Tagged: NASA JPL – Caltech Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:48 am on January 10, 2020 Permalink | Reply
    Tags: "The Ice Giant Spacecraft of Our Dreams", , , , , , NASA JPL - Caltech   

    From NASA JPL-Caltech via Eos: “The Ice Giant Spacecraft of Our Dreams” 

    NASA JPL Banner

    From NASA JPL-Caltech

    via

    From AGU
    Eos news bloc

    Eos

    7 January 2020
    Kimberly M. S. Cartier

    1
    The hypothetical dream spacecraft flies over Uranus and past its rings and moons, too. Credit: JoAnna Wendel

    If you could design your dream mission to Uranus or Neptune, what would it look like?

    Would you explore the funky terrain on Uranus’s moon Miranda? Or Neptune’s oddly clumpy rings? What about each planet’s strange interactions with the solar wind?

    2
    The dream spacecraft’s innovative technologies would enable a comprehensive exploration of an entire ice giant system. Credit: JoAnna Wendel.

    Why pick just one, when you could do it all?

    Planetary scientists recently designed a hypothetical mission to one of the ice giant planets in our solar system. They explored what that dream spacecraft to Uranus could look like if it incorporated the newest innovations and cutting-edge technologies.

    “We wanted to think of technologies that we really thought, ‘Well, they’re pushing the envelope,’” said Mark Hofstadter, a senior scientist at the Jet Propulsion Laboratory (JPL) and California Institute of Technology in Pasadena. “It’s not crazy to think they’d be available to fly 10 years from now.” Hofstadter is an author of the internal JPL study, which he discussed at AGU’s Fall Meeting 2019 on 11 December.

    Some of the innovations are natural iterations of existing technology, Hofstadter said, like using smaller and lighter hardware and computer chips. Using the most up-to-date systems can shave off weight and save room on board the spacecraft. “A rocket can launch a certain amount of mass,” he said, “so every kilogram less of spacecraft structure that you need, that’s an extra kilogram you could put to science instruments.”

    Nuclear-Powered Ion Engine

    The dream spacecraft combines two space-proven technologies into one brand-new engine, called radioisotope electric propulsion (REP).

    A spacecraft works much like any other vehicle. A battery provides the energy to run the onboard systems and start the engine. The power moves fuel through the engine, where it undergoes a chemical change and provides thrust to move the vehicle forward.

    3
    Credit: JoAnna Wendel

    In the dream spacecraft, the battery gets its energy from the radioactive decay of plutonium, which is the preferred energy source for traveling the outer solar system where sunlight is scarce. Voyager 1, Voyager 2, Cassini, and New Horizons all used a radioisotope power source but used hydrazine fuel in a chemical engine that quickly flung them to the far reaches of the solar system.

    NASA/Voyager 1

    NASA/Voyager 2

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    NASA/New Horizons spacecraft

    The dream spacecraft’s ion engine uses xenon gas as fuel: The xenon is ionized, a nuclear-powered electric field accelerates the xenon ions, and the xenon exits the craft as exhaust. The Deep Space 1 and Dawn missions used this type of engine but were powered by large solar panels that work best in the inner solar system where those missions operated.

    Xenon gas is very stable. A craft can carry a large amount in a compressed canister, which lengthens the fuel lifetime of the mission. REP “lets us explore all areas of an ice giant system: the rings, the satellites, and even the magnetosphere all around it,” Hofstadter said. “We can go wherever we want. We can spend as much time as we want there….It gives us this beautiful flexibility.”

    A Self-Driving Spacecraft

    With REP, the dream spacecraft could fly past rings, moons, and the planet itself about 10 times slower than a craft with a traditional chemical combustion engine. Moving at a slow speed, the craft could take stable, long-exposure, high-resolution images. But to really make the most of the ion engine, the craft needs onboard automatous navigation.

    “We don’t know precisely where the moon or a satellite of Uranus is, or the spacecraft [relative to the moon],” Hofstadter said. Most of Uranus’s satellites have been seen only from afar, and details about their size and exact orbits remain unclear. “And so because of that uncertainty, you always want to keep a healthy distance between your spacecraft and the thing you’re looking at just so you don’t crash into it.”

    “But if you trust the spacecraft to use its own camera to see where the satellite is and adjust its orbit so that it can get close but still miss the satellite,” he said, “you can get much closer than you can when you’re preparing flybys from Earth” at the mercy of a more than 5-hour communications delay.

    That level of onboard autonomous navigation hasn’t been attempted before on a spacecraft. NASA’s Curiosity rover has some limited ability to plot a path between destinations, and the Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) will be able to detect hazards and abort its sample retrieval attempt.

    The dream spacecraft would be more like a self-driving car. It would know that it needs to do a flyby of Ophelia, for example. It would then plot its own low-altitude path over the surface that visits points of interest like chaos terrain. It would also navigate around unexpected hazards like jagged cliffs. If the craft misses something interesting, well, there’s always enough fuel for another pass.

    A Trio of Landers

    With extra room on board from sleeker electronics, plus low-and-slow flybys from the REP and autonomous navigation, the dream spacecraft could carry landers to Uranus’s moons and easily drop them onto the surface.

    4
    Credit: JoAnna Wendel

    “We designed a mission to carry three small landers that we could drop on any of the satellites,” Hofstadter said. The size, shape, and capabilities of the landers could be anything from simple cameras to a full suite of instruments to measure gravity, composition, or even seismicity.

    The dream spacecraft could survey all 27 of Uranus’s satellites, from its largest, Titania, to its smallest, Cupid, only 18 kilometers across. The mission team could then decide the best way to deploy the landers.

    “We don’t have to decide in advance which satellites we put them on,” he said. “We can wait until we get there. We might decide to put all the landers on one satellite to make a little seismic network to look for moonquakes and study the interior. Or maybe when we get there we’ll decide we’d rather put a lander on three different satellites.”

    “Ice”-ing on a Cake

    The scientists who compiled the internal study acknowledged that it’s probably unrealistic to incorporate all of these innovative technologies into one mission. Doing so would involve a lot of risk and a lot of cost, Hofstadter said. Moreover, existing space-tested technology that has flown on Cassini, New Horizons, and Juno can certainly deliver exciting ice giant science, he said. These innovations could augment such a spacecraft.

    At the moment, there is no NASA mission under consideration to explore either Uranus or Neptune. In 2017, Hofstadter and his team spoke with urgency about the need for a mission to one of the ice giant planets and now hope that these technologies of the future might inspire a mission proposal.

    “It’s almost like icing on the cake,” he said. “We were saying, If you adopted new technologies, what new things could you hope to do that would enhance the scientific return of this mission?”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Eos is the leading source for trustworthy news and perspectives about the Earth and space sciences and their impact. Its namesake is Eos, the Greek goddess of the dawn, who represents the light shed on understanding our planet and its environment in space by the Earth and space sciences.

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:54 pm on January 7, 2020 Permalink | Reply
    Tags: "SOFIA Reveals How the Swan Nebula Hatched", , NASA JPL - Caltech, ,   

    From NASA JPL-Caltech and SOFIA: “SOFIA Reveals How the Swan Nebula Hatched” 

    NASA JPL Banner

    From NASA JPL-Caltech

    and

    NASA/DLR SOFIA
    NASA SOFIA Banner

    NASA SOFIA
    NASA/DLR SOFIA

    January 7, 2020

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    Written by Kassandra Bell
    USRA SOFIA Science Center

    1
    In this composite image of the Omega, or Swan, Nebula, SOFIA detected the blue areas near the center and the green areas. The white star field was detected by Spitzer. SOFIA’s view reveals evidence that parts of the nebula formed separately to create the swan-like shape seen today.Credit: NASA/SOFIA/Lim, De Buizer, & Radomski et al.; ESA/Herschel; NASA/JPL-Caltech

    NASA/Spitzer Infrared Telescope

    ESA/Herschel spacecraft active from 2009 to 2013

    One of the brightest and most massive star-forming regions in our galaxy, the Omega, or Swan, Nebula, came to resemble the shape resembling a swan’s neck we see today only relatively recently. New observations reveal that its regions formed separately over multiple eras of star birth. The new image from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, is helping scientists chronicle the history and evolution of this well-studied nebula.

    “The present-day nebula holds the secrets that reveal its past; we just need to be able to uncover them,” said Wanggi Lim, a Universities Space Research Association scientist at the SOFIA Science Center at NASA’s Ames Research Center in California’s Silicon Valley. “SOFIA lets us do this, so we can understand why the nebula looks the way it does today.”

    Uncovering the nebula’s secrets is no simple task. It’s located more than 5,000 light-years away in the constellation Sagittarius. Its center is filled with more than 100 of the galaxy’s most massive young stars. These stars may be many times the size of our Sun, but the youngest generations are forming deep in cocoons of dust and gas, where they are very difficult to see, even with space telescopes. Because the central region glows very brightly, the detectors on space telescopes were saturated at the wavelengths SOFIA studied, similar to an overexposed photo.

    SOFIA’s infrared camera called FORCAST, the Faint Object Infrared Camera for the SOFIA Telescope, however, can pierce through these cocoons.

    NASA/DLR SOFIA Forcast

    The new view reveals nine protostars, areas where the nebula’s clouds are collapsing and creating the first step in the birth of stars, that had not been seen before. Additionally, the team calculated the ages of the nebula’s different regions. They found that portions of the swan-like shape were not all created at the same time, but took shape over multiple eras of star formation.

    The central region is the oldest, most evolved and likely formed first. Next, the northern area formed, while the southern region is the youngest. Even though the northern area is older than the southern region, the radiation and stellar winds from previous generations of stars has disturbed the material there, preventing it from collapsing to form the next generation.

    “This is the most detailed view of the nebula we have ever had at these wavelengths,” said Jim De Buizer, a senior scientist also at the SOFIA Science Center. “It’s the first time we can see some of its youngest, massive stars and start to truly understand how it evolved into the iconic nebula we see today.”

    Massive stars, like those in the Swan Nebula, release so much energy that they can change the evolution of entire galaxies. But less than 1% of all stars are this enormous, so astronomers know very little about them. Previous observations of this nebula with space telescopes studied different wavelengths of infrared light, which did not reveal the details SOFIA detected.

    SOFIA’s image shows gas in blue as it’s heated by massive stars located near the center, and dust in green that is warmed both by existing massive stars and nearby newborn stars. The newly-detected protostars are located primarily in the southern areas. The red areas near the edge represent cold dust that was detected by the Herschel Space Telescope, while the white star field was detected by the Spitzer Space Telescope.

    The Spitzer Space Telescope will be decommissioned on Jan. 30, 2020, after operating for more than 16 years. SOFIA continues exploring the infrared universe, building on Spitzer’s legacy. SOFIA studies wavelengths of mid- and far-infrared light with high resolution that are not accessible to other telescopes, helping scientists understand star and planet formation, the role magnetic fields play in shaping our universe, and the chemical evolution of galaxies.

    SOFIA, the Stratospheric Observatory for Infrared Astronomy, is a Boeing 747SP jetliner modified to carry a 106-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center (DLR). NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is maintained and operated from NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California.

    JPL manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena, California. Space operations are based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    Herschel is a European Space Agency mission, with science instruments provided by consortia of European institutes and with important participation by NASA. While the observatory stopped making science observations in April 2013, after running out of liquid coolant as expected, scientists continue to analyze its data. NASA’s Herschel Project Office is based at NASA’s Jet Propulsion Laboratory in Pasadena. JPL contributed mission-enabling technology for two of Herschel’s three science instruments. The NASA Herschel Science Center, part of IPAC, supports the U.S. astronomical community. Caltech manages JPL for NASA.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 10:22 am on January 5, 2020 Permalink | Reply
    Tags: "Aquatic Rover Goes for a Drive Under the Ice", An underwater rover called BRUIE is being tested in Antarctica to look for life under the ice., , , , , , NASA JPL - Caltech   

    From NASA JPL-Caltech: “Aquatic Rover Goes for a Drive Under the Ice” 

    NASA JPL Banner

    From NASA JPL-Caltech

    November 18, 2019

    Arielle Samuelson
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    arielle.a.samuelson@jpl.nasa.gov

    1
    An underwater rover called BRUIE is being tested in Antarctica to look for life under the ice. Developed by engineers at NASA-JPL, the robotic submersible could one day explore ice-covered oceans on moons like Europa and Enceladus. BRUIE is pictured here in an arctic lake near Barrow, Alaska in 2015.

    2
    BRUIE will spend the next month testing its endurance in the icy waters near Casey Station, Antarctica. The rover uses its buoyancy to anchor itself to the ice and roll along it upside down on two wheels.

    A little robotic explorer will be rolling into Antarctica this month to perform a gymnastic feat – driving upside down under sea ice.

    BRUIE, or the Buoyant Rover for Under-Ice Exploration, is being developed for underwater exploration in extraterrestrial, icy waters by engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California. It will spend the next month testing its endurance at Australia’s Casey research station in Antarctica, in preparation for a mission that could one day search for life in ocean worlds beyond Earth.

    There are moons throughout the solar system believed to be covered in deep oceans hidden beneath thick, frozen surfaces. Scientists like Kevin Hand, JPL lead scientist on the BRUIE project, believe that these lunar oceans, such as those on Jupiter’s moon Europa and Saturn’s moon Enceladus, may be the best places to look for life in our solar system. But first, they’ll need a tough aquatic explorer capable of navigating solo through an alien ocean locked under ice sheets that could be 6 to 12 miles (10 to 19 kilometers) thick.

    “The ice shells covering these distant oceans serve as a window into the oceans below, and the chemistry of the ice could help feed life within those oceans. Here on Earth, the ice covering our polar oceans serves a similar role, and our team is particularly interested in what is happening where the water meets the ice,” said Hand.

    The Antarctic waters are the closest Earth analog to the seas of an icy moon, which makes them an ideal testing ground for BRUIE technology. Three feet (1 meter) long and equipped with two wheels to roll along beneath the ice, the buoyant rover can take images and collect data on the important region where water and ice meet, what scientists call the “ice-water interface.”

    “We’ve found that life often lives at interfaces, both the sea bottom and the ice-water interface at the top. Most submersibles have a challenging time investigating this area, as ocean currents might cause them to crash, or they would waste too much power maintaining position,” said lead engineer Andy Klesh. “BRUIE, however, uses buoyancy to remain anchored against the ice and is impervious to most currents. In addition, it can safely power down, turning on only when it needs to take a measurement, so that it can spend months observing the under-ice environment.”

    During several Antarctic field tests, the rover will remain tethered to the surface as Hand, Klesh, mechanical engineer Dan Berisford and University of Western Australia engineer Dan Arthur test its suite of instruments, including its two live, high-definition cameras.

    “BRUIE will carry several science instruments to measure parameters related to life, such as dissolved oxygen, water salinity, pressure and temperature,” said Berisford, who will attach the science instruments if early tests go well. But life on other worlds like Enceladus and Europa may be difficult to measure. “Once we get there,” he added, “we only really know how to detect life similar to that on Earth. So it’s possible that very different microbes might be difficult to recognize.”

    While the team has previously tested BRUIE in Alaska and the Arctic, this is the rover’s first trial in Antarctica. Supported by the Australian Antarctic Program, the crew will travel to lakes and the seashore near Casey station, where they will drill holes in the ice in order to submerge BRUIE. The rover could even make some friends – curious penguins and seals sometimes investigate when the science teams drill through the ice.

    The team will continue to work on BRUIE until it can survive under the ice for months at a time, remotely navigate without a tether and explore the ocean at greater depths. NASA is already at work constructing the Europa Clipper orbiter, which is scheduled to launch in 2025 to study Jupiter’s moon Europa, laying the groundwork for a future mission that could search for life beneath the ice.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 5:39 am on December 20, 2019 Permalink | Reply
    Tags: "Spitzer Studies a Stellar Playground With a Long History", , , , , , NASA JPL - Caltech,   

    From Spitzer at NASA-JPL/Caltech: “Spitzer Studies a Stellar Playground With a Long History” 

    NASA Spitzer


    From Spitzer at NASA-JPL/Caltech

    December 19, 2019

    News Media Contact

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    626-808-2469
    calla.e.cofield@jpl.nasa.gov

    1
    A collection of gas and dust over 500 light-years across, the Perseus Molecular Cloud hosts an abundance of young stars. It was imaged here by the NASA’s Spitzer Space Telescope. Credit: NASA/JPL-Caltech

    This image from NASA’s Spitzer Space Telescope shows the Perseus Molecular Cloud, a massive collection of gas and dust that stretches over 500 light-years across. Home to an abundance of young stars, it has drawn the attention of astronomers for decades.

    Spitzer’s Multiband Imaging Photometer (MIPS) instrument took this image during Spitzer’s “cold mission,” which ran from the spacecraft’s launch in 2003 until 2009, when the space telescope exhausted its supply of liquid helium coolant. (This marked the beginning of Spitzer’s “warm mission.”) Infrared light can’t be seen by the human eye, but warm objects, from human bodies to interstellar dust clouds, emit infrared light.

    Infrared radiation from warm dust generates much of the glow seen here from the Perseus Molecular Cloud. Clusters of stars, such as the bright spot near the left side of the image, generate even more infrared light and illuminate the surrounding clouds like the Sun lighting up a cloudy sky at sunset. Much of the dust seen here emits little to no visible light (in fact, the dust blocks visible light) and is therefore revealed most clearly with infrared observatories like Spitzer.

    On the right side of the image is a bright clump of young stars known as NGC 1333, which Spitzer has observed multiple times. It is located about 1,000 light-years from Earth. That sounds far, but it is close compared to the size of our galaxy, which is about 100,000 light-years across. NGC 1333’s proximity and strong infrared emissions made it visible to astronomers using some of the earliest infrared instruments.

    2
    This image from NASA’S Spitzer Space Telescope shows the location and apparent size of the Perseus Molecular Cloud in the night sky. Located on the edge of the Perseus Constellation, the collection of gas and dust is about 1,000 light-years from Earth and about 500 light-years wide. Credit: NASA/JPL-Caltech

    In fact, some of its stars were first observed in the mid-1980s with the Infrared Astronomical Survey (IRAS), a joint mission between NASA, the United Kingdom and the Netherlands.

    NASA/UK/NL Infrared Astronomical Survey IRAS spacecraft

    The first infrared satellite telescope, it observed the sky in infrared wavelengths blocked by Earth’s atmosphere, providing the first-ever view of the universe in those wavelengths.

    More than 1,200 peer-reviewed research papers have been written about NGC 1333, and it has been studied in other wavelengths of light, including by the Hubble Space Telescope, which detects mostly visible light, and the Chandra X-Ray Observatory.

    NASA/ESA Hubble Telescope

    NASA/Chandra X-ray Telescope

    Many young stars in the cluster are sending massive outflows of material – the same material that forms the star – into space. As the material is ejected, it is heated up and smashes into the surrounding interstellar medium. These factors cause the jets to radiate brightly, and they can be seen in close-up studies of the region. This has provided astronomers with a clear glimpse of how stars go from a sometimes-turbulent adolescence into calmer adulthood.

    An Evolving Mystery

    Other clusters of stars seen below NGC 1333 in this image have posed a fascinating mystery for astronomers: They appear to contain stellar infants, adolescents and adults. Such a closely packed mixture of ages is extremely odd, according to Luisa Rebull, an astrophysicist at NASA’s Infrared Science Archive at Caltech-IPAC who has studied NGC 1333 and some of the clusters below it. Although many stellar siblings may form together in tight clusters, stars are always moving, and as they grow older they tend to move farther and farther apart.

    3
    This annotated image of the Perseus Molecular Cloud, provided by NASA’s Spitzer Space Telescope, shows the location of various star clusters, including NGC 1333.
    Credit: NASA/JPL-Caltech

    Finding such a closely packed mixture of apparent ages doesn’t fit with current ideas about how stars evolve. “This region is telling astronomers that there’s something we don’t understand about star formation,” said Rebull. The puzzle presented by this region is one thing that keeps astronomers coming back to it. “It’s one of my favorite regions to study,” she added.

    Since IRAS’s early observations, the region has come into clearer focus, a process that is common in astronomy, said Rebull. New instruments bring more sensitivity and new techniques, and the story becomes clearer with each new generation of observatories. On Jan. 30, 2020, NASA will decommission the Spitzer Space Telescope, but its legacy has paved the way for upcoming observatories, including the James Webb Space Telescope, which will also observe infrared light.

    The Spitzer-MIPS data used for this image is at the infrared wavelength of 24 microns. Small gaps along the edges of this image not observed by Spitzer were filled in using 22-micron data from NASA’s Wide-Field Infrared Survey Explorer (WISE).

    NASA/WISE NEOWISE Telescope

    To learn more about Spitzer and how it studies the infrared universe, check out the Spitzer 360 VR experience, now available on the NASA Spitzer channel on YouTube: http://bit.ly/SpitzerVR.

    More information about Spitzer is available at the following site(s):

    https://www.nasa.gov/mission_pages/spitzer/main

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Spitzer Space Telescope is a NASA mission managed by the Jet Propulsion Laboratory located on the campus of the California Institute of Technology and part of NASA’s Infrared Processing and Analysis Center.

    The Spitzer Space Telescope (SST), formerly the Space Infrared Telescope Facility (SIRTF), is an infrared space telescope. It was launched in 2003 and is planned to be retired in January 2020.

    The planned mission period was to be 2.5 years with a pre-launch expectation that the mission could extend to five or slightly more years until the onboard liquid helium supply was exhausted. This occurred on 15 May 2009. Without liquid helium to cool the telescope to the very low temperatures needed to operate, most of the instruments are no longer usable. However, the two shortest-wavelength modules of the IRAC camera are still operable with the same sensitivity as before the cryogen was exhausted, and have continued to be used to the present in the Spitzer Warm Mission. All Spitzer data, from both the primary and warm phases, are archived at the Infrared Science Archive (IRSA).

    In keeping with NASA tradition, the telescope was renamed after its successful demonstration of operation, on 18 December 2003. Unlike most telescopes that are named after famous deceased astronomers by a board of scientists, the new name for SIRTF was obtained from a contest open to the general public.

    The contest led to the telescope being named in honor of astronomer Lyman Spitzer, who had promoted the concept of space telescopes in the 1940s. Spitzer wrote a 1946 report for RAND Corporation describing the advantages of an extraterrestrial observatory and how it could be realized with available or upcoming technology. He has been cited for his pioneering contributions to rocketry and astronomy, as well as “his vision and leadership in articulating the advantages and benefits to be realized from the Space Telescope Program.”

    The US$720 million Spitzer was launched on 25 August 2003 at 05:35:39 UTC from Cape Canaveral SLC-17B aboard a Delta II 7920H rocket.

    It follows a heliocentric instead of geocentric orbit, trailing and drifting away from Earth’s orbit at approximately 0.1 astronomical units per year (a so-called “earth-trailing” orbit). The primary mirror is 85 centimeters (33 in) in diameter, f/12, made of beryllium and was cooled to 5.5 K (−268 °C; −450 °F). The satellite contains three instruments that allow it to perform astronomical imaging and photometry from 3.6 to 160 micrometers, spectroscopy from 5.2 to 38 micrometers, and spectrophotometry from 5 to 100 micrometers.

    NASA image

    NASA JPL Icon

    Caltech Logo

     
  • richardmitnick 10:35 am on December 19, 2019 Permalink | Reply
    Tags: "NASA's Mars 2020 Rover Completes Its First Drive", NASA JPL - Caltech   

    From NASA JPL-Caltech: “NASA’s Mars 2020 Rover Completes Its First Drive” 

    NASA JPL Banner

    From NASA JPL-Caltech

    December 18, 2019
    Jia-Rui Cook
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0724
    jccook@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-358-1501
    alana.r.johnson@nasa.gov

    1
    In a clean room at NASA’s Jet Propulsion Laboratory in Pasadena, California, engineers observed the first driving test for NASA’s Mars 2020 rover on Dec. 17, 2019.

    Scheduled to launch as early as July 2020, the Mars 2020 mission will search for signs of past microbial life, characterize Mars’ climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet. It is scheduled to land in an area of Mars known as Jezero Crater on Feb. 18, 2021.

    JPL is building and will manage operations of the Mars 2020 rover for NASA. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, is responsible for launch management.

    NASA’s next Mars rover has passed its first driving test. A preliminary assessment of its activities on Dec. 17, 2019, found that the rover checked all the necessary boxes as it rolled forward and backward and pirouetted in a clean room at NASA’s Jet Propulsion Laboratory in Pasadena, California. The next time the Mars 2020 rover drives, it will be rolling over Martian soil.

    “Mars 2020 has earned its driver’s license,” said Rich Rieber, the lead mobility systems engineer for Mars 2020. “The test unambiguously proved that the rover can operate under its own weight and demonstrated many of the autonomous-navigation functions for the first time. This is a major milestone for Mars 2020.”


    First Drive Test of NASA’s Mars 2020 Rover

    Scheduled to launch in July or August 2020, the Mars 2020 mission will search for signs of past microbial life, characterize Mars’ climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet. It is scheduled to land in an area of Mars known as Jezero Crater on Feb. 18, 2021.

    “To fulfill the mission’s ambitious science goals, we need the Mars 2020 rover to cover a lot of ground,” said Katie Stack Morgan, Mars 2020 deputy project scientist.

    Mars 2020 is designed to make more driving decisions for itself than any previous rover. It is equipped with higher-resolution, wide-field-of-view color navigation cameras, an extra computer “brain” for processing images and making maps, and more sophisticated auto-navigation software. It also has wheels that have been redesigned for added durability.

    All these upgrades allow the rover to average about 650 feet (200 meters) per Martian day. To put that into perspective, the longest drive in a single Martian day was 702 feet (214 meters), a record set by NASA’s Opportunity rover. Mars 2020 is designed to average the current planetwide record drive distance.

    In a 10-plus-hour marathon on Tuesday that demonstrated all the systems working in concert, the rover steered, turned and drove in 3-foot (1-meter) increments over small ramps covered with special static-control mats. Since these systems performed well under Earth’s gravity, engineers expect them to perform well under Mars’ gravity, which is only three-eighthsas strong. The rover was also able to gather data with the Radar Imager for Mars’ Subsurface Experiment (RIMFAX).

    “A rover needs to rove, and Mars 2020 did that yesterday,” said John McNamee, Mars 2020 project manager. “We can’t wait to put some red Martian dirt under its wheels.”

    JPL is building and will manage operations of the Mars 2020 rover for NASA. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, is responsible for launch management.

    Mars 2020 is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA’s Artemis lunar exploration plans.

    For more information about the mission, go to:

    https://mars.nasa.gov/mars2020/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 12:32 pm on December 13, 2019 Permalink | Reply
    Tags: "NASA's Juno Navigators Enable Jupiter Cyclone Discovery", , , , , NASA JPL - Caltech,   

    From NASA JPL-Caltech: “NASA’s Juno Navigators Enable Jupiter Cyclone Discovery” 

    NASA JPL Banner

    From NASA JPL-Caltech

    December 12, 2019
    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-672-4780
    alana.r.johnson@nasa.gov

    Deb Schmid
    Southwest Research Institute, San Antonio
    210-522-2254
    dschmid@swri.org

    1
    A new, smaller cyclone can be seen at the lower right of this infrared image of Jupiter’s south pole taken on Nov. 4, 2019, during the 23rd science pass of the planet by NASA’s Juno spacecraft.

    NASA/Juno

    The image was captured by Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, which instrument measures heat radiated from the planet at an infrared wavelength of around 5 microns.

    2
    To give some sense of the immense scale of cyclones arranged in a hexagonal pattern at Jupiter’s south pole, an outline of the continental United States is superimposed over the central cyclone and an outline of Texas is superimposed over the newest cyclone. The hexagonal arrangement of the cyclones is large enough to dwarf the Earth.

    3
    This composite visible-light image taken by the JunoCam imager aboard NASA’s Juno spacecraft on Nov. 3, 2019, shows a new cyclone at Jupiter’s south pole has joined five other cyclones to create a hexagonal shape around a large single cyclone. Credit: NASA/JPL-Caltech/SwRI/MSSS/JunoCam

    Jupiter’s south pole has a new cyclone. The discovery of the massive Jovian tempest occurred on Nov. 3, 2019, during the most recent data-gathering flyby of Jupiter by NASA’s Juno spacecraft. It was the 22nd flyby during which the solar-powered spacecraft collected science data on the gas giant, soaring only 2,175 miles (3,500 kilometers) above its cloud tops. The flyby also marked a victory for the mission team, whose innovative measures kept the solar-powered spacecraft clear of what could have been a mission-ending eclipse.

    “The combination of creativity and analytical thinking has once again paid off big time for NASA,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “We realized that the orbit was going to carry Juno into Jupiter’s shadow, which could have grave consequences because we’re solar powered. No sunlight means no power, so there was real risk we might freeze to death. While the team was trying to figure out how to conserve energy and keep our core heated, the engineers came up with a completely new way out of the problem: Jump Jupiter’s shadow. It was nothing less than a navigation stroke of genius. Lo and behold, first thing out of the gate on the other side, we make another fundamental discovery.”

    When Juno first arrived at Jupiter in July 2016, its infrared and visible-light cameras discovered giant cyclones encircling the planet’s poles – nine in the north and six in the south. Were they, like their Earthly siblings, a transient phenomenon, taking only weeks to develop and then ebb? Or could these cyclones, each nearly as wide as the continental U.S., be more permanent fixtures?

    With each flyby, the data reinforced the idea that five windstorms were swirling in a pentagonal pattern around a central storm at the south pole and that the system seemed stable. None of the six storms showed signs of yielding to allow other cyclones to join in.

    “It almost appeared like the polar cyclones were part of a private club that seemed to resist new members,” said Bolton.

    Then, during Juno’s 22nd science pass, a new, smaller cyclone churned to life and joined the fray.

    The Life of a Young Cyclone

    “Data from Juno’s Jovian Infrared Auroral Mapper [JIRAM] instrument indicates we went from a pentagon of cyclones surrounding one at the center to a hexagonal arrangement,” said Alessandro Mura, a Juno co-investigator at the National Institute for Astrophysics in Rome. “This new addition is smaller in stature than its six more established cyclonic brothers: It’s about the size of Texas. Maybe JIRAM data from future flybys will show the cyclone growing to the same size as its neighbors.”

    Probing the weather layer down to 30 to 45 miles (50 to 70 kilometers) below Jupiter’s cloud tops, JIRAM captures infrared light emerging from deep inside Jupiter. Its data indicate wind speeds of the new cyclone average 225 mph (362 kph) – comparable to the velocity found in its six more established polar colleagues.

    The spacecraft’s JunoCam also obtained visible-light imagery of the new cyclone. The two datasets shed light on atmospheric processes of not just Jupiter but also fellow gas giants Saturn, Uranus and Neptune as well as those of giant exoplanets now being discovered; they even shed light on atmospheric processes of Earth’s cyclones.

    “These cyclones are new weather phenomena that have not been seen or predicted before,” said Cheng Li, a Juno scientist from the University of California, Berkeley. “Nature is revealing new physics regarding fluid motions and how giant planet atmospheres work. We are beginning to grasp it through observations and computer simulations. Future Juno flybys will help us further refine our understanding by revealing how the cyclones evolve over time.”

    Shadow Jumping

    Of course, the new cyclone would never have been discovered if Juno had frozen to death during the eclipse when Jupiter got between the spacecraft and the Sun’s heat and light rays.

    Juno has been navigating in deep space since 2011. It entered an initial 53-day orbit around Jupiter on July 4, 2016. Originally, the mission planned to reduce the size of its orbit a few months later to shorten the period between science flybys of the gas giant to every 14 days. But the project team recommended to NASA to forgo the main engine burn due to concerns about the spacecraft’s fuel delivery system. Juno’s 53-day orbit provides all the science as originally planned; it just takes longer to do so. Juno’s longer life at Jupiter is what led to the need to avoid Jupiter’s shadow.

    “Ever since the day we entered orbit around Jupiter, we made sure it remained bathed in sunlight 24/7,” said Steve Levin, Juno project scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Our navigators and engineers told us a day of reckoning was coming, when we would go into Jupiter’s shadow for about 12 hours. We knew that for such an extended period without power, our spacecraft would suffer a similar fate as the Opportunity rover, when the skies of Mars filled with dust and blocked the Sun’s rays from reaching its solar panels.”

    Without the Sun’s rays providing power, Juno would be chilled below tested levels, eventually draining its battery cells beyond recovery. So the navigation team set devised a plan to “jump the shadow,” maneuvering the spacecraft just enough so its trajectory would miss the eclipse.

    “In deep space, you are either in sunlight or your out of sunlight; there really is no in-between,” said Levin.

    The navigators calculated that if Juno performed a rocket burn weeks in advance of Nov. 3, while the spacecraft was as far in its orbit from Jupiter as it gets, they could modify its trajectory enough to give the eclipse the slip. The maneuver would utilize the spacecraft’s reaction control system, which wasn’t initially intended to be used for a maneuver of this size and duration.

    On Sept. 30, at 7:46 p.m. EDT (4:46 p.m. PDT), the reaction control system burn began. It ended 10 ½ hours later. The propulsive maneuver – five times longer than any previous use of that system – changed Juno’s orbital velocity by 126 mph (203 kph) and consumed about 160 pounds (73 kilograms) of fuel. Thirty-four days later, the spacecraft’s solar arrays continued to convert sunlight into electrons unabated as Juno prepared to scream once again over Jupiter’s cloud tops.

    “Thanks to our navigators and engineers, we still have a mission,” said Bolton. “What they did is more than just make our cyclone discovery possible; they made possible the new insights and revelations about Jupiter that lie ahead of us.”

    More information about Juno is online at http://www.nasa.gov/juno and http://missionjuno.swri.edu.

    NASA’s Jet Propulsion Laboratory manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. Caltech in Pasadena, California, manages JPL for NASA.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 7:43 pm on December 11, 2019 Permalink | Reply
    Tags: , , , , , NASA JPL - Caltech, Re-visiting Venus   

    From NASA JPL Caltech: “The Return to Venus and What It Means for Earth” 

    NASA JPL Banner

    From NASA JPL-Caltech

    December 11, 2019

    Arielle Samuelson
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    arielle.a.samuelson@jpl.nasa.gov

    1
    Venus hides a wealth of information that could help us better understand Earth and exoplanets. NASA’s JPL is designing mission concepts to survive the planet’s extreme temperatures and atmospheric pressure. This image is a composite of data from NASA’s Magellan spacecraft and Pioneer Venus Orbiter. Image Credit: NASA/JPL-Caltech

    NASA/Magellan spacecraft mission to Venus

    1
    Pioneer Venus Orbiter

    Sue Smrekar really wants to go back to Venus. In her office at NASA’s Jet Propulsion Laboratory in Pasadena, California, the planetary scientist displays a 30-year-old image of Venus’ surface taken by the Magellan spacecraft, a reminder of how much time has passed since an American mission orbited the planet. The image reveals a hellish landscape: a young surface with more volcanoes than any other body in the solar system, gigantic rifts, towering mountain belts and temperatures hot enough to melt lead.

    Now superheated by greenhouse gases, Venus’ climate was once more similar to Earth’s, with a shallow ocean’s worth of water. It may even have subduction zones like Earth, areas where the planet’s crust sinks back into rock closer to the core of the planet.

    “Venus is like the control case for Earth,” said Smrekar. “We believe they started out with the same composition, the same water and carbon dioxide. And they’ve gone down two completely different paths. So why? What are the key forces responsible for the differences?”


    By studying this mysterious planet, scientists could learn a great deal more about exoplanets, as well as the past, present, and possible future of our own. This video unveils this world and calls on current and future scientists to explore its many features

    The Return to Venus and What It Means for Earth

    Venus hides a wealth of information that could help us better understand Earth and exoplanets. NASA’s JPL is designing mission concepts to survive the planet’s extreme temperatures and atmospheric pressure. This image is a composite of data from NASA’s Magellan spacecraft and Pioneer Venus Orbiter. Image Credit: NASA/JPL-Caltech

    Sue Smrekar really wants to go back to Venus. In her office at NASA’s Jet Propulsion Laboratory in Pasadena, California, the planetary scientist displays a 30-year-old image of Venus’ surface taken by the Magellan spacecraft, a reminder of how much time has passed since an American mission orbited the planet. The image reveals a hellish landscape: a young surface with more volcanoes than any other body in the solar system, gigantic rifts, towering mountain belts and temperatures hot enough to melt lead.

    Now superheated by greenhouse gases, Venus’ climate was once more similar to Earth’s, with a shallow ocean’s worth of water. It may even have subduction zones like Earth, areas where the planet’s crust sinks back into rock closer to the core of the planet.

    “Venus is like the control case for Earth,” said Smrekar. “We believe they started out with the same composition, the same water and carbon dioxide. And they’ve gone down two completely different paths. So why? What are the key forces responsible for the differences?”

    By studying this mysterious planet, scientists could learn a great deal more about exoplanets, as well as the past, present, and possible future of our own. This video unveils this world and calls on current and future scientists to explore its many features.

    Smrekar works with the Venus Exploration Analysis Group (VEXAG), a coalition of scientists and engineers investigating ways to revisit the planet that Magellan mapped so many decades ago. Though their approaches vary, the group agrees that Venus could tell us something vitally important about our planet: what happened to the superheated climate of our planetary twin, and what does it mean for life on Earth?

    Venus isn’t the closest planet to the Sun, but it is the hottest in our solar system. Between the intense heat (900 degrees Fahrenheit heat, or 480 degrees Celsius), the corrosive sulfuric clouds and a crushing atmosphere that is 90 times denser than Earth’s, landing a spacecraft there is incredibly challenging. Of the nine Soviet probes that achieved the feat, none lasted longer than 127 minutes.

    From the relative safety of space, an orbiter could use radar and near-infrared spectroscopy to peer beneath the cloud layers, measure landscape changes over time, and determine whether or not the ground moves. It could look for indicators of past water as well as volcanic activity and other forces that may have shaped the planet.

    Smrekar, who is working on an orbiter proposal called VERITAS, doesn’t think that Venus has plate tectonics the way Earth does. But she sees possible hints of subduction – what happens when two plates converge and one slides beneath the other. More data would help.

    “We know very little about the composition of the surface of Venus,” she said. “We think that there are continents, like on Earth, which could have formed via past subduction. But we don’t have the information to really say that.”

    The answers wouldn’t only deepen our understanding of why Venus and Earth are now so different; they could narrow down the conditions scientists would need in order to find an Earth-like planet elsewhere.

    Hot Air Balloons

    Orbiters aren’t the only means of studying Venus from above. JPL engineers Attila Komjathy and Siddharth Krishnamoorthy imagine an armada of hot air balloons that ride the gale-force winds in the upper levels of the Venusian atmosphere, where the temperatures are close to Earth’s.

    “There is no commissioned mission for a balloon at Venus yet, but balloons are a great way to explore Venus because the atmosphere is so thick and the surface is so harsh,” said Krishnamoorthy. “The balloon is like the sweet spot, where you’re close enough to get a lot of important stuff out but you’re also in a much more benign environment where your sensors can actually last long enough to give you something meaningful.”

    The team would equip the balloons with seismometers sensitive enough to detect quakes on the planet below. On Earth, when the ground shakes, that motion ripples into the atmosphere as waves of infrasound (the opposite of ultrasound). Krishnamoorthy and Komjathy have demonstrated the technique is feasible using silver hot-air balloons, which measured weak signals above areas on Earth with tremors. And that’s not even with the benefit of Venus’s dense atmosphere, where the experiment would likely return even stronger results.

    “If the ground moves a little bit, it shakes the air a lot more on Venus than it does on Earth,” Krishnamoorthy explained.

    To get that seismic data, though, a balloon mission would need to contend with Venus’ hurricane-force winds. The ideal balloon, as determined by Venus Exploration Analysis Group, could control its movements in at least one direction. Krishnamoorthy and Komjathy’s team hasn’t gotten that far, but they have proposed a middle ground: having the balloons essentially ride the wind around the planet at a steady speed, sending their results back to an orbiter. It’s a start.

    Landing Probes

    Among the many challenges facing a Venus lander are those Sun-blocking clouds: Without sunlight, solar-power would be severely limited. But the planet is too hot for other power sources to survive. “Temperature-wise, it’s like being in your kitchen oven set to self-cleaning mode,” said JPL engineer Jeff Hall, who has worked on balloon and lander prototypes for Venus. “There really is nowhere else like that surface environment in the solar system.”

    By default, a landing mission’s lifespan will be cut short by the spacecraft’s electronics starting to fail after a few hours. Hall says the amount of power required to run a refrigerator capable of protecting a spacecraft would require more batteries than a lander could carry.

    “There is no hope of refrigerating a lander to keep it cool,” he added. “All you can do is slow down the rate at which is destroys itself.”

    NASA is interested in developing “hot technology” that can survive days, or even weeks, in extreme environments. Although Hall’s Venus lander concept didn’t make it to the next stage of the approval process, it did lead to his current Venus-related work: a heat-resistant drilling and sampling system that could take Venusian soil samples for analysis. Hall works with Honeybee Robotics to develop the next-generation electric motors that power drills in extreme conditions, while JPL engineer Joe Melko designs the pneumatic sampling system.

    Together, they work with the prototypes in JPL’s steel-walled Large Venus Test Chamber, which mimics the conditions of the planet right down to an atmosphere that’s a suffocating 100% carbon dioxide. With each successful test, the teams bring humanity one step closer to pushing the boundaries of exploration on this most inhospitable planet.

    For more information about Venus, visit:

    https://solarsystem.nasa.gov/planets/venus

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 8:07 am on December 6, 2019 Permalink | Reply
    Tags: "NASA's OSIRIS-REx Explains Bennu Mystery Particles", , , , , , NASA JPL - Caltech,   

    From NASA JPL-Caltech: “NASA’s OSIRIS-REx Explains Bennu Mystery Particles” 

    From NASA JPL-Caltech

    December 5, 2019

    DC Agle
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-9011
    agle@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-672-4780
    alana.r.johnson@nasa.gov

    Nancy Neal-Jones
    Greenbelt, Md.
    301-286-0039
    nancy.n.jones@nasa.gov

    1
    This view of asteroid Bennu ejecting particles from its surface on Jan. 6, 2019, was created by combining two images taken by the NavCam 1 imager aboard NASA’s OSIRIS-REx spacecraft: a short exposure image, which shows the asteroid clearly, and a long-exposure image (five seconds), which shows the particles clearly. Other image-processing techniques were also applied, such as cropping and adjusting the brightness and contrast of each layer.Credit: NASA/Goddard/University of Arizona/Lockheed Martin

    NASA OSIRIS-REx Spacecraft

    Shortly after NASA’s OSIRIS-REx spacecraft arrived at asteroid Bennu, an unexpected discovery by the mission’s science team revealed that the asteroid could be active, or consistently discharging particles into space. The ongoing examination of Bennu – and its sample that will eventually be returned to Earth – could potentially shed light on why this intriguing phenomenon is occurring.

    The OSIRIS-REx team first observed a particle-ejection event in images captured by the spacecraft’s navigation cameras taken on Jan. 6, just a week after the spacecraft entered its first orbit around Bennu. At first glance, the particles appeared to be stars behind the asteroid, but on closer examination, the team realized that the asteroid was ejecting material from its surface. After concluding that these particles did not compromise the spacecraft’s safety, the mission began dedicated observations in order to fully document the activity.


    This animation illustrates the modeled trajectories of particles that were ejected from Bennu’s surface on January 19. After ejecting from the asteroid’s surface, the particles either briefly orbited Bennu and fell back to its surface or escaped away from Bennu and into space.

    “Among Bennu’s many surprises, the particle ejections sparked our curiosity, and we’ve spent the last several months investigating this mystery,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson. “This is a great opportunity to expand our knowledge of how asteroids behave.”

    After studying the results of the observations, the mission team released their findings in a Science paper published Dec. 6. The team observed the three largest particle-ejection events on Jan. 6 and 19, and Feb. 11, and concluded that the events originated from different locations on Bennu’s surface. The first event originated in the southern hemisphere, and the second and third events occurred near the equator. All three events took place in the late afternoon on Bennu.

    The team found that, after ejection from the asteroid’s surface, the particles either briefly orbited Bennu and fell back to its surface or escaped from Bennu into space. The observed particles traveled up to 10 feet (3 meters) per second, and measured from smaller than an inch up to 4 inches (10 centimeters) in size. Approximately 200 particles were observed during the largest event, which took place on Jan. 6.

    The team investigated a wide variety of possible mechanisms that may have caused the ejection events and narrowed the list to three candidates: meteoroid impacts, thermal stress fracturing and released water vapor.

    Meteoroid impacts are common in the deep space neighborhood of Bennu, and it is possible that these small fragments of space rock could be hitting Bennu where OSIRIS-REx is not observing it, shaking loose particles with the momentum of their impact.

    The team also determined that thermal fracturing is another reasonable explanation. Bennu’s surface temperatures vary drastically over its 4.3-hour rotation period. Although it is extremely cold during the night hours, the asteroid’s surface warms significantly in the mid-afternoon, which is when the three major events occurred. As a result of this temperature change, rocks may begin to crack and break down, and eventually particles could be ejected from the surface. This cycle is known as thermal stress fracturing.

    Water release may also explain the asteroid’s activity. When Bennu’s water-locked clays are heated, the water could begin to release and create pressure. It is possible that as pressure builds in cracks and pores in boulders where absorbed water is released, the surface could become agitated, causing particles to erupt.

    But nature does not always allow for simple explanations. “It could be that more than one of these possible mechanisms are at play,” said Steve Chesley, an author on the paper and Senior Research Scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California. “For example, thermal fracturing could be chopping the surface material into small pieces, making it far easier for meteoroid impacts to launch pebbles into space.”

    If thermal fracturing, meteoroid impacts or both are in fact the causes of these ejection events, then this phenomenon is likely happening on all small asteroids, as they all experience these mechanisms. However, if water release is the cause of these ejection events, then this phenomenon would be specific to asteroids that contain water-bearing minerals, like Bennu.

    Bennu’s activity presents larger opportunities once a sample is collected and returned to Earth for study. Many of the ejected particles are small enough to be collected by the spacecraft’s sampling mechanism, meaning that the returned sample may possibly contain some material that was ejected and returned to Bennu’s surface. Determining that a particular particle had been ejected and returned to Bennu might be a scientific feat similar to finding a needle in a haystack. The material returned to Earth from Bennu, however, will almost certainly increase our understanding of asteroids and the ways they are both different and similar, even as the particle-ejection phenomenon continues to be a mystery whose clues we’ll also return home with in the form of data and further material for study.

    Sample collection is scheduled for summer 2020, and the sample will be delivered to Earth in September 2023.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona in Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

     
  • richardmitnick 10:45 am on December 5, 2019 Permalink | Reply
    Tags: "Seal Takes Ocean Heat Transport Data to New Depths", , NASA JPL - Caltech   

    From NASA JPL-Caltech: “Seal Takes Ocean Heat Transport Data to New Depths” 

    NASA JPL Banner

    From NASA JPL-Caltech

    December 4, 2019
    Arielle Samuelson
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-0307
    arielle.a.samuelson@jpl.nasa.gov

    Written by Esprit Smith, NASA’s Earth Science News team

    1
    A tagged elephant seal basks on Kerguelen Island, a French territory in the Antarctic. Elephant seals are tagged as part of a French research program called SO-MEMO (Observing System – Mammals as Samplers of the Ocean Environment), operated by the French National Center for Scientific Research (CNRS). The tags – actually, sensors with antennas – are glued to the seals’ heads in accordance with established ethical standards when the animals come ashore either to breed or to molt. The researchers remove the tags to retrieve their data when the seals return to land. If they miss a tag, it drops off with the dead skin in the next molting season. Credit: Sorbonne University/Etienne Pauthenet

    The Antarctic Circumpolar Current flows in a loop around Antarctica, connecting the Atlantic, Pacific and Indian oceans. It is one of the most significant ocean currents in our climate system because it facilitates the exchange of heat and other properties among the oceans it links.

    But how the current transfers heat, particularly vertically from the top layer of the ocean to the bottom layers and vice versa, is still not fully understood. This current is very turbulent, producing eddies – swirling vortices of water similar to storms in the atmosphere – between 30 to 125 miles (50 to 200 kilometers) in diameter. It also spans some 13,000 miles (21,000 kilometers) through an especially remote and inhospitable part of the world, making it one of the most difficult currents for scientists – as least those of the human variety – to observe and measure.

    Luckily for Lia Siegelman, a visiting scientist at NASA’s Jet Propulsion Laboratory in Pasadena, California, the rough seas posed no challenge for her scientific sidekick: a tagged southern elephant seal.

    Equipped with a specialized sensor reminiscent of a small hat, the seal swam more than 3,000 miles (4,800 kilometers) on a three-month voyage, much of it through the turbulent, eddy-rich waters of the Antarctic Circumpolar Current. The seal made around 80 dives at depths ranging from 550 to 1,090 yards (500 to 1,000 meters) per day during this time. All the while, it collected a continuous stream of data that has provided new insight into how heat moves vertically between ocean layers in this volatile region – insight that brings us one step closer to understanding how much heat from the Sun the ocean there is able to absorb.

    For a new paper published recently in Nature Geoscience, Siegelman and her co-authors combined the seal’s data with satellite altimetry data. The satellite data of the ocean surface showed where the swirling eddies were within the current and which eddies the seal was swimming through. Analyzing the combined dataset, the scientists paid particular attention to the role smaller ocean features played in vertical heat transport. Siegelman was surprised by the results.

    “These medium-sized eddies are known to drive the production of small-scale fronts – sudden changes in water density similar to cold and warm fronts in the atmosphere,” she said. “We found that these fronts were evident some 500 meters [550 yards] into the ocean interior, not just in the surface layer like many studies suggest, and that they played an active role in vertical heat transport.”

    According to Siegelman, their analysis showed that these fronts act like ducts that carry a lot of heat from the ocean interior back to the surface. “Most current modeling studies indicate that the heat would move from the surface to the ocean interior in these cases, but with the new observational data provided by the seal, we found that that’s not the case,” she said.

    2
    This 3D schematic shows how a tagged elephant seal collects data by swimming long distances and diving to great depths through turbulent waters near Antarctica. Satellite data are used to identify characteristics of the waters through which the seals swim. The blue represents cold, dense water; the red areas are less dense and typically warmer. Credit: Tandi Reason Dahl
    Why It Matters

    The ocean surface layer can absorb only a finite amount of heat before natural processes, like evaporation and precipitation, kick in to cool it down. When deep ocean fronts send heat to the surface, that heat warms the surface layer and pushes it closer to its heat threshold. So essentially, in the areas where this dynamic is present, the ocean isn’t able to absorb as much heat from the Sun as it otherwise could.

    Current climate models and those used to estimate Earth’s heat budget don’t factor in the effects of these small-scale ocean fronts, but the paper’s authors argue that they should.

    “Inaccurate representation of these small-scale fronts could considerably underestimate the amount of heat transferred from the ocean interior back to the surface and, as a consequence, potentially overestimate the amount of heat the ocean can absorb,” Siegelman said. “This could be an important implication for our climate and the ocean’s role in offsetting the effects of global warming by absorbing most of the heat.”

    The scientists say this phenomenon is also likely present in other turbulent areas of the ocean where eddies are common, including the Gulf Stream in the Atlantic Ocean and the Kuroshio Extension in the North Pacific Ocean.

    Although their results are significant, Siegelman says more research is needed to fully understand and quantify the long-term effects these fronts may have on the global ocean and our climate system. For example, the study is based on observations in the late spring and early summer. Results may be more pronounced during winter months, when these small-scale fronts tend to be stronger. This body of research will also benefit from additional studies in other locations.

    For more information on how the elephant seal data were acquired, see:

    https://climate.nasa.gov/news/2871/data-with-flippers-studying-the-ocean-from-a-seals-point-of-view/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 10:57 am on November 19, 2019 Permalink | Reply
    Tags: "The First Global Geologic Map of Titan Completed", , , , , NASA JPL - Caltech   

    From NASA JPL-Caltech: “The First Global Geologic Map of Titan Completed” 

    NASA JPL Banner

    From NASA JPL-Caltech

    November 18, 2019

    Karin Valentine
    School of Earth and Space Exploration
    Arizona State University
    480-965-9345
    Karin.valentine@asu.edu

    Gretchen McCartney
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-6215
    gretchen.p.mccartney@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-358-1501
    alana.r.johnson@nasa.gov

    1
    The first global geologic map of Saturn’s largest moon, Titan, is based on radar and visible and infrared images from NASA’s Cassini mission, which orbited Saturn from 2004 to 2017.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    Black lines mark 30 degrees of latitude and longitude. Map is in Mollweide projection, a global view that attempts to minimize the size or area distortion, especially at the poles (although shapes are increasingly distorted away from the center of the map). It is centered on 0 degrees latitude, 180 degrees longitude. Map scale is 1:20,000,000.

    In the annotated figure, the map is labeled with several of the named surface features. Also located is the landing site of the European Space Agency’s (ESA) Huygens Probe, part of NASA’s Cassini mission.

    ESA/Huygens Probe from Cassini landed on Titan

    2
    The colorful globe of Saturn’s largest moon, Titan, passes in front of the planet and its rings in this true color snapshot from NASA’s Cassini spacecraft.

    The north polar hood can be seen on Titan (3,200 miles or 5,150 kilometers across) and appears as a detached layer at the top of the moon here. See PIA08137 and PIA09739 to learn more about Titan’s atmosphere and the north polar hood.

    The first map showing the global geology of Saturn’s largest moon, Titan, has been completed and fully reveals a dynamic world of dunes, lakes, plains, craters and other terrains.

    Titan is the only planetary body in our solar system other than Earth known to have stable liquid on its surface. But instead of water raining down from clouds and filling lakes and seas as on Earth, on Titan what rains down is methane and ethane – hydrocarbons that we think of as gases but that behave as liquids in Titan’s frigid climate.

    “Titan has an active methane-based hydrologic cycle that has shaped a complex geologic landscape, making its surface one of most geologically diverse in the solar system,” said Rosaly Lopes, a planetary geologist at NASA’s Jet Propulsion Laboratory in Pasadena, California, and lead author of new research used to develop the map.

    “Despite the different materials, temperatures and gravity fields between Earth and Titan, many surface features are similar between the two worlds and can be interpreted as being products of the same geologic processes. The map shows that the different geologic terrains have a clear distribution with latitude, globally, and that some terrains cover far more area than others.”

    Lopes and her team, including JPL’s Michael Malaska, worked with fellow planetary geologist David Williams of the School of Earth and Space Exploration at Arizona State University in Tempe. Their findings, which include the relative age of Titan’s geologic terrains, were recently published in the journal Nature Astronomy.

    Lopes’ team used data from NASA’s Cassini mission, which operated between 2004 and 2017 and did more than 120 flybys of the Mercury-size moon. Specifically, they used data from Cassini’s radar imager to penetrate Titan’s opaque atmosphere of nitrogen and methane. In addition, the team used data from Cassini’s visible and infrared instruments, which were able to capture some of Titan’s larger geologic features through the methane haze.

    “This study is an example of using combined datasets and instruments,” Lopes said. “Although we did not have global coverage with synthetic aperture radar [SAR], we used data from other instruments and other modes from radar to correlate characteristics of the different terrain units so we could infer what the terrains are even in areas where we don’t have SAR coverage.”

    Williams worked with the JPL team to identify what geologic units on Titan could be determined using first the radar images and then to extrapolate those units to the non-radar-covered regions. To do so, he built on his experience working with radar images on NASA’s Magellan Venus orbiter and from a previous regional geologic map of Titan that he developed.

    “The Cassini mission revealed that Titan is a geologically active world, where hydrocarbons like methane and ethane take the role that water has on Earth,” Williams said. “These hydrocarbons rain down on the surface, flow in streams and rivers, accumulate in lakes and seas, and evaporate into the atmosphere. It’s quite an astounding world!”

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency (ESA) and the Italian Space Agency. NASA’s JPL, a division of Caltech in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini orbiter. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the U.S. and several European countries.

    More information about Cassini can be found here:

    https://solarsystem.nasa.gov/cassini

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: