Tagged: NASA Goddard Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:56 am on January 16, 2016 Permalink | Reply
    Tags: , Hurricane Alex, NASA Goddard, NOAA   

    From Goddard: “NASA Provides in-Depth Analysis of Unusual Tropical Storm Alex” Incredible Imagery 

    NASA Goddard Banner
    Goddard Space Flight Center

    Jan. 15, 2016
    Rob Gutro/Steve Lang/Hal Pierce
    NASA’s Goddard Space Flight Center

    Alex (was 90L/Atlantic Low #1 – Atlantic Ocean)

    NASA has provided forecasters with a variety of data on the out-of-season tropical cyclone Alex. The AIRS instrument aboard NASA’s Aqua satellite provided valuable temperature data, the RapidScat instrument identified the strongest winds, the GPM core satellite provided rainfall rates and cloud heights, and NASA-NOAA’s Suomi NPP satellite provided a visible image of the storm.

    Alex is a Rare Storm

    Alex officially became a hurricane on Jan. 14, 2016 at 11:00 a.m. Atlantic Standard Time (AST) with maximum sustained winds estimated at 85 mph by the National Hurricane Center (NHC), making it the earliest hurricane to form in the Atlantic since 1938, when the first storm of the season became a hurricane on January 4. As with Alex, that storm too originated from an extra-tropical low pressure center.

    The last hurricane to occur in January was Hurricane Alice in 1955, but Alice had already become a hurricane in the year before at the end of December and survived into January. NHC declared Alex to be a subtropical storm on Wednesday afternoon, January 13 when it was about 785 miles south- southwest of the Azores.

    Alex began from an area of low pressure that formed about a week ago along an old frontal boundary that was draped across Cuba. This low gradually moved out into the central Atlantic heading generally westward and began to produce thunderstorm activity as it started to curve northward toward the Azores. Often times, when extra-tropical storms acquire enhanced convection the instability is due to being over warm waters, but in Alex’s case it appears that the instability was due mainly to cold air aloft. At any rate, the heat release from these thunderstorms, which is known as latent heating, is what allowed Alex to eventually transform into a hurricane.

    AIRS Measures Cloud Top Temperatures

    The Atmospheric Infrared Sounder or AIRS instrument that flies aboard NASA’s Aqua satellite measured temperatures in Hurricane Alex’s cloud tops on Jan. 14 at 1429 UTC (9:29 a.m. EST). AIRS provides valuable temperature data for tropical cyclones such as cloud top and sea surface temperatures.

    Temp 1
    The AIRS instrument aboard NASA’s Aqua satellite saw cloud top temperatures colder than -72.6F (-58.1C) (in purple) in thunderstorms around Alex’s eye on Jan. 14 at 1429 UTC (9:29 a.m. EST).
    Credits: NASA JPL/Ed Olsen

    NASA Aqua satellite
    AQUA

    AIRS saw strongest storms with cloud top temperatures colder than minus 72.6 degrees Fahrenheit (minus 58.1 degrees Celsius) around the eye. NASA research has shown that storms with cloud tops that cold are powerful enough to generate heavy rain.

    RapidScat Locates Strongest Winds

    On Jan. 15 at 6 a.m. EST, RapidScat saw Hurricane Alex’s strongest winds affecting some islands in the Azores. Strongest winds were (red) north and northwest of the center at 30 meters per second (67.1 mph/ 108 kph). Maximum sustained winds are not always equally distributed in low pressure areas and the RapidScat instrument helps forecasters find the strongest quadrants of a storm. Tropical storm force winds extend outward up to 460 miles (740 km) from the center.

    NASA JPL Caltech Rapidscat
    Rapidscat

    Temp 2
    On Jan. 15 at 6 a.m. EST, RapidScat saw Hurricane Alex’s strongest winds affecting some islands in the Azores. Strongest winds were (red) north and northwest of the center at 30 meters per second (67.1 mph/ 108 kph). Credits: NASA JPL, Doug Tyler

    RapidScat is a NASA instrument that flies aboard the International Space Station.

    GPM Satellite Measures Hurricane Alex’s Rainfall

    The Global Precipitation Measurement or GPM core observatory satellite flew directly above hurricane Alex on January 15, 2016 at 1151 UTC (6:51 a.m. EST) collecting data in a rainfall analysis. Alex was moving into the Azores as a category one hurricane with maximum sustained winds estimated at 70 knots (80.5 mph). GPM’s Microwave Imager (GMI) and Dual-Frequency Precipitation Radar (DPR) found that rainfall intensity had decreased significantly since Alex was declared a hurricane on January 14, 2016.

    NASA GPM satellite
    GPM

    Temp 3
    Most of the rainfall measured by GPM on Jan.15 was measured at less than 20 mm (.8 inches) per hour. GPM found that maximum storm top heights northwest of Alex’s cloudy eye were found to reach altitudes of 9.9 km (6.1 miles).
    Credits: NASA/JAXA/SSAI/Hal Pierce

    Most of the rainfall measured by GPM’s DPR was measured at less than 20 mm (.8 inches) per hour. Also GPM’s radar (DPR Ku band) found that storm top heights were fairly low. The maximum storm top heights northwest of Alex’s cloudy eye were found to reach altitudes of 9.9 km (6.1 miles).


    Watch/download mp4 video here .
    Most of the rainfall measured by GPM on Jan.15 was measured at less than 20 mm (.8 inches) per hour. GPM found that maximum storm top heights northwest of Alex’s cloudy eye were found to reach altitudes of 9.9 km (6.1 miles).
    Credits: NASA/JAXA/SSAI/Hal Pierce

    Alex’s Strength, Location and a Landfall

    At 7 a.m. EST (1200 UTC) on Friday, January 15, 2016, Alex was still a hurricane with maximum sustained winds near 75 mph (120 kph). It was located near 28.0 north latitude and 26.9 west longitude, just 50 miles (80 km) south-southeast of Terceira Island in the Central Azores, and about 105 miles (170 km) east-southeast of Faial Island in the Central Azores. Alex was moving to the north at 24 mph (39 kph) and had a minimum central pressure of 986 millibars.

    The National Hurricane Center stated that satellite and surface data indicate that Alex made landfall on the island of Terceira around 915 AM AST (1315 UTC) as a tropical storm with an intensity of 70 mph (110 kph).

    At 10 a.m. EST (1500 UTC), the center of Tropical Storm Alex was located near latitude 39.3 North and longitude 27.0 West. Alex was moving toward the north near 28 mph (44 kph) and a turn toward the north-northwest and northwest is expected over the next day or so. The estimated minimum central pressure is 986 millibars. Maximum sustained winds dropped to near 70 mph (110 kph) making Alex a tropical storm. Little change in strength is forecast during the next 48 hours. The National Hurricane Center said that “Alex is expected to lose tropical characteristics later today (Jan. 15).”

    NASA-NOAA’s Suomi NPP Pictures Alex

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA’s Suomi NPP satellite captured a visible light image of Hurricane Alex at 14:20 UTC (9:20 a.m. EST) on Jan. 15 while it was moving through the Azores.

    NASA Goddard Suomi NPP satellite
    NASA-NOAA’s Suomi NPP satellite

    The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA’s Suomi NPP satellite captured a visible light image of Hurricane Alex at 14:20 UTC (9:20 a.m. EST) on Jan. 15 while it was moving through the Azores.

    Temp 4
    NASA-NOAA’s Suomi NPP satellite provided this visible look at Hurricane Alex at 14:20 UTC (9:20 a.m. EST) on Jan. 15 while it was moving over the Azores.Credits: NASA/NOAA/Jeff Schmaltz

    The image showed that the eye had become cloud-filled and bands of thunderstorms continued to circle the center of the storm, mostly in the western, northern and eastern quadrants. VIIRS collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans.

    Alex’s Future

    Alex continues to accelerate and a gradual turn to the northwest is expected. On Jan. 15 Forecaster Pasch of NOAA’s National Hurricane Center said that the post-tropical cyclone is forecast to merge with or become absorbed by another extra-tropical low within two days.

    For updates on System 90L, visit the NHC website: http://www.nhc.noaa.gov and Meteo France: http://www.meteofrance.com/accueil.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 10:17 am on December 17, 2015 Permalink | Reply
    Tags: , , , NASA Goddard,   

    From Goddard: “International Instrument Delivered for NASA’s 2016 Asteroid Sample Return Mission” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Dec. 17, 2015
    Nancy Neal Jones
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland
    301-286-0039
    Nancy.N.Jones@nasa.gov

    1
    The OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency, will create 3-D maps of asteroid Bennu to help the mission team select a sample collection site. NASA’s OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. Credits: NASA/Goddard/Debbie McCallum /NASA

    A sophisticated laser-based mapping instrument has arrived at Lockheed Martin Space Systems in Denver for integration onto NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft.

    The OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency (CSA), will create 3-D maps of asteroid Bennu to help the mission team select a sample collection site.

    “The OSIRIS-REx Project has worked very closely with our partner CSA and their contractor MDA to get this critical instrument delivered to the spacecraft contractor’s facility,” said Mike Donnelly, OSIRIS-REx project manager from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We are very pleased with the performance of the instrument and look forward to its contribution to our mission.”

    OLA is an advanced LIDAR (Light Detecting and Ranging) system that will scan the entire surface of the asteroid to create a highly accurate, 3-D shape model of Bennu. This will provide mission scientists with fundamental data on the asteroid’s shape, topography (distribution of boulders, rocks and other surface features), surface processes and evolution. An accurate shape model will also be an important tool for navigators as they maneuver the OSIRIS-REx spacecraft around the 500-meter-wide (0.3-mile-wide) asteroid. In exchange for providing the OLA instrument, CSA will receive a portion of the returned asteroid sample for study by Canadian scientists.

    “OLA will measure the shape and topography of Bennu to a much higher fidelity and with much greater efficiency than any planetary science mission has achieved,” said Michael Daly, OLA instrument lead at York University, Toronto. “This information is essential to understanding the evolution and current state of the asteroid. It also provides invaluable information in aid of retrieving a sample of Bennu for return to Earth.”

    After launch in September 2016, the OSIRIS-REx spacecraft will travel to the near-Earth asteroid Bennu and bring at least a 60-gram (2.1-ounce) sample back to Earth for study. Scientists expect that Bennu may hold clues to the origin of the solar system and the source of water and organic molecules that may have made their way to Earth. OSIRIS-REx’s investigation will also inform future efforts to develop a mission to mitigate an asteroid impact on Earth, should one be required.

    “The data received from OLA will be key to determining a safe sample site on Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “This instrument is a valuable addition to the spacecraft, and I appreciate our Canadian partners’ hard work and contribution to the OSIRIS-REx mission.”

    The laser altimeter was built for CSA by MacDonald, Dettwiler and Associates Ltd. (MDA) and its partner, Optech. OSIRIS-REx is scheduled to ship from Lockheed Martin’s facility to NASA’s Kennedy Space Center, Florida in May 2016, where it will undergo final preparations for launch.

    NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission’s principal investigator at the University of Arizona. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency’s Science Mission Directorate in Washington.

    For more information on OSIRIS-REx visit:

    http://www.nasa.gov/osiris-rex

    and

    http://www.asteroidmission.org

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 1:45 pm on December 16, 2015 Permalink | Reply
    Tags: , , NASA Goddard,   

    From Goddard: “NASA to Launch FORTIS to Study Extra-Galactic Dust” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Dec. 16, 2015
    Sarah Frazier
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    The FORTIS team prepares for a test on Dec. 8, 2015. FORTIS will study far-ultraviolet light from star-forming galaxy NGC 1365 to understand how material is flowing in and out of the galaxy. Credits: NASA/Johns Hopkins University/Stephan McCandliss

    2
    FORTIS will focus on galaxy NGC 1365, otherwise known as the Great Barred Spiral Galaxy. By examining specific wavelengths of absorption and emission, scientists will use FORTIS’ data to quantify the amounts of materials flowing in and out of the galaxy.
    Credits: ESO/IDA/Danish 1.5 m/ R. Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron

    This month, the NASA-funded FORTIS sounding rocket—short for Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy—will launch from the White Sands Missile Range in New Mexico to investigate the properties of galaxy NGC 1365, also known as the Great Barred Spiral Galaxy.

    FORTIS will use an instrument called a spectrograph to split the light from the target galaxy into its composite wavelengths, creating a kind of image called a spectrum. How much of each wavelength is present can hold clues to the atoms present in the space through which the light is traveling. In this case, scientists will study the wavelengths of light emitted and absorbed by different types of hydrogen to quantify how much material is flowing in and out of the galaxy.

    “Star-forming galaxies like NGC 1365 are swallowing mass from the intergalactic medium, and that material becomes stars,” said Stephan McCandliss, principal investigator for FORTIS from Johns Hopkins University in Baltimore, Maryland. “When these new stars ignite, they heat the surrounding gas and dust, making it emit light in these particular wavelengths.”

    FORTIS will fly on a Black Brant IX suborbital sounding rocket to an altitude of about 173 miles, taking data for six minutes. In the first 30 seconds, FORTIS will use its auto-targeting system to pick out the 40 brightest regions of NGC 1365 to study. It will then focus in on these promising regions—using a micro-shutter array originally developed for NASA’s James Webb Space Telescope—and take spectra of these regions focusing on far ultraviolet wavelengths of light.

    These types of observations can only be taken from space, because Earth’s atmosphere absorbs far ultraviolet light. Sounding rockets provide a low-cost way to access space, collecting valuable data from outside Earth’s atmosphere for a fraction of the cost of a full-fledged satellite mission.

    The FORTIS launch is supported through NASA’s Sounding Rocket Program at the Goddard Space Flight Center’s Wallops Flight Facility in Virginia. NASA’s Heliophysics Division manages the sounding rocket program.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 2:56 pm on December 15, 2015 Permalink | Reply
    Tags: A satellite's last days, , NASA Goddard   

    From Goddard: “Plunging into the Ionosphere: Satellite’s Last Days Improve Orbital Decay Predictions” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Dec. 14, 2015
    Karen C. Fox
    NASA’s Goddard Space Flight Center, Greenbelt, Md.
    karen.c.fox@nasa.gov
    301-286-6284

    Susan Hendrix
    NASA’s Goddard Space Flight Center, Greenbelt, Md.
    susan.m.hendrix@nasa.gov
    301-286-7745

    Scientists are learning more about how the upper atmosphere and ionosphere affect space satellites as well as communications and navigation here on Earth, thanks to new data from a U.S. Air Force satellite that recently completed a more than seven-year mission.

    The Communication/Navigation Outage Forecasting System (C/NOFS) satellite burned up in Earth’s atmosphere during a planned reentry on Nov. 28, leaving behind a treasure trove of data about a part of the space environment that’s difficult to study. The unique set of sustained observations from C/NOFS will greatly improve models currently used to predict satellite trajectories, orbital drag and uncontrolled re-entry.

    Scientists from the U.S. Air Force, NASA, and the University of Texas (UT) at Dallas are presenting the results at the American Geophysical Union Fall Meeting in San Francisco.

    1
    The U.S. Air Force Communication/Navigation Outage Forecasting System re-entered Earth’s atmosphere on Nov. 28, 2015, after a more than seven-year mission. Observations during its last year will help scientists better predict orbital decay. Credits: NASA’s Goddard Space Flight Center

    Launched on April 16, 2008, C/NOFS studied a region high above in our atmosphere called the ionosphere, a layer of electrically charged particles created by ultra-violet radiation from the sun. This layer lies some 40 to 600 miles above the Earth’s surface, where it interacts and co-mingles with the neutral particles of the tenuous upper atmosphere. The upper atmosphere and ionosphere change constantly in response to forces from above and below, including explosions on the sun, intense upper atmosphere winds, and dynamic electric field changes. In addition to interfering with satellite orbits, such changes can produce turbulence in the ionosphere that cause what’s known as scintillations, which interfere with radio wave navigation and communication systems, especially at low latitudes near the equator.

    2
    The ionosphere lies some 40 to 600 miles above Earth’s surface, where it interacts and co-mingles with the neutral particles of the tenuous upper atmosphere. The upper atmosphere and ionosphere change constantly in response to forces from above and below, including explosions on the sun, intense upper atmosphere winds and dynamic electric field changes.
    Credits: NASA’s Goddard Space Flight Center

    During most of its lifetime, C/NOFS never came closer than about 250 miles above the ground. However, as solar activity increased, C/NOFS began to orbit at lower and lower altitudes—ultimately descending to less than 160 miles above Earth.

    During its last 13 months of operations, as its orbit decayed and it spiraled into lower altitudes and eventual re-entry into Earth’s atmosphere, C/NOFS satellite captured a unique set of comprehensive observations as it traveled through the very space environment that can directly cause premature orbital decay. Such regions have rarely been studied directly for extended periods of time, because orbits in this denser region of the atmosphere are not sustainable long-term without on board propulsion.

    “One thing we learned clearly from C/NOFS is just how hard it is to predict the precise time and location of re-entry,” said Cassandra Fesen, principal investigator for C/NOFS at the Air Force Research Laboratory at the Kirtland Air Force Base in Albuquerque, New Mexico.

    The C/NOFS data at these lower altitudes show that the upper atmosphere and ionosphere react strongly to even small changes in near-Earth space, said Rod Heelis, principal investigator at the UT-Dallas for NASA’s Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on board the satellite.

    “The neutral atmosphere responds very dramatically to quite small energy inputs,” said Heelis. “Even though the energy is put in at high latitudes – closer to the poles – the reaction at lower latitudes, near the equator, is significant.”

    Heelis also described research on a previously-hard-to-view sweet spot in the atmosphere, where the charged particles of the ionosphere and the neutral particles of the atmosphere directly affect each other. The CINDI observations show that the neutral wind creates piles of neutral gas pushed up against ionospheric density variations – similar to how blowing snow piles up in drifts against a building wall. This results in density striations in the atmosphere that were never previously observed. Such density variations are necessary data to include when modeling interference with radio waves or excess drag on a travelling spacecraft.

    Rob Pfaff, project scientist for CINDI at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and principal investigator for another C/NOFS instrument, the Vector Electric Field Investigation, is studying observations that speak to one of the original goals of the C/NOFS program: Why does the low latitude ionosphere at night become so turbulent that it can wreak havoc on communications and navigation radio signals?

    Developing the capability to predict such space weather disturbances has been a long-standing goal of the Air Force Research Laboratory. The C/NOFS low altitude observations were critical to form a complete picture of these disturbances, as the satellite ventured to the possible root of the largest ionospheric upheavals — those that emanate from the bottom ledge of the ionosphere at night. The observations revealed the presence of strong shears in the horizontal ionosphere motions at the base of the ionosphere, places where charged particles flow by each other in opposite directions. C/NOFS observed shears and undulations along this boundary. Such shears and undulations — spotted throughout the nighttime, equatorial ionosphere — are believed to be the source of large-scale instabilities that ultimately drive the detrimental scintillations.

    3
    The U.S. Air Force Communication/Navigation Outage Forecasting System observed how changes in Earth’s ionosphere cause what’s known as scintillations, which interfere with radio wave navigation and communication systems, especially at low latitudes near the equator.
    Credits: U.S. Air Force Research Laboratory

    For more information about C/NOFS, visit:

    http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2008-017A

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 8:29 pm on November 27, 2015 Permalink | Reply
    Tags: , NASA Goddard,   

    From NASA Goddard: “NASA Plans Twin Sounding Rocket Launches over Norway this Winter” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Nov. 24, 2015
    Sarah Frazier
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    1
    An aurora is seen over Greenland on April 2, 2011. Two NASA sounding rockets will launch into a particular type of aurora called a cusp aurora this winter to study different processes related to the particle acceleration that causes cusp auroras. The cusp is a region near the North Pole where Earth’s magnetic field is directly connected to the solar wind, allowing daytime auroras to form.
    Credits: NASA/University of Maryland, College Park/Robert Michell

    2
    Part of CAPER, short for Cusp Alfven and Plasma Electrodynamics Rocket, is suspended from the rail that will carry the rocket out to the launch pad. CAPER’s launch window will open Nov. 27, 2015, and scientists will have to wait for good weather conditions and a daytime cusp aurora before they can send their payload flying through the aurora borealis. CAPER will study the electromagnetic waves that both create the cusp aurora and send electrons flying out into space. Credits: NASA/Nate Empson

    3
    Team members work on the RENU 2 sounding rocket weeks before its launch window opens Nov. 27, 2015. Scientists will have to wait for favorable weather conditions and the presence of a daytime aurora before they can launch. RENU 2, short for Rocket Experiment for Neutral Upwelling, will study the relationship between the flowing electrons that create the cusp aurora and dense columns of neutral atoms in the upper atmosphere. Credits: NASA/University of New Hampshire/Bruce Fritz

    This winter, two sounding rockets will launch through the aurora borealis over Norway to study how particles move in a region near the North Pole where Earth’s magnetic field is directly connected to the solar wind. After the launch window opens on Nov. 27, 2015, the CAPER and RENU 2 rockets will have to wait for low winds and a daytime aurora before they can send their instrument payloads soaring through the Northern Lights.

    Both instrument packages are studying phenomena related to the cusp aurora, a particular subset of the Northern Lights in which energetic particles are accelerated downward into the atmosphere directly from the solar wind – that is, the constant outward flow of solar material from the sun. Though cusp auroras are not particularly rare, they are often difficult to spot because they only happen during the day, when sunlight usually drowns out what would otherwise be a spectacular light show. However, because the magnetic North Pole is offset from the geographic North Pole, it’s often possible to see cusp auroras in Northern Europe near the winter solstice.

    “The magnetic pole is tilted towards North America, putting this magnetic opening—the cusp—at a higher latitude on the European side,” said Jim LaBelle, principal investigator on the CAPER sounding rocket at Dartmouth College in Hanover, New Hampshire. “Combine that extra-high latitude with the winter solstice—when nights are longest, especially as you go farther north—and you can sometimes see this daytime aurora with the naked eye.”

    The two sounding rocket teams will also employ data from ground-based radars to detect the cusp aurora even in the case of clouds.

    CAPER

    CAPER, short for Cusp Alfven and Plasma Electrodynamics Rocket, will be first in the queue to launch. CAPER is investigating the electromagnetic, or EM, waves that can accelerate electrons down into Earth’s atmosphere or up out to space. The electrons that are accelerated downward collide with particles in the atmosphere, releasing light and creating the cusp aurora—so spotting aurora activity at the cusp alerts the scientists that the EM wave motions they’re interested in must also be present.

    CAPER, flying on a four-stage Oriole IV sounding rocket, carries three instruments—one to measure low-frequency EM waves, one to measure high-frequency EM waves, and one to measure the number of particles at different energy levels. LaBelle’s team will compare these observations to get a better idea of how the EM waves accelerate the particles.

    “The difficulty is measuring the high-frequency waves and their associated particles,” said LaBelle. “They’re moving at up to a million cycles per second, so the instruments have to be able to detect changes in the waves and collect enough particles to match up.”

    RENU 2

    The other sounding rocket to launch, a four-stage Black Brant XII-A, is the second iteration of the Rocket Experiment for Neutral Upwelling, or RENU 2, which will study the relationship between the inflow of electrons that creates the cusp aurora, electric currents flowing along magnetic field lines, and dense columns of heated neutral atoms in the upper atmosphere.

    Though scientists have long known that the density of neutral atoms within the atmosphere can change throughout the day because of heating by sunlight, the original understanding was that the heating—and the extra-dense layers of neutral particles—was driven horizontally. However, some satellites have hit speed bumps as they have orbited through Earth’s magnetic cusp—their acceleration briefly slowed, which indicates a small vertical slice of higher-density neutral atoms that are harder to travel through.

    “When solar wind electrons collide with atmospheric electrons, they transfer some of their energy, heating the atmospheric electrons,” said Marc Lessard, principal investigator for RENU 2 at the University of New Hampshire in Durham. “The higher heat means the electron populations expand upward along the magnetic field lines.”

    This upward flow of negatively-charged particles creates a vertical electric field, which in turn pulls up the positively-charged and neutral particles, increasing the atmospheric density in columns rather than horizontal layers. To study the phenomenon, RENU 2 will carry several instruments, including instruments to measure the electric and magnetic fields, neutral and charged particle flows, and temperatures.

    Though CAPER and RENU 2 will collect data for only a few minutes each, suborbital sounding rockets are a valuable way to study space and the upper atmosphere at relatively low cost.

    The CAPER and RENU 2 launches are supported through NASA’s Sounding Rocket Program at the Goddard Space Flight Center’s Wallops Flight Facility in Virginia. NASA’s Heliophysics Division manages the sounding rocket program.

    Related Link

    NASA heliophysics sounding rocket program

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 9:53 pm on November 12, 2015 Permalink | Reply
    Tags: , , , NASA Goddard   

    From NASA Goddard: “NASA’s Fermi Satellite Detects First Gamma-ray Pulsar in Another Galaxy” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Nov. 12, 2015
    Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland


    Explore Fermi’s discovery of the first gamma-ray pulsar detected in a galaxy other than our own. Credits: NASA’s Goddard Space Flight Center
    download mp4 video here.

    The pulsar lies in the outskirts of the Tarantula Nebula in the Large Magellanic Cloud, a small galaxy that orbits our Milky Way and is located 163,000 light-years away.

    2
    This first light image of the TRAPPIST national telescope at La Silla shows the Tarantula Nebula, located in the Large Magellanic Cloud (LMC) — one of the galaxies closest to us. Also known as 30 Doradus or NGC 2070, the nebula owes its name to the arrangement of bright patches that somewhat resembles the legs of a tarantula. Taking the name of one of the biggest spiders on Earth is very fitting in view of the gigantic proportions of this celestial nebula — it measures nearly 1000 light-years across! Its proximity, the favourable inclination of the LMC, and the absence of intervening dust make this nebula one of the best laboratories to help understand the formation of massive stars better. The image was made from data obtained through three filters (B, V and R) and the field of view is about 20 arcminutes across.

    ESO TRAPPIST telescope
    ESO/Trappist telescope

    2
    LMC

    The Tarantula Nebula is the largest, most active and most complex star-formation region in our galactic neighborhood. It was identified as a bright source of gamma rays, the highest-energy form of light, early in the Fermi mission. Astronomers initially attributed this glow to collisions of subatomic particles accelerated in the shock waves produced by supernova explosions.

    “It’s now clear that a single pulsar, PSR J0540-6919, is responsible for roughly half of the gamma-ray brightness we originally thought came from the nebula,” said lead scientist Pierrick Martin, an astrophysicist at the National Center for Scientific Research (CNRS) and the Research Institute in Astrophysics and Planetology in Toulouse, France. “That is a genuine surprise.”

    1
    NASA’s Fermi Gamma-ray Space Telescope has detected the first extragalactic gamma-ray pulsar, PSR J0540-6919, near the Tarantula Nebula (top center) star-forming region in the Large Magellanic Cloud, a satellite galaxy that orbits our own Milky Way. Fermi detects a second pulsar (right) as well but not its pulses. PSR J0540-6919 now holds the record as the highest-luminosity gamma-ray pulsar. The angular distance between the pulsars corresponds to about half the apparent size of a full moon. Background: An image of the Tarantula Nebula and its surroundings in visible light. Credits: NASA’s Goddard Space Flight Center; background: ESO/R. Fosbury (ST-ECF)

    2
    A gamma-ray view of the same region shown above in visible wavelengths. Lighter colors indicate greater numbers of gamma rays with energies between 2 and 200 billion electron volts. For comparison, visible light ranges between 2 and 3 electron volts. The two pulsars, PSR J0540−6919 (left) and PSR J0537−6910, clearly stand out. Credits: NASA/DOE/Fermi LAT Collaboration

    When a massive star explodes as a supernova, the star’s core may survive as a neutron star, where the mass of half a million Earths is crushed into a magnetized ball no larger than Washington, D.C. A young isolated neutron star spins tens of times each second, and its rapidly spinning magnetic field powers beams of radio waves, visible light, X-rays and gamma rays. If the beams sweep past Earth, astronomers observe a regular pulse of emission and the object is classified as a pulsar.

    The Tarantula Nebula was known to host two pulsars, PSR J0540-6919 (J0540 for short) and PSR J0537−6910 (J0537), which were discovered with the help of NASA’s Einstein and Rossi X-ray Timing Explorer (RXTE) satellites, respectively. J0540 spins just under 20 times a second, while J0537 whirls at nearly 62 times a second — the fastest-known rotation period for a young pulsar.

    Nevertheless, it took more than six years of observations by Fermi’s Large Area Telescope (LAT), as well as a complete reanalysis of all LAT data in a process called Pass 8, to detect gamma-ray pulsations from J0540. The Fermi data establish upper limits for gamma-ray pulses from J0537 but do not yet detect them.

    Martin and his colleagues present these findings in a paper to be published in the Nov. 13 edition of the journal Science.

    “The gamma-ray pulses from J0540 have 20 times the intensity of the previous record-holder, the pulsar in the famous Crab Nebula, yet they have roughly similar levels of radio, optical and X-ray emission,” said coauthor Lucas Guillemot, at the Laboratory for Physics and Chemistry of Environment and Space, operated by CNRS and the University of Orléans in France.

    4
    This is a mosaic image, one of the largest ever taken by NASA’s Hubble Space Telescope of the Crab Nebula, a six-light-year-wide expanding remnant of a star’s supernova explosion. Japanese and Chinese astronomers recorded this violent event nearly 1,000 years ago in 1054, as did, almost certainly, Native Americans. The orange filaments are the tattered remains of the star and consist mostly of hydrogen. The rapidly spinning neutron star embedded in the center of the nebula is the dynamo powering the nebula’s eerie interior bluish glow. The blue light comes from electrons whirling at nearly the speed of light around magnetic field lines from the neutron star. The neutron star, like a lighthouse, ejects twin beams of radiation that appear to pulse 30 times a second due to the neutron star’s rotation. A neutron star is the crushed ultra-dense core of the exploded star. The Crab Nebula derived its name from its appearance in a drawing made by Irish astronomer Lord Rosse in 1844, using a 36-inch telescope. When viewed by Hubble, as well as by large ground-based telescopes such as the European Southern Observatory’s Very Large Telescope, the Crab Nebula takes on a more detailed appearance that yields clues into the spectacular demise of a star, 6,500 light-years away. The newly composed image was assembled from 24 individual Wide Field and Planetary Camera 2 exposures taken in October 1999, January 2000, and December 2000. The colors in the image indicate the different elements that were expelled during the explosion. Blue in the filaments in the outer part of the nebula represents neutral oxygen, green is singly-ionized sulfur, and red indicates doubly-ionized oxygen.

    NASA Hubble Telescope
    NASA/ESA Hubble

    “Accounting for these differences will guide us to a better understanding of the extreme physics at work in young pulsars.”

    J0540 is a rare find, with an age of roughly 1,700 years, about twice that of the Crab Nebula pulsar. By contrast, most of the more than 2,500 known pulsars are from 10,000 to hundreds of millions of years old.

    Despite J0540’s luminosity, too few gamma rays reach the LAT to detect pulsations without knowing the period in advance. This information comes from a long-term X-ray monitoring campaign using RXTE, which recorded both pulsars from the start of the Fermi mission to the end of 2011, when RXTE operations ceased.

    “This campaign began as a search for a pulsar created by SN 1987A, the closest supernova seen since the invention of the telescope,” said co-author Francis Marshall, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That search failed, but it discovered J0537.”

    Prior to the launch of Fermi in 2008, only seven gamma-ray pulsars were known. To date, the mission has found more than 160.

    NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 12:21 pm on November 12, 2015 Permalink | Reply
    Tags: , , , NASA Goddard   

    From Goddard: “A Breathing Planet, Off Balance” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Nov. 12, 2015
    Kate Ramsayer
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Carol Rasmussen
    NASA’s Earth Science News Team

    Earth’s oceans and land cover are doing us a favor. As people burn fossil fuels and clear forests, only half of the carbon dioxide released stays in the atmosphere, warming and altering Earth’s climate. The other half is removed from the air by the planet’s vegetation ecosystems and oceans.

    As carbon dioxide levels in the atmosphere continue their rapid, man-made rise past levels not seen for hundreds of thousands of years, NASA scientists and others are confronted with an important question for the future of our planet: How long can this balancing act continue? And if forests, other vegetation and the ocean cannot continue to absorb as much or more of our carbon emissions, what does that mean for the pace of climate change in the coming century?

    These questions are a major priority for NASA’s Earth science research program, and the agency is preparing to ramp up its field studies, satellite monitoring and computer modeling to help answer them. Carbon is a fundamental element of life on Earth, but the increasing amount of carbon in the atmosphere — in the form of carbon dioxide and methane molecules — is also the primary element driving our warming climate. Scientists are studying how carbon moves through Earth’s atmosphere, land and ocean with an array of tools, including a new dataset of the ebbs and flows of carbon in the air.

    “Today and for the past 50 to 100 years, the oceans and land biosphere have consistently taken up about half of human emissions,” said Dave Schimel of NASA’s Jet Propulsion Laboratory, Pasadena, California. “If that were to change, the effect of fossil emissions on climate would also change. We don’t understand that number, and we don’t know how it will change in the future.”


    Earth’s land and ocean currently absorb about half of all carbon dioxide emissions from the burning of fossil fuels, but it’s uncertain whether the planet can keep this up in the future. NASA’s Earth science program works to improve our understanding of how carbon absorption and emission processes work in nature and how they could change in a warming world with increasing levels of emissions from human activities.Credits: NASA’s Jet Propulsion Laboratory.
    download mp4 video here.

    So researchers at NASA are tackling the questions from a number of angles. They’re monitoring land, atmosphere and oceans with airborne and satellite sensors and digging into the first results from a new satellite observatory measuring carbon dioxide. And they’re pulling all the information we have into supercomputer simulations to understand how our Earth responds to changes in carbon emissions.

    “There are all these amazing data sets, but none of them quite give us the entire carbon story,” said Lesley Ott, an atmospheric scientist with the Global Modeling and Assimilation Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The models help us tie all the observations together to get at how atmospheric carbon is varying and changing, but we still have a lot of work left to do to understand how carbon moves among the land, oceans and atmosphere.”

    Carbon on the move

    Carbon naturally cycles through Earth’s environments. Trees and other plants take up carbon dioxide and turn it into the building blocks of roots, stems and leaves. Some of that carbon stays in the soil as the vegetation dies and gets buried. Some is released back into the atmosphere as carbon dioxide through plant respiration, and both carbon dioxide and methane — another potent, carbon-based greenhouse gas — can be released through decomposition, land clearing and wildfire. The ocean absorbs carbon dioxide from the atmosphere, and the tiny water-dwelling plants called phytoplankton take up the gas as well. Over many millennia, the pace of carbon cycling is governed by volcanic emissions and weathering of rocks.

    For most of human history, carbon has been in a more-or-less steady cycle. This cycle has been thrown off balance as people burn fossil fuels — carbon that has been long buried underground as oil, gas and coal — and as forests are cleared and soils are turned for agriculture. All of these contribute to increasing carbon emissions. While the amount of carbon dioxide emissions that ecosystems absorb from the atmosphere each year varies quite a bit, the fraction in the long run has averaged out to about half.

    More carbon dioxide and methane in the air means warmer global temperatures. Warmer temperatures can disrupt some ecosystems and impact their ability to absorb more and more carbon. An even more imbalanced carbon cycle will cause greater variability and consequences that are not yet fully understood.

    NASA’s newest tool in tackling the complex question of carbon ebbs and flows is the Orbiting Carbon Observatory-2, or OCO-2.

    NASA Orbiting Carbon Observatory 2
    OCO-2

    Launched in July 2014, the mission measures how much carbon dioxide is in the atmosphere near the planet’s surface. With that dataset, researchers can better begin to characterize where carbon is being emitted and absorbed and over what timescales. Mission scientists recently analyzed OCO-2’s first year of data, and saw the expected decreases in atmospheric carbon dioxide in the Northern Hemisphere’s summer, as plants undergo photosynthesis. They saw upticks in the greenhouse gas over power plants and megacities, and over areas where people clear forests for agricultural use.

    “The new, exciting thing from my perspective is we have more than 100,000 measurements each day of carbon dioxide in the atmosphere,” said Annmarie Eldering, OCO-2 deputy project scientist at JPL. “Not only do we have a lot of measurements, but they tell us a lot. We can see a change [in atmospheric carbon] of one-quarter of 1 percent from space. Armed now with this pile of data, we can start to investigate more fully this question of sources and sinks and how different parts of the world contribute to these processes.”


    The Orbiting Carbon Observatory-2 satellite is providing NASA’s first detailed, global measurements of carbon dioxide in the atmosphere at the Earth’s surface. OCO-2 recently released its first full year of data — critical to analyzing the annual cycle carbon dioxide concentrations in the atmosphere.Credits: NASA/JPL-Caltech
    download mp4 video here.

    Plants and ocean lend a hand

    Terrestrial plants — from towering Douglas firs to moss growing on rocks — take up carbon dioxide from the atmosphere during photosynthesis, processing it into carbon-containing leaves, stems, branches and more.

    “The land helps to mitigate something like a quarter of the carbon dioxide emissions,” said Jeffrey Masek, chief of the biospheric sciences laboratory at NASA Goddard. “The question is: What will happen in the future? Can we count on this to continue? Or are land processes going to saturate, in which case we’d see our atmospheric carbon dioxide concentration start to increase much more rapidly.”

    Monitoring photosynthesis is one way for scientists to study vegetation health and growth in an atmosphere with increasing carbon dioxide. Even though photosynthesis is a process occurring at the microscopic scale on the land and in the ocean, scientists have found the best way to monitor it globally is by satellite.

    “If it weren’t for satellites, we would have very little understanding of the biological activity of the entire Earth,” said Josh Fisher, a climate scientist at JPL. “We know from our field studies about how different ecosystems [vary], but we don’t know how robust or representative our studies are at the global scale.”

    The Landsat missions and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft allow researchers to study the greenness of vegetation as a proxy for photosynthesis, and therefore carbon dioxide uptake, across the globe.

    NASA Landsat 8
    Landsat 8

    NASA MODIS
    MODIS

    NASA Terra satellite
    Terra

    NASA Aqua satellite
    Aqua

    Scientists are also using OCO-2 to take a big-picture look at these small-scale processes, capturing the faint fluorescence given off by terrestrial plants during photosynthesis, Eldering said. With fluorescence, scientists have a new way to observe how active – or not – these green ecosystems are.


    Animation showing the 12-month cycle of all plant life on Earth — whether on land or in the ocean. Rather than showing a specific year, the animation shows an average yearly cycle by combining data from many satellite instruments and averaging them over multiple years. Credits: NASA’s Goddard Space Flight Center
    download mp4 video here.

    Forests are one of the major carbon sinks, which are areas that absorb large amounts of carbon dioxide from the atmosphere, storing it for decades in trunks and roots. Satellite observations have illustrated how green plants have expanded their territory in North America, as warmer temperatures allow them to grow farther north. Height-measuring instruments, like radars and lidars, add a third dimension to the land cover information, allowing researchers to estimate how much material — and therefore how much carbon — is stored in a forest. NASA has plans to launch satellites as well as put a sensor on the International Space Station (ISS) to measure this third dimension of forest structure and improve estimates of how much carbon is stored in large forests.

    NASA has targeted a variety of future field campaigns, satellites and ISS sensors to improve our understanding of how much carbon is being stored in terrestrial ecosystems and how this could change as patterns of drought, fire and forest structure itself shift in a changing climate.

    More carbon in the atmosphere can act as a fertilizer and give vegetation a boost, increasing the storage of the greenhouse gas at least temporarily. But any increased plant growth due to more carbon dioxide in the air can’t continue forever, researchers say. Eventually, the vegetation will run out of water or other nutrients necessary for enhanced growth, while changes in temperature and rainfall could also alter growing conditions. Without these essentials, vegetation can’t keep taking up increasing amounts of greenhouse gases from human-caused emissions.

    In some regions, forests are releasing more carbon than they’re storing. Satellite images have also documented the transition of green, healthy forests through land clearing and events like wildfires and insect infestations, which are increasing in drought-stressed environments. Droughts themselves slow down the growth of vegetation, slowing down the uptake of carbon in regions such as the Amazon. This can flip the balance for forests and other ecosystems – from an overall absorber of carbon to an overall emitter of the greenhouse gas. While natural climate variability may cause such year-to-year changes, scientists are concerned that climate change could turn forests into sources of carbon on a regular or even annual basis.

    Ocean scientists are facing similar questions about carbon. The ocean water itself absorbs carbon dioxide from fossil fuel emissions. Doing so, however, changes the chemistry of seawater. As surface water in the ocean continues to warm, uptake of carbon dioxide will slow down.

    Oceans also contain carbon in the form of plants and animals, including phytoplankton — microscopic plants that take up carbon dioxide through photosynthesis, just like their larger, land-based cousins. Phytoplankton form the base of the ocean food web, and those that survive being eaten by zooplankton will die, sinking to the bottom of the ocean — taking their carbon stores with them to be decomposed. Changes to ocean chemistry and circulation due to climate change may alter this biological carbon pump, potentially triggering a release of the carbon stored deep in ocean sediments.

    In the North Atlantic the distribution of phytoplankton species is changing due to warming waters, notes Carlos Del Castillo, ocean ecology laboratory chief at Goddard. A different mix of phytoplankton species will take up different amounts of carbon dioxide — which could result in even further changes to the ocean’s carbon cycle. “It’s a cycle, which we hope is not a vicious one,” Del Castillo said.

    Getting a global view

    To get a more complete picture of this global carbon cycle, NASA scientists are combining many different approaches to studying the land, ocean and atmosphere. They use NASA’s wealth of data on carbon dioxide in the atmosphere with weather and climate models to monitor every response of Earth processes to the increasing burden of carbon dioxide.


    Animation of carbon dioxide released from two different sources: fires (biomass burning) and massive urban centers known as megacities. The animation covers a five day period in June 2006. The model is based on real emission data and is then set to run so that scientists can observe how the greenhouse gas behaves once it has been emitted. Credits: Global Modeling and Assimilation Office, NASA’s Goddard Space Flight Center.
    download mp4 video here.

    “You’ve got all these little individual sources of change — the insects, the fire, agriculture expanding and other land use — all this stuff flickering around on the ground, varying from year to year, over decades. And then you’ve got these integrated observations of the atmosphere,” Masek said. “You need models that incorporate these processes — all of them. And then if that model is reasonable, we should be able to predict what the atmospheric carbon dioxide looks like. It’s a tough job.”

    With the supercomputers at NASA, scientists take in all the information they can — from all the Earth science fields they can. They program computer models to take all these inputs and try to determine whether the land and oceans will keep giving people an assist.

    “Ultimately the goal of all of this work is to be able to predict what’s going to happen with the carbon cycle,” Ott said. “How much carbon is going to be taken up by the land and ocean? We need to know how that’s going to change in the future.”

    By coming at the problem from multiple vantage points, using a range of measurements and tools, scientists are strengthening the models to give us a better picture of what our carbon-directed climate will look like in the coming years and beyond.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 9:14 pm on September 21, 2015 Permalink | Reply
    Tags: , , , NASA Goddard,   

    From Astronomy Now: “Astronomers identify a new class of medium-sized black holes” 

    Astronomy Now bloc

    Astronomy Now

    21 September 2015
    No Writer Credit

    1
    This image, taken with the European Southern Observatory’s Very Large Telescope, shows the central region of galaxy NGC 1313. This galaxy is home to the ultraluminous X-ray source NCG1313X-1, which astronomers have now determined to be an intermediate-mass black hole candidate. NGC 1313 is 50,000 light-years across and lies about 14 million light-years from the Milky Way in the southern constellation Reticulum. Image credit: ESO.

    ESO VLT Interferometer
    ESO/VLT

    Nearly all black holes come in one of two sizes: stellar mass black holes that weigh up to a few dozen times the mass of our Sun, or supermassive black holes ranging from a million to several billion times the Sun’s mass. Astronomers believe that medium-sized black holes between these two extremes exist, but evidence has been hard to come by, with roughly a half-dozen candidates described so far.

    A team led by astronomers at the University of Maryland and NASA’s Goddard Space Flight Center has found evidence for a new intermediate-mass black hole about 5,000 times the mass of the Sun. The discovery adds one more candidate to the list of potential medium-sized black holes, while strengthening the case that these objects do exist. The team reports its findings in the 21 September 2015 online edition of Astrophysical Journal Letters.

    The result follows up on a similar finding by some of the same scientists, using the same technique, published in August 2014. While the previous study accurately measured a black hole weighing 400 times the mass of the Sun using data from NASA’s Rossi X-ray Timing Explorer (RXTE) satellite, the current study used data from the European Space Agency’s XMM-Newton satellite.

    NASA RXTE
    NASA/RXTE)

    ESA XMM Newton
    ESA/XMM-Newton

    “This result provides support to the idea that black holes exist on all size scales. When you describe something for the first time, there is always some doubt,” said lead author Dheeraj Pasham, a postdoctoral associate at the Joint Space-Science Institute, a research partnership between UMD’s Departments of Astronomy and Physics and NASA Goddard. “Identifying a second candidate with a different instrument puts weight behind both findings and gives us confidence in our technique.”

    The new intermediate-mass black hole candidate, known as NGC1313X-1, is classified as an ultraluminous X-ray source, and as such is among the brightest X-ray sources in the nearby universe. It has proven hard to explain exactly why ultraluminous X-ray sources are so bright, however. Some astronomers suspect that they are intermediate-mass black holes actively drawing in matter, producing massive amounts of friction and X-ray radiation in the process.

    Against this backdrop of haphazard X-ray fireworks created by NGC1313X-1, Pasham and his colleagues identified two repeating flares, each flashing at an unusually steady frequency. One flashed about 27.6 times per minute and the other about 17.4 times per minute. Comparing these two rates yields a nearly perfect 3:2 ratio. Pasham and his colleagues also found this 3:2 ratio in M82X-1, the black hole they identified in August 2014, although the overall frequency of flashing was much higher in M82X-1.

    Although astronomers are not yet sure what causes these steady flashes, the presence of a clockwork 3:2 ratio appears to be a common feature of stellar mass black holes and possibly intermediate-mass black holes as well. The flashes are most likely caused by activity close to the black hole, where extreme gravity keeps all surrounding matter on a very tight leash, Pasham said.

    The 3:2 ratios can also provide an accurate measure of a black hole’s mass. Smaller black holes will flash at a higher frequency, while larger black holes will flash less often.

    “To make an analogy with acoustic instruments, if we imagine that stellar mass black holes are the violin and supermassive black holes are the double bass, then intermediate-mass black holes are the violoncello,” said co-author Francesco Tombesi, an assistant research scientist in UMD’s Department of Astronomy who has a joint appointment at NASA Goddard via the Center for Research and Exploration in Space Science and Technology.

    Pasham and Tombesi hope that identifying ultraluminous X-ray sources that exhibit the key 3:2 flashing ratio will yield many more intermediate-mass black hole candidates in the near future.

    “Our method is purely empirical, it’s not reliant on models. That’s why it’s so strong,” Pasham explained. “We don’t know what causes these oscillations, but they appear to be reliable, at least in stellar mass black holes.”

    NASA plans to launch a new X-ray telescope, the Neutron Star Interior Composition Explorer (NICER), in 2016.

    NASA NICER
    NASA/NICER

    Pasham has already identified several potential intermediate-mass black hole candidates that he hopes to explore with NICER.

    “Observing time is at a premium, so you need to build a case with an established method and a list of candidates the method can apply to,” Pasham explained. “With this result, we are in a good position to move forward and make more exciting discoveries.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:20 pm on September 15, 2015 Permalink | Reply
    Tags: , , , NASA Goddard, NASA LRO   

    From Goddard: “NASA’s LRO Discovers Earth’s Pull is ‘Massaging’ our Moon” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Sep. 15, 2015
    Nancy Neal-Jones / William Steigerwald
    NASA Goddard Space Flight Center, Greenbelt, Maryland
    301-286-0039

    1
    The gravitational forces the Moon and Sun exert are responsible for Earth’s rising and falling tides. Earth’s gravity also exerts forces on the Moon in the form of solid body tides that distort its shape. The Moon is slowly receding away from Earth and forces build as the Moon’s tidal distortion diminishes with distance and its rotation period slows with time. These tidal forces combined with the shrinking of the Moon from cooling of its interior have influenced the pattern of orientations in the network of young fault scarps.
    Credits: NASA/LRO/Arizona State University/Smithsonian Institution

    In August, 2010, researchers using images from LRO’s Narrow Angle Camera (NAC) reported the discovery of 14 cliffs known as “lobate scarps” on the moon’s surface, in addition to about 70 previously known from the limited high-resolution Apollo Panoramic Camera photographs. Due largely to their random distribution across the surface, the science team concluded that the moon is shrinking.

    NASA Lunar Reconnaisence Orbiter
    NASA Lunar Reconnaissance Orbiter

    2
    Thousands of young, lobate thrust fault scarps have been revealed in Reconnaissance Orbiter Camera images (LROC). Lobate scarps like the one shown here are like stair-steps in the landscape formed when crustal materials are pushed together, break and are thrust upward along a fault forming a cliff. Cooling of the still hot lunar interior is causing the Moon to shrink, but the pattern of orientations of the scarps indicate that tidal forces are contributing to the formation of the young faults. Credits: NASA/LRO/Arizona State University/Smithsonian Institution

    These small faults are typically less than 6.2 miles (10 kilometers) long and only tens of yards or meters high. They are most likely formed by global contraction resulting from cooling of the moon’s still hot interior. As the interior cools and portions of the liquid outer core solidify, the volume decreases; thus the moon shrinks and the solid crust buckles.

    Now, after more than six years in orbit, the Lunar Reconnaissance Orbiter Camera (LROC) has imaged nearly three-fourths of the lunar surface at high resolution, allowing the discovery of over 3,000 more of these features. These globally distributed faults have emerged as the most common tectonic landform on the moon. An analysis of the orientations of these small scarps yielded a surprising result: the faults created as the moon shrinks are being influenced by an unexpected source—gravitational tidal forces from Earth.

    Global contraction alone should generate an array of thrust faults with no particular pattern in the orientations of the faults, because the contracting forces have equal magnitude in all directions. “This is not what we found,” says Smithsonian senior scientist Thomas Watters of the National Air and Space Museum in Washington. “There is a pattern in the orientations of the thousands of faults and it suggests something else is influencing their formation, something that’s also acting on a global scale — ‘massaging’ and realigning them.” Watters is lead author of the paper describing this research published in the October issue of the journal Geology.

    The other forces acting on the moon come not from its interior, but from Earth. These are tidal forces. When the tidal forces are superimposed on the global contraction, the combined stresses should cause predictable orientations of the fault scarps from region to region. “The agreement between the mapped fault orientations and the fault orientations predicted by the modeled tidal and contractional forces is pretty striking,” says Watters.

    “The discovery of so many previously undetected tectonic features as our LROC high-resolution image coverage continues to grow is truly remarkable,” said Mark Robinson of Arizona State University, coauthor and LROC principal investigator. “Early on in the mission we suspected that tidal forces played a role in the formation of tectonic features, but we did not have enough coverage to make any conclusive statements. Now that we have NAC images with appropriate lighting for more than half of the moon, structural patterns are starting to come into focus.”

    The fault scarps are very young – so young that they are likely still actively forming today. The team’s modeling shows that the peak stresses are reached when the moon is farthest from Earth in its orbit (at apogee). If the faults are still active, the occurrence of shallow moonquakes related to slip events on the faults may be most frequent when the moon is at apogee. This hypothesis can be tested with a long-lived lunar seismic network.

    3
    The map shows the locations of over 3,200 lobate thrust fault scarps (red lines) on the Moon. The black double arrows show the average orientations of the lobate scarps sampled in areas with dimensions of 40° longitude by 20° latitude and scaled by the total length of the fault scarps in the sampled areas. The pattern of the black double arrows (orientation vectors) indicates that the fault scarps do not have random orientations as would be expected if the forces that formed them were from global contraction alone. Mare basalt units are shown in tan. Credits: NASA/LRO/Arizona State University/Smithsonian Institution

    “With LRO we’ve been able to study the moon globally in detail not yet possible with any other body in the solar system beyond Earth, and the LRO data set enables us to tease out subtle but important processes that would otherwise remain hidden,” said John Keller, LRO Project Scientist at NASA’s Goddard Space Flight Center, Greenbelt, Maryland.

    4
    A prominent lobate fault scarp in the Vitello Cluster is one of thousands discovered in Lunar Reconnaissance Orbiter Camera images (LROC). Topography derived from the LROC Narrow Angle Camera (NAC) stereo images shows a degraded crater has been uplift as the fault scarp has formed (blues are lower elevations and reds are higher elevations). Boulders in the crater have aligned in rows that parallel the orientation of the fault scarp. Credits: NASA/LRO/Arizona State University/Smithsonian Institution

    5
    A nadir (top) and perspective view (bottom) of a prominent lobate fault scarp in the Vitello Cluster, one of thousands discovered in Lunar Reconnaissance Orbiter Camera images (LROC). In the perspective view, the Narrow Angle Camera (NAC) image is draped over topography derived from NAC stereo images. A degraded crater has been uplift as the fault scarp has formed. Boulders in the crater have aligned in rows that parallel the orientation of the fault scarp. Credits: NASA/LRO/Arizona State University/Smithsonian Institution

    Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the moon. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, under the Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville for the Science Mission Directorate at NASA Headquarters in Washington, DC.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
  • richardmitnick 4:15 pm on September 11, 2015 Permalink | Reply
    Tags: , , Io, NASA Goddard,   

    From Goddard: “Underground Magma Ocean Could Explain Io’s ‘Misplaced’ Volcanoes” 

    NASA Goddard Banner
    Goddard Space Flight Center

    Sep. 10, 2015
    William Steigerwald
    NASA’s Goddard Space Flight Center

    1
    This five-frame sequence of images from the New Horizons spacecraft captures the giant plume from Io’s Tvashtar volcano. Credits: NASA/JHU Applied Physics Laboratory/Southwest Research Institute

    “This is the first time the amount and distribution of heat produced by fluid tides in a subterranean magma ocean on Io has been studied in detail,” said Robert Tyler of the University of Maryland, College Park and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “We found that the pattern of tidal heating predicted by our fluid-tide model is able to produce the surface heat patterns that are actually observed on Io.” Tyler is lead author of a paper on this research published June 2015 in the Astrophysical Journal Supplement Series.

    Io is the most volcanically active world in the solar system, with hundreds of erupting volcanoes blasting fountains of lava up to 250 miles (about 400 kilometers) high. The intense geological activity is the result of heat produced by a gravitational tug-of-war between Jupiter’s massive gravity and other smaller but precisely timed pulls from Europa, a neighboring moon to Io that orbits further from Jupiter. Io orbits faster, completing two orbits every time Europa finishes one. This regular timing means that Io feels the strongest gravitational pull from its neighbor in the same orbital location, which distorts Io’s orbit into an oval shape. This modified orbit causes Io to flex as it moves around Jupiter, causing material within Io to shift position and generate heat by friction, just as rubbing your hands together briskly makes them warmer.

    2
    This is a composite image of Io and Europa taken March 2, 2007 with the New Horizons spacecraft. Here Io is at the top with three volcanic plumes visible. The 300-kilometer (190-mile) high plume from the Tvashtar volcano is at the 11 o’clock position on Io’s disk, with a smaller plume from the volcano Prometheus at the 9 o’clock position on the edge of Io’s disk, and the volcano Amirani between them along the line dividing day and night. Credits: NASA/JHU Applied Physics Laboratory/Southwest Research Institute

    Previous theories of how this heat is generated within Io treated the moon as a solid but deformable object, somewhat like clay. However, when scientists compared computer models using this assumption to a map of the actual volcano locations on Io, they discovered that most of the volcanoes were offset 30 to 60 degrees to the East of where the models predicted the most intense heat should be produced.

    The pattern was too consistent to write it off as a simple anomaly, such as magma flowing diagonally through cracks and erupting nearby. “It’s hard to explain the regular pattern we see in so many volcanoes, all shifting in the same direction, using just our classical solid-body tidal heating models,” said Wade Henning of the University of Maryland and NASA Goddard, a co-author of the paper.

    The mystery of Io’s misplaced volcanoes called for a different explanation—one that had to do with the interaction between heat produced by fluid flow and heat from solid-body tides.

    “Fluids – particularly ‘sticky’ (or viscous) fluids – can generate heat through frictional dissipation of energy as they move,” said co-author Christopher Hamilton of the University of Arizona, Tucson. The team thinks much of the ocean layer is likely a partially molten slurry or matrix with a mix of molten and solid rock. As the molten rock flows under the influence of gravity, it may swirl and rub against the surrounding solid rock, generating heat. “This process can be extremely effective for certain combinations of layer thickness and viscosity which can generate resonances that enhance heat production,” said Hamilton.

    The team thinks a combination of fluid and solid tidal heating effects may best explain all the volcanic activity observed on Io. “The fluid tidal heating component of a hybrid model best explains the equatorial preference of volcanic activity and the eastward shift in volcano concentrations, while simultaneous solid-body tidal heating in the deep-mantle could explain the existence of volcanoes at high latitudes,” said Henning. “Both solid and fluid tidal activity generate conditions that favor each other’s existence, such that previous studies might have been only half the story for Io.”

    The new work also has implications for the search for extraterrestrial life. Certain tidally stressed moons in the outer solar system, such as Europa and Saturn’s moon Enceladus, harbor oceans of liquid water beneath their icy crusts. Scientists think life might originate in such oceans if they have other key ingredients thought to be necessary, such as chemically available energy sources and raw materials, and they have existed long enough for life to form. The new work suggests that such subsurface oceans, whether composed of water or of any other liquid, will be more common and last longer than expected, both within our solar system and beyond.

    Just as a precisely timed push on a swing will make it go higher, oceans can fall into a resonance state and sometimes produce significant heat through tidal flow. “Long-term changes in heating or cooling rates within a subsurface ocean are likely to produce a combination of ocean layer thickness and viscosity that generates a resonance and produces considerable heat,” said Hamilton. “Therefore the mystery may be not how such subsurface oceans could survive, but how they could perish. Consequently, subsurface oceans within Io and other satellites could be even more common than what we’ve been able to observe so far.”

    The research was funded by a grant from the NASA Outer Planets Research program.

    For earlier related Io volcano research, visit:

    http://www.nasa.gov/topics/solarsystem/features/io-volcanoes-displaced.html

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.

    NASA Goddard Campus
    NASA/Goddard Campus
    NASA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 534 other followers

%d bloggers like this: