Tagged: NASA Fermi Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:32 am on May 13, 2016 Permalink | Reply
    Tags: , , NASA Fermi,   

    From NASA Fermi: “NASA’s Fermi Telescope Helps Link Cosmic Neutrino to Blazar Blast” 

    NASA Fermi Banner

    NASA/Fermi Telescope
    Fermi

    April 28, 2016
    By Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Nearly 10 billion years ago, the black hole at the center of a galaxy known as PKS B1424-418 produced a powerful outburst. Light from this blast began arriving at Earth in 2012. Now astronomers using data from NASA’s Fermi Gamma-ray Space Telescope and other space- and ground-based observatories have shown that a record-breaking neutrino seen around the same time likely was born in the same event.


    Access mp4 video here.
    NASA Goddard scientist Roopesh Ojha explains how Fermi and TANAMI uncovered the first plausible link between a blazar eruption and a neutrino from deep space. Credits: NASA’s Goddard Space Flight Center

    “Neutrinos are the fastest, lightest, most unsociable and least understood fundamental particles, and we are just now capable of detecting high-energy ones arriving from beyond our galaxy,” said Roopesh Ojha, a Fermi team member at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a coauthor of the study. “Our work provides the first plausible association between a single extragalactic object and one of these cosmic neutrinos.”

    Although neutrinos far outnumber all the atoms in the universe, they rarely interact with matter, which makes detecting them quite a challenge. But this same property lets neutrinos make a fast exit from places where light cannot easily escape — such as the core of a collapsing star — and zip across the universe almost completely unimpeded. Neutrinos can provide information about processes and environments that simply aren’t available through a study of light alone.

    The IceCube Neutrino Observatory, built into a cubic kilometer of clear glacial ice at the South Pole, detects neutrinos when they interact with atoms in the ice.

    U Wisconsin ICECUBE neutrino detector
    IceCube neutrino detector interior
    U Wisconsin ICECUBE neutrino detector

    This triggers a cascade of fast-moving charged particles that emit a faint glow, called Cerenkov light, as they travel, which is picked up by thousands of optical sensors strung throughout IceCube. Scientists determine the energy of an incoming neutrino by the amount of light its particle cascade emits.

    To date, the IceCube science team has detected about a hundred very high-energy neutrinos and nicknamed some of the most extreme events after characters on the children’s TV series “Sesame Street.” On Dec. 4, 2012, IceCube detected an event known as Big Bird, a neutrino with an energy exceeding 2 quadrillion electron volts (PeV). To put that in perspective, it’s more than a million million times greater than the energy of a dental X-ray packed into a single particle thought to possess less than a millionth the mass of an electron. Big Bird was the highest-energy neutrino ever detected at the time and still ranks second.

    Where did it come from? The best IceCube position only narrowed the source to a patch of the southern sky about 32 degrees across, equivalent to the apparent size of 64 full moons.

    Enter Fermi. Starting in the summer of 2012, the satellite’s Large Area Telescope (LAT) witnessed a dramatic brightening of PKS B1424-418, an active galaxy classified as a gamma-ray blazar.

    NASA/Fermi LAT
    NASA/Fermi LAT

    An active galaxy is an otherwise typical galaxy with a compact and unusually bright core. The excess luminosity of the central region is produced by matter falling toward a supermassive black hole weighing millions of times the mass of our sun. As it approaches the black hole, some of the material becomes channeled into particle jets moving outward in opposite directions at nearly the speed of light. In blazars, one of these jets happens to point almost directly toward Earth.

    l
    Left
    r
    Right

    Fermi LAT images showing the gamma-ray sky around the blazar PKS B1424-418. Brighter colors indicate greater numbers of gamma rays. The dashed arc marks part of the source region established by IceCube for the Big Bird neutrino (50-percent confidence level). Left: An average of LAT data centered on July 8, 2011, and covering 300 days when the blazar was inactive. Right: An average of 300 active days centered on Feb. 27, 2013, when PKS B1424-418 was the brightest blazar in this part of the sky. Credits: NASA/DOE/LAT Collaboration

    During the year-long outburst, PKS B1424-418 shone between 15 and 30 times brighter in gamma rays than its average before the eruption. The blazar is located within the Big Bird source region, but then so are many other active galaxies detected by Fermi.

    The scientists searching for the neutrino source then turned to data from a long-term observing program named TANAMI. Since 2007, TANAMI has routinely monitored nearly 100 active galaxies in the southern sky, including many flaring sources detected by Fermi. The program includes regular radio observations using the Australian Long Baseline Array (LBA) and associated telescopes in Chile, South Africa, New Zealand and Antarctica. When networked together, they operate as a single radio telescope more than 6,000 miles across and provide a unique high-resolution look into the jets of active galaxies.

    Australian Long Baseline Array
    Australian Long Baseline Array map

    ATNF TANAMI array Australia
    ATNF TANAMI array Australia

    3
    Radio images from the TANAMI project reveal the 2012-2013 eruption of PKS B1424-418 at a wavelength of 8.4 GHz. The core of the blazar’s jet brightened by four times, producing the most dramatic blazar outburst TANAMI has observed to date. Credits: TANAMI

    Three radio observations of PKS B1424-418 between 2011 and 2013 cover the period of the Fermi outburst. They reveal that the core of the galaxy’s jet had brightened by about four times. No other galaxy observed by TANAMI over the life of the program has exhibited such a dramatic change.

    “We combed through the field where Big Bird must have originated looking for astrophysical objects capable of producing high-energy particles and light,” said coauthor Felicia Krauss, a doctoral student at the University of Erlangen-Nuremberg in Germany. “There was a moment of wonder and awe when we realized that the most dramatic outburst we had ever seen in a blazar happened in just the right place at just the right time.”

    In a paper* published Monday, April 18, in Nature Physics, the team suggests the PKS B1424-418 outburst and Big Bird are linked, calculating only a 5-percent probability the two events occurred by chance alone. Using data from Fermi, NASA’s Swift and WISE satellites, the LBA and other facilities, the researchers determined how the energy of the eruption was distributed across the electromagnetic spectrum and showed that it was sufficiently powerful to produce a neutrino at PeV energies.

    NASA/SWIFT Telescope
    NASA/SWIFT Telescope

    NASA/Wise Telescope
    NASA/Wise Telescope

    “Taking into account all of the observations, the blazar seems to have had means, motive and opportunity to fire off the Big Bird neutrino, which makes it our prime suspect,” said lead author Matthias Kadler, a professor of astrophysics at the University of Wuerzburg in Germany.

    Francis Halzen, the principal investigator of IceCube at the University of Wisconsin–Madison, and not involved in this study, thinks the result is an exciting hint of things to come. “IceCube is about to send out real-time alerts when it records a neutrino that can be localized to an area a little more than half a degree across, or slightly larger than the apparent size of a full moon,” he said. “We’re slowly opening a neutrino window onto the cosmos.”

    For more information about NASA’s Fermi, visit:

    http://www.nasa.gov/fermi

    *Science paper:
    Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

     
  • richardmitnick 2:57 pm on May 1, 2016 Permalink | Reply
    Tags: , , , NASA Fermi, ,   

    From Science Alert: “Astronomers might have finally detected where mysterious, extragalactic neutrinos are coming from” 

    ScienceAlert

    Science Alert

    29 APR 2016
    FIONA MACDONALD

    3
    NASA/DOE/LAT Collaboration

    Just over three years ago, physicists working in Antarctica announced they’d detected the first evidence of mysterious subatomic particles, known as neutrinos, coming from outside our galaxy. It was a huge moment for astrophysics, but since then, no one’s quite been able to figure out where those particles are coming from, and what’s sending them hurtling our way.

    Until now, that is – a team of astronomers has just identified the possible source of one these extragalactic visitors, and it appears that it started its journey to us nearly 10 billion years ago, when a massive explosion erupted in a galaxy far, far away (seriously, George Lucas couldn’t make this stuff up).

    Let’s step back for a second here though and explain why this is a big deal. Neutrinos are arguably the weirdest of the fundamental subatomic particles. They don’t have any mass, they’re incredibly fast, and they’re pretty much invisible, because they hardly ever interact with matter. Like tiny ghosts, billions of neutrinos per second are constantly flowing through us, and we never even know about it.

    In order to detect them, researchers have step up extravagant labs, like the IceCube Neutrino Observatory at the South Pole, where they wait patiently to capture glimpses of neutrinos streaking through the planet, and measure how energetic they are, to try to work out where they came from.

    U Wisconsin ICECUBE neutrino detector
    IceCube neutrino detector interior
    U Wisconsin ICECUBE neutrino detector

    Usually that source is radioactive decay here on Earth or inside the Sun, or maybe from the black hole at the centre of our galaxy. But in 2013, the IceCube researchers announced they’d detected a couple of neutrinos so unimaginably energetic, they knew they must have come from outside our galaxy.

    These neutrinos were named ‘Bert’ and ‘Ernie’ (seriously) and they were the first evidence of extragalactic neutrinos. Their discovery was followed by the detection of a couple of dozen more, slightly less energetic, extragalactic neutrinos over the coming months.

    Then at the end of 2012, they spotted ‘Big Bird’. At the time it was the most energetic neutrino ever detected, with energy exceeding 2 quadrillion electron volts – that’s more than a million million times greater than the energy of a dental X-ray. Not bad for a massless ghost particle.

    Since then, teams across the world have been working to figure out where the hell this anomaly had come from. And now we might finally have a suspect.

    “It’s like a crime scene investigation,” said lead researcher Matthias Kadler from the University of Würzburg in Germany, “The case involves an explosion, a suspect, and various pieces of circumstantial evidence.”

    Using that circumstantial evidence, the best astronomers could do at the time was narrow the source down to a patch of the southern sky about 32 degrees across – roughly the size of 64 full moons.

    That sounds pretty specific, but an area that size in the night sky covers a whole lot of galaxies, and researchers had the tough job of sifting through all that data to figure out what happened in one of those galaxies to send Big Bird to us.

    They now think they have their answer – a huge explosion known as a blazar, which occurred in a galaxy called PKS B1424-418 around 10 billion years ago, but was only detected by our telescopes between 2011 and 2013 because of how far away it is.

    Blazar NASA Fermi Gamma ray Space Telescope Credits M. Weiss CfA
    Blazar. NASA Fermi Gamma ray Space Telescope. Credits M. Weiss/CfA

    A blazar is one of the most energetic events in the known Universe, and it occurs when a galaxy’s material falls towards the supermassive black hole at its centre, and some of that material ends up being blasted in huge jets directly towards Earth.

    Publishing* in Nature Physics, the team has now calculated that there’s only a 5 percent chance that Big Bird and the blazar at PKS B1424-418 coincidentally hit Earth at the same time, but weren’t linked.

    “Taking into account all of the observations, the blazar seems to have had means, motive and opportunity to fire off the Big Bird neutrino, which makes it our prime suspect,” said Kadler.

    The fact that these two individually fascinating events are associated is pretty exciting in itself.

    “There was a moment of wonder and awe when we realised that the most dramatic outburst we had ever seen in a blazar happened in just the right place at just the right time,” said co-author Felicia Krauß, from the University of Erlangen-Nürnberg.

    This hypothesis now needs to be independently verified before we can say for sure where Big Bird, and potentially other extragalactic neutrinos, come from. But it’s pretty exciting that we might finally, finally be getting close to understanding more about these enigmatic subatomic particles.

    Francis Halzen, who’s the principal investigator of IceCube, and wasn’t involved in this study, thinks the research heralds in an exciting new time in neutrino research.

    “IceCube is about to send out real-time alerts when it records a neutrino that can be localised to an area a little more than half a degree across, or slightly larger than the apparent size of a full moon,” he explains. “We’re slowly opening a neutrino window onto the cosmos.” Bring it on.

    *Science paper:
    Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:28 pm on April 29, 2016 Permalink | Reply
    Tags: , , , NASA Fermi   

    From Fermi: “NASA’s Fermi Telescope Poised to Pin Down Gravitational Wave Sources” 

    NASA Fermi Banner

    NASA/Fermi Telescope
    NASA Fermi

    April 18, 2016
    By Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland

    On Sept. 14, waves of energy traveling for more than a billion years gently rattled space-time in the vicinity of Earth. The disturbance, produced by a pair of merging black holes, was captured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities in Hanford, Washington, and Livingston, Louisiana. This event marked the first-ever detection of gravitational waves and opens a new scientific window on how the universe works.

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib
    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    Caltech/MIT Advanced aLIGO Hanford Washington USA installation
    Caltech/MIT Advanced aLIGO Hanford Washington USA installation

    Less than half a second later, the Gamma-ray Burst Monitor (GBM) on NASA’s Fermi Gamma-ray Space Telescope picked up a brief, weak burst of high-energy light consistent with the same part of the sky. Analysis of this burst suggests just a 0.2-percent chance of simply being random coincidence. Gamma-rays arising from a black hole merger would be a landmark finding because black holes are expected to merge “cleanly,” without producing any sort of light.


    Access mp4 video here .
    This visualization shows gravitational waves emitted by two black holes (black spheres) of nearly equal mass as they spiral together and merge. Yellow structures near the black holes illustrate the strong curvature of space-time in the region. Orange ripples represent distortions of space-time caused by the rapidly orbiting masses. These distortions spread out and weaken, ultimately becoming gravitational waves (purple). The merger timescale depends on the masses of the black holes. For a system containing black holes with about 30 times the sun’s mass, similar to the one detected by LIGO in 2015, the orbital period at the start of the movie is just 65 milliseconds, with the black holes moving at about 15 percent the speed of light. Space-time distortions radiate away orbital energy and cause the binary to contract quickly. As the two black holes near each other, they merge into a single black hole that settles into its “ringdown” phase, where the final gravitational waves are emitted. For the 2015 LIGO detection, these events played out in little more than a quarter of a second. This simulation was performed on the Pleiades supercomputer at NASA’s Ames Research Center. Credits: NASA/J. Bernard Kelly (Goddard), Chris Henze (Ames) and Tim Sandstrom (CSC Government Solutions LLC)

    “This is a tantalizing discovery with a low chance of being a false alarm, but before we can start rewriting the textbooks we’ll need to see more bursts associated with gravitational waves from black hole mergers,” said Valerie Connaughton, a GBM team member at the Universities Space Research Association’s Science and Technology Institute in Huntsville, Alabama, and lead author of a paper* on the burst now under review by The Astrophysical Journal.

    Detecting light from a gravitational wave source will enable a much deeper understanding of the event. Fermi’s GBM sees the entire sky not blocked by Earth and is sensitive to X-rays and gamma rays with energies between 8,000 and 40 million electron volts (eV). For comparison, the energy of visible light ranges between about 2 and 3 eV.

    2
    This image, taken in May 2008 as the Fermi Gamma-ray Space Telescope was being readied for launch, highlights the detectors of its Gamma-ray Burst Monitor (GBM). The GBM is an array of 14 crystal detectors. Credits: NASA/Jim Grossmann

    With its wide energy range and large field of view, the GBM is the premier instrument for detecting light from short gamma-ray bursts (GRBs), which last less than two seconds. They are widely thought to occur when orbiting compact objects, like neutron stars and black holes, spiral inward and crash together.

    Black holes merging Swinburne Astronomy Productions
    Black holes merging Swinburne Astronomy Productions

    These same systems also are suspected to be prime producers of gravitational waves.

    “With just one joint event, gamma rays and gravitational waves together will tell us exactly what causes a short GRB,” said Lindy Blackburn, a postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and a member of the LIGO Scientific Collaboration. “There is an incredible synergy between the two observations, with gamma rays revealing details about the source’s energetics and local environment and gravitational waves providing a unique probe of the dynamics leading up to the event.” He will be discussing the burst and how Fermi and LIGO are working together in an invited talk at the American Physical Society meeting in Salt Lake City on Tuesday.

    Currently, gravitational wave observatories possess relatively blurry vision. This will improve in time as more facilities begin operation, but for the September event, dubbed GW150914 after the date, LIGO scientists could only trace the source to an arc of sky spanning an area of about 600 square degrees, comparable to the angular area on Earth occupied by the United States.

    “That’s a pretty big haystack to search when your needle is a short GRB, which can be fast and faint, but that’s what our instrument is designed to do,” said co-author Eric Burns, a GBM team member and graduate student at the University of Alabama in Huntsville. “A GBM detection allows us to whittle down the LIGO area and substantially shrinks the haystack.”


    Access mp4 video here .
    Fermi’s GBM saw a fading X-ray flash at nearly the same moment LIGO detected gravitational waves from a black hole merger in 2015. This movie shows how scientists can narrow down the location of the LIGO source on the assumption that the burst is connected to it. In this case, the LIGO search area is reduced by two-thirds. Greater improvements are possible in future detections.
    Credits: NASA’s Goddard Space Flight Center

    Less than half a second after LIGO detected gravitational waves, the GBM picked up a faint pulse of high-energy X-rays lasting only about a second. The burst effectively occurred beneath Fermi and at a high angle to the GBM detectors, a situation that limited their ability to establish a precise position. Fortunately, Earth blocked a large swath of the burst’s likely location as seen by Fermi at the time, allowing scientists to further narrow down the burst’s position.

    The GBM team calculates less than a 0.2-percent chance random fluctuations would have occurred in such close proximity to the merger. Assuming the events are connected, the GBM localization and Fermi’s view of Earth combine to reduce the LIGO search area by about two-thirds, to 200 square degrees. With a burst better placed for the GBM’s detectors, or one bright enough to be seen by Fermi’s Large Area Telescope, even greater improvements are possible.

    The LIGO event was produced by the merger of two relatively large black holes, each about 30 times the mass of the sun. Binary systems with black holes this big were not expected to be common, and many questions remain about the nature and origin of the system.

    Black hole mergers were not expected to emit significant X-ray or gamma-ray signals because orbiting gas is needed to generate light. Theorists expected any gas around binary black holes would have been swept up long before their final plunge. For this reason, some astronomers view the GBM burst as most likely a coincidence and unrelated to GW150914. Others have developed alternative scenarios where merging black holes could create observable gamma-ray emission. It will take further detections to clarify what really happens when black holes collide.

    Albert Einstein predicted the existence of gravitational waves in his general theory of relativity a century ago, and scientists have been attempting to detect them for 50 years. Einstein pictured these waves as ripples in the fabric of space-time produced by massive, accelerating bodies, such as black holes orbiting each other. Scientists are interested in observing and characterizing these waves to learn more about the sources producing them and about gravity itself.

    NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    For more information about NASA’s Fermi Gamma-ray Space Telescope, please visit:

    http://www.nasa.gov/fermi

    *Science paper:
    Fermi GBM Observations of LIGO Gravitational Wave event GW150914

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Fermi Gamma-ray Space Telescope , formerly referred to as the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden.

     
  • richardmitnick 6:29 pm on April 18, 2016 Permalink | Reply
    Tags: , , , , NASA Fermi   

    From NASA Fermi: “NASA’s Fermi Telescope Poised to Pin Down Gravitational Wave Sources” 

    NASA Fermi Banner

    NASA/Fermi Telescope
    NASA Fermi

    April 18, 2016
    Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland

    On Sept. 14, waves of energy traveling for more than a billion years gently rattled space-time in the vicinity of Earth. The disturbance, produced by a pair of merging black holes, was captured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities in Hanford, Washington, and Livingston, Louisiana.

    Black holes merging Swinburne Astronomy Productions
    Black holes merging Swinburne Astronomy Productions

    Cornell SXS team. Two merging black holes simulation
    Cornell SXS team. Two merging black holes simulation

    MIT/Caltech Advanced aLIGO Hanford Washington USA installation
    MIT/Caltech Advanced aLIGO Hanford Washington USA installation

    This event marked the first-ever detection of gravitational waves and opens a new scientific window on how the universe works.

    Less than half a second later, the Gamma-ray Burst Monitor (GBM) on NASA’s Fermi Gamma-ray Space Telescope picked up a brief, weak burst of high-energy light consistent with the same part of the sky. Analysis of this burst suggests just a 0.2-percent chance of simply being random coincidence. Gamma-rays arising from a black hole merger would be a landmark finding because black holes are expected to merge “cleanly,” without producing any sort of light.


    Access mp4 video here . This visualization shows gravitational waves emitted by two black holes (black spheres) of nearly equal mass as they spiral together and merge. Yellow structures near the black holes illustrate the strong curvature of space-time in the region. Orange ripples represent distortions of space-time caused by the rapidly orbiting masses. These distortions spread out and weaken, ultimately becoming gravitational waves (purple). The merger timescale depends on the masses of the black holes. For a system containing black holes with about 30 times the sun’s mass, similar to the one detected by LIGO in 2015, the orbital period at the start of the movie is just 65 milliseconds, with the black holes moving at about 15 percent the speed of light. Space-time distortions radiate away orbital energy and cause the binary to contract quickly. As the two black holes near each other, they merge into a single black hole that settles into its “ringdown” phase, where the final gravitational waves are emitted. For the 2015 LIGO detection, these events played out in little more than a quarter of a second. This simulation was performed on the Pleiades supercomputer at NASA’s Ames Research Center. Credits: NASA/J. Bernard Kelly (Goddard), Chris Henze (Ames) and Tim Sandstrom (CSC Government Solutions LLC)

    “This is a tantalizing discovery with a low chance of being a false alarm, but before we can start rewriting the textbooks we’ll need to see more bursts associated with gravitational waves from black hole mergers,” said Valerie Connaughton, a GBM team member at the National Space, Science and Technology Center in Huntsville, Alabama, and lead author of a paper on the burst now under review by The Astrophysical Journal.

    Detecting light from a gravitational wave source will enable a much deeper understanding of the event. Fermi’s GBM sees the entire sky not blocked by Earth and is sensitive to X-rays and gamma rays with energies between 8,000 and 40 million electron volts (eV). For comparison, the energy of visible light ranges between about 2 and 3 eV.

    NASA Fermi Gamma-ray Space Telescope  Gamma-ray Burst Monitor (GBM)
    NASA Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor (GBM)

    With its wide energy range and large field of view, the GBM is the premier instrument for detecting light from short gamma-ray bursts (GRBs), which last less than two seconds. They are widely thought to occur when orbiting compact objects, like neutron stars and black holes, spiral inward and crash together. These same systems also are suspected to be prime producers of gravitational waves.

    “With just one joint event, gamma rays and gravitational waves together will tell us exactly what causes a short GRB,” said Lindy Blackburn, a postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and a member of the LIGO Scientific Collaboration. “There is an incredible synergy between the two observations, with gamma rays revealing details about the source’s energetics and local environment and gravitational waves providing a unique probe of the dynamics leading up to the event.” He will be discussing the burst and how Fermi and LIGO are working together in an invited talk at the American Physical Society meeting in Salt Lake City on Tuesday.

    Currently, gravitational wave observatories possess relatively blurry vision. This will improve in time as more facilities begin operation, but for the September event, dubbed GW150914 after the date, LIGO scientists could only trace the source to an arc of sky spanning an area of about 600 square degrees, comparable to the angular area on Earth occupied by the United States.

    “That’s a pretty big haystack to search when your needle is a short GRB, which can be fast and faint, but that’s what our instrument is designed to do,” said Eric Burns, a GBM team member at the University of Alabama in Huntsville. “A GBM detection allows us to whittle down the LIGO area and substantially shrinks the haystack.”


    Access mp4 video here. Fermi’s GBM saw a fading X-ray flash at nearly the same moment LIGO detected gravitational waves from a black hole merger in 2015. This movie shows how scientists can narrow down the location of the LIGO source on the assumption that the burst is connected to it. In this case, the LIGO search area is reduced by two-thirds. Greater improvements are possible in future detections. Credits: NASA’s Goddard Space Flight Center

    Less than half a second after LIGO detected gravitational waves, the GBM picked up a faint pulse of high-energy X-rays lasting only about a second. The burst effectively occurred beneath Fermi and at a high angle to the GBM detectors, a situation that limited their ability to establish a precise position. Fortunately, Earth blocked a large swath of the burst’s likely location as seen by Fermi at the time, allowing scientists to further narrow down the burst’s position.

    The GBM team calculates less than a 0.2-percent chance random fluctuations would have occurred in such close proximity to the merger. Assuming the events are connected, the GBM localization and Fermi’s view of Earth combine to reduce the LIGO search area by about two-thirds, to 200 square degrees. With a burst better placed for the GBM’s detectors, or one bright enough to be seen by Fermi’s Large Area Telescope, even greater improvements are possible.

    The LIGO event was produced by the merger of two relatively large black holes, each about 30 times the mass of the sun. Binary systems with black holes this big were not expected to be common, and many questions remain about the nature and origin of the system.

    Black hole mergers were not expected to emit significant X-ray or gamma-ray signals because orbiting gas is needed to generate light. Theorists expected any gas around binary black holes would have been swept up long before their final plunge. For this reason, some astronomers view the GBM burst as most likely a coincidence and unrelated to GW150914. Others have developed alternative scenarios where merging black holes could create observable gamma-ray emission. It will take further detections to clarify what really happens when black holes collide.

    Albert Einstein predicted the existence of gravitational waves in his general theory of relativity a century ago, and scientists have been attempting to detect them for 50 years. Einstein pictured these waves as ripples in the fabric of space-time produced by massive, accelerating bodies, such as black holes orbiting each other. Scientists are interested in observing and characterizing these waves to learn more about the sources producing them and about gravity itself.

    For more information about NASA’s Fermi Gamma-ray Space Telescope, please visit:

    http://www.nasa.gov/fermi

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Fermi Gamma-ray Space Telescope , formerly referred to as the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden.

     
  • richardmitnick 4:37 pm on April 18, 2016 Permalink | Reply
    Tags: , , , , NASA Fermi   

    From AAS NOVA: “Found: A Galaxy’s Missing Gamma Rays” 

    AASNOVA

    American Astronomical Society

    1
    Recent observations have detected high-energy gamma-ray emission for the first time from the massive, star-forming galaxy Arp 220 (shown here in optical wavelengths, as imaged by Hubble). [NASA/ESA/C. Wilson (McMaster University)]

    NASA/ESA Hubble Telescope
    NASA/ESA Hubble Telescope

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy.

    NASA/Fermi Telescope
    NASA/Fermi Telescope

    This discovery reveals more about how supernovae interact with their environments.

    Colliding Supernova Remnant

    Supernova remnant Crab nebula. NASA/ESA Hubble
    Supernova remnant Crab nebula. NASA/ESA Hubble

    After a stellar explosion, the supernova’s ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays — high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernova’s explosion power goes into accelerating these cosmic rays?

    In theory, one way to answer this is by looking for gamma rays.

    Gamma rays from the Fermi Gamma-ray Space Telescope, could be produced by proposed dark matter interactions
    Gamma rays from the Fermi Gamma-ray Space Telescope, could be produced by proposed dark matter interactions

    In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.

    Pass 8 to the Rescue

    Observational tests of this model, however, have been stumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though we’ve looked, gamma-ray emission has never been detected from this galaxy … until now.

    In a recent study*, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!

    2
    Gamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220’s luminosities are consistent with the scaling relation. [Peng et al. 2016]

    Acceleration Efficiency

    Peng and collaborators argue that this emission is due solely to cosmic-ray interactions with interstellar gas. This picture is supported by the lack of variability in the emission, and the fact that Arp 220’s gamma-ray luminosity is consistent with the scaling relation between gamma-ray and infrared luminosity for star-forming galaxies. The authors also argue that, due to Arp 220’s high gas density, all cosmic rays will interact with the gas before escaping.

    Under these two assumptions, Peng and collaborators use the gamma-ray luminosity and the known supernova rate in Arp 220 to estimate how efficiently cosmic rays are accelerated by supernova remnants in the galaxy. They determine that 4.2 ± 2.6% of the supernova remnant’s kinetic energy is used to accelerate cosmic rays above 1 GeV.

    This is the first time such a rate has been measured directly from gamma-ray emission, but it’s consistent with estimates of 3-10% efficiency in the Milky Way. Future analysis of other ultraluminous infrared galaxies like Arp 220 with Fermi (and Pass 8!) will hopefully reveal more about these recent-merger, starburst environments.

    Fang-Kun Peng et al 2016* ApJ 821 L20. doi:10.3847/2041-8205/821/2/L20

    Science paper:
    THE FIRST DETECTION OF GeV EMISSION FROM AN ULTRALUMINOUS INFRARED GALAXY: Arp 220 AS SEEN WITH THE FERMI LARGE AREA TELESCOPE

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 12:49 pm on February 3, 2016 Permalink | Reply
    Tags: , , , NASA Fermi   

    From AAS NOVA: “Upgrading Fermi Without Traveling to Space” 

    AASNOVA

    Amercan Astronomical Society

    3 February 2016
    Susanna Kohler

    NASA Fermi Telescope
    NASA Fermi

    Fermi Lat sky image
    This image, constructed from 6+ years of observations by NASA’s Fermi Gamma-ray Space Telescope, is the first to show how the entire sky appears at energies between 50 GeV and 2 TeV. A recent improvement to Fermi-LAT’s data analysis software has significantly increased the instrument’s sensitivity, resulting in this spectacular high-energy sky map. [NASA/DOE/Fermi LAT Collaboration]

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has received an upgrade that increased its sensitivity by a whopping 40% — and nobody had to travel to space to make it happen!

    NASA Fermi LAT
    Fermi LAT

    The difference instead stems from remarkable improvement to the software used to analyze Fermi-LAT’s data, and it has resulted in a new high-energy map of our sky.

    Pass 8

    Fermi-LAT has been surveying the whole sky since August 2008. It detects gamma-ray photons by converting them into electron-positron pairs and tracking the paths of these charged particles. But differentiating this signal from the charged cosmic rays that also pass through the detector — with a flux that can be 10,000 times larger! — is a challenging process. Making this distinction and rebuilding the path of the original gamma ray relies on complex analysis software.

    Pass 8” is a complete reprocessing of all data collected by Fermi-LAT. The software has gone through many revisions before now, but this is the first revision that has taken into account all of the experience that the Fermi team has gained operating the LAT in its orbital environment.

    The improvements made in Pass 8 include better background rejection of misclassified charged particles, improvements to the point spread function and effective area of the detector, and an extension of the effective energy range from below 100 MeV to beyond a few hundred GeV. The changes made in Pass 8 have increased the sensitivity of Fermi-LAT by an astonishing 40%.

    Map of the High-Energy Sky

    The first result from the improvements of Pass 8 is 2FHL, the second catalog of high-energy Fermi sources, constructed from 80 months of data from Fermi-LAT. The 2FHL catalog contains 360 sources from across the sky in the 50 GeV–2TeV range. Here are just a few details:

    47 of the sources are new — they have not previously been detected by Fermi or ground-based gamma-ray detectors.
    86% of the sources can be associated with counterparts at other wavelengths. This includes
    75% that are active galactic nuclei, and
    11% that originate in our galaxy, the majority of which are associated with objects at the final stage of stellar evolution, such as pulsar wind nebulae. and supernova remnants.

    Because the quality of Fermi-LAT’s observations is limited by the number of photons collected, longer observing time will only serve to improve the detections in this catalog. And since only 22% of the 2FHL sources have been observed by ground-based gamma-ray detectors (which have much more limited fields of view), this catalog provides an excellent list of candidates that these detectors can now follow up at very high energies.

    Bonus

    Want to learn more about Pass 8? Check out this video, created by the Fermi team. [NASA’s Goddard Space Flight Center]


    download mp4 video here .

    Citation

    M. Ackermann et al 2016 ApJS 222 5. doi:10.3847/0067-0049/222/1/5

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 6:08 pm on January 7, 2016 Permalink | Reply
    Tags: , , , , NASA Fermi   

    From NASA Fermi: “NASA’s Fermi Satellite Kicks Off a Blazar-detecting Bonanza” 


    Fermi

    Dec. 15, 2015
    Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland

    A long time ago in a galaxy half the universe away, a flood of high-energy gamma rays began its journey to Earth. When they arrived in April, NASA’s Fermi Gamma-ray Space Telescope caught the outburst, which helped two ground-based gamma-ray observatories detect some of the highest-energy light ever seen from a galaxy so distant. The observations provide a surprising look into the environment near a supermassive black hole at the galaxy’s center and offer a glimpse into the state of the cosmos 7 billion years ago.


    download mp4 video here .
    Explore how gamma-ray telescopes in space and on Earth captured an outburst of high-energy light from PKS 1441+25, a black-hole-powered galaxy more than halfway across the universe. Credits: NASA’s Goddard Space Flight Center

    “When we looked at all the data from this event, from gamma rays to radio, we realized the measurements told us something we didn’t expect about how the black hole produced this energy,” said Jonathan Biteau at the Nuclear Physics Institute of Orsay, France. He led the study of results from the Very Energetic Radiation Imaging Telescope Array System (VERITAS), a gamma-ray telescope in Arizona.

    Veritas Telescope
    VERITAS

    Astronomers had assumed that light at different energies came from regions at different distances from the black hole. Gamma rays, the highest-energy form of light, were thought to be produced closest to the black hole.

    “Instead, the multiwavelength picture suggests that light at all wavelengths came from a single region located far away from the power source,” Biteau explained. The observations place the area roughly five light-years from the black hole, which is greater than the distance between our sun and the nearest star.

    The gamma rays came from a galaxy known as PKS 1441+25, a type of active galaxy called a blazar. Located toward the constellation Boötes, the galaxy is so far away its light takes 7.6 billion years to reach us. At its heart lies a monster black hole with a mass estimated at 70 million times the sun’s and a surrounding disk of hot gas and dust. If placed at the center of our solar system, the black hole’s event horizon — the point beyond which nothing can escape — would extend almost to the orbit of Mars.

    As material in the disk falls toward the black hole, some of it forms dual particle jets that blast out of the disk in opposite directions at nearly the speed of light. Blazars are so bright in gamma rays because one jet points almost directly toward us, giving astronomers a view straight into the black hole’s dynamic and poorly understood realm.

    Temp 1
    Black-hole-powered galaxies called blazars are the most common sources detected by NASA’s Fermi Gamma-ray Space Telescope. As matter falls toward the supermassive black hole at the galaxy’s center, some of it is accelerated outward at nearly the speed of light along jets pointed in opposite directions. When one of the jets happens to be aimed in the direction of Earth, as illustrated here, the galaxy appears especially bright and is classified as a blazar.Credits: M. Weiss/CfA

    In April, PKS 1441+25 underwent a major eruption. Luigi Pacciani at the Italian National Institute for Astrophysics in Rome was leading a project to catch blazar flares in their earliest stages in collaboration with the Major Atmospheric Gamma-ray Imaging Cerenkov experiment (MAGIC), located on La Palma in the Canary Islands.

    MAGIC Cherenkov gamma ray telescope
    MAGIC telescope

    Using public Fermi data, Pacciani discovered the outburst and immediately alerted the astronomical community. Fermi’s Large Area Telescope revealed gamma rays up to 33 billion electron volts (GeV), reaching into the highest-energy part of the instrument’s detection range. For comparison, visible light has energies between about 2 and 3 electron volts.

    NASA Fermi LAT
    NASA/Fermi LAT

    “Detecting these very energetic gamma rays with Fermi, as well as seeing flaring at optical and X-ray energies with NASA’s Swift satellite, made it clear that PKS 1441+25 had become a good target for MAGIC,” Pacciani said.

    NASA SWIFT Telescope
    NASA/Swift

    Following up on the Fermi alert, the MAGIC team turned to the blazar and detected gamma rays with energies ranging from 40 to 250 GeV. “Because this galaxy is so far away, we didn’t have a strong expectation of detecting gamma rays with energies this high,” said Josefa Becerra Gonzalez, a researcher at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who analyzed Fermi LAT data as part of the MAGIC study. “There are fewer and fewer gamma rays at progressively higher energies, and fewer still from very distant sources.”

    The reason distance matters for gamma rays is that they convert into particles when they collide with lower-energy light. The visible and ultraviolet light from stars shining throughout the history of the universe forms a remnant glow called the extragalactic background light (EBL). For gamma rays, this is a cosmic gauntlet they must pass through to be detected at Earth. When a gamma ray encounters starlight, it transforms into an electron and a positron and is lost to astronomers. The farther away the blazar is, the less likely its highest-energy gamma rays will survive to be detected.

    Temp 2
    More distant blazars show a loss of higher-energy gamma rays thanks to the extragalactic background light (EBL), a “cosmic fog” of visible and ultraviolet starlight that permeates the universe. From studies of nearby blazars, scientists know how many gamma rays should be emitted at different energies. If a gamma ray on its way to Earth collides with lower-energy light in the EBL, it converts into a pair of particles and is lost to astronomers. As shown by the graphs at left in this illustration, the more distant the blazar, the fewer high-energy gamma rays we can detect. During the April 2015 outburst of PKS 1441+25, MAGIC and VERITAS saw rare gamma rays exceeding 100 GeV that managed to survive a journey of 7.6 billion light-years. Credits: NASA’s Goddard Space Flight Center

    Following the MAGIC discovery, VERITAS also detected gamma rays with energies approaching 200 GeV. Findings from both teams are detailed in papers published Dec. 15 in The Astrophysical Journal Letters.

    PKS 1441+25 is one of only two such distant sources for which gamma rays with energies above 100 GeV have been observed. Its dramatic flare provides a powerful glimpse into the intensity of the EBL from near-infrared to near-ultraviolet wavelengths and suggests that galaxy surveys have identified most of the sources responsible for it.

    NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    For more information about NASA’s Fermi, visit:

    http://www.nasa.gov/fermi

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:30 pm on January 7, 2016 Permalink | Reply
    Tags: , , , NASA Fermi   

    From NASA Fermi: “NASA’s Fermi Space Telescope Sharpens its High-energy Vision” 


    Fermi

    Jan. 7, 2016
    Francis Reddy
    NASA’s Goddard Space Flight Center, Greenbelt, Maryland

    Major improvements to methods used to process observations from NASA’s Fermi Gamma-ray Space Telescope have yielded an expanded, higher-quality set of data that allows astronomers to produce the most detailed census of the sky yet made at extreme energies. A new sky map reveals hundreds of these sources, including 12 that produce gamma rays with energies exceeding a trillion times the energy of visible light. The survey also discovered four dozen new sources that remain undetected at any other wavelength.

    Temp 1
    This image, constructed from more than six years of observations by NASA’s Fermi Gamma-ray Space Telescope, is the first to show how the entire sky appears at energies between 50 billion (GeV) and 2 trillion electron volts (TeV). For comparison, the energy of visible light falls between about 2 and 3 electron volts. A diffuse glow fills the sky and is brightest in the middle of the map, along the central plane of our galaxy. The famous Fermi Bubbles, first detected in 2010, appear as red extensions north and south of the galactic center and are much more pronounced at these energies.

    Temp 2
    Gamma-Ray bubbles at the center of the Milky Way. Credit: NASA’s Goddard Space Flight Center

    Discrete gamma-ray sources include pulsar wind nebulae and supernova remnants within our galaxy, as well as distant galaxies called blazars powered by supermassive black holes. Labels show the highest-energy sources, all located within our galaxy and emitting gamma rays exceeding 1 TeV.
    Credits: NASA/DOE/Fermi LAT Collaboration

    “What made this advance possible was a complete reanalysis, which we call Pass 8, of all data acquired by Fermi’s Large Area Telescope (LAT),” said Marco Ajello, a Fermi team member at Clemson University in South Carolina. “The end result is effectively a complete instrument upgrade without our ever having to leave the ground.”

    By carefully reexamining every gamma-ray and particle detection by the LAT since Fermi’s 2008 launch, scientists improved their knowledge of the detector’s response to each event and to the background environment in which it was measured. This enabled the Fermi team to find many gamma rays that previously had been missed while simultaneously improving the LAT’s ability to determine the directions of incoming gamma rays. These improvements effectively sharpen the LAT’s view while also significantly widening its useful energy range.


    download mp4 video here .
    Watch Fermi scientists explain why they’re so excited about Pass 8, a complete reprocessing of all data collected by the mission’s Large Area Telescope. This analysis increased the LAT’s sensitivity, widened its energy range, and effectively sharpened its view through improved backtracking of incoming gamma rays. Credits: NASA’s Goddard Space Flight Center

    Using 61,000 Pass 8 gamma rays collected over 80 months, Ajello and his colleagues constructed a map of the entire sky at energies ranging from 50 billion (GeV) to 2 trillion electron volts (TeV). For comparison, the energy of visible light ranges from about 2 to 3 electron volts.


    download mp4 video here .
    Tour the best view of the high-energy gamma-ray sky yet seen. This video highlights the plane of our galaxy and identifies objects producing gamma rays with energies greater than 1 TeV. Credits: NASA’s Goddard Space Flight Center

    “Of the 360 sources we cataloged, about 75 percent are blazars, which are distant galaxies sporting jets powered by supermassive black holes,” said co-investigator Alberto Domínguez at the Complutense University in Madrid. “The highest-energy sources, all located in our galaxy, are mostly remnants of supernova explosions and pulsar wind nebulae, places where rapidly rotating neutron stars accelerate particles to near the speed of light.” One famous example, the Crab Nebula, tops the list of the highest-energy Fermi sources, producing a steady drizzle of gamma rays exceeding 1 TeV.

    Astronomers think these very high-energy gamma rays are produced when lower-energy light collides with accelerated particles. This results in a small energy loss for the particle and a big gain for the light, transforming it into a gamma ray.


    download mp4 video here.
    Gamma-ray emission from the highest-energy sources detected by Fermi is likely produced by what scientists call the inverse Compton process. When an electron moving near the speed of light strikes a low-energy photon, the collision slightly slows the electron and boosts the light’s energy into the gamma-ray regime. Credits: NASA’s Goddard Space Flight Center

    For the first time, Fermi data now extend to energies previously seen only by ground-based detectors. Because ground-based telescopes have much smaller fields of view than the LAT, which scans the whole sky every three hours, they have detected only about a quarter of the objects in the catalog. This study provides ground facilities with more than 280 new targets for follow-up observations.

    “An exciting aspect of this catalog is that we find many new sources that emit gamma rays over a comparatively large patch of the sky,” explained Jamie Cohen, a University of Maryland graduate student working with the Fermi team at NASA’s Goddard Space Flight Center in Greenbelt. “Finding more of these objects enables us to probe their structures as well as better understand mechanisms that accelerate the subatomic particles that ultimately produce gamma-ray emission.” The new catalog identifies 25 of these extended objects, including three new pulsar wind nebulae and two new supernova remnants.

    Ajello presented the findings Thursday at the 227th meeting of the American Astronomical Society in Kissimmee, Florida. A paper describing the catalog has been accepted for publication in The Astrophysical Journal Supplement.

    NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    For more information about NASA’s Fermi, visit:

    http://www.nasa.gov/fermi

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:31 pm on December 25, 2015 Permalink | Reply
    Tags: , , Gama rays, NASA Fermi   

    From NASA Fermi: “NASA’s Fermi Telescope Finds Giant Structure in our Galaxy” 2010 b ut Very Interesting 

    NASA Fermi

    Nov. 9, 2010 [Just found this in a search]
    Trent Perrotto
    Headquarters, Washington
    202-358-0321
    trent.j.perrotto@nasa.gov

    Lynn Chandler
    Goddard Space Flight Center, Greenbelt, Md.
    301-286-2806
    lynn.chandler-1@nasa.gov


    Using data from NASA’s Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This feature looks like a pair of bubbles extending above and below our galaxy’s center. Each lobe is 25,000 light-years tall and the whole structure may be only a few million years old.
    Credits: NASA’s Goddard Space Flight Center
    download mp4 video here.

    1
    From end to end, the newly discovered gamma-ray bubbles extend 50,000 light-years, or roughly half of the Milky Way’s diameter, as shown in this illustration. Hints of the bubbles’ edges were first observed in X-rays (blue) by ROSAT, a Germany-led mission operating in the 1990s. The gamma rays mapped by Fermi (magenta) extend much farther from the galaxy’s plane.Credits: NASA’s Goddard Space Flight Center

    Temp 1
    When an electron moving near the speed of light strikes a low-energy photon, the collision slightly slows the electron and boosts the photon’s energy to the gamma-ray regime. Credits: NASA’s Goddard Space Flight Center

    Temp 1
    The bubbles display a spectrum with higher peak energies than the diffuse gamma-ray glow seen throughout the sky. In addition, the bubbles display sharp edges in Fermi LAT data. Both of these qualities suggest that the structure arose in a sudden, impulsive event. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

    NASA’s Fermi Gamma-ray Space Telescope has unveiled a previously unseen structure centered in the Milky Way. The feature spans 50,000 light-years and may be the remnant of an eruption from a supersized black hole at the center of our galaxy.

    NASA Fermi Telescope
    NASA’s Fermi Gamma-ray Space Telescope

    “What we see are two gamma-ray-emitting bubbles that extend 25,000 light-years north and south of the galactic center,” said Doug Finkbeiner, an astronomer at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., who first recognized the feature. “We don’t fully understand their nature or origin.”

    The structure spans more than half of the visible sky, from the constellation Virgo to the constellation Grus, and it may be millions of years old. A paper about the findings has been accepted for publication in The Astrophysical Journal.

    Finkbeiner and his team discovered the bubbles by processing publicly available data from Fermi’s Large Area Telescope (LAT).

    NASA Fermi LAT
    NASA Fermi LAT

    The LAT is the most sensitive and highest-resolution gamma-ray detector ever launched. Gamma rays are the highest-energy form of light.

    Other astronomers studying gamma rays hadn’t detected the bubbles partly because of a fog of gamma rays that appears throughout the sky. The fog happens when particles moving near the speed of light interact with light and interstellar gas in the Milky Way. The LAT team constantly refines models to uncover new gamma-ray sources obscured by this so-called diffuse emission. By using various estimates of the fog, Finkbeiner and his colleagues were able to isolate it from the LAT data and unveil the giant bubbles.

    Scientists now are conducting more analyses to better understand how the never-before-seen structure was formed. The bubble emissions are much more energetic than the gamma-ray fog seen elsewhere in the Milky Way. The bubbles also appear to have well-defined edges. The structure’s shape and emissions suggest it was formed as a result of a large and relatively rapid energy release – the source of which remains a mystery.

    One possibility includes a particle jet from the supermassive black hole at the galactic center. In many other galaxies, astronomers see fast particle jets powered by matter falling toward a central black hole. While there is no evidence the Milky Way’s black hole has such a jet today, it may have in the past. The bubbles also may have formed as a result of gas outflows from a burst of star formation, perhaps the one that produced many massive star clusters in the Milky Way’s center several million years ago.

    “In other galaxies, we see that starbursts can drive enormous gas outflows,” said David Spergel, a scientist at Princeton University in New Jersey. “Whatever the energy source behind these huge bubbles may be, it is connected to many deep questions in astrophysics.”

    Hints of the bubbles appear in earlier spacecraft data. X-ray observations from the German-led Roentgen Satellite suggested subtle evidence for bubble edges close to the galactic center, or in the same orientation as the Milky Way.

    NASA ROSAT staellite
    Roentgen Satellite

    NASA’s Wilkinson Microwave Anisotropy Probe detected an excess of radio signals at the position of the gamma-ray bubbles.

    WMAP
    NASA/WMAP

    The Fermi LAT team also revealed Tuesday the instrument’s best picture of the gamma-ray sky, the result of two years of data collection.

    “Fermi scans the entire sky every three hours, and as the mission continues and our exposure deepens, we see the extreme universe in progressively greater detail,” said Julie McEnery, Fermi project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

    “Since its launch in June 2008, Fermi repeatedly has proven itself to be a frontier facility, giving us new insights ranging from the nature of space-time to the first observations of a gamma-ray nova,” said Jon Morse, Astrophysics Division director at NASA Headquarters in Washington. “These latest discoveries continue to demonstrate Fermi’s outstanding performance.”

    For more information about Fermi, visit:

    http://www.nasa.gov/fermi

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Fermi Gamma-ray Space Telescope , formerly referred to as the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden.

     
  • richardmitnick 11:26 am on November 14, 2015 Permalink | Reply
    Tags: , , INFOWARS, NASA Fermi   

    From NASA Fermi via INFOWARS: “NASA’s Fermi Mission Finds Hints of Gamma-ray Cycle in an Active Galaxy” 


    Fermi

    1
    INFOWARS

    November 13, 2015

    1

    Astronomers using data from NASA’s Fermi Gamma-ray Space Telescope have detected hints of periodic changes in the brightness of a so-called “active” galaxy, whose emissions are powered by a supersized black hole.

    If confirmed, the discovery would mark the first years-long cyclic gamma-ray emission ever detected from any galaxy, which could provide new insights into physical processes near the black hole.

    “Looking at many years of data from Fermi’s Large Area Telescope (LAT), we picked up indications of a roughly two-year-long variation of gamma rays from a galaxy known as PG 1553+113,” said Stefano Ciprini, who coordinates the Fermi team at the Italian Space Agency’s Science Data Center (ASDC) in Rome. “This signal is subtle and has been seen over less than four cycles, so while this is tantalizing we need more observations.”

    Supermassive black holes weighing millions of times the sun’s mass lie at the hearts of most large galaxies, including our own Milky Way. In about 1 percent of these galaxies, the monster black hole radiates billions of times as much energy as the sun, emission that can vary unpredictably on timescales ranging from minutes to years. Astronomers refer to these as active galaxies.

    More than half of the gamma-ray sources seen by Fermi’s LAT are active galaxies called blazars, like PG 1553+113. As matter falls toward its supermassive black hole, some subatomic particles escape at nearly the speed of light along a pair of jets pointed in opposite directions. What makes a blazar so bright is that one of these particle jets happens to be aimed almost directly toward us.

    “In essence, we are looking down the throat of the jet, so how it varies in brightness becomes our primary tool for understanding the structure of the jet and the environment near the black hole,” said Sara Cutini, an astrophysicist at ASDC.

    Motivated by the possibility of regular gamma-ray changes, the researchers examined a decade of multiwavelength data. These included long-term optical observations from Tuorla Observatory in Finland, Lick Observatory in California, and the Catalina Sky Survey near Tucson, Arizona, as well as optical and X-ray data from NASA’s Swift spacecraft.

    Tuorla Observatory  1 meter telescope
    Tuorla Observatory 1 meter telescope interior
    Tuorla Observatory 1 meter telescope

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    UCO Lick Shane telescope

    U Arizona Catalina Sky Survey
    U Arizona Catalina Sky Survey

    NASA SWIFT Telescope
    NASA/Swift

    The team also studied observations from the Owens Valley Radio Observatory near Bishop, California, which has observed PG 1553+113 every few weeks since 2008 as part of an ongoing blazar monitoring program in support of the Fermi mission.

    Caltech Owens Valley Radio Observatory
    Caltech Owens Valley Radio Observatory

    “The cyclic variations in visible light and radio waves are similar to what we see in high-energy gamma-rays from Fermi,” said Stefan Larsson, a researcher at the Royal Institute of Technology in Stockholm and a long-time collaborator with the ASDC team. “The fact that the pattern is so consistent across such a wide range of wavelengths is an indication that the periodicity is real and not just a fluctuation seen in the gamma-ray data.”

    Ciprini, Cutini, Larsson and their colleagues published the findings in the Nov. 10 edition of The Astrophysical Journal Letters. If the gamma-ray cycle of PG 1553+113 is in fact real, they predict it will peak again in 2017 and 2019, well within Fermi’s expected operational lifetime.

    The scientists identified several scenarios that could drive periodic emission, including different mechanisms that could produce a years-long wobble in the jet of high-energy particles emanating from the black hole. The most exciting scenario involves the presence of a second supermassive black hole closely orbiting the one producing the jet we observe. The gravitational pull of the neighboring black hole would periodically tilt the inner part of its companion’s accretion disk, where gas falling toward the black hole accumulates and heats up. The result would be a slow oscillation of the jet much like that of a lawn sprinkler, which could produce the cyclic gamma-ray changes we observe.

    PG 1553+113 lies in the direction of the constellation Serpens, and its light takes about 5 billion years to reach Earth.

    NASA’s Fermi Gamma-ray Space Telescope was launched in June 2008. The mission is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy and with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 560 other followers

%d bloggers like this: