Tagged: NASA Goddard Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:56 am on November 22, 2017 Permalink | Reply
    Tags: , , , Comet 45P/Honda-Mrkos-Pajdušáková, , NASA Goddard,   

    From Goddard: “NASA Telescope Studies Quirky Comet 45P” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Nov. 21, 2017
    Elizabeth Zubritsky
    elizabeth.a.zubritsky@nasa.gov
    NASA’s Goddard Space Flight Center in Greenbelt, Md.

    When comet 45P zipped past Earth early in 2017, researchers observing from NASA’s Infrared Telescope Facility, or IRTF, in Hawai’i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial details about ices in Jupiter-family comets and reveal that quirky 45P doesn’t quite match any comet studied so far.

    Like a doctor recording vital signs, the team measured the levels of nine gases released from the icy nucleus into the comet’s thin atmosphere, or coma. Several of these gases supply building blocks for amino acids, sugars and other biologically relevant molecules. Of particular interest were carbon monoxide and methane, which are so hard to detect in Jupiter-family comets that they’ve only been studied a few times before.

    1
    Comet 45P/Honda-Mrkos-Pajdušáková is captured using a telescope on December 22 from Farm Tivoli in Namibia, Africa.
    Credits: Gerald Rhemann

    The gases all originate from the hodgepodge of ices, rock and dust that make up the nucleus. These native ices are thought to hold clues to the comet’s history and how it has been aging.

    “Comets retain a record of conditions from the early solar system, but astronomers think some comets might preserve that history more completely than others,” said Michael DiSanti, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the new study in The Astronomical Journal.

    The comet—officially named 45P/Honda-Mrkos-Pajdušáková—belongs to the Jupiter family of comets, frequent orbiters that loop around the Sun about every five to seven years. Much less is known about native ices in this group than in the long-haul comets from the Oort Cloud.

    To identify native ices, astronomers look for chemical fingerprints in the infrared part of the spectrum, beyond visible light. DiSanti and colleagues conducted their studies using the iSHELL high-resolution spectrograph recently installed at IRTF on the summit of Maunakea.

    NASA Infrared Telescope facility Mauna Kea, Hawaii, USA, 4,207 m (13,802 ft) above sea level

    With iSHELL, researchers can observe many comets that used to be considered too faint.

    The spectral range of the instrument makes it possible to detect many vaporized ices at once, which reduces the uncertainty when comparing the amounts of different ices. The instrument covers wavelengths starting at 1.1 micrometers in the near-infrared (the range of night-vision goggles) up to 5.3 micrometers in the mid-infrared region.

    iSHELL also has high enough resolving power to separate infrared fingerprints that fall close together in wavelength. This is particularly necessary in the cases of carbon monoxide and methane, because their fingerprints in comets tend to overlap with the same molecules in Earth’s atmosphere.

    “The combination of iSHELL’s high resolution and the ability to observe in the daytime at IRTF is ideal for studying comets, especially short-period comets,” said John Rayner, director of the IRTF, which is managed for NASA by the University of Hawai’i.

    While observing for two days in early January 2017—shortly after 45P’s closest approach to the Sun—the team made robust measurements of water, carbon monoxide, methane and six other native ices. For five ices, including carbon monoxide and methane, the researchers compared levels on the sun-drenched side of the comet to the shaded side. The findings helped fill in some gaps but also raised new questions.

    The results reveal that 45P is running so low on frozen carbon monoxide, that it is officially considered depleted. By itself, this wouldn’t be too surprising, because carbon monoxide escapes into space easily when the Sun warms a comet. But methane is almost as likely to escape, so an object lacking carbon monoxide should have little methane. 45P, however, is rich in methane and is one of the rare comets that contains more methane than carbon monoxide ice.

    It’s possible that the methane is trapped inside other ice, making it more likely to stick around. But the researchers think the carbon monoxide might have reacted with hydrogen to form methanol. The team found that 45P has a larger-than-average share of frozen methanol.

    When this reaction took place is another question—one that gets to the heart of comet science. If the methanol was produced on grains of primordial ice before 45P formed, then the comet has always been this way. On the other hand, the levels of carbon monoxide and methanol in the coma might have changed over time, especially because Jupiter-family comets spend more time near the Sun than Oort Cloud comets do.

    “Comet scientists are like archaeologists, studying old samples to understand the past,” said Boncho Bonev, an astronomer at American University and the second author on the paper. “We want to distinguish comets as they formed from the processing they might have experienced, like separating historical relics from later contamination.”

    The team is now on the case to figure out how typical their results might be among similar comets. 45P was the first of five such short-period comets that are available for study in 2017 and 2018. On the heels of 45P were comets 2P/Encke and 41P/Tuttle-Giacobini-Kresak. Due next summer and fall is 21P/Giacobini–Zinner, and later will come 46P/Wirtanen, which is expected to remain within 10 million miles (16 million kilometers) of Earth throughout most of December 2018.

    “This research is groundbreaking,” said Faith Vilas, the solar and planetary research program director at the National Science Foundation, or NSF, which helped support the study. “This broadens our knowledge of the mix of molecular species coexisting in the nuclei of Jovian-family comets, and the differences that exist after many trips around the Sun.”

    “We’re excited to see this first publication from iSHELL, which was built through a partnership between NSF, the University of Hawai’i, and NASA,” said Kelly Fast, IRTF program scientist at NASA Headquarters. “This is just the first of many iSHELL results to come.”

    More information about NASA’s IRTF:
    http://irtfweb.ifa.hawaii.edu/

    More information about comets:
    http://www.nasa.gov/comets

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

    Advertisements
     
  • richardmitnick 3:09 pm on October 23, 2017 Permalink | Reply
    Tags: , , GOES-NOAA’s new Geostationary Operational Environmental, , NASA Goddard   

    From Goddard: “GOES-T Satellite “Brains” and “Body” Come Together” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 23, 2017

    Michelle Smith
    michelle.smith@nasa.gov

    Rob Gutro
    robert.j.gutro@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    While meteorologists continue marveling at the startling imagery and data from NOAA’s new Geostationary Operational Environmental (GOES) satellite, GOES-16, progress continues on the remaining satellites in the series. When GOES-16 launched in November 2016, it was known as GOES-R but was renamed GOES-16 once it reached geostationary orbit. The next satellite in the series, GOES-S, is now fully integrated, finished with environmental and mechanical testing and preparing for launch in spring 2018. Meanwhile, the primary subassemblies of the GOES-T satellite were recently brought together in a successful mate operation.

    The “mating” of the GOES-T system module and core propulsion module occurred on September 22 at Lockheed Martin in Littleton, Colorado. As part of the mate process, the system module, or “brain,” and propulsion module, or the “body,” of the spacecraft were merged together to form the integrated GOES-T spacecraft.

    1
    The “mating” of the GOES-T system module and core propulsion module occurred on September 22 at Lockheed Martin in Littleton, Colorado. As part of the mate process, the system module, or “brain,” and propulsion module, or the “body,” of the spacecraft were merged together to form the integrated GOES-T spacecraft. Credits: NASA

    More than 70 electronics boxes mounted within the system module provide the functionality to operate the spacecraft and its six instruments. The core propulsion module forms the main central structure of the satellite and carries the propellant and thrusters needed to maneuver the spacecraft after it is separated from the launch vehicle.

    “This mate operation represents the beginning of the satellite-level integration and test program, which will culminate with the launch of GOES-T in 2020,” said Mike Stringer, acting System Program Director at the GOES-R Series Program Office, located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “After launch, GOES-T will be placed in on-orbit storage until it is needed to replace one of the earlier GOES satellites.”

    GOES-16 resides in a central checkout orbit of 89.5 degrees west longitude, where it is in its extended validation phase. Current plans are to relocate GOES-16 to its operational location at 75.2 degrees west longitude in December, replacing GOES-13 as GOES-East. GOES-S will join GOES-16 in geostationary orbit next year and will be designated GOES-17.

    The GOES-R satellite series consists of GOES-R, GOES-S, GOES-T, and GOES-U. This series is more advanced than the previous GOES fleet in that the imager can scan the Earth five times faster, at four times the image resolution, with triple the number of channels for more accurate, reliable weather forecasts and severe weather outlooks. They will also provide critical solar monitoring and space weather observations.

    For more information about GOES-R, visit: http://www.goes-r.gov/

    For more information about NASA/NOAA’s GOES Project, visit: http://www.nasa.gov/goes

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 2:02 pm on October 19, 2017 Permalink | Reply
    Tags: , , , , , NASA Goddard, New NASA Study Improves Search for Habitable Worlds   

    From Goddard: “New NASA Study Improves Search for Habitable Worlds” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 19, 2017
    Bill Steigerwald
    NASA Goddard Space Flight Center
    william.a.steigerwald@nasa.gov

    New NASA research is helping to refine our understanding of candidate planets beyond our solar system that might support life.

    “Using a model that more realistically simulates atmospheric conditions, we discovered a new process that controls the habitability of exoplanets and will guide us in identifying candidates for further study,” said Yuka Fujii of NASA’s Goddard Institute for Space Studies (GISS), New York, New York and the Earth-Life Science Institute at the Tokyo Institute of Technology, Japan, lead author of a paper on the research published in The Astrophysical Journal Oct. 17, 2017.

    5
    This illustration shows a star’s light illuminating the atmosphere of a planet.
    Credits: NASA Goddard Space Flight Center

    _________________________________________________________________________________
    Dec. 3, 2013
    Hubble Traces Subtle Signals of Water on Hazy Worlds

    1
    Using the powerful­ eye of NASA’s Hubble Space Telescope, two teams of scientists have found faint signatures of water in the atmospheres of five distant planets.

    NASA/ESA Hubble Telescope

    The presence of atmospheric water was reported previously on a few exoplanets orbiting stars beyond our solar system, but this is the first study to conclusively measure and compare the profiles and intensities of these signatures on multiple worlds.


    Although exoplanets are too far away to be imaged, detailed studies of their size, composition and atmospheric makeup are possible. This video explains how researchers investigate those characteristics. Credits: NASA Goddard/ESA/Hubble

    The five planets — WASP-17b, HD209458b, WASP-12b, WASP-19b and XO-1b — orbit nearby stars. The strengths of their water signatures varied. WASP-17b, a planet with an especially puffed-up atmosphere, and HD209458b had the strongest signals. The signatures for the other three planets, WASP-12b, WASP-19b and XO-1b, also are consistent with water.

    2

    “We’re very confident that we see a water signature for multiple planets,” said Avi Mandell, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md., and lead author of an Astrophysical Journal paper, published today, describing the findings for WASP-12b, WASP-17b and WASP-19b. “This work really opens the door for comparing how much water is present in atmospheres on different kinds of exoplanets, for example hotter versus cooler ones.”

    The studies were part of a census of exoplanet atmospheres led by L. Drake Deming of the University of Maryland in College Park. Both teams used Hubble’s Wide Field Camera 3 [WFC3] to explore the details of absorption of light through the planets’ atmospheres.

    NASA/ESA Hubble WFC3

    The observations were made in a range of infrared wavelengths where the water signature, if present, would appear. The teams compared the shapes and intensities of the absorption profiles, and the consistency of the signatures gave them confidence they saw water. The observations demonstrate Hubble’s continuing exemplary performance in exoplanet research.

    “To actually detect the atmosphere of an exoplanet is extraordinarily difficult. But we were able to pull out a very clear signal, and it is water,” said Deming, whose team reported results for HD209458b and XO-1b in a Sept. 10 paper in the same journal. Deming’s team employed a new technique with longer exposure times, which increased the sensitivity of their measurements.

    4
    To determine what’s in the atmosphere of an exoplanet, astronomers watch the planet pass in front of its host star and look at which wavelengths of light are transmitted and which are partially absorbed.
    Credits: NASA’s Goddard Space Flight Center

    The water signals were all less pronounced than expected, and the scientists suspect this is because a layer of haze or dust blankets each of the five planets. This haze can reduce the intensity of all signals from the atmosphere in the same way fog can make colors in a photograph appear muted. At the same time, haze alters the profiles of water signals and other important molecules in a distinctive way.

    The five planets are hot Jupiters, massive worlds that orbit close to their host stars. The researchers were initially surprised that all five appeared to be hazy. But Deming and Mandell noted that other researchers are finding evidence of haze around exoplanets.

    “These studies, combined with other Hubble observations, are showing us that there are a surprisingly large number of systems for which the signal of water is either attenuated or completely absent,” said Heather Knutson of the California Institute of Technology, a co-author on Deming’s paper. “This suggests that cloudy or hazy atmospheres may in fact be rather common for hot Jupiters.”

    Hubble’s high-performance Wide Field Camera 3 is one of few capable of peering into the atmospheres of exoplanets many trillions of miles away. These exceptionally challenging studies can be done only if the planets are spotted while they are passing in front of their stars. Researchers can identify the gases in a planet’s atmosphere by determining which wavelengths of the star’s light are transmitted and which are partially absorbed.

    Text issued as NASA Headquarters press release No. 13-324.
    Last Updated: Aug. 4, 2017
    Editor: Rob Garner

    _______________________________________________________________________
    Previous models simulated atmospheric conditions along one dimension, the vertical. Like some other recent habitability studies, the new research used a model that calculates conditions in all three dimensions, allowing the team to simulate the circulation of the atmosphere and the special features of that circulation, which one-dimensional models cannot do. The new work will help astronomers allocate scarce observing time to the most promising candidates for habitability.

    Liquid water is necessary for life as we know it, so the surface of an alien world (e.g. an exoplanet) is considered potentially habitable if its temperature allows liquid water to be present for sufficient time (billions of years) to allow life to thrive. If the exoplanet is too far from its parent star, it will be too cold, and its oceans will freeze. If the exoplanet is too close, light from the star will be too intense, and its oceans will eventually evaporate and be lost to space. This happens when water vapor rises to a layer in the upper atmosphere called the stratosphere and gets broken into its elemental components (hydrogen and oxygen) by ultraviolet light from the star. The extremely light hydrogen atoms can then escape to space. Planets in the process of losing their oceans this way are said to have entered a “moist greenhouse” state because of their humid stratospheres.

    In order for water vapor to rise to the stratosphere, previous models predicted that long-term surface temperatures had to be greater than anything experienced on Earth – over 150 degrees Fahrenheit (66 degrees Celsius). These temperatures would power intense convective storms; however, it turns out that these storms aren’t the reason water reaches the stratosphere for slowly rotating planets entering a moist greenhouse state.

    “We found an important role for the type of radiation a star emits and the effect it has on the atmospheric circulation of an exoplanet in making the moist greenhouse state,” said Fujii. For exoplanets orbiting close to their parent stars, a star’s gravity will be strong enough to slow a planet’s rotation. This may cause it to become tidally locked, with one side always facing the star – giving it eternal day – and one side always facing away –giving it eternal night.

    When this happens, thick clouds form on the dayside of the planet and act like a sun umbrella to shield the surface from much of the starlight. While this could keep the planet cool and prevent water vapor from rising, the team found that the amount of near-Infrared radiation (NIR) from a star could provide the heat needed to cause a planet to enter the moist greenhouse state. NIR is a type of light invisible to the human eye. Water as vapor in air and water droplets or ice crystals in clouds strongly absorbs NIR light, warming the air. As the air warms, it rises, carrying the water up into the stratosphere where it creates the moist greenhouse.

    This process is especially relevant for planets around low-mass stars that are cooler and much dimmer than the Sun. To be habitable, planets must be much closer to these stars than our Earth is to the Sun. At such close range, these planets likely experience strong tides from their star, making them rotate slowly. Also, the cooler a star is, the more NIR it emits. The new model demonstrated that since these stars emit the bulk of their light at NIR wavelengths, a moist greenhouse state will result even in conditions comparable to or somewhat warmer than Earth’s tropics. For exoplanets closer to their stars, the team found that the NIR-driven process increased moisture in the stratosphere gradually. So, it’s possible, contrary to old model predictions, that an exoplanet closer to its parent star could remain habitable.

    This is an important observation for astronomers searching for habitable worlds, since low-mass stars are the most common in the galaxy. Their sheer numbers increase the odds that a habitable world may be found among them, and their small size increases the chance to detect planetary signals.

    The new work will help astronomers screen the most promising candidates in the search for planets that could support life. “As long as we know the temperature of the star, we can estimate whether planets close to their stars have the potential to be in the moist greenhouse state,” said Anthony Del Genio of GISS, a co-author of the paper. “Current technology will be pushed to the limit to detect small amounts of water vapor in an exoplanet’s atmosphere. If there is enough water to be detected, it probably means that planet is in the moist greenhouse state.”

    In this study, researchers assumed a planet with an atmosphere like Earth, but entirely covered by oceans. These assumptions allowed the team to clearly see how changing the orbital distance and type of stellar radiation affected the amount of water vapor in the stratosphere. In the future, the team plans to vary planetary characteristics such as gravity, size, atmospheric composition, and surface pressure to see how they affect water vapor circulation and habitability.
    Diagram of sea ice distribution on ocean exoplanet

    https://www.nasa.gov/sites/default/files/styles/full_width/public/thumbnails/image/giss-synch-rotating-planet-ice-plot-rev1.jpg?itok=XbZqmQew
    This is a plot of what the sea ice distribution could look like on a synchronously rotating ocean world. The star is off to the right, blue is where there is open ocean, and white is where there is sea ice.
    Credits: Anthony Del Genio/GISS/NASA

    The research was funded by the NASA Astrobiology Program through the Nexus for Exoplanet System Science; the NASA Postdoctoral Program, administered by Oak Ridge Affiliated Universities, Oak Ridge, Tennessee, and Universities Space Research Association, Columbia, Maryland; and a Grant-in-Aid from the Japan Society for the Promotion of Science, Tokyo, Japan (No.15K17605).

    See the full articles here and here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 4:29 pm on October 15, 2017 Permalink | Reply
    Tags: , , , NASA Goddard, , ,   

    From Goddard: “NASA’s James Webb Space Telescope and the Big Bang: A Short Q&A with Nobel Laureate Dr. John Mather” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 11, 2017
    Maggie Masetti
    NASA’s Goddard Space Flight Center

    1
    Dr. John Mather, a Nobel laureate and the senior project scientist for NASA’s James Webb Space Telescope. Credits: NASA/Chris Gunn

    Q: What is the Big Bang?

    A: The Big Bang is a really misleading name for the expanding universe that we see. We see an infinite universe with distant galaxies all rushing away from each other.

    Universe map Sloan Digital Sky Survey (SDSS) 2dF Galaxy Redshift Survey

    The name Big Bang conveys the idea of a firecracker exploding at a time and a place — with a center. The universe doesn’t have a center, at least not one we can find. The Big Bang happened everywhere at once and was a process happening in time, not a point in time. We know this because 1) we see galaxies rushing away from each other, not from a central point; 2) we see the heat that was left over from early times, and that heat uniformly fills the universe; and 3) we can calculate and imagine what the universe was like when the parts were much closer together, and the calculations match everything we can see.

    Q: Can we see the Big Bang?

    A: No, the Big Bang itself is not something we can see.

    Q: What can we see?

    A: We can see the heat radiation that was there when the universe was young. We see this heat as it was about 380,000 years after the expansion of the universe began 13.8 billion years ago (which is what we refer to as the Big Bang). This heat covers the entire sky and fills the universe. (In fact it still does.) We were able to map it with satellites we (NASA and ESA) built called the Cosmic Background Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP), and Planck. The universe at this point was extremely smooth, with only tiny ripples in temperature.

    Cosmic Infrared Background, Credit: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA

    NASA/COBE

    1
    All-sky image of the infant universe, created from nine years of data from the Wilkinson Microwave Anisotropy Probe (WMAP).
    Credits: NASA/WMAP Science Team

    NASA/WMAP

    CMB per ESA/Planck


    ESA/Planck

    Q: I heard the James Webb Space Telescope will see back further than ever before. What will Webb see?

    NASA/ESA/CSA Webb Telescope annotated

    A: COBE, WMAP, and Planck all saw further back than Webb, though it’s true that Webb will see farther back than Hubble.

    NASA/ESA Hubble Telescope

    Webb was designed not to see the beginnings of the universe, but to see a period of the universe’s history that we have not seen yet.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex MittelmannColdcreation

    Specifically, we want to see the first objects that formed as the universe cooled down after the Big Bang. That time period is perhaps hundreds of millions of years later than the one COBE, WMAP, and Planck were built to see. We think that the tiny ripples of temperature they observed were the seeds that eventually grew into galaxies. We don’t know exactly when the universe made the first stars and galaxies — or how for that matter. That is what we are building Webb to help answer.

    Q: Why can’t Hubble see the first stars and galaxies forming?

    A: The only way we can see back to the time when these objects were forming is to look very far away. Hubble isn’t big enough or cold enough to see the faint heat signals of these objects that are so far away.

    Q: Why do we want to see the first stars and galaxies forming?

    A: The chemical elements of life were first produced in the first generation of stars after the Big Bang. We are here today because of them — and we want to better understand how that came to be! We have ideas, we have predictions, but we don’t know. One way or another the first stars must have influenced our own history, beginning with stirring up everything and producing the other chemical elements besides hydrogen and helium. So if we really want to know where our atoms came from, and how the little planet Earth came to be capable of supporting life, we need to measure what happened at the beginning.

    Dr. John Mather is the senior project scientist for the James Webb Space Telescope. Dr. Mather shares the 2006 Nobel Prize for Physics with George F. Smoot of the University of California for their work using the COBE satellite to measure the heat radiation from the Big Bang.

    The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the premier space observatory of the next decade. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

    For more information about the Webb telescope, visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 9:28 pm on October 4, 2017 Permalink | Reply
    Tags: , , , , , NASA Goddard, ,   

    From Goddard: “NASA’s Webb Telescope to Witness Galactic Infancy” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 4, 2017
    Eric Villard
    eric.s.villard@nasa.gov
    NASA’s Goddard Space Flight Center

    Starfield
    The Hubble Ultra Deep Field is a snapshot of about 10,000 galaxies in a tiny patch of sky, taken by NASA’s Hubble Space Telescope.
    Credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team

    After it launches and is fully commissioned, scientists plan to focus Webb telescope on sections of the Hubble Ultra-Deep Field (HUDF) and the Great Observatories Origins Deep Survey (GOODS).

    NASA/ESA Hubble Telescope

    NASA/Chandra Telescope

    NASA/Spitzer Infrared Telescope

    These sections of sky are among Webb’s list of targets chosen by guaranteed time observers, scientists who helped develop the telescope and thus get to be among the first to use it to observe the universe. The group of scientists will primarily use Webb’s mid-infrared instrument (MIRI) to examine a section of HUDF, and Webb’s near infrared camera (NIRCam) to image part of GOODS.

    NASA Webb MIRI

    NASA Webb NIRCam

    “By mixing [the data from] these instruments, we’ll get information about the current star formation rate, but we’ll also get information about the star formation history,” explained Hans Ulrik Nørgaard-Nielsen, an astronomer at the Danish Space Research Institute in Denmark and the principal investigator for the proposed observations.

    Pablo Pérez-González, an astrophysics professor at the Complutense University of Madrid in Spain and one of several co-investigators on Nørgaard-Nielsen’s proposed observation, said they will use Webb to observe about 40 percent of the HUDF area with MIRI, in roughly the same location that ground-based telescopes like the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope array (VLT) obtained ultra-deep field data.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    The iconic HUDF image shows about 10,000 galaxies in a tiny section of the sky, equivalent to the amount of sky you would see with your naked eye if you looked at it through a soda straw. Many of these galaxies are very faint, more than 1 billion times fainter than what the naked human eye can see, marking them as some of the oldest galaxies within the visible universe.

    With its powerful spectrographic instruments, Webb will see much more detail than imaging alone can provide. Spectroscopy measures the spectrum of light, which scientists analyze to determine physical properties of what is being observed, including temperature, mass, and chemical composition. Pérez-González explained this will allow scientists to study how gases transformed into stars in the first galaxies, and to better understand the first phases in the formation of supermassive black holes, including how those black holes affect the formation of their home galaxy. Astronomers believe the center of nearly every galaxy contains a supermassive black hole, and that these black holes are related to galactic formation.

    MIRI can observe in the infrared wavelength range of 5 to 28 microns. Pérez-González said they will use the instrument to observe a section of HUDF in 5.6 microns, which Spitzer is capable of, but that Webb will be able to see objects 250 times fainter and with eight times more spatial resolution. In this case, spatial resolution is the ability of an optical telescope, such as Webb, to see the smallest details of an object.

    Pérez-González said in the area of HUDF they will observe, Hubble was able to see about 4,000 galaxies. He added that, with Webb, they “will detect around 2,000 to 2,500 galaxies, but in a completely different spectral band, so many galaxies will be quite different from the ones that [Hubble] detected.”

    With NIRCam, the team will observe a piece of the GOODS region near their selected section of HUDF. The entire GOODS survey field includes observations from Hubble, Spitzer, and several other space observatories.

    “These NIRCam images will be taken in three bands, and they will be the deepest obtained by any guaranteed time observation team,” explained Pérez-González.

    NIRCam can observe in the infrared wavelength range of 0.6 to 5 microns. Pérez-González explained they will use it to observe a section of GOODS in the 1.15 micron band, which Hubble is capable of, but that Webb will be able to see objects 50 times fainter and with two times more spatial resolution. They will also use it to observe the 2.8 and 3.6 micron bands. Spitzer is able to do this as well, but Webb will be able to observe objects nearly 100 times fainter and with eight times greater spatial resolution.

    Because the universe is expanding, light from distant objects in the universe is “redshifted,” meaning the light emitted by those objects is visible in the redder wavelengths by the time it reaches us. The objects farthest away from us, those with the highest redshifts, have their light shifted into the near- and mid-infrared part of the electromagnetic spectrum. The Webb telescope is specifically designed to observe the objects in that area of the spectrum, which makes it ideal for looking at the early universe.

    “When you build an observatory with unprecedented capabilities, most probably the most interesting results will not be those that you can expect or predict, but those that no one can imagine,” said Pérez-González.

    The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

    MIRI was built by ESA, in partnership with the European Consortium, a group of scientists and engineers from European countries; a team from NASA’s Jet Propulsion Laboratory in Pasadena, California; and scientists from several U.S. institutions. NIRCam was built by Lockheed Martin and the University of Arizona in Tucson.

    For more information about Webb telescope, visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

    For more information about Hubble telescope, visit: http://www.nasa.gov/hubble

    For more information about Spitzer telescope, visit: http://www.nasa.gov/spitzer

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 8:45 am on October 2, 2017 Permalink | Reply
    Tags: , , , , , NASA Goddard, ,   

    From Goddard: “Small Collisions Make Big Impact on Mercury’s Thin Atmosphere” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Sept. 29, 2017
    Kathryn DuFresne
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

    Recent modeling along with previously published results from NASA’s MESSENGER spacecraft — short for Mercury Surface, Space Environment, Geochemistry and Ranging, a mission that observed Mercury from 2011 to 2015 — has shed new light on how certain types of comets influence the lopsided bombardment of Mercury’s surface by tiny dust particles called micrometeoroids.

    NASA Messenger satellite schematic

    NASA Messenger satellite

    This study also gave new insight into how these micrometeoroid showers can shape Mercury’s very thin atmosphere, called an exosphere.

    The research, led by Petr Pokorný, Menelaos Sarantos and Diego Janches of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, simulated the variations in meteoroid impacts, revealing surprising patterns in the time of day impacts occur. These findings were reported in The Astrophysical Journal Letters on June 19, 2017.

    “Observations by MESSENGER indicated that dust must predominantly arrive at Mercury from specific directions, so we set out to prove this with models,” Pokorný said. This is the first such simulation of meteoroid impacts on Mercury. “We simulated meteoroids in the solar system, particularly those originating from comets, and let them evolve over time.”

    Earlier findings based on data from MESSENGER’s Ultraviolet and Visible Spectrometer revealed the effect of meteoroid impacts on Mercury’s surface throughout the planet’s day. The presence of magnesium and calcium in the exosphere is higher at Mercury’s dawn — indicating that meteoroid impacts are more frequent on whatever part of the planet is experiencing dawn at a given time.

    This dawn-dusk asymmetry is created by a combination of Mercury’s long day, in comparison to its year, and the fact that many meteroids in the solar system travel around the Sun in the direction opposite the planets. Because Mercury rotates so slowly — once every 58 Earth days, compared to a Mercury year, a complete trip around the Sun, lasting only 88 Earth days — the part of the planet at dawn spends a disproportionately long time in the path of one of the solar system’s primary populations of micrometeoroids. This population, called retrograde meteoroids, orbits the Sun in the direction opposite the planets and comprises pieces from disintegrated long-period comets. These retrograde meteroids are traveling against the flow of planetary traffic in our solar system, so their collisions with planets — Mercury, in this case — hit much harder than if they were traveling in the same direction.

    These harder collisions helped the team further key in on the source of the micrometeoroids pummeling Mercury’s surface. Meteroids that originally came from asteroids wouldn’t be moving fast enough to create the observed impacts. Only meteoroids created from two certain types of comets — Jupiter-family and Halley-type — had the speed necessary to match the obseravations.

    “The velocity of cometary meteoroids, like Halley-type, can exceed 224,000 miles per hour,” Pokorný said. “Meteoroids from asteroids only impact Mercury at a fraction of that speed.”

    Jupiter-family comets, which are primarly influenced by our largest planet’s gravity, have a relatively short orbit of less than 20 years. These comets are thought to be small pieces of objects originating in the Kuiper Belt, where Pluto orbits. The other contributor, Halley-type comets, have a longer orbit lasting upwards of 200 years. They come from the Oort Cloud, the most distant objects of our solar system — more than a thousand times farther from the Sun than Earth.

    Oort Cloud NASA

    The orbital distributions of both types of comets make them ideal candidates to produce the tiny meteoroids that influence Mercury’s exosphere.

    Pokorný and his team hope that their initial findings will improve our understanding of the rate at which comet-based micrometeoroids impact Mercury, further improving the accuracy of models of Mercury and its exosphere.

    These harder collisions helped the team further key in on the source of the micrometeoroids pummeling Mercury’s surface. Meteroids that originally came from asteroids wouldn’t be moving fast enough to create the observed impacts. Only meteoroids created from two certain types of comets — Jupiter-family and Halley-type — had the speed necessary to match the obseravations.

    “The velocity of cometary meteoroids, like Halley-type, can exceed 224,000 miles per hour,” Pokorný said. “Meteoroids from asteroids only impact Mercury at a fraction of that speed.”

    Jupiter-family comets, which are primarly influenced by our largest planet’s gravity, have a relatively short orbit of less than 20 years. These comets are thought to be small pieces of objects originating in the Kuiper Belt, where Pluto orbits. The other contributor, Halley-type comets, have a longer orbit lasting upwards of 200 years. They come from the Oort Cloud, the most distant objects of our solar system — more than a thousand times farther from the Sun than Earth.

    The orbital distributions of both types of comets make them ideal candidates to produce the tiny meteoroids that influence Mercury’s exosphere.

    Related:

    NASA’s MESSENGER mission
    More information about Mercury

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 1:59 pm on September 19, 2017 Permalink | Reply
    Tags: , , , , NASA Goddard, UF-Radsat   

    From Goddard: “NASA Small Satellite Promises Big Discoveries” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Sept. 19, 2017
    Danny Baird
    daniel.s.baird@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.


    UF-Radsat, in a highly elliptical orbit, will communicate with the Tracking and Data Relay Satellite (TDRS) constellation and the Near Earth Network. Credits: NASA’s Goddard Space Flight Center

    Typically, NASA’s Near Earth Network (NEN) provides direct-to-ground communication for CubeSats. Communication only occurs when a satellite passes over one of the NEN antennas, located around the globe. A team of engineers and scientists from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Kennedy Space Center in Florida and the University of Florida are collaborating on a 12U CubeSat that will be the first to interface with NASA’s Space Network, which provides continuous communications services. The University of Florida RadSat (UF-RadSat) is a collaborative design effort of NASA interns from several universities across the country, who have filed multiple invention disclosures for its technologies. The satellite will circle Earth in a geosynchronous transfer orbit, communicating with three Tracking and Data Relay Satellites (TDRS) and NEN ground stations. This methodology provides almost constant data coverage — an innovation that could be useful to many future CubeSat missions.

    “The purpose of our mission is to simultaneously provide critical engineering data to strengthen NASA missions while demonstrating the operational advantages of near-continuous communications between CubeSats and the TDRS constellation,” said Harry Shaw, a NASA co-investigator on the project. “The work we execute for our CubeSat mission will enable this communications option for other CubeSats.”

    UF-RadSat is more than just a communications demonstration. NASA will also run two radiation experiments aboard the CubeSat. The first experiment was created by a team at the University of Florida under the direction of Michele Manuel, department chair of Materials Science and Engineering. The team developed a magnesium and gadolinium alloy with radiation mitigating properties. The alloy, stronger and lighter than steel or aluminum, will be tested for its on-orbit effectiveness in trapping thermal neutrons, a radiation health hazard. The experiment will determine the metal’s usefulness in mitigating the risks posed by radiation to future human spaceflight endeavors.

    The second experiment aboard UF-RadSat originates at Goddard. Ray Ladbury and Jean-Marie Lauenstein, scientists from Goddard’s Radiation Effects Group, will assess the reliability of power metal-oxide-semiconductor field-effect transistors (MOSFETs) under the harsh radiation conditions of space. Spacecraft power systems use MOSFETs to amplify or switch electronic signals. They can be damaged or destroyed by the radiation environment in space. The experiment will contribute to assessing and improving MOSFETs on-orbit reliability and provide valuable insight into single-event gate rupture, a primary radiation-induced failure in MOSFETs.

    “Since its beginnings in the late 1950s, NASA has played a key and influential role in advancing space capabilities,” said Pat Patterson, the Small Satellite Conference committee chair. “The same can be said for NASA’s influence on the rise of small satellites, as NASA is now using these technologies to continue to advance scientific and human exploration, reduce the cost of new space missions, and expand access to space.”

    2
    UF-Radsat will deploy its parabolic mesh high-gain antenna once placed in orbit. Credits: NASA’s Goddard Space Flight Center

    The research aboard UF-RadSat continues NASA’s legacy in the small satellite community. Nanosatellites like UF-RadSat reflect NASA’s dedication to cost-effective research at the cutting edge of communications technology.

    NASA interns from University of Maryland, College Park; Morgan State University; University of Puerto Rico; University of Maryland, Baltimore County; University of Colorado; and University of Florida collaborated on UF-Radsat.

    Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

    To learn more about NASA’s CubeSats, visit http://www.nasa.gov/mission_pages/cubesats/index.html

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 7:55 am on September 16, 2017 Permalink | Reply
    Tags: , , , , , NASA Goddard, , ,   

    From Goddard: “How Two Ground-based Telescopes Support NASA’s Cassini Mission” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Sept. 11, 2017
    Elizabeth Zubritsky
    elizabeth.a.zubritsky@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    When NASA’s Cassini spacecraft plunges into the atmosphere of Saturn on Sept. 15, ending its 20 years of exploration, astronomers will observe the giant planet from Earth, giving context to Cassini’s final measurements.

    “The whole time Cassini is descending, we’ll be on the ground, taking data and learning about conditions on Saturn,” said Don Jennings, a senior scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-investigator for a Cassini instrument called the Composite Infrared Spectrometer.

    1
    The aftermath of a massive storm that erupted in Saturn’s northern hemisphere in December 2010 continues to be tracked by researchers, including observations planned using the new high-resolution iSHELL instrument at NASA’s Infrared Telescope Facility. Credits: NASA/JPL-Caltech/SSI

    This farewell is fitting for a mission that has been supported by similar observations throughout its lifetime. NASA’s Infrared Telescope Facility, or IRTF, and the W. M. Keck Observatory, in which NASA is a partner, have provided crucial contributions from the summit of Maunakea in Hawaii. Other U.S. and international telescopes also have investigated the Saturn system, complementing and enhancing the mission.

    NASA Infrared Telescope facility Mauna Kea, Hawaii, USA, 4,207 m (13,802 ft) above sea level

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft) above sea level

    “IRTF and other facilities have provided direct support to the Cassini–Huygens mission and made it possible to link that data to decades’ worth of earlier and ongoing ground-based studies,” said IRTF director John Rayner.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    “Through its daytime observing capabilities IRTF is able to provide almost year-round monitoring of planets in support of NASA missions.”

    Ground-based observations of Titan, the giant planet’s largest moon, helped with preparations for the Huygens probe mission early in Cassini’s exploration of the Saturn system. The probe was released after Cassini entered Saturn orbit and descended through Titan’s thick atmosphere to land on the surface.

    A coordinated ground campaign was organized to study Titan’s atmosphere and surface, to measure the wind speed and direction, to look at atmospheric chemistry and to provide global imaging.

    Eight facilities worldwide participated, observing before, during and after the Huygens probe mission, led by the European Space Agency. These included the Keck Observatory, which captured high-resolution images of the atmospheric weather patterns on Titan, and the IRTF, which helped determine the direction of Titan’s winds.

    “Ground-based observing played a crucial role, because at that time, it was the only way to determine the direction of Titan’s winds, which had the potential to affect Huygens’ descent to the surface,” said Goddard’s Theodor (Ted) Kostiuk, who led those observations at the IRTF and is now an emeritus scientist. “The Voyager flyby provided some information about Titan, but wind direction was one thing it could not tell us.”

    IRTF continues to be used for long-term studies of Saturn and Titan and their atmospheres, and to investigate Saturn’s moons, extending and complementing Cassini findings. The facility’s recently installed high-resolution infrared instrument, called iSHELL, will be deployed for ongoing studies of the aftermath of a massive storm that broke out in Saturn’s northern hemisphere in 2010. With its very high spectral resolution, iSHELL has been optimized for the study of planetary atmospheres.

    Cassini also has received plenty of aloha from the Keck Observatory, which has provided many sharp images and spectra of Saturn’s most famous feature – its rings. These studies are made possible by the high spatial resolution of Keck’s large aperture combined with a state-of-the-art adaptive optics system to correct for distortions caused by Earth’s atmosphere.

    “It’s been exciting to be involved in ground support of the Cassini orbiter over these many years,” said Observing Support Manager Randy Campbell of Keck Observatory. “This mission has given us an opportunity to work together toward a better understanding of some of the most beautiful and enigmatic objects in the night sky, Saturn and its moons.”

    During the summer of 2017, the Cassini team used Keck Observatory to take near-infrared spectroscopic data of the regions near Saturn’s equator, just as Cassini was diving between Saturn and its rings during its final orbits. The team also took Keck data of the polar magnetic fields to better understand the planet’s auroras, which are similar to Earth’s northern and southern lights. The Keck Observatory data will be used to verify Cassini’s data to provide a sort of “ground-truth” calibration of some of the on-board instruments of the orbiter.

    After Cassini, ground-based studies will continue, building on everything the spacecraft observed, and keeping the discoveries coming.

    For more information about NASA’s Infrared Telescope Facility, visit:

    http://irtfweb.ifa.hawaii.edu/

    For more information about the Keck Observatory, visit:

    http://www.keckobservatory.org/

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 7:09 am on September 2, 2017 Permalink | Reply
    Tags: NASA Goddard, , Understand our near-Earth environment   

    From Goddard: “NASA’s Van Allen Probes Survive Extreme Radiation Five Years On” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Sept. 1, 2017
    Mara Johnson-Groh
    mara.johnson-groh@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Most satellites, not designed to withstand high levels of particle radiation, wouldn’t last a day in the Van Allen Radiation belts. Trapped by Earth’s magnetic field into two giant belts around the planet, high-energy particles in the region can batter the spacecraft and even interfere with onboard electronics. But NASA’s Van Allen Probes have been traveling through this hazardous area since Aug. 30 2012 – they are now celebrating their fifth year in space studying this dynamic region.

    The Van Allen Probes mission is the second of NASA’s Living with a Star missions, which is tasked with understand our near-Earth environment. The two identical spacecraft, built with radiation-hardened components, study how high-energy particles are accelerated and lost from the belts. This information helps scientists understand and predict space weather, which, in addition to creating shimmering auroras, can disrupt power grids and GPS communications.

    “During its first five years, the Van Allen Probes have made enormously significant contributions to our understanding of radiation belt physics, including truly exceptional discoveries,” said Shri Kanekal, Van Allen Probes deputy mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

    1
    The two Van Allen Probes work as a team, following one behind the other to uniquely observe changes in the belts. Credits: NASA’s Goddard Space Flight Center/JHUAPL

    The Van Allen Probes mission has provided invaluable information about the very shape of the belts, discovering a third radiation belt that can appear during certain circumstances, and used uniquely capable instruments to unveil inner radiation belt features that were all but invisible to previous sensors. The mission has also extended beyond the practical considerations of the hazards of Earth’s space environment: Observations have found process that generate intense particle radiation inside the belts also occur across the universe, making the region a unique natural laboratory for developing our understanding of the particle energization processes.

    In celebration of the Van Allen Probes’ fifth year in space, here are five facts about the spacecraft.

    14+ gigabits – amount of data are downloaded daily from each spacecraft
    2,000 miles per hour – spacecrafts’ cruising speed
    164 feet – length of the longest instruments aboard the spacecraft
    3.8 square yards – size of solar panels used to power the instruments
    9 hours – time each spacecraft takes to encircle Earth

    Originally tasked with a two-year mission, the Van Allen Probes continue to make new discoveries five years on, continuing to solve scientific puzzles about the dynamic belt region around Earth.

    Related Links

    Learn more about the Van Allen Probes
    Learn more about the NASA’s Living with a Star Program

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 5:20 am on August 17, 2017 Permalink | Reply
    Tags: , NASA Goddard, , NASA's Global Hawk autonomous aircraft, NASA-led Mission Studies Storm Intensification,   

    From JPL: “NASA-led Mission Studies Storm Intensification” 

    NASA JPL Banner

    JPL-Caltech

    August 16, 2017
    Alan Buis
    Jet Propulsion Laboratory, Pasadena, California
    818-354-0474
    alan.buis@jpl.nasa.gov

    Kate Squires
    NASA Armstrong Flight Research Center
    661-276-2020
    Kate.k.squires@nasa.gov

    Written by Kate Squires
    NASA Armstrong Flight Research Center

    1
    NASA’s Global Hawk being prepared at Armstrong to monitor and take scientific measurements of Hurricane Matthew in 2016. Credits: NASA Photo/Lauren Hughes.

    A group of NASA and National Oceanic and Atmospheric Administration (NOAA) scientists, including scientists from NASA’s Jet Propulsion Laboratory, Pasadena, California, are teaming up this month for an airborne mission focused on studying severe storm processes and intensification. The Hands-On Project Experience (HOPE) Eastern Pacific Origins and Characteristics of Hurricanes (EPOCH) field campaign will use NASA’s Global Hawk autonomous aircraft to study storms in the Northern Hemisphere to learn more about how storms intensify as they brew out over the ocean.

    The scope of the mission initially focused only on the East Pacific region, but was expanded to both the Gulf and Atlantic regions to give the science team broader opportunities for data collection.

    “Our key point of interest is still the Eastern Pacific, but if the team saw something developing off the East Coast that may have high impact to coastal communities, we would definitely recalibrate to send the aircraft to that area,” said Amber Emory, NASA’s principal investigator.

    Having a better understanding of storm intensification is an important goal of HOPE EPOCH. The data will help improve models that predict storm impact to coastal regions, where property damage and threat to human life can be high.

    NASA has led the campaign through integration of the HOPE EPOCH science payload onto the Global Hawk platform and maintained operational oversight for the six planned mission flights. NOAA’s role will be to incorporate data from dropsondes — devices dropped from aircraft to measure storm conditions — into NOAA National Weather Service operational models to improve storm track and intensity forecasts that will be provided to the public. NOAA first used the Global Hawk to study Hurricane Gaston in 2016.

    With the Global Hawk flying at altitudes of 60,000 feet (18,300 meters), the team will conduct six 24-hour-long flights, three of which are being supported and funded through a partnership with NOAA’s Unmanned Aircraft Systems program.

    NASA’s autonomous Global Hawk is operated from NASA’s Armstrong Flight Research Center at Edwards Air Force Base in California and was developed for the U.S. Air Force by Northrop Grumman. It is ideally suited for high-altitude, long-duration Earth science flights.

    The ability of the Global Hawk to autonomously fly long distances, remain aloft for extended periods of time and carry large payloads brings a new capability to the science community for measuring, monitoring and observing remote locations of Earth not feasible or practical with piloted aircraft or space satellites.

    The science payload consists of a variety of instruments that will measure different aspects of storm systems, including wind velocity, pressure, temperature, humidity, cloud moisture content and the overall structure of the storm system.

    Many of the science instruments have flown previously on the Global Hawk, including the High-Altitude MMIC Sounding Radiometer (HAMSR), a microwave sounder instrument that takes vertical profiles of temperature and humidity; and the Airborne Vertical Atmospheric Profiling System (AVAPS) dropsondes, which are released from the aircraft to profile temperature, humidity, pressure, wind speed and direction.

    New to the science payload is the ER-2 X-band Doppler Radar (EXRAD) instrument that observes vertical velocity of a storm system. EXRAD has one conically scanning beam as well as one nadir beam, which looks down directly underneath the aircraft. EXRAD now allows researchers to get direct retrievals of vertical velocities directly underneath the plane.

    The EXRAD instrument is managed and operated by NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and the HAMSR instrument is managed by JPL. The National Center for Atmospheric Research developed the AVAPS dropsonde system, and the NOAA team will manage and operate the system for the HOPE EPOCH mission.

    Besides the scientific value that the HOPE EPOCH mission brings, the campaign also provides a unique opportunity for early-career scientists and project managers to gain professional development.

    HOPE is a cooperative workforce development program sponsored by the Academy of Program/Project & Engineering Leadership (APPEL) program and NASA’s Science Mission Directorate. The HOPE Training Program provides an opportunity for a team of early-entry NASA employees to propose, design, develop, build and launch a suborbital flight project over the course of 18 months. This opportunity enables participants to gain the knowledge and skills necessary to manage NASA’s future flight projects.

    Emory started as a NASA Pathways Intern in 2009. The HOPE EPOCH mission is particularly exciting for her, as some of her first science projects at NASA began with the Global Hawk program.

    The NASA Global Hawk had its first flights during the 2010 Genesis and Rapid Intensification Processes (GRIP) campaign. Incidentally, the first EPOCH science flight targeted Tropical Storm Franklin as it emerged from the Yucatan peninsula into the Gulf of Campeche along a track almost identical to that of Hurricane Karl in 2010, which was targeted during GRIP and where Emory played an important role.

    “It’s exciting to work with people who are so committed to making the mission successful,” Emory said. “Every mission has its own set of challenges, but when people come to the table with new ideas on how to solve those challenges, it makes for a very rewarding experience and we end up learning a lot from one another.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: