Tagged: NASA/Fermi Gamma Ray Space Telescope Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:42 pm on December 1, 2018 Permalink | Reply
    Tags: , , , , NASA/Fermi Gamma Ray Space Telescope, NASA’s Fermi Traces the History of Starlight Across the Cosmos   

    From NASA Fermi: “NASA’s Fermi Traces the History of Starlight Across the Cosmos” 

    NASA Fermi Banner

    NASA/Fermi Telescope
    From NASA Fermi

    Nov. 29, 2018

    Jeanette Kazmierczak
    jeanette.a.kazmierczak@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.


    Gamma rays from distant galaxies called blazars interact with starlight as they travel across the universe. As shown in this video, those reaching the Fermi Gamma-ray Space Telescope can help scientists learn about the history of star formation throughout the cosmos. Credits: NASA’s Goddard Space Flight Center

    One of the main goals of the Fermi mission, which celebrated its 10th anniversary in orbit this year, was to assess the extragalactic background light (EBL), a cosmic fog composed of all the ultraviolet, visible and infrared light stars have created over the universe’s history. Because starlight continues to travel across the cosmos long after its sources have burned out, measuring the EBL allows astronomers to study stellar formation and evolution separately from the stars themselves.

    “This is an independent confirmation of previous measurements of star-formation rates,” said David Thompson, Fermi’s deputy project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “In astronomy, when two completely independent methods give the same answer, that usually means we’re doing something right. In this case we’re measuring star formation without looking at stars at all but by observing gamma rays that have traveled across the cosmos.”

    Gamma rays are the highest-energy form of light. They are so energetic, in fact, that their interactions with starlight have unusual consequences. “When the right frequencies of light collide, they can convert into matter through Albert Einstein’s famous equation E=mc2,” said co-author Alberto Dominguez, an astrophysicist at Complutense University of Madrid.

    The collision between a high-energy gamma ray and infrared light, for example, transforms the energy into a pair of particles, an electron and its antimatter counterpart, a positron. The same process occurs when medium-energy gamma rays interact with visible light, and low-energy gamma rays interact with ultraviolet light. Fermi’s ability to detect gamma rays across a wide range of energies makes it uniquely suited for mapping the EBL spectrum. Enough of these interactions occur over cosmic distances that the farther back scientists look, the more evident their effects become on gamma-ray sources, enabling a deep probe of the universe’s stellar content.

    2
    This map of the entire sky shows the location of 739 blazars used in the Fermi Gamma-ray Space Telescope’s measurement of the extragalactic background light (EBL). The background shows the sky as it appears in gamma rays with energies above 10 billion electron volts, constructed from nine years of observations by Fermi’s Large Area Telescope. The plane of our Milky Way galaxy runs along the middle of the plot. Credits: NASA/DOE/Fermi LAT Collaboration

    The scientists, led by Vaidehi Paliya, a postdoctoral researcher in Ajello’s group at Clemson, examined gamma-ray signals from 739 blazars — galaxies with monster black holes at their centers — collected over nine years by Fermi’s Large Area Telescope (LAT). The measurement quintuples the number of blazars used in an earlier Fermi EBL analysis published in 2012 [Science] and includes new calculations of how the EBL builds over time, revealing the peak of star formation around 10 billion years ago.

    The new EBL measurement also provides important confirmation of previous estimates of star formation from missions that analyze many individual sources in deep galaxy surveys, like the Hubble Space Telescope. These types of surveys, however, often miss fainter stars and galaxies and cannot account for star formation that takes place in intergalactic space. These missing contributions must be estimated during each survey’s analysis.

    The EBL, though, includes starlight from all sources and avoids these problems. The Fermi result therefore provides independent confirmation that measurements using deep galaxy surveys properly account for their biases. It can also help guide future surveys from missions like the James Webb Space Telescope (JWST).

    “One of Webb’s primary objectives is to unravel what happened in the first billion years after the big bang,” said co-author Kári Helgason, an astrophysicist at the University of Iceland. “Our work places important new limits on the amount of starlight we can expect to see in those first billion years — a largely unexplored epoch in the universe — and provides a benchmark for future studies.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Fermi Gamma-ray Space Telescope , formerly referred to as the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden.

     
  • richardmitnick 2:51 pm on October 19, 2018 Permalink | Reply
    Tags: , , , , NASA/Fermi Gamma Ray Space Telescope, NASA’s Fermi Mission Energizes the Sky With Gamma-ray Constellations   

    From NASA Fermi: “NASA’s Fermi Mission Energizes the Sky With Gamma-ray Constellations” 

    NASA Fermi Banner

    NASA/Fermi Telescope
    From NASA Fermi

    Oct. 17, 2018

    Francis Reddy
    francis.j.reddy@nasa.gov
    NASA’s Goddard Space Flight Center, Greenbelt, Md.

    Long ago, sky watchers linked the brightest stars into patterns reflecting animals, heroes, monsters and even scientific instruments into what is now an official collection of 88 constellations. Now scientists with NASA’s Fermi Gamma-ray Space Telescope have devised a set of modern constellations constructed from sources in the gamma-ray sky to celebrate the mission’s 10th year of operations.

    1

    2

    3

    To explore all Fermi’s Gamma-ray Constellations, visit: https://fermi.gsfc.nasa.gov/science/constellations/

    The new constellations include a few characters from modern myths. Among them are the Little Prince, the time-warping TARDIS from “Doctor Who,” Godzilla and his heat ray, the antimatter-powered U.S.S. Enterprise from “Star Trek: The Original Series” and the Hulk, the product of a gamma-ray experiment gone awry.

    “Developing these unofficial constellations was a fun way to highlight a decade of Fermi’s accomplishments,” said Julie McEnery, the Fermi project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “One way or another, all of the gamma-ray constellations have a tie-in to Fermi science.”

    New, unofficial animated constellations appear in this image of the sky mapped by NASA’s Fermi Gamma-ray Space Telescope. Fermi scientists devised the constellations to highlight the mission’s 10th year of operations. Fermi has mapped about 3,000 gamma-ray sources — 10 times the number known before its launch and comparable to the number of bright stars in the traditional constellations.
    Credits: NASA

    Since July 2008, Fermi’s Large Area Telescope (LAT) has been scanning the entire sky each day, mapping and measuring sources of gamma rays, the highest-energy light in the universe. The emission may come from pulsars, nova outbursts, the debris of supernova explosions and giant gamma-ray bubbles located in our own galaxy, or supermassive black holes and gamma-ray bursts — the most powerful explosions in the cosmos — in others.

    “By 2015, the number of different sources mapped by Fermi’s LAT had expanded to about 3,000 — 10 times the number known before the mission,” said Goddard’s Elizabeth Ferrara, who led the constellation project. “For the first time ever, the number of known gamma-ray sources was comparable to the number of bright stars, so we thought a new set of constellations was a great way to illustrate the point.”

    The 21 gamma-ray constellations include famous landmarks — such as Sweden’s recovered warship, Vasa, the Washington Monument and Mount Fuji in Japan — in countries contributing to Fermi science. Others represent scientific ideas or tools, from Schrödinger’s Cat — both alive and dead, thanks to quantum physics — to Albert Einstein, Radio Telescope and Black Widow Spider, the namesake of a class of pulsars that evaporate their unfortunate companion stars.

    Ferrara and Daniel Kocevski, an astrophysicist now at NASA’s Marshall Space Flight Center in Huntsville, Alabama, developed a web-based interactive to showcase the constellations, with artwork from Aurore Simonnet, an illustrator at Sonoma State University in Rohnert Park, California, and a map of the whole gamma-ray sky from Fermi. Clicking on a constellation turns on its artwork and name, which includes a link to a page with more information. Other controls switch on the visible sky and selected traditional constellations.

    “Fermi is still going strong, and we are now preparing a new all-sky LAT catalog,” said Jean Ballet, a Fermi team member at the French Atomic Energy Commission in Saclay. “This will add about 2,000 sources, many varying greatly in brightness, further enriching these constellations and enlivening the high-energy sky!”

    To explore Fermi’s Gamma-ray Constellations, visit:

    https://fermi.gsfc.nasa.gov/science/constellations/

    For more about NASA’s Fermi mission, visit:

    https://www.nasa.gov/fermi

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Fermi Gamma-ray Space Telescope , formerly referred to as the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor (GBM; formerly GLAST Burst Monitor), is being used to study gamma-ray bursts. The mission is a joint venture of NASA, the United States Department of Energy, and government agencies in France, Germany, Italy, Japan, and Sweden.

     
  • richardmitnick 10:35 pm on October 12, 2018 Permalink | Reply
    Tags: , , , , , , , GRB 150101B, GRB 170817A, , NASA/Fermi Gamma Ray Space Telescope   

    From AAS NOVA: ” Two Explosions with Similar Quirks” 

    AASNOVA

    From AAS NOVA

    12 October 2018
    Susanna Kohler

    1
    Artist’s by now iconic illustration of the merger of two neutron stars, producing a short gamma-ray burst. [NSF/LIGO/Sonoma State University/A. Simonnet]

    High-energy radiation released during the merger of two neutron stars last year has left astronomers puzzled. Could a burst of gamma rays from 2015 help us to piece together a coherent picture of both explosions?

    A Burst Alone?

    When two neutron stars collided last August, forming a distinctive gravitational-wave signal and a burst of radiation detected by telescopes around the world, scientists knew that these observations would change our understanding of short gamma-ray bursts (GRBs).Though we’d previously observed thousands of GRBs, GRB 170817A was the first to have such a broad range of complementary observations — both in gravitational waves and across the electromagnetic spectrum — providing insight into its origin.

    2
    Total isotropic-equivalent energies for Fermi-detected gamma-ray bursts with known redshifts. GRB 170817A (pink star) is a factor of ~1,000 dimmer than typical short GRBs (orange points). GRB 170817A and GRB 150101B (green star) are two of the closest detected short GRBs. [Adapted from Burns et al. 2018]

    But it quickly became evident that GRB 170817A was not your typical GRB. For starters, this burst was unusually weak, appearing 1,000 times less luminous than a typical short GRB. Additionally, the behavior of this burst was unusual: instead of having only a single component, the ~2-second explosion exhibited two distinct components — first a short, hard (higher-energy) spike, and then a longer, soft (lower-energy) tail.

    The peculiarities of GRB 170817A prompted a slew of models explaining its unusual appearance. Ultimately, the question is: can our interpretations of GRB 170817A safely be applied to the general population of gamma-ray bursts? Or must we assume that GRB 170817A is a unique event, not representative of the general population?

    New analysis of a GRB from 2015 — presented in a recent study led by Eric Burns (NASA Goddard SFC) — may help to answer this question.

    A Matter of Angles

    What does a burst from 2015 have to do with the curious case of GRB 170817A? Burns and collaborators have demonstrated that this 2015 burst, GRB 150101B, exhibited the same strange behavior as GRB 170817A: its emission can be broken down into two components consisting of a short, hard spike, followed by a long, soft tail. Unlike GRB 170817A, however, GRB 150101B is not underluminous — and it lasted less than a tenth of the time.

    3
    Fermi count rates in different energy ranges showing the short hard spike and the longer soft tail in GRB 150101B. The short hard spike is visible above 50 keV (top and middle panels). The soft tail is visible in the 10–50 keV channel (bottom panel). [Burns et al. 2018]

    Intriguingly, these similarities and differences can all be explained by a single model. Burns and collaborators propose that GRB 150101B and GRB 170817A exhibit the exact same two-component behavior, and their differences in luminosity and duration can be explained by quirks of special relativity.

    High-speed outflows such as these will have different apparent luminosities and durations depending on whether we view them along their axis or slightly from the side. Burns and collaborators demonstrate that these the two bursts could easily have the same profile — but GRB 150101B was viewed nearly on-axis, whereas GRB 170817A was viewed from an angle.

    If this is true, then perhaps more GRBs have hard spikes and soft tails similar to these two; the tails may just be difficult to detect in more distant bursts. While more work remains to be done, the recognition that GRB 170817A may not be unique is an important one for understanding both its behavior and that of other short GRBs.

    Citation

    “Fermi GBM Observations of GRB 150101B: A Second Nearby Event with a Short Hard Spike and a Soft Tail,” E. Burns et al 2018 ApJL 863 L34.
    http://iopscience.iop.org/article/10.3847/2041-8213/aad813/meta


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    NASA/Fermi LAT


    NASA/Fermi Gamma Ray Space Telescope

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 9:06 pm on June 7, 2018 Permalink | Reply
    Tags: , , , , , , NASA/Fermi Gamma Ray Space Telescope   

    From Stanford University: Stanford-led international collaboration discovered an elusive neutron star 

    Stanford University Name
    From Stanford University

    June 1, 2018
    Kimberly Hickok

    Media Contact

    Amy Adams, Stanford News Service:
    (650) 497-5908,
    amyadams@stanford.edu

    Two of the most powerful telescopes in the world worked together to find the faintest millisecond pulsar ever discovered. The collaboration between the Fermi Large Area Telescope and China’s FAST radio telescope was spearheaded by Stanford physicist Peter Michelson.

    1
    The Gamma-ray sky map and integrated pulse profiles of the new MSP: Upper panel shows the region of the gamma-ray sky where the new MSP is located. Lower panel a) shows the observed radio pulses in a one-hour tracking observation of FAST. Lower panel b) shows the folded pulses from more than nine years of Fermi-LAT gamma-ray data. Credit: Pei Wang/NAOC

    China’s 500-meter Aperture Spherical radio Telescope (FAST) discovered a radio millisecond pulsar (MSP) coincident with the unassociated gamma-ray source 3FGL J0318.1+0252 in the Fermi Large Area Telescope (LAT) point-source list. This is another milestone of FAST.phys.org

    __________________________________________________
    CSIRO is a world leader in receiver design. CSIRO and engineers from the Chinese Academy of Sciences recently worked together to develop a receiver for China’s Five-hundred-meter Aperture Spherical radio Telescope (FAST). In addition, the Parkes telescope is following up radio sources detected with FAST.

    3
    Receiver in the anechoic chamber.©CSIRO

    __________________________________________________

    NASA/Fermi LAT


    NASA/Fermi Gamma Ray Space Telescope

    FAST radio telescope, now operating, located in the Dawodang depression in Pingtang county Guizhou Province, South China, https://astronomynow.com

    During the early morning hours of Feb. 17, 2018, Chinese scientists emailed data showing evidence of a rapidly spinning pulsar detected with China’s Five-hundred-meter Aperture Spherical Telescope (FAST) to the Fermi Gamma-ray Space Telescope–Large Area Telescope (LAT) team.

    “One of our collaborators in Germany, who was up at the time, used the FAST data to search in 10 years of Fermi data – and boom! There was the pulsar,” said Stanford physicist Peter Michelson.

    FAST had detected a faint pulsar with a spin period of just 5.19 milliseconds, and estimated to be 4,000 light-years away – likely the faintest millisecond pulsar ever detected. The discovery was the first of its kind from the collaboration between Fermi LAT and FAST, a partnership spearheaded by Michelson.

    Searching the sky

    With Michelson as the principal investigator, the Fermi LAT team, an international collaboration, has discovered hundreds of pulsars since its launch 10 years ago this June. Pulsars are rapidly spinning neutron stars that release beams of electromagnetic waves as they rotate. Similar to the rotating beam of light from a lighthouse, the pulses of energy from pulsars occur at regular intervals ranging from milliseconds to seconds. Large radio telescopes detect pulses in the radio wave range of the electromagnetic spectrum while the Fermi LAT detects pulses in the gamma-ray range.

    The partnership between Fermi LAT and China’s FAST significantly improves the ability of scientists to detect the faintest pulsars, called millisecond pulsars. The Fermi LAT can detect gamma-rays from suspected pulsars, but can’t determine the rotation period of a rapidly spinning pulsar. That’s where radio telescopes such as FAST come in. When directed to search for radio pulses from the regions of the sky where Fermi detected gamma-rays, FAST can determine the rotation period.

    But that’s only if the radio telescope is sensitive enough to detect the radio pulses. FAST’s enormous 500-meter diameter dish makes it the most sensitive radio telescope on the planet for this purpose, which means FAST can detect pulsars that other radio telescopes overlook, such as the extremely faint millisecond pulsar detected in February.

    A universal effort

    The Fermi LAT collaboration has been international from the start, involving hundreds of scientists from institutions in the United States, Japan, France, Italy and Sweden. Since its launch, scientists from China, Germany, Spain, South Africa and Thailand have joined the team.

    In the spring of 2017, Michelson, who is also the Luke Blossom Professor in the School of Humanities and Sciences, spoke with Chinese physicist Xian Hou about initiating a collaboration with FAST. Hou is a collaborator on the Fermi LAT team and also a scientist at the Chinese Academy of Science’s Yunnan Observatory.

    To kick off the collaboration, Fermi LAT scientists gave the Chinese team a list of locations in the sky where they had detected possible pulsars. The FAST team looked at a source that had previously been examined by Arecibo, a radio telescope in Puerto Rico operated by the University of Central Florida, but that failed to detect radio pulsations from the source.

    NAIC Arecibo Observatory operated by University of Central Florida, Yang Enterprises and UMET, Altitude 497 m (1,631 ft)

    FAST’s more sensitive equipment succeeded, revealing one of the faintest pulsars detected to date.

    The discovery demonstrated the capability of FAST to detect pulsars that are too faint to be detected by less-sensitive radio telescopes like Arecibo. “That was pretty exciting,” said Michelson.

    From a scientific standpoint, the finding is significant because it suggests future discoveries of many more pulsars, which together, Michelson explained, may help detect low-frequency gravitational waves traveling through the galaxy that can modulate the arrival times of pulsations from these sources.

    Valuable global partnerships

    Michelson is proud of the team’s discovery but is most proud of the collaborative effort. “It’s not just the science. The part I think is important to me is that it’s truly an international collaboration,” he said. One of the reasons he thinks collaborations are so important: “Particularly with countries we sometimes have strained relations with, it’s important to work on things where you share a common purpose and there is a benefit to all involved. That’s important in the long run.”

    Michelson also sees cost benefits from international collaborations, especially in the field of astronomy, due to the expensive facilities required for experiments. “No one nation can afford to invest in all the experiments,” he said. “In astrophysics in particular, state-of-the-art facilities cost a lot. It’s important for scientists around the globe to share access to data from these facilities that will enable important science. Everyone can benefit from this.”

    As a mentor to graduate students in Stanford’s Department of Physics, Michelson strives to teach his students the importance of international collaborations through working with Fermi. “It’s what science does beyond just doing science,” he said. “It connects cultures.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 10:20 am on May 4, 2018 Permalink | Reply
    Tags: , , MSP PSR J0318+0253, MSP-radio millisecond pulsar, NASA/Fermi Gamma Ray Space Telescope, , The Kavli Institute for Astronomy and Astrophysics at Peking University   

    From The Kavli Institute for Astronomy and Astrophysics at Peking University: “FAST’s First Discovery of a Millisecond Pulsar” 

    The Kavli Institute for Astronomy and Astrophysics at Peking University

    April 27, 2018 at Chinese Academy of Sciences
    No writer credit

    China’s Five-hundred-meter Aperture Spherical radio Telescope(FAST), still under commissioning, discovered a radio millisecond pulsar (MSP) coincident with the unassociated gamma-ray source 3FGL J0318.1+0252 in the Fermi Large Area Telescope (LAT) point-source list. This is another milestone of FAST.

    FAST radio telescope, now operating, located in the Dawodang depression in Pingtang county Guizhou Province, South China, https://astronomynow.com

    NASA/Fermi Gamma Ray Space Telescope


    NASA/Fermi LAT

    1
    The Gamma-ray sky map and integrated pulse profiles of the new MSP: Upper panel shows the region of the gamma-ray sky where the new MSP is located. Lower panel a) shows the observed radio pulses in a one-hour tracking observation of FAST. Lower panel b) shows the folded pulses from more than nine years of Fermi-LAT gamma-ray data. (Credit: Pei Wang/NOAC)

    FAST, the world’s largest single-dish radio telescope, operated by the National Astronomical Observatory of the Chinese Academy of Sciences, has discovered more than 20 new pulsars so far. This first MSP discovery was made by FAST on Feb. 27 and later confirmed by the Fermi-LAT team in reprocessing of Fermi data on April 18th.

    The newly discovered pulsar, now named PSR J0318+0253, is confirmed to be isolated through timing of gamma-ray pulsations. This discovery is the first result from the FAST-Fermi LAT collaboration outlined in a MoU signed between the FAST team and Fermi-LAT team.

    “This discovery demonstrated the great potential of FAST in pulsar searching, highlighting the vitality of the large aperture radio telescope in the new era,” said Kejia Lee, scientist at the Kavli Institute of Astronomy and Astrophysics, Peking University.

    Radio follow-up of Fermi-LAT unassociated sources is an effective way for finding new pulsars. Previous radio observations, including three epochs with Arecibo in June 2013, failed to detect the MSP. In a one-hour tracking observation with the FAST ultra-wide band receiver, the radio pulses toward 3FGL J0318.1+0252 were detected with a spin period of 5.19 milliseconds, an estimated distance of about 4 thousand light-years, and as potentially one of the faintest radio MSPs.

    Millisecond pulsar is a special kind of neutron stars that rotate hundreds of times per second. It is not only expected to play an important role in understanding the evolution of neutron stars and the equation of state of condense matter, but also can be used to detect low-frequency gravitational waves.

    The pulsar timing array (PTA) attempts to detect low-frequency gravitational waves from merging supermassive black holes using the long-term timing of a set of stable millisecond pulsars. Pulsar search is the basis of gravitational wave detection through PTAs.

    The planned Commensal Radio Astronomy FAST Survey (CRAFTS, arxiv:1802.03709; http://crafts.bao.ac.cn/) is expected to discover many millisecond pulsars and thus will make significant contribution to the PTA experiment.

    “The international radio-astronomy community is excited about the amazing FAST telescope, already showing its power in these discoveries. FAST will soon discover a large number of millisecond pulsars and I am looking forward to seeing FAST’s contribution to gravitational wave detection,” said George Hobbs, scientist of the Commonwealth Scientific and Industrial Research Organization (CSIRO) of Australia and member of the Gravitational Wave International Committee (GWIC).

    FAST will be under commissioning until it reaches the designed specifications and becomes a Chinese national facility.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    KIAA PKU one of many assemblages

    The Kavli Institute for Astronomy and Astrophysics (KIAA), at Peking University in Beijing, is both a tribute to China’s rich scientific tradition and an extension of it.

    Established in 2006 and becoming operational in 2007, KIAA is a global center of excellence in astronomy and astrophysics, attracting scientists from around the world (with English as its working language). It also promotes basic research in China with the highest international standards and carries out research on the origin and evolution of astrophysical structures from the scales of planetary systems and stars up to that of the Universe as a whole.

    The program of KIAA focuses on studies in three major areas of astrophysics:

    Cosmology, first light and galaxy assemblage;
    Gravitational physics and high-energy phenomena;
    Interstellar medium, stars and planets.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: