and radiate light. Scientists used to think ULXs must be black holes surrounded by bright coffers of gas. But in 2014, NuSTAR data revealed [Nature (below)] that a ULX by the name of M82 X-2 is actually a less-massive object called a neutron star. Like black holes, neutron stars form when a star dies and collapses, packing more than the mass of our Sun into an area not much bigger than a mid-size city.

    This incredible density also creates a gravitational pull at the neutron star’s surface about 100 trillion times stronger than the gravitational pull on Earth’s surface. Gas and other material dragged in by that gravity accelerate to millions of miles per hour, releasing tremendous energy when they hit the neutron star’s surface. (A marshmallow dropped on the surface of a neutron star would hit it with the energy of a thousand hydrogen bombs.) This produces the high-energy X-ray light NuSTAR detects.

    The recent study targeted the same ULX at the heart of the 2014 discovery and found that, like a cosmic parasite, M82 X-2 is stealing about 9 billion trillion tons of material per year from a neighboring star, or about 1 1/2 times the mass of Earth. Knowing the amount of material hitting the neutron star’s surface, scientists can estimate how bright the ULX should be, and their calculations match independent measurements of its brightness. The work confirmed M82 X-2 exceeds the Eddington limit.

    No Illusions

    If scientists can confirm of the brightness of more ULXs, they may put to bed a lingering hypothesis that would explain the apparent brightness of these objects without ULXs having to exceed the Eddington limit. That hypothesis, based on observations of other cosmic objects, posits that strong winds form a hollow cone around the light source, concentrating most of the emission in one direction. If pointed directly at Earth, the cone could create a sort of optical illusion, making it falsely appear as though the ULX were exceeding the brightness limit.

    Even if that’s the case for some ULXs, an alternative hypothesis supported by the new study suggests that strong magnetic fields distort the roughly spherical atoms into elongated, stringy shapes. This would reduce the photons’ ability to push atoms away, ultimately increasing an object’s maximum possible brightness.

    “These observations let us see the effects of these incredibly strong magnetic fields that we could never reproduce on Earth with current technology,” said Matteo Bachetti, an astrophysicist with the National Institute of Astrophysics’ Cagliari Observatory in Italy and lead author on the recent study. “This is the beauty of astronomy. Observing the sky, we expand our ability to investigate how the universe works. On the other hand, we cannot really set up experiments to get quick answers; we have to wait for the universe to show us its secrets.”

    More About the Mission

    A Small Explorer mission led by Caltech and managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Science Mission Directorate in Washington, NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp. in Dulles, Virginia. NuSTAR’s mission operations center is at the University of California, Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center at NASA’s Goddard Space Flight Center. ASI provides the mission’s ground station and a mirror data archive. Caltech manages JPL for NASA.

    For more information about the NuSTAR mission, visit:

    https://www.nustar.caltech.edu/

    The Astrophysical Journal
    See the above science paper for instructive material with images.
    Nature 2014

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 9:27 pm on March 27, 2023 Permalink | Reply
    Tags: "Joint NASA - CNES Water-Tracking Satellite Reveals First Stunning Views", , , , NASA JPL - Caltech, Our ability to measure freshwater resources on a global scale through satellite data is of prime importance as we seek to adjust to a changing climate., SWOT will measure the elevation of nearly all the water on Earth’s surface and provide one of the most comprehensive surveys yet of our planet’s surface water., The National Centre for Space Studies [Centre national d'études spatiales][CNES](FR), The spatial resolution of SWOT ocean measurements is 10 times greater than the composite of sea surface height data gathered over the same area by seven other satellites., The SWOT [Surface Water and Ocean Topography] mission – led by NASA/JPL-Caltech and the French space agency CNES – has sent back some of its first glimpses of water on the planet’s surface.   

    From NASA JPL-Caltech: “Joint NASA – CNES Water-Tracking Satellite Reveals First Stunning Views” 

    From NASA JPL-Caltech

    3.24.23
    Jane J. Lee /
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307 / 626-379-6874
    jane.j.lee@jpl.nasa.gov /

    Andrew Wang
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-379-6874
    andrew.wang@jpl.nasa.gov

    The Surface Water and Ocean Topography mission offers the first taste of the detailed perspectives of Earth’s surface water that its cutting-edge instruments will be able to capture.

    1

    2
    Sea level data gathered Jan. 21 in the Gulf Stream by SWOT’s KaRIn instrument, visualized in the upper image, has 10 times the spatial resolution of data taken over the same area by altimeters on seven other satellites, visualized in the lower. Red represents sea levels higher than the global average, while blue is lower.
    Credits: Upper image- NASA/JPL-Caltech; Lower image: NASA/JPL-Caltech/Copernicus Marine Service of ESA

    The international Surface Water and Ocean Topography (SWOT) mission – led by NASA and the French space agency Centre National d’Études Spatiales (CNES) – has sent back some of its first glimpses of water on the planet’s surface, showing ocean currents like the Gulf Stream in unprecedented detail. SWOT is also capturing views of freshwater features such as lakes, rivers, and other water bodies down to about 300 feet (100 meters) wide.

    The satellite will measure the elevation of nearly all the water on Earth’s surface and provide one of the most comprehensive surveys yet of our planet’s surface water. SWOT’s measurements of freshwater bodies and the ocean will provide insights into how the ocean influences climate change and the water cycle; how a warming world affects water storage in lakes, rivers, and reservoirs; and how communities can better manage their water resources and prepare for floods and other disasters.

    “SWOT’s advanced imagery will empower researchers and advance the way we manage fresh water and the effects of sea level rise across the globe,” said NASA Administrator Bill Nelson. “Water is one of our planet’s most important resources – and it’s proven to be vulnerable to the impacts of climate change. SWOT will provide critical information that communities can use to prepare for the impacts of a warming climate.”

    A Whole New View

    As seen in these early images, on Jan. 21, 2023, SWOT measured sea level in a part of the Gulf Stream off the coast of North Carolina and Virginia. The two antennas of SWOT’s Ka-band Radar Interferometer (KaRIn) instrument acquired data that was mapped as a pair of wide, colored strips spanning a total of 75 miles (120 kilometers) across. Red and orange areas in the images represent sea levels that are higher than the global average, while the shades of blue represent sea levels that are lower than average.

    For comparison, the new data is shown alongside sea surface height data taken by space-based instruments called altimeters. The instruments – widely used to measure sea level – also bounce radar signals off of Earth’s surface to collect their measurements. But traditional altimeters are able to look only at a narrow beam of Earth directly beneath them, unlike KaRIn’s two wide-swath strips that observe sea level as a two-dimensional map.

    The spatial resolution of SWOT ocean measurements is 10 times greater than the composite of sea surface height data gathered over the same area by seven other satellites: Sentinel-6 Michael Freilich, Jason-3, Sentinel-3A and 3B, Cryosat-2, Altika, and Hai Yang 2B. The composite image was created using information from the Copernicus Marine Service of ESA (European Space Agency) and shows the same day as the SWOT data.

    KaRIn also measured the elevation of water features on Long Island – shown as bright pink splotches nestled within the landscape. (Purple, yellow, green, and blue shades represent different land elevations.)

    3
    This visualization shows water features on New York’s Long Island – shown as bright pink splotches. Purple, yellow, green, and dark blue shades represent different land elevations, while the surrounding ocean is a lighter blue. The data was collected on Jan. 21, 2023, by SWOT’s KaRIn instrument. Credit: NASA/JPL-Caltech.

    “Our ability to measure freshwater resources on a global scale through satellite data is of prime importance as we seek to adjust to a changing climate,” said CNES Chairman and CEO Philippe Baptiste. “In this respect, the first views from SWOT give us a clearer picture than ever before. These data will prove highly valuable for the international scientific community in the fields of hydrology, oceanography, and coastal studies.”

    This initial inland image is a tantalizing indication of how SWOT can measure details of smaller lakes, ponds, and rivers in ways that satellites could not before. Such data will be used to produce an extraordinary accounting of the freshwater on Earth’s surface in ways useful to researchers, policymakers, and water resource managers.

    “The KaRIn instrument took years to develop and build, and it will collect information on bodies of water across the globe – data that will be freely and openly available to everybody who needs it,” said Parag Vaze, SWOT project manager at NASA’s Jet Propulsion Laboratory in Southern California.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 10:24 am on March 18, 2023 Permalink | Reply
    Tags: "NASA Uses 30-Year Satellite Record to Track and Project Rising Seas", , , , NASA JPL - Caltech, Observations from space show that the rate of sea level rise is increasing. Knowing where and how much rise is happening can help coastal planners prepare for future hazards.   

    From NASA JPL-Caltech: “NASA Uses 30-Year Satellite Record to Track and Project Rising Seas” 

    From NASA JPL-Caltech

    3.17.23
    Jane J. Lee
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    jane.j.lee@jpl.nasa.gov

    Andrew Wang
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-379-6874
    andrew.wang@jpl.nasa.gov

    1
    Satellite data from 30 years of observations is helping researchers tease apart natural and human-caused drivers of sea level rise. The information will help planners in regions like New Orleans, Louisiana, along the U.S. Gulf Coast to prepare for the future. Credit: NASA.

    Observations from space show that the rate of sea level rise is increasing. Knowing where and how much rise is happening can help coastal planners prepare for future hazards.

    The average global sea level rose by 0.11 inches (0.27 centimeters) from 2021 to 2022, according to a NASA analysis of satellite data. That’s the equivalent of adding water from a million Olympic-size swimming pools to the ocean every day for a year, and is part of a multidecade trend of rising seas.

    Since satellites began observing sea surface height in 1993 with the U.S.-French TOPEX/Poseidon mission, the average global sea level has increased by 3.6 inches (9.1 centimeters), according to NASA’s Sea Level Change science team.

    The annual rate of rise – or how quickly sea level rise is happening – that researchers expect to see has also increased from 0.08 inches (0.20 centimeters) per year in 1993 to 0.17 inches (0.44 centimeters) per year in 2022. Based on the long-term satellite measurements, the projected rate of sea level rise will hit 0.26 inches (0.66 centimeters) per year by 2050.

    2
    This graphic shows rising sea levels (in blue) from data recorded by a series of five satellites starting in 1993. The solid red line shows the trajectory of rise from 1993 to 2022, illustrating that the rate of rise has more than doubled. By 2040, sea levels could be 3.66 inches (9.3 cm) higher than today. Credit: NASA/JPL-Caltech.

    “We have this clear view of recent sea level rise – and can better project how much and how quickly the oceans will continue to rise – because NASA and Centre National d’Études Spatiales (CNES) have gathered decades of ocean observations. By combining that data with measurements from the rest of the NASA fleet, we can also understand why the ocean is rising,” said Karen St. Germain, director of NASA’s Earth Science Division in Washington. “These fundamental climate observations help shape the operational services of many other federal and international agencies who are working with coastal communities to mitigate and respond to rising waters.”

    The 2022 increase was less than the expected annual rate because of a mild La Niña. During years with an especially strong La Niña climate pattern, average global sea level can even temporarily drop because weather patterns shift in a way that leads to more rainfall over land instead of the ocean.

    “With an increasing demand for accurate and timely climate information, NASA is committed to providing annual sea level observations and future projections in order to help vulnerable communities around the world better understand the risks they face in a new climate,” said Nadya Vinogradova Shiffer, a NASA program scientist for ocean science. “Timely updates are key to showing which climate trajectory we are on.”

    Despite natural influences like La Niña, sea levels continue to rise because of human-caused climate change driven by the excess amounts of greenhouse gases like carbon dioxide that society pumps into the atmosphere. Climate change is melting Earth’s ice sheets and glaciers, adding more fresh water to the ocean, while warming causes the expansion of seawater. Both of these effects contribute to rising seas, overriding many natural effects on sea surface height.

    “Tracking the greenhouse gases that we add to the atmosphere tells us how hard we’re pushing the climate, but sea levels show us how much it’s responding,” said Josh Willis, an oceanographer at NASA’s Jet Propulsion Laboratory in Southern California. “These measurements are a critical yardstick for how much humans are reshaping the climate.”

    A Long-Term Record

    The measurements of sea surface height that began 30 years ago with TOPEX/Poseidon have continued through four subsequent missions led by NASA and partners, including the French space agency CNES, ESA (European Space Agency), and the U.S. National Oceanic and Atmospheric Administration. The most recent mission in the series, Sentinel-6/Jason-CS (Continuity of Service), consists of two satellites that will extend these measurements through 2030.

    The first of these two satellites, Sentinel-6 Michael Freilich, launched in 2020, with the second slated to head to orbit in 2025.

    “The 30-year satellite record allows us to see through the shorter-term shifts that happen naturally in the ocean and helps us identify the trends that tell us where sea level is headed,” said JPL’s Ben Hamlington, a sea level researcher who leads NASA’s Sea Level Change science team.

    Scientific and technical innovations by NASA and other space agencies have given researchers a better understanding of the current state of the ocean on a global scale. Specifically, radar altimeters have helped produce ever-more precise measurements of sea level around the world. To calculate sea level height, they bounce microwave signals off the ocean’s surface and record the time the signal takes to travel from a satellite to Earth and back, as well as the strength of the return signal.

    When altimetry data from all ocean basins is combined with more than a century of observations from coastal surface-based sources, together they dramatically expand and improve our understanding of how sea surface height is changing on a global scale. And when those measurements of sea level are combined with other NASA data sets on ice mass, land motion, and other Earth changes, scientists can decipher why and how seas are rising.

    Learn more about sea level and climate change:

    https://sealevel.nasa.gov/

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:06 am on March 8, 2023 Permalink | Reply
    Tags: "NASA Space Mission Takes Stock of Carbon Dioxide Emissions by Countries", A pilot project has estimated emissions and removals of carbon dioxide in individual nations using satellite measurements., , , , , NASA JPL - Caltech   

    From NASA JPL-Caltech: “NASA Space Mission Takes Stock of Carbon Dioxide Emissions by Countries” 

    From NASA JPL-Caltech

    3.7.23
    Written by Sally Younger

    News Media Contact

    Jane J. Lee
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    jane.j.lee@jpl.nasa.gov

    Andrew Wang
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-379-6874
    andrew.wang@jpl.nasa.gov

    1
    This map shows mean net emissions and removals of carbon dioxide from 2015 to 2020 using estimates informed by NASA’s OCO-2 satellite measurements. Countries where more carbon dioxide was removed than emitted appear as green depressions, while countries with higher emissions are tan or red and appear to pop off the page. Credit: NASA’s Scientific Visualization Studio.

    A pilot project has estimated emissions and removals of carbon dioxide in individual nations using satellite measurements.

    A NASA Earth-observing satellite has helped researchers track carbon dioxide emissions for more than 100 countries around the world. The pilot project offers a powerful new look at the carbon dioxide being emitted in these countries and how much of it is removed from the atmosphere by forests and other carbon-absorbing “sinks” within their borders. The findings demonstrate how space-based tools can support insights on Earth as nations work to achieve climate goals.

    The international study [Earth System Science Data (below)], conducted by more than 60 researchers, used measurements made by NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission, as well as a network of surface-based observations, to quantify increases and decreases in atmospheric carbon dioxide concentrations from 2015 to 2020. Using this measurement-based (or “top-down”) approach, the researchers were then able to infer the balance of how much carbon dioxide was emitted and removed.

    Although the OCO-2 mission was not specifically designed to estimate emissions from individual nations, the findings from the 100-plus countries come at an opportune time. The first Global Stocktake – a process to assess the world’s collective progress toward limiting global warming, as specified in the 2015 Paris Agreement – takes place in 2023.


    This animation shows yearly fossil fuel emissions by more than 100 countries from 2015 to 2020. Countries with high emissions, including the U.S. and China (seen here in dark red), appear to pop from the page, compared to those with lower emissions. Credit: NASA’s Scientific Visualization Studio.

    “NASA is focused on delivering Earth science data that addresses real world climate challenges – like helping governments around the world measure the impact of their carbon mitigation efforts,” said Karen St. Germain, director of NASA’s Earth Science Division at NASA Headquarters in Washington. “This is one example of how NASA is developing and enhancing efforts to measure carbon emissions in a way that meets user needs.”

    Traditional activity-based (or “bottom-up”) approaches to carbon measurement rely on tallying and estimating how much carbon dioxide is being emitted across all sectors of an economy, such as transportation and agriculture. Bottom-up carbon inventories are critical for assessing progress toward emission-reduction efforts, but compiling them requires considerable resources, expertise, and knowledge of the extent of the relevant activities.

    This is why developing a database of emissions and removals via a top-down approach could be especially helpful for nations that lack traditional resources for inventory development, the study authors assert. In fact, the scientists’ findings include data for more than 50 countries that have not reported emissions for at least the past 10 years.


    This map illustrates changes in the amount of carbon stored in organic matter on land, called terrestrial carbon stock changes, from 2015 to 2020. Activities such as improved land stewardship and deforestation, which is more extensive in the tropics than other regions, affect these stock changes. Credit: NASA’s Scientific Visualization Studio.

    The study provides a new perspective by tracking both fossil fuel emissions and the total carbon “stock” changes in ecosystems, including trees, shrubs, and soils. The data is particularly useful for tracking carbon dioxide fluctuations related to land cover change. Emissions from deforestation alone make up a disproportionate amount of total carbon output in the Global South, which encompasses regions of Latin America, Asia, Africa, and Oceania. In other parts of the world, the findings indicate some reductions in atmospheric carbon concentrations via improved land stewardship and reforestation.

    The authors said that bottom-up methods for estimating carbon dioxide emissions and removals from ecosystems are essential. However, those methods are vulnerable to uncertainty when data is lacking or the net effects of specific activities, such as logging, aren’t fully known.

    “Our top-down estimates provide an independent estimate of these emissions and removals, so although they cannot replace the detailed process understanding of traditional bottom-up methods, we can check both approaches for consistency,” said Philippe Ciais, a study author and research director at the Laboratoire des Sciences du Climat et de l’Environnement in France.

    Tracking Carbon

    The study offers a complex picture of carbon moving through Earth’s land, ocean, and atmosphere.

    In addition to direct human impacts accounted for by national inventories, unmanaged ecosystems like some tropical and boreal forests – where humans have a minimal footprint – can sequester carbon from the atmosphere, thus reducing potential global warming.

    “National inventories are intended to track how management policies impact emissions and removals of CO2,” said study author Noel Cressie, a professor at the University of Wollongong in Australia. “However, the atmosphere doesn’t care whether CO2 is being emitted from deforestation in the Amazon or wildfires in the Canadian Arctic. Both processes will increase the concentration of atmospheric CO2 and drive climate change. Therefore, it is critical to monitor the carbon balance of unmanaged ecosystems and identify any changes in carbon uptake.”

    Looking forward, the researchers said their pilot project can be further refined to understand how emissions from individual nations are changing.

    “Sustained, high-quality observations are critical for these top-down estimates,” said lead author Brendan Byrne, a scientist at NASA’s Jet Propulsion Laboratory in Southern California. “Continued observations from OCO-2 and surface sites will allow us to track how these emissions and removals change as the Paris Agreement is implemented. Future international missions that provide expanded mapping of CO2 concentrations across the globe will allow us to refine these top-down estimates and give more precise estimates of countries’ emissions and removals.”

    Launched in 2014, the OCO-2 satellite maps natural and human-made carbon dioxide concentrations with the help of three camera-like spectrometers. These devices are tuned to detect the unique spectra, or light signature, of carbon dioxide. They measure the gas indirectly by how much reflected sunlight it absorbs in a given column of air.

    The OCO-2 project is managed by JPL. Caltech manages JPL for NASA. To read more about the mission, go to:

    https://ocov2.jpl.nasa.gov

    Earth System Science Data

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 5:14 pm on March 4, 2023 Permalink | Reply
    Tags: "Removing Traces of Life in Lab Helps NASA Scientists Study Its Origins", , , , , , NASA JPL - Caltech   

    From NASA JPL-Caltech: “Removing Traces of Life in Lab Helps NASA Scientists Study Its Origins” 

    From NASA JPL-Caltech

    2.28.23
    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    In JPL’s Origins and Habitability Lab, researchers use a sealed chamber to conduct experiments free of oxygen in an effort to replicate the chemistry of early Earth. Shown from left are lab co-lead Laurie Barge and researchers Jessica Weber and Laura Rodriguez. Credit: NASA/JPL-Caltech.

    A specialized laboratory setup at JPL removes the chemical influence of modern organisms so scientists can study the chemistry that may have led to life’s emergence.

    In the Origins and Habitability Lab at NASA’s Jet Propulsion Laboratory, you can find a world in a test tube – specifically, a simplified simulation of early Earth. By re-creating the conditions that would have been found on our planet roughly 4 billion years ago, scientists can narrow down the possible chemical reactions that could have taken place then – including those that may have been critical to the emergence of life here, or that might signal the presence of life on another world.

    Last year [Astrobiology (below)], researchers in JPL’s Origins and Habitability Lab simulated the chemistry of early Earth and carried out a key chemical reaction involved in metabolism, the process living organisms use to convert fuel (such as sunlight or food) into energy. Did Earth’s first life forms create energy with the same chemical reactions used by living organisms today?

    The first step to answering that question is finding out whether those reactions were even possible on early Earth. In living organisms, such reactions take place only inside a membrane (such as the protective wall of a living cell), which is just one reason why it’s an open question whether – and how – these reactions could have occurred before life formed.

    2
    This illustration of early Earth includes liquid water as well as magma seeping from the planet’s core due to a large impact. Scientists at NASA are investigating the chemistry that might have existed at this time in the planet’s history.
    Credit: Simone Marchi.

    The lab’s work belongs to a discipline known as astrobiology: the study of the origins, evolution, distribution, and future of life in the universe. The threads all tie together, so trying to understand how life formed on Earth would also help scientists search for life elsewhere. In fact, in another study [Astrobiology [below)], the lab team looked into how understanding the origin of life on Earth can also help scientists interpret the appearance of organic molecules (the chemical basis for living things on Earth) that might be found on another planet or moon.

    But simulating the conditions found on Earth before life emerged is no easy task. Turning back the clock means taking into account how life has transformed our planet.

    Something in the Air

    There is essentially no place on Earth that’s not occupied by some form of life. Microorganisms can be found at the bottom of the ocean, in scalding hot geysers, and in rooms dedicated to removing those organisms.

    Life forms have also transformed our planet’s chemistry. One of the biggest challenges with trying to create pre-life conditions in the lab is dealing with the presence of oxygen. Largely absent from Earth’s atmosphere before life emerged, it is now ubiquitous because so many life forms produce it. As a result, all of the lab’s origin-of-life experiments have to be conducted inside an airtight box, with an airlock for putting items in or taking them out. In addition to test tubes containing chemicals, any instruments used to analyze those chemicals must fit within the box, so there are some experiments the team can’t do in this setting.

    Moreover, only one person can work in the box at a time, donning thick rubber gloves built into the sides of the container to move things around or use the equipment. Filters (which require regular cleaning) capture stray oxygen atoms. Even water has to go through a lengthy process to remove oxygen gas.

    “Science is all about repetition,” said JPL research scientist Laurie Barge, who co-leads the Origins and Habitability Lab. “We want to do experiments again and again, and that’s hard to do when you have to spend so much time making sure that not even a tiny bit of oxygen has crept into your test tube.”

    It took Barge and her team months to demonstrate that one chemical reaction involved in modern metabolism can take place under these early-Earth conditions. They plan to continue trying to simulate each step in the metabolism process and, at some point, they may find that a particular reaction can only occur inside a protective structure like a membrane. That might help narrow down when membranes became necessary in the emergence of life – a glimpse back in time.

    There’s another way that scientists could learn about the chemistry that took place, and potentially set the stage, for life on Earth: By studying a planet or moon with roughly the same raw ingredients that would have been found on early Earth. The location could be a lifeless moon in our own solar system or a planet around another star. Then Barge and her colleagues could test the ideas they’re investigating against an environment that isn’t constrained to the size of a glove box.

    “It would be very interesting to validate and check some of our laboratory results against results from another world,” said Jessica Weber, a JPL research scientist in the Origins and Habitability Lab who led the metabolism work. “Finding an environment like this would help us better re-create early Earth in our lab experiments, and that would get us closer to answering some of those big questions about life on our own planet and potentially on others.”

    Astrobiology
    Astrobiology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:17 am on January 14, 2023 Permalink | Reply
    Tags: , , , , NASA JPL - Caltech, , , The celestial object TOI 700 e   

    From NASA JPL-Caltech Via “Science Alert (AU)” : “NASA Just Discovered a Rare Earth-Sized Planet in a Habitable Zone” 

    From NASA JPL-Caltech

    Via

    ScienceAlert

    “Science Alert (AU)”

    1.14.23
    David Nield

    1
    Exoplanet TOI 700 e An illustration of how exoplanet TOI 700 e might look (Robert Hurt/NASA/JPL-Caltech.)

    When it comes to finding life outside of our Solar System, planets that closely resemble Earth seem like a good place to start. We can now welcome celestial object TOI 700 e to that group of promising leads.

    TOI 700 e has been confirmed orbiting inside the habitable zone of its star, TOI 700. That’s the region of space where significant quantities of water on its surface would be at a temperature suitable for a liquid form. Too warm for a blanket of ice, yet still cool enough for vapor to condense, these kinds of planets are considered ‘just right’ for life as we know it.

    We can thank NASA’s Transiting Exoplanet Survey Satellite, or TESS, for finding TOI 700 e, and for giving it its name (TOI means TESS Object of Interest).

    It is the second planet in the habitable zone in this system, joining TOI 700 d that was spotted in 2020.

    “This is one of only a few systems with multiple, small, habitable-zone planets that we know of,” says planetary scientist Emily Gilbert, from the NASA Jet Propulsion Laboratory (JPL) in California.

    “That makes the TOI 700 system an exciting prospect for additional follow up. Planet e is about 10 percent smaller than planet d, so the system also shows how additional TESS observations help us find smaller and smaller worlds.”

    TOI 700 is a small, cool star (known as an M dwarf star), located around 100 light-years away from us in the Dorado constellation. These stars are nowhere near as big or as hot as our own Sun, so planets need to be closer to them for conditions to be warm enough for water to avoid freezing.

    As for TOI 700 e, it is believed to be 95 percent the size of Earth and mainly rocky. It sits in the ‘optimistic’ habitable zone – a zone where water may have existed at some point in time. TOI 700 d is in the narrower ‘conservative’ habitable zone, which is where astronomers think liquid water might exist for the majority of a planet’s existence.

    Telescopes see these exoplanets (planets outside our Solar System) as regular blips in the light of their parent stars as they pass in front of it, in what’s known as a transit. With more surface blocking the star’s light, larger planets present easier opportunities to be seen than small, rocky worlds, making Earth-like discoveries like this one a rare treat.

    TOI 700 e takes 28 days to do a single orbit, whereas TOI 700 d – which is a little further out than its neighbor – takes 37 days. As TOI 700 e is smaller than TOI 700 d, it took more data to confirm the silhouette really did represent a new planet.

    “If the star was a little closer or the planet a little bigger, we might have been able to spot TOI 700 e in the first year of TESS data,” says astrophysicist Ben Hord from the University of Maryland. “But the signal was so faint that we needed the additional year of transit observations to identify it.”

    TESS is monitoring around 100 million stars, and so any way we can find to narrow down the search for life is going to be useful. Finding exoplanets in their respective habitable zones is one of the best ways we’ve got of doing that.

    Both TOI 700 e and TOI 700 d are thought to be tidally locked: in other words, one side of the planet is always facing its star (in the same way that the same side of the Moon is always visible from Earth). Having one side of a planet constantly baking in the sunlight does reduce the likelihood of complex life getting off to a smooth start, admittedly.

    Even if these ‘just right’ planets aren’t exactly perfect for life, they do tell us a thing or two about finding solar systems that might be better suited for it. By studying star systems like the one we’re in, astronomers can also better understand the evolution of our home and how neighboring planets came to their current orbits.

    “Even with more than 5,000 exoplanets discovered to date, TOI 700 e is a key example that we have a lot more to learn,” says astronomer Joey Rodriguez from Michigan State University.

    The research has been accepted for publication in The Astrophysical Journal Letters [ https://arxiv.org/pdf/2301.03617.pdf ].

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 3:03 pm on December 31, 2022 Permalink | Reply
    Tags: "HAARP to bounce signal off asteroid in NASA experiment", , , , , , High-frequency Active Auroral Research Program [HAARP], NASA JPL - Caltech,   

    From The University of Alaska-Fairbanks And NASA JPL-Caltech: “HAARP to bounce signal off asteroid in NASA experiment” 

    From The University of Alaska-Fairbanks

    And

    NASA JPL-Caltech

    12.22.22
    Rod Boyce
    rcboyce@alaska.edu
    907-474-7185

    ADDITIONAL CONTACT:
    Ian J. O’Neill
    NASA JPL/Caltech
    ian.j.oneill@jpl.nasa.gov

    An experiment to bounce a radio signal off an asteroid on Dec. 27 will serve as a test for probing a larger asteroid that in 2029 will pass closer to Earth than the many geostationary satellites that orbit our planet.

    The High-frequency Active Auroral Research Program [HAARP] research site in Gakona will transmit radio signals to asteroid 2010 XC15, which could be about 500 feet across. The University of New Mexico Long Wavelength Array near Socorro, New Mexico, and the Owens Valley Radio Observatory Long Wavelength Array near Bishop, California, will receive the signal.

    This will be the first use of HAARP to probe an asteroid.

    “What’s new and what we are trying to do is probe asteroid interiors with long wavelength radars and radio telescopes from the ground,” said Mark Haynes, lead investigator on the project and a radar systems engineer at NASA’s JPL-Caltech. “Longer wavelengths can penetrate the interior of an object much better than the radio wavelengths used for communication.”

    2
    This image from an animation shows the projected path of the asteroid 2010 XC15 as it passes by Earth. Credit: NASA/JPL-Caltech.

    Knowing more about an asteroid’s interior, especially of an asteroid large enough to cause major damage on Earth, is important for determining how to defend against it.

    “If you know the distribution of mass, you can make an impactor more effective, because you’ll know where to hit the asteroid a little better,” Haynes said.

    Many programs exist to quickly detect asteroids, determine their orbit and shape and image their surface, either with optical telescopes or the planetary radar of the Deep Space Network, NASA’s network of large and highly sensitive radio antennas in California, Spain and Australia.

    Those radar-imaging programs use signals of short wavelengths, which bounce off the surface and provide high-quality external images but don’t penetrate an object.

    HAARP will transmit a continually chirping signal to asteroid 2010 XC15 at slightly above and below 9.6 megahertz (9.6 million times per second). The chirp will repeat at two-second intervals. Distance will be a challenge, Haynes said, because the asteroid will be twice as far from Earth as the moon is.

    The University of Alaska Fairbanks operates HAARP under an agreement with the Air Force, which developed and owned HAARP but transferred the research instruments to UAF in August 2015. 

    The test on 2010 XC15 is yet another step toward the globally anticipated 2029 encounter with asteroid Apophis. It follows tests in January and October in which the moon was the target of a HAARP signal bounce.

    3
    With temperatures falling to 40 degrees below zero, a frosty landscape surrounds antennas at the High-frequency Active Auroral Research Program site in Gakona, Alaska, on Dec. 20, 2022. HAARP conducted a run-through on that date to prepare for the Dec. 27 asteroid bounce experiment. Photo by JR Ancheta/UAF/GI .

    Apophis was discovered in 2004 and will make its closest approach to Earth on April 13, 2029, when it comes within 20,000 miles. Geostationary satellites orbit Earth at about 23,000 miles. The asteroid, which NASA estimated to be about 1,100 feet across, was initially thought to pose a risk to Earth in 2068, but its orbit has since been better projected by researchers.

    The test on 2010 XC15 and the 2029 Apophis encounter are of general interest to scientists who study near-Earth objects. But planetary defense is also a key research driver.

    “The more time there is before a potential impact, the more options there are to try to deflect it,” Haynes said.

    NASA says an automobile-sized asteroid hits Earth’s atmosphere about once a year, creating a fireball and burning up before reaching the surface.

    About every 2,000 years a meteoroid the size of a football field hits Earth. Those can cause a lot of damage. And as for wiping out civilization, NASA says an object large enough to do that strikes the planet once every few million years.

    NASA first successfully redirected an asteroid on Sept. 26, when its Double Asteroid Redirection Test mission, or DART, collided with Dimorphos. That asteroid is an orbiting moonlet of the larger Didymos asteroid.

    The DART collision altered the moonlet’s orbit time by 32 minutes.

    The Dec. 27 test could reveal great potential for the use of asteroid sensing by long wavelength radio signals. Approximately 80 known near-Earth asteroids passed between the moon and Earth in 2019, most of them small and discovered near closest approach.

    “If we can get the ground-based systems up and running, then that will give us a lot of chances to try to do interior sensing of these objects,” Haynes said.

    The National Science Foundation is funding the work through its award to the Geophysical Institute for establishing the Subauroral Geophysical Observatory for Space Physics and Radio Science in Gakona

    “HAARP is excited to partner with NASA and JPL to advance our knowledge of near-Earth objects,” said Jessica Matthews, HAARP’s program manager.

    About HAARP

    The High-frequency Active Auroral Research Program, or HAARP, is a scientific endeavor aimed at studying the properties and behavior of the ionosphere. “The ionosphere stretches roughly 50 to 400 miles above Earth’s surface, right at the edge of space. Along with the neutral upper atmosphere, the ionosphere forms the boundary between Earth’s lower atmosphere — where we live and breathe — and the vacuum of space.” (NASA)

    Operation of the research facility was transferred from the United States Air Force to the University of Alaska Fairbanks on Aug. 11, 2015, allowing HAARP to continue with exploration of ionospheric phenomenology via a land-use cooperative research and development agreement.

    HAARP is the world’s most capable high-power, high-frequency transmitter for study of the ionosphere. The HAARP program is committed to developing a world-class ionospheric research facility consisting of:

    The Ionospheric Research Instrument, a high power transmitter facility operating in the High Frequency range. The IRI can be used to temporarily excite a limited area of the ionosphere for scientific study.

    A sophisticated suite of scientific or diagnostic instruments that can be used to observe the physical processes that occur in the excited region.

    Observation of the processes resulting from the use of the IRI in a controlled manner will allow scientists to better understand processes that occur continuously under the natural stimulation of the sun.

    Scientific instruments installed at the HAARP Observatory can also be used for a variety of continuing research efforts which do not involve the use of the IRI but are strictly passive. These include ionospheric characterization using satellite beacons, telescopic observation of the fine structure in the aurora and documentation of long-term variations in the ozone layer.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

    The The University of Alaska-Fairbanks is a public land-grant research university in College, Alaska; a suburb of Fairbanks. It is a flagship campus of the University of Alaska system. UAF was established in 1917 and opened for classes in 1922. Originally named the Alaska Agricultural College and School of Mines, it became the University of Alaska in 1935. Fairbanks-based programs became the University of Alaska Fairbanks in 1975.

    University of Alaska-Fairbanks is classified among “R2: Doctoral Universities – High research activity”. It is home to several major research units, including the Agricultural and Forestry Experiment Station; the Geophysical Institute, which operates the Poker Flat Research Range and several other scientific centers; the Alaska Center for Energy and Power; the International Arctic Research Center; the Institute of Arctic Biology; the Institute of Marine Science; and the Institute of Northern Engineering. Located just 200 miles (320 km) south of the Arctic Circle, the Fairbanks campus’ unique location favors Arctic and northern research. UAF’s research specialties are renowned worldwide, most notably Arctic biology, Arctic engineering, geophysics, supercomputing, Ethnobotany and Alaska Native studies. The University of Alaska Museum of the North is also on the Fairbanks campus.

    In addition to the Fairbanks campus, University of Alaska-Fairbanks encompasses six rural and urban campuses: Bristol Bay Campus in Dillingham; Chukchi Campus in Kotzebue; the Fairbanks-based Interior Alaska Campus, which serves the state’s rural Interior; Kuskokwim Campus in Bethel; Northwest Campus in Nome; and the UAF Community and Technical College, with headquarters in downtown Fairbanks. UAF is also the home of UAF eCampus, which offers fully online programs.

    In fall 2017, University of Alaska-Fairbanks enrolled 8,720 students. Of those students, 58% were female and 41% were male; 87.8% were undergraduates, and 12.2% were graduate students. As of May 2018, 1,352 students had graduated during the immediately preceding summer, fall and spring semesters.

    Research units

    University of Alaska-Fairbanks is Alaska’s primary research university, conducting more than 90% of University of Alaska system research. Research activities are organized into several institutes and centers:

    the Geophysical Institute, established in 1946 by an act of Congress, specializes in seismology, volcanology and aeronomy, among other fields.
    the International Arctic Research Center researches the circumpolar North and the causes and effects of climate change.
    the Institute of Northern Engineering, an arm of the College of Engineering and Mines, conducts research in many different areas of engineering.
    the Research Computing Systems unit, located within the Geophysical Institute, is the high-performance computing unit of UAF.
    the Alaska Agricultural and Forestry Experiment Station conducts research focused on solving problems related to agriculture and forest sciences.
    the Institute of Arctic Biology conducts research focused on high-latitude biological systems.
    the Robert G. White Large Animal Research Station conducts long-term research with muskoxen, reindeer and cattle.
    the Institute of Marine Science, a branch of the College of Fisheries and Ocean Sciences, investigates topics in oceanography, marine biology, and fisheries.
    the R/V Sikuliaq, a 261-foot ice-resistant ship outfitted with modern scientific equipment, is operated by the College of Fisheries and Ocean Sciences for the National Science Foundation.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: