Tagged: NASA ESA Hubble Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:25 am on May 8, 2020 Permalink | Reply
    Tags: "Telescopes and Spacecraft Join Forces to Probe Deep into Jupiter's Atmosphere", , , , , Gemini North telescope, NASA ESA Hubble,   

    From NASA/ESA Hubble Telescope: “Telescopes and Spacecraft Join Forces to Probe Deep into Jupiter’s Atmosphere” 

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    May 07, 2020

    Margaret W. Carruthers
    Space Telescope Science Institute, Baltimore, Maryland
    667-218-6427
    mcarruthers@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Michael H. Wong
    UC Berkeley, Berkeley, California
    mikewong@astro.berkeley.edu

    Amy Simon
    Goddard Space Flight Center, Greenbelt, Maryland
    amy.simon@nasa.gov

    1
    Jupiter’s Great Red Spot

    Hubble and Gemini watch from afar, capturing high-resolution global views of Jupiter that are key to interpreting Juno’s close-up observations of the planet.

    Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA, Altitude 4,213 m (13,822 ft)

    With thunderheads that tower forty miles high and stretch half the width of a continent, hurricane-force winds in enormous storms that rage for centuries, and lightning three times as powerful as Earth’s strongest superbolts, Jupiter—king of the planets—has proven itself a more-than-worthy namesake to the supreme Roman god of sky and thunder.

    In spite of more than 400 years of scientific observations, many details of the gas giant’s turbulent and ever-changing atmosphere have remained elusive. Now, thanks to the teamwork of the Hubble Space Telescope, the Gemini Observatory, and the Juno spacecraft, scientists are able to probe deep into storm systems, investigating sources of lightning outbursts, mapping cyclonic vortices, and unravelling the nature of enigmatic features within the Great Red Spot.

    This unique collaboration is allowing researchers to monitor Jupiter’s weather and estimate the amount of water in the atmosphere, providing insight into how Jupiter operates today as well as how it and the other planets in our solar system formed more than four-and-a-half billion years ago.

    2
    Jupiter’s Great Red Spot

    NASA’s Hubble Space Telescope and the ground-based Gemini Observatory in Hawaii have teamed up with the Juno spacecraft to probe the mightiest storms in the solar system, taking place more than 500 million miles away on the giant planet Jupiter.

    NASA/Juno

    A team of researchers led by Michael Wong at the University of California, Berkeley, and including Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and Imke de Pater also of UC Berkeley, are combining multiwavelength observations from Hubble and Gemini with close-up views from Juno’s orbit about the monster planet, gaining new insights into turbulent weather on this distant world.

    “We want to know how Jupiter’s atmosphere works,” said Wong. This is where the teamwork of Juno, Hubble, and Gemini comes into play.

    Radio “Light Show”

    Jupiter’s constant storms are gigantic compared to those on Earth, with thunderheads reaching 40 miles from base to top—five times taller than typical thunderheads on Earth—and powerful lightning flashes up to three times more energetic than Earth’s largest “superbolts.”

    Like lightning on Earth, Jupiter’s lightning bolts act like radio transmitters, sending out radio waves as well as visible light when they flash across the sky.

    Every 53 days, Juno races low over the storm systems detecting radio signals known as “sferics” and “whistlers,” which can then be used to map lightning even on the day side of the planet or from deep clouds where flashes are not otherwise visible.

    Coinciding with each pass, Hubble and Gemini watch from afar, capturing high-resolution global views of the planet that are key to interpreting Juno’s close-up observations. “Juno’s microwave radiometer probes deep into the planet’s atmosphere by detecting high-frequency radio waves that can penetrate through the thick cloud layers. The data from Hubble and Gemini can tell us how thick the clouds are and how deep we are seeing into the clouds,” Amy Simon explained.

    By mapping lightning flashes detected by Juno onto optical images captured of the planet by Hubble and thermal infrared images captured at the same time by Gemini, the research team has been able to show that lightning outbreaks are associated with a three-way combination of cloud structures: deep clouds made of water, large convective towers caused by upwelling of moist air—essentially Jovian thunderheads—and clear regions presumably caused by downwelling of drier air outside the convective towers.

    The Hubble data show the height of the thick clouds in the convective towers, as well as the depth of deep water clouds. The Gemini data clearly reveal the clearings in the high-level clouds where it is possible to get a glimpse down to the deep water clouds.

    Wong thinks that lightning is common in a type of turbulent area known as folded filamentary regions, which suggests that moist convection is occurring in them. “These cyclonic vortices could be internal energy smokestacks, helping release internal energy through convection. It doesn’t happen everywhere, but something about these cyclones seems to facilitate convection.”

    The ability to correlate lightning with deep water clouds also gives researchers another tool for estimating the amount of water in Jupiter’s atmosphere, which is important for understanding how Jupiter and the other gas and ice giants formed, and therefore how the solar system as a whole formed.

    While much has been gleaned about Jupiter from previous space missions, many of the details—including how much water is in the deep atmosphere, exactly how heat flows from the interior, and what causes certain colors and patterns in the clouds—remain a mystery. The combined result provides insight into the dynamics and three-dimensional structure of the atmosphere.

    Seeing a “Jack-O-Lantern” Red Spot

    With Hubble and Gemini observing Jupiter more frequently during the Juno mission, scientists are also able to study short-term changes and short-lived features like those in the Great Red Spot.

    Images from Juno as well as previous missions to Jupiter revealed dark features within the Great Red Spot that appear, disappear, and change shape over time. It was not clear from individual images whether these are caused by some mysterious dark-colored material within the high cloud layer, or if they are instead holes in the high clouds—windows into a deeper, darker layer below.

    Now, with the ability to compare visible-light images from Hubble with thermal infrared images from Gemini captured within hours of each other, it is possible to answer the question. Regions that are dark in visible light are very bright in infrared, indicating that they are, in fact, holes in the cloud layer. In cloud-free regions, heat from Jupiter’s interior that is emitted in the form of infrared light—otherwise blocked by high-level clouds—is free to escape into space and therefore appears bright in Gemini images.

    “It’s kind of like a jack-o-lantern,” said Wong. “You see bright infrared light coming from cloud-free areas, but where there are clouds, it’s really dark in the infrared.”

    Hubble and Gemini as Jovian Weather Trackers

    The regular imaging of Jupiter by Hubble and Gemini in support of the Juno mission is proving valuable in studies of many other weather phenomena as well, including changes in wind patterns, characteristics of atmospheric waves, and the circulation of various gases in the atmosphere.

    Hubble and Gemini can monitor the planet as a whole, providing real-time base maps in multiple wavelengths for reference for Juno’s measurements in the same way that Earth-observing weather satellites provide context for NOAA’s high-flying Hurricane Hunters.

    “Because we now routinely have these high-resolution views from a couple of different observatories and wavelengths, we are learning so much more about Jupiter’s weather,” explained Simon. “This is our equivalent of a weather satellite. We can finally start looking at weather cycles.”

    Because the Hubble and Gemini observations are so important for interpreting Juno data, Wong and his colleagues Simon and de Pater are making all of the processed data
    easily accessible to other researchers through the Mikulski Archives for Space Telescopes (MAST)
    at the Space Telescope Science Institute in Baltimore, Maryland.

    “What’s important is that we’ve managed to collect this huge dataset that supports the Juno mission. There are so many applications of the data set that we may not even anticipate. So, we’re going to enable other people to do science without that barrier of having to figure out on their own how to process the data,” Wong said.

    The results were published in April 2020 in The Astrophysical Journal Supplement Series.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 11:38 am on May 5, 2020 Permalink | Reply
    Tags: , , , , , NASA ESA Hubble, The closest known brown dwarf Luhman 16A   

    From NASA/ESA Hubble Telescope: “Astronomers Find Jupiter-like Cloud Bands on Closest Brown Dwarf” 

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    May 05, 2020

    Media Contact:
    Christine Pulliam
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4366
    cpulliam@stsci.edu

    Science Contact:
    Julien Girard
    Space Telescope Science Institute, Baltimore, Md.
    jgirard@stsci.edu

    1
    About This Image
    Astronomers have found evidence for a striped pattern of clouds on the brown dwarf called Luhman 16A, as illustrated here in this artist’s concept. The bands of clouds were inferred using a technique called polarimetry, in which polarized light is measured from an astrophysical object much like polarized sunglasses are used to block out glare. This is the first time that polarimetry has been used to measure cloud patterns on a brown dwarf.
    The red object in the background is Luhman 16B, the partner brown dwarf to Luhman 16A. Together, this pair is the closest brown dwarf system to Earth at 6.5 light-years away. Credits: Caltech/R. Hurt (IPAC)

    Today’s weather forecast: partly cloudy with ammonia rain.

    Brown dwarfs, often called “failed stars,” weigh up to 80 times as much as Jupiter, yet their gravity compacts them to about the size of Jupiter in diameter. And like Jupiter, brown dwarfs can have clouds and weather. Astronomers have found evidence that the closest known brown dwarf, Luhman 16A, has Jupiter-like cloud bands. In contrast its companion brown dwarf, Luhman 16B, shows signs of patchy clouds.

    A team of astronomers has discovered that the closest known brown dwarf, Luhman 16A, shows signs of cloud bands similar to those seen on Jupiter and Saturn. This is the first time scientists have used the technique of polarimetry to determine the properties of atmospheric clouds outside of the solar system, or exoclouds.

    Brown dwarfs are objects heavier than planets but lighter than stars, and typically have 13 to 80 times the mass of Jupiter. Luhman 16A is part of a binary system containing a second brown dwarf, Luhman 16B. At a distance of 6.5 light-years, it’s the third closest system to our Sun after Alpha Centauri and Barnard’s Star. Both brown dwarfs weigh about 30 times as much as Jupiter.

    Despite the fact that Luhman 16A and 16B have similar masses and temperatures (about 1,900° F or 1,000° C), and presumably formed at the same time, they show markedly different weather. Luhman 16B shows no sign of stationary cloud bands, instead exhibiting evidence of more irregular, patchy clouds. Luhman 16B therefore has noticeable brightness variations as a result of its cloudy features, unlike Luhman 16A.

    “Like Earth and Venus, these objects are twins with very different weather,” said Julien Girard of the Space Telescope Science Institute in Baltimore, Maryland, a member of the discovery team. “It can rain things like silicates or ammonia. It’s pretty awful weather, actually.”

    The researchers used an instrument on the Very Large Telescope in Chile to study polarized light from the Luhman 16 system.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    Polarization is a property of light that represents the direction that the light wave oscillates. Polarized sunglasses block out one direction of polarization to reduce glare and improve contrast.

    “Instead of trying to block out that glare, we’re trying to measure it,” explained lead author Max Millar-Blanchaer of the California Institute of Technology (Caltech) in Pasadena, California.

    When light is reflected off of particles, such as cloud droplets, it can favor a certain angle of polarization. By measuring the preferred polarization of light from a distant system, astronomers can deduce the presence of clouds without directly resolving either brown dwarf’s cloud structure.

    “Even from light-years away, we can use polarization to determine what the light encountered along its path,” added Girard.

    “To determine what the light encountered on its way we compared observations against models with different properties: brown dwarf atmospheres with solid cloud decks, striped cloud bands, and even brown dwarfs that are oblate due to their fast rotation. We found that only models of atmospheres with cloud bands could match our observations of Luhman 16A,” explained Theodora Karalidi of the University of Central Florida in Orlando, Florida, a member of the discovery team.

    The polarimetry technique isn’t limited to brown dwarfs. It can also be applied to exoplanets orbiting distant stars. The atmospheres of hot, gas giant exoplanets are similar to those of brown dwarfs. Although measuring a polarization signal from exoplanets will be more challenging, due to their relative faintness and proximity to their star, the information gained from brown dwarfs can potentially inform those future studies.

    NASA’s upcoming James Webb Space Telescope would be able to study systems like Luhman 16 to look for signs of brightness variations in infrared light that are indicative of cloud features. NASA’s Wide Field Infrared Survey Telescope (WFIRST) will be equipped with a coronagraph instrument that can conduct polarimetry, and may be able to detect giant exoplanets in reflected light and eventual signs of clouds in their atmospheres.

    This study has been accepted for publication in The Astrophysical Journal.
    .

    The Space Telescope Science Institute is expanding the frontiers of space astronomy by hosting the science operations center of the Hubble Space Telescope, the science and operations center for the James Webb Space Telescope, and the science operations center for the future Wide Field Infrared Survey Telescope (WFIRST). STScI also houses the Mikulski Archive for Space Telescopes (MAST) which is a NASA-funded project to support and provide to the astronomical community a variety of astronomical data archives, and is the data repository for the Hubble, Webb, Kepler, K2, TESS missions and more.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 12:46 pm on April 30, 2020 Permalink | Reply
    Tags: "No Blue Skies for Super-Hot Planet WASP-79b", , , , , NASA ESA Hubble   

    From NASA/ESA Hubble Telescope: “No Blue Skies for Super-Hot Planet WASP-79b” 

    NASA/ESA Hubble Telescope

    From NASA/ESA Hubble Telescope

    April 30, 2020

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Kristin Sotzen
    Johns Hopkins University/Applied Physics Laboratory, Laurel, Maryland
    kristin.sotzen@jhuapl.edu

    1
    About This Image

    This is an artist’s illustration of the super-hot exoplanet WASP-79b, located 780 light-years away. The planet orbits precariously close to a star that is much hotter than our Sun. The planet is larger than Jupiter, and its very deep, hazy atmosphere sizzles at 3,000 degrees Fahrenheit – the temperature of molten glass. The Hubble Space Telescope and other observatories measured how starlight is filtered through the planet’s atmosphere, allowing for its chemical composition to be analyzed. Hubble has detected the presence of water vapor. Credits: NASA, ESA, and L. Hustak (STScI
    ___________________________________________________
    Bloated, Seething World Has a Weird Atmosphere

    The 1927 song, Blue Skies, by celebrated American composer Irving Berlin, was an instant hit, and even featured in the very first Hollywood “talking picture,” the Jazz Singer.

    But if Berlin lived on the planet WASP-79b, he would only have had yellow skies for inspiration. This has piqued the curiosity of astronomers because it is so peculiar. The gas giant planet was expected to show evidence for Rayleigh scattering, a phenomena where certain colors of light are dispersed by very fine dust particles in the upper atmosphere. Rayleigh scattering is what makes Earth’s skies blue by dispersing the shorter (bluer) wavelengths of sunlight.

    This is a moot point regarding lyricist Berlin, because WASP-79b is a hellish class of planet that is unlike anything found in our solar system, or frankly, ever imagined by most astronomers. For want of a better word, astronomers simply call these planets “hot Jupiters.” They are the size of Jupiter, or larger, but are so close to their star they complete one full orbit in a matter of days – or even hours. (At a distance of about 500 million miles from the Sun, Jupiter, by comparison, takes 12 years to complete an orbit.)

    The term “hot” is an understatement. The planet WASP-79b has an atmospheric temperature of 3,000 degrees Fahrenheit, the temperature of molten glass. By combing observations from the Hubble Space Telescope, the Transiting Exoplanet Survey Satellite (TESS), and the ground-based Magellan observatory, astronomers found that the seething atmosphere is quirky. It is so hot that its scattered manganese sulfide or silicate clouds might rain molten iron. That is not the big surprise. But rather, the lack of Rayleigh scattering is just “weird,” say researchers. It could be indicative of unknown atmospheric processes that aren’t currently understood, and may yield clues to the planet’s atmospheric evolution.

    ___________________________________________________

    The weather forecast for the giant, super-hot Jupiter-size planet WASP-79b is steamy humidity, scattered clouds, iron rain, and yellow skies.

    NASA’s Hubble Space Telescope teamed up with the Magellan Consortium’s Magellan II Telescope in Chile to analyze the atmosphere of this planet, which orbits a star that is hotter and brighter than our Sun, and is located at a distance of 780 light-years from Earth in the constellation Eridanus. Among exoplanets, planets that encircle stars beyond our Sun, WASP-79b is among the largest ever observed.

    The surprise in recently published results, is that the planet’s sky doesn’t have any evidence for an atmospheric phenomenon called Rayleigh scattering, where certain colors of light are dispersed by very fine dust particles in the upper atmosphere. Rayleigh scattering is what makes Earth’s skies blue by scattering the shorter (bluer) wavelengths of sunlight.

    Because WASP-79b doesn’t seem to have this phenomenon, the daytime sky would likely be yellowish, researchers say.

    “This is a strong indication of an unknown atmospheric process that we’re just not accounting for in our physical models. I’ve shown the WASP-79b spectrum to a number of colleagues, and their consensus is ‘that’s weird,'” said Kristin Showalter Sotzen of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland.

    The team would like to find other planets with a similar condition to learn more.

    “Because this is the first time we’ve see this, we’re really not sure what the cause is,” Sotzen said. “We need to keep an eye out for other planets like this because it could be indicative of unknown atmospheric processes that we don’t currently understand. Because we only have one planet as an example we don’t know if it’s an atmospheric phenomenon linked to the evolution of the planet.”

    Hot Jupiters orbit so close to their stars that the conventional wisdom is that they migrated inward toward a tight orbit about their star, after bulking up on cold gas in the frigid outer reaches of a planetary system. WASP-79b completes an orbit in just 3-1/2 days. But this planet is in an unusual polar orbit about the star, which goes against scientists’ theories about how planets form — especially for hot Jupiters.

    The new results might potentially give additional clues to the history of similar planets. Some hot Jupiters appear to have hazy or cloudy atmospheres while others appear to have clear atmospheres. If it’s like other hot Jupiters, WASP-79b may have scattered clouds, and iron lifted to high altitudes could precipitate as rain.

    WASP-79b is twice the mass of Jupiter and is so hot it has an extended atmosphere, which is ideal for studying starlight that is filtered through and grazes the atmosphere on its way toward Earth.

    To study the planet, the team used a spectrograph — an instrument that analyzes wavelengths of light in order to look at chemical compositions — on the Magellan II Telescope at Las Campanas Observatory in Chile.

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile. over 2,500 m (8,200 ft) high

    They expected to see a decrease in the amount of blue starlight due to Rayleigh scattering. Instead, they saw the opposite trend. The shorter, bluer wavelengths of light appear to be more transparent, indicating less absorption and scattering by the atmosphere. This result was consistent among independent observations of WASP-79b made with NASA’s Transiting Exoplanet Survey Satellite (TESS).

    WASP-79b also was observed as part of the Hubble Space Telescope’s Panchromatic Comparative Exoplanet Treasury (PanCET) program, and those observations showed that there is water vapor in WASP-79b’s atmosphere. Based on this finding, the giant planet was selected as an Early Release Science target for NASA’s upcoming James Webb Space Telescope. Webb is expected to provide much more spectral data over longer infrared wavelengths. These observations may reveal more evidence for water vapor in the planet’s atmosphere, and will provide a detailed view of the planet’s chemical makeup, which could help reveal the underlying source of the peculiar spectrum.

    The results were published in January 2020 in The Astronomical Journal.
    .

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 12:46 pm on April 24, 2020 Permalink | Reply
    Tags: "How the Hubble Space Telescope opened our eyes to the first galaxies of the universe", , , , , NASA ESA Hubble, ,   

    From University of Arizona via The Conversation: “How the Hubble Space Telescope opened our eyes to the first galaxies of the universe” 

    From University of Arizona

    VIA


    The Conversation

    April 24, 2020

    Rodger I. Thompson
    Professor of Astronomy, University of Arizona

    1
    The launch of Hubble Space Telescope on April 24, 1990. This photo captures the first time that there were shuttles on both pad 39a and 39b. NASA

    The Hubble Space Telescope launched on the 24th of April, 30 years ago.

    NASA/ESA Hubble Telescope

    It’s an impressive milestone especially as its expected lifespan was just 10 years.

    One of the primary reasons for the Hubble telescope’s longevity is that it can be serviced and improved with new observational instruments through Space Shuttle visits [no longer true].

    When Hubble, or HST, first launched, its instruments could observe ultraviolet light with wavelengths shorter than the eye can see, as well as optical light with wavelengths visible to humans. A maintenance mission in 1997 added an instrument to observe near infrared light, which are longer wavelengths than people can see. Hubble’s new infrared eyes provided two new major capabilities: the ability to see farther into space than before and see deeper into the dusty regions of star formation.

    I am an astrophysicist at the University of Arizona who has used near infrared observations to better understand how the universe works, from star formation to cosmology. Some 35 years ago, I was given the chance to build a near infrared camera and spectrometer for Hubble. It was the chance of a lifetime. The camera my team designed and developed has changed the way humans see and understand the universe. The instrument was built at Ball Aerospace in Boulder, Colorado, under our direction.

    3
    The light we can see with our eyes is part of a range of radiation known as the electromagnetic spectrum. Shorter wavelengths of light are higher energy, and longer wavelengths of light are lower energy. The Hubble Space Telescope sees primarily visible light (indicated here by the rainbow), as well as some infrared and ultraviolet radiation. NASA/JHUAPL/SwRI

    Seeing further and earlier

    Edwin Hubble, HST’s namesake, discovered in the early 1900s that the universe is expanding and that the light from distant galaxies was shifted to longer, redder wavelengths, a phenomenon called the redshift.

    Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope, (credit: Emilio Segre Visual Archives/AIP/SPL)

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    The greater the distance, the larger the shift. This is because the further away an object is, the longer it takes for the light to reach us here on Earth and the more the universe has expanded in that time.

    The Hubble ultraviolet and optical instruments had taken images of the most distant galaxies ever seen, known as the Northern Hubble Deep Field, or NHDF, which were released in 1996. These images, however, had reached their distance limit due to the redshift, which had shifted all of the light of the most distant galaxies out of the visible and into the infrared.

    One of the new instruments added to Hubble in the second maintenance mission has the awkward name, the Near Infrared Camera and Multi-Object Spectrometer, NICMOS, pronounced “Nick Moss.”

    NASA/Hubble NICMOS

    The near infrared cameras on NICMOS observed regions of the NHDF and discovered even more distant galaxies with all of their light in the near infrared.

    4
    A typical image taken with NICMOS. It shows a gigantic star cluster in the center of our Milky Way. NICMOS, thanks to its infrared capabilities, is able to look through the heavy clouds of dust and gas in these central regions. NASA/JHUAPL/SwRI

    Astronomers have the privilege of watching things happen in the past which they call the “lookback time.” Our best measurement of the age of the universe is 13.7 billion years. The distance that light travels in one year is called a light year. The most distant galaxies observed by NICMOS were at a distance of almost 13 billion light years. This meant that the light that NICMOS detected had been traveling for 13 billion years and showed what the galaxies looked like 13 billion years ago, a time when the universe was only about 5% of its current age. These were some of the first galaxies ever created and were forming new stars at rates that were more than a thousand times the rate at which most galaxies form stars in the current universe.

    Hidden by dust

    Although astronomers have studied star formation for decades, many questions remain. Part of the problem is that most stars are formed in clouds of molecules and dust. The dust absorbs the ultraviolet and most of the optical light emitted by forming stars, making it difficult for Hubble’s ultraviolet and optical instruments to study the process.

    The longer, or redder, the wavelength of the light, the less is absorbed. That is why sunsets, where the light must pass through long lengths of dusty air, appear red.

    The near infrared, however, has an even easier time passing through dust than the red optical light. NICMOS can look into star formation regions with the superior image quality of Hubble to determine the details of where the star formation occurs. A good example is the iconic Hubble image of the Eagle Nebula, also known as the Pillars of Creation.

    5
    The Eagle Nebula in visible light. NASA, ESA and the Hubble Heritage Team (STScI/AURA)

    The optical image shows majestic pillars which appear to show star formation over a large volume of space. The NICMOS image, however, shows a different picture. In the NICMOS image, most of the pillars are transparent with no star formation. Stars are only being formed at the tip of the pillars. The optical pillars are just empty dust reflecting the light of a group of nearby stars.

    6
    In this Hubble Space Telescope image is the Eagle Nebula’s Pillars of Creation. Here, the pillars are seen in infrared light, which pierces through obscuring dust and gas and unveils a more unfamiliar — but just as amazing — view of the pillars. NASA, ESA/Hubble and the Hubble Heritage Team

    The dawning of the age of infrared

    When NICMOS was added into the HST in 1997 NASA had no plans for a future infrared space mission. That rapidly changed as the results from NICMOS became apparent. Based on the data from NICMOS, scientists learned that fully formed galaxies existed in the universe much earlier than expected. The NICMOS images also confirmed that the expansion of the universe is accelerating rather than slowing down as previously thought. The NHDF infrared images were followed by the Hubble Ultra Deep Field images in 2005, which further showed the power of near infrared imaging of distant young galaxies. So NASA decided to invest in the James Webb Space Telescope, or JWST, a telescope much larger than HST and completely dedicated to infrared observations.

    NASA/ESA/CSA Webb Telescope annotated

    On Hubble, a near infrared imager was added to the third version of the Wide Field camera which was installed in May of 2009.

    NASA/ESA Hubble WFC3

    This camera used an improved version of the NICMOS detector arrays that had more sensitivity and a wider field of view. The James Webb Space Telescope has much larger versions of the NICMOS detector arrays that have more wavelength coverage than the previous versions.

    The James Webb Space Telescope, scheduled to be launched in March 2021, followed by the Wide Field Infrared Survey Telescope [WFIRST], form the bulk of future space missions for NASA.

    NASA/WFIRST

    These programs were all spawned by the near infrared observations by HST. They were enabled by the original investment for a near infrared camera and spectrometer to give Hubble its infrared eyes. With the James Webb Space Telescope, astronomers expect to see the very first galaxies that formed in the universe.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Arizona (UA) is a place without limits-where teaching, research, service and innovation merge to improve lives in Arizona and beyond. We aren’t afraid to ask big questions, and find even better answers.

    In 1885, establishing Arizona’s first university in the middle of the Sonoran Desert was a bold move. But our founders were fearless, and we have never lost that spirit. To this day, we’re revolutionizing the fields of space sciences, optics, biosciences, medicine, arts and humanities, business, technology transfer and many others. Since it was founded, the UA has grown to cover more than 380 acres in central Tucson, a rich breeding ground for discovery.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.

     
  • richardmitnick 7:38 am on April 24, 2020 Permalink | Reply
    Tags: "Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth", , , , , NASA ESA Hubble, NGC 2014   

    From NASA/ESA Hubble Telescope: “Hubble Marks 30 Years in Space with Tapestry of Blazing Starbirth” 

    NASA/ESA Hubble Telescope

    From NASA/ESA Hubble Telescope

    2
    Cosmic Reef

    April 24, 2020

    Donna Weaver
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493
    dweaver@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    1
    Cosmic Reef
    2
    Compass Image for Cosmic Reef


    Cosmic Reef Visualization


    Cosmic Reef Pan Video

    Hubble Showcases a Vast Cosmic Undersea World Teeming with Stars

    A colorful image resembling a cosmic version of an undersea world teeming with stars is being released to commemorate the Hubble Space Telescope’s 30 years of viewing the wonders of space.

    In the Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the “Cosmic Reef,” because NGC 2014 resembles part of a coral reef floating in a vast sea of stars.

    Some of the stars in NGC 2014 are monsters. The nebula’s sparkling centerpiece is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

    NASA is celebrating the Hubble Space Telescope’s 30 years of unlocking the beauty and mystery of space by unveiling a stunning new portrait of a firestorm of starbirth in a neighboring galaxy.

    In this Hubble portrait, the giant red nebula (NGC 2014) and its smaller blue neighbor (NGC 2020) are part of a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way, located 163,000 light-years away. The image is nicknamed the “Cosmic Reef,” because it resembles an undersea world.

    Thirty years ago, on April 24, 1990, Hubble was carried aloft from the Kennedy Space Center aboard the space shuttle Discovery, along with a five-astronaut crew. Deployed into low-Earth orbit a day later, the telescope opened a new eye onto the cosmos that has been transformative for our civilization.

    Hubble is revolutionizing modern astronomy, not only for scientists, but also by taking the public on a wondrous journey of exploration and discovery. Hubble’s never-ending, breathtaking celestial snapshots provide a visual shorthand for Hubble’s top scientific achievements. Unlike any space telescope before it, Hubble made astronomy relevant, engaging, and accessible for people of all ages. The space telescope’s iconic imagery has redefined our view of the universe and our place in time and space.

    “Hubble has given us stunning insights about the universe, from nearby planets to the farthest galaxies we have seen so far,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington, D.C. “It was revolutionary to launch such a large telescope 30 years ago, and this astronomy powerhouse is still delivering revolutionary science today. Its spectacular images have captured the imagination for decades, and will continue to inspire humanity for years to come.”

    Unencumbered by Earth’s blurring atmosphere, the space observatory unveils the universe in unprecedented crystal-clear sharpness across a broad range of wavelengths, from ultraviolet to near-infrared light.

    Hubble’s top accomplishments include measuring the expansion and acceleration rate of the universe; finding that black holes are common among galaxies; characterizing the atmospheres of planets around other stars; monitoring weather changes on planets across our solar system; and looking back in time across 97% of the universe to chronicle the birth and evolution of stars and galaxies.

    Hubble has yielded to date 1.4 million observations and provided data that astronomers around the world have used to write more than 17,000 peer-reviewed scientific publications, making it the most prolific space observatory in history. Its archival data alone will fuel future astronomy research for generations to come.

    Hubble’s longevity can be attributed to five space shuttle servicing missions, from 1993 to 2009, in which astronauts upgraded the telescope with advanced instruments, new electronics, and on-orbit repairs. The venerable observatory, with its suite of cameras and other instruments, is expected to stay operational through the 2020s, in synergy with the upcoming James Webb Space Telescope.

    Cosmic Reef

    The new space portrait is one of the most photogenic examples of the many turbulent stellar nurseries Hubble has observed during its 30-year lifetime. These regions are dominated by the glow of stars at least 10 times more massive than our Sun. The stellar inhabitants have short lives of only a few million years, compared to the 10-billion-year lifetime of our Sun.

    The sparkling centerpiece of NGC 2014 is a grouping of bright, hefty stars, each 10 to 20 times more massive than our Sun. The stars’ ultraviolet radiation heats the surrounding dense gas. The massive stars also unleash fierce winds of charged particles that blast away lower-density gas, forming the bubble-like structures seen on the right. The stars’ powerful stellar winds are pushing gas and dust to the denser left side of the nebula, where it is piling up, creating a series of dark ridges bathed in starlight.

    The blue areas in NGC 2014 reveal the glow of oxygen, heated to nearly 20,000 degrees Fahrenheit (11,000 degrees Celsius) by the blast of ultraviolet light. The cooler, red gas indicates the presence of hydrogen and nitrogen.

    By contrast, the seemingly isolated blue nebula at lower left (NGC 2020) has been created by a solitary mammoth star 200,000 times brighter than our Sun. The blue gas was ejected by the star through a series of eruptive events during which it lost part of its outer envelope of material.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 2:31 pm on April 21, 2020 Permalink | Reply
    Tags: , ALPINE SURVEY-"ALMA Large Program to Investigate C+ at Early Times", , , , , , , , , NASA ESA Hubble,   

    From Caltech: “Rotating Galaxies Galore” 

    Caltech Logo

    From Caltech

    April 21, 2020
    Whitney Clavin
    (626) 395‑1944
    wclavin@caltech.edu

    New results from an ambitious sky survey program, called ALPINE, reveal that rotating disk-shaped galaxies may have existed in large numbers earlier in the universe than previously thought.

    The ALPINE program, formally named “ALMA Large Program to Investigate C+ at Early Times,” uses data obtained from 70 hours of sky observations with the ALMA observatory (Atacama Large Millimeter/submillimeter Array) in Chile, in combination with data from previous observations by a host of other telescopes, including the W. M. Keck Observatory in Hawaii and NASA’s Hubble and Spitzer space telescopes. Specifically, the survey looked at a patch of sky containing dozens of remote galaxies.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    NASA/ESA Hubble Telescope

    NASA/Spitzer Infrared Telescope. No longer in service.

    “This is the first multi-wavelength study from ultraviolet to radio waves of distant galaxies that existed between 1 billion and 1.5 billion years after the Big Bang,” says Andreas Faisst, a staff scientist at IPAC, an astronomy center at Caltech, and a principal investigator of the ALPINE program, which includes scientists across the globe.

    One of ALPINE’s key functions is using ALMA to observe the signature of an ion known as C+, which is a positively charged form of carbon. When ultraviolet light from newborn stars hits clouds of dust, it creates the C+ atoms. By measuring the signature of this atom, or “emission line,” in galaxies, astronomers can see how the galaxies are rotating; as the gas containing C+ in the galaxies spins toward us, its light signature shifts to bluer wavelengths, and as it spins away, the light shifts to redder wavelengths. This is similar to a police car’s siren increasing in pitch as it races toward you and decreasing as it moves away.

    The ALPINE team made the C+ measurements on 118 remote galaxies to create a catalog of not only their rotation speeds but also other features such as gas density and the number of stars that are formed.

    The survey revealed rotating mangled galaxies that were in the process of merging, in addition to seemingly perfectly smooth spiral-shaped galaxies. About 15 percent of the galaxies observed had a smooth, ordered rotation that is expected for spiral galaxies. However, the authors note, the galaxies may not be spirals but rotating disks with clumps of material. Future observations with the next generation of space-based telescopes will pinpoint the detailed structure of these galaxies.

    “We are finding nicely ordered rotating galaxies at this very early and quite turbulent stage of our universe,” says Faisst. “That means they must have formed by a smooth process of gathering gas and haven’t collided with other galaxies yet, as many of the other galaxies have.”

    By combining the ALMA data with measurements from other telescopes, including the now-retired Spitzer, which specifically helped measure the masses of the galaxies, the scientists are better able to study how these young galaxies evolve over time.

    “How do galaxies grow so much so fast? What are the internal processes that let them grow so quickly? These are questions that ALPINE is helping us answer,” says Faisst. “And with the upcoming launch of NASA’s James Webb Space Telescope, we will be able to follow-up on these galaxies to learn even more.”

    The study, led by Faisst, titled, “The ALPINE-ALMA [CII] Survey: Multi-Wavelength Ancillary Data and Basic Physical Measurements,” [The Astrophysical Journal Supplement Series] was funded by NASA and the European Southern Observatory.

    A brief overview of the survey, produced by a team led by Olivier LeFèvre of the Laboratoire d’Astrophysique de Marseille (LAM), is at https://ui.adsabs.harvard.edu/abs/2019arXiv191009517L/abstract; the ALMA data is detailed in another paper by a team led by Matthieu Béthermin of LAM, available at https://ui.adsabs.harvard.edu/abs/2020arXiv200200962B/abstract.

    ALMA is a partnership of ESO (representing its Member States), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (South Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. More information about ALMA is at
    https://www.almaobservatory.org/.

    1
    A collage of 21 galaxies imaged by the ALPINE survey. The images are based on light emitted by singly ionized carbon, or C+. These data show the variety of different galaxy structures already in place less than 1.5 billion years after the Big Bang (our universe is 13.8 billion years old). Some of the images actually contain merging galaxies; for example, the object in the top row, second from left, is actually three galaxies that are merging. Other galaxies appear to be more smoothly ordered and may be spirals; a clear example is in the second row, first galaxy from the left. Our Milky Way galaxy is shown to scale to help visualize the small sizes of these infant galaxies. Credit: Michele Ginolfi (ALPINE collaboration); ALMA(ESO/NAOJ/NRAO); NASA/JPL-Caltech/R. Hurt (IPAC)

    2
    Using ALMA, scientists can measure the rotation of galaxies in the early universe with a precision of several 10 kilometers per second. This is made possible by observing light emitted by singly ionized carbon in the galaxies, also known as C+. The C+ emission from gas clouds rotating toward us is shifted to bluer, shorter wavelengths, while the clouds rotating away from us emit light shifted to longer, redder wavelengths. By measuring this shift in light, astronomers can determine how fast the galaxies are rotating.
    Credit: Andreas Faisst (ALPINE collaboration)

    3
    The object pictured above is DC-818760, which consists of three galaxies that are likely on collision course. Like all the galaxies in the ALPINE survey, it has been imaged by different telescopes. This “multi-wavelength” approach allows astronomers to study in detail the structure of these galaxies. NASA’s Hubble Space Telescope (blue) reveals regions of active star formation not obscured by dust; NASA’s now-retired Spitzer Space Telescope (green) shows the location of older stars that are used to measure the stellar mass of galaxies; and ALMA (red) traces gas and dust, allowing the amount of star formation hidden by dust to be measured. The picture at the top of the image combines light from all three telescopes. The velocity map on the bottom shows gas in the rotating galaxies approaching us (blue) or receding (red).
    Credit: Gareth Jones & Andreas Faisst (ALPINE collaboration); ALMA(ESO/NAOJ/NRAO); NASA/STScI; JPL-Caltech/IPAC (R. Hurt)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 4:24 pm on April 20, 2020 Permalink | Reply
    Tags: "Hubble Probes Alien Comet's Chemical Makeup", , , , Comet Borisov, , NASA ESA Hubble   

    From NASA/ESA Hubble Telescope: “Hubble Probes Alien Comet’s Chemical Makeup” 

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    1

    April 20, 2020

    Donna Weaver
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493
    dweaver@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Dennis Bodewits
    Auburn University, Auburn, Alabama
    dennis@auburn.edu

    Carbon Monoxide Abundance Points to Birth Around Cooler Star

    Astronomers have uncovered more than 4,000 planets that orbit stars outside our solar system. But they have few details on the planets’ chemical makeup and how they were assembled inside a swirling disk of rock and ice encircling their stars.

    The stars are too far away for us ever to visit them and see the planet-making recipe close-up.

    Now, a sample from a distant star system has landed in our solar system’s back yard. Comet Borisov, the first vagabond comet ever to enter our solar system, offers chemical clues to the composition of an object born around another star. Comets are made of gas, ice, and dust that are part of a planet’s building blocks.

    Borisov’s unusual abundance of carbon monoxide, as gleaned through Hubble ultraviolet spectroscopic observations, is largely unlike comets belonging to our solar system. Researchers say this abundance points to the comet originating from a circumstellar disk around a class of star called a cool red dwarf.


    Hubble Tracks Comet Borisov’s Flight Through Solar System
    Credits: NASA, STScI K. Meech (University of Hawaii), and D. Jewitt (UCLA)

    Interstellar comet 2I/Borisov is providing a glimpse of another star system’s planetary building blocks, using new observations from NASA’s Hubble Space Telescope.

    Borisov is the first known comet to originate from a different star system than our own. Measurements find that it has an unusual abundance of carbon monoxide largely unlike comets belonging to our solar system. Researchers say its unusual composition points to a likely birthplace of a carbon-rich circumstellar disk around a cool red dwarf class of star. These observations are a prime opportunity to sample the chemistry of the material in a primordial disk around another star.

    Comets are condensed samples of gas, ice, and dust that form swirling in the disk around a star during the birth of its planets. Studying comets is important because astronomers are still trying to understand the role they play in the buildup of planets. They can also redistribute organic material among young planets, and may have brought water to the early Earth. These activities are likely happening in other planetary systems, as demonstrated by Borisov’s makeup.

    “With an interstellar comet passing through our own solar system, it’s like we get a sample of a planet orbiting another star showing up in our own back yard,” said John Noonan of the Lunar and Planetary Laboratory at the University of Arizona, Tucson, who is a member of the Hubble research team led by Dennis Bodewits of Auburn University in Alabama.

    The team used Hubble’s unique ultraviolet sensitivity to spectroscopically detect carbon monoxide gas escaping from comet Borisov’s solid comet nucleus. Hubble’s Cosmic Origins Spectrograph observed the comet on four separate occasions, from Dec. 11, 2019 to Jan. 13, 2020, which allowed the researchers to see the object’s chemical composition change quickly, as different ice mixtures, including carbon monoxide, oxygen, and water, sublimated under the warmth of the Sun.

    NASA Hubble Cosmic Origins Spectrograph

    The Hubble astronomers were surprised to find that the interstellar comet’s coma, the gas cloud surrounding the nucleus, contains a high amount of carbon monoxide gas, at least 50% more abundant than water vapor. This amount is more than three times higher than the previously measured quantity for any comet entering the inner solar system. The water measurement was made by NASA’s Neil Gehrels-Swift satellite, whose observations were conducted in tandem with the Hubble study.

    NASA Neil Gehrels Swift Observatory

    Carbon monoxide ice is very volatile. It doesn’t take much sunlight to heat the ice and convert it to gas that escapes from a comet’s nucleus. For carbon monoxide, this activity occurs very far from the Sun, about 11 billion miles away, more than twice the distance of Pluto at its farthest point from the Sun. In contrast, water remains in its icy form until about 200 million miles from the Sun, the approximate distance of the inner edge of the asteroid belt.

    However, for comet Borisov, the Hubble measurements suggest that some carbon monoxide ice was locked inside the comet’s nucleus, revealed only when the Sun’s heat stripped away layers of water ice. “The amount of carbon monoxide did not drop as expected as the comet receded from the Sun. This means that we are seeing the primitive layers of the comet, which really reflect what this object is made of,” Bodewits explained. “Because of the abundance of carbon monoxide ice that survived so close to the Sun, we think that comet Borisov comes from a much colder place and from a very different debris disk around a star than our own.”

    Within 200 million miles of the Sun, the rates of water outgassing from a comet’s surface are almost always much higher than those of carbon monoxide, the researchers said. Only about one or two known solar system comets have defied that rule. “What Hubble measured in comet Borisov is not a property of most solar system comets,” Bodewits said. “That’s why comet Borisov stood out for us because we reasoned that Borisov is likely a representative of the star system it comes from.”

    The researchers suggest that the comet may have been ejected from a carbon-rich disk of icy debris around a red dwarf star, the most common type of star in our Milky Way galaxy. Red dwarfs are fainter and less massive than the Sun. Their circumstellar disks, therefore, may be much colder than our solar system. “These stars have exactly the low temperatures and luminosities where a comet could form with the type of composition found in comet Borisov,” Noonan said.

    A large Jupiter-sized planet may have kicked the comet out of the alien system. The researchers said that many red dwarfs have large planets orbiting in a region far enough from their host star where carbon monoxide exists in its icy form. “If a Jupiter-sized planet migrates inward, it could kick out a lot of these comets,” Bodewits said.

    Comet Borisov was spotted on Aug. 30, 2019, by comet hunter Gennady Borisov in Crimea. The vagabond comet resembles other solar system comets, but astronomers determined its interstellar origins based on its orbital path. Since its discovery, a slew of telescopes, including Hubble, have observed the comet as it traveled through the solar system and swung past the Sun. It will eventually leave the solar system and continue its journey through space.

    Comet Borisov is the first bonafide interstellar comet to visit the solar system. The first known vagabond visitor was an object called 1I/`Oumuamua, which was discovered in 2017 as it was traveling away from the Sun. Unlike a normal comet, `Oumuamua did not have a visible coma of escaping gas and dust around it, so astronomers could not use spectroscopy to sample its chemical content to characterize it.

    Astronomers expect to find more of these wandering comets from outside the solar system with current and future telescopes that scan the entire sky.

    The team’s results will appear in the journal Nature Astronomy

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 2:47 pm on April 20, 2020 Permalink | Reply
    Tags: "Exoplanet Apparently Disappears in Latest Hubble Observations", , , , , NASA ESA Hubble   

    From NASA/ESA Hubble Telescope: “Exoplanet Apparently Disappears in Latest Hubble Observations” 

    NASA/ESA Hubble Telescope

    From NASA/ESA Hubble Telescope

    April 20, 2020

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    András Gáspár
    University of Arizona, Tucson, Arizona
    agaspar@as.arizona.edu

    1
    About This Image

    Hubble Captures Protoplanetary Collision in the Fomalhaut Star System

    This diagram simulates what astronomers, studying Hubble Space Telescope observations, taken over several years, consider evidence for the first-ever detection of the aftermath of a titanic planetary collision in another star system. The color-tinted Hubble image on the left is of a vast ring of icy debris encircling the star Fomalhaut, located 25 light-years away. The star is so brilliant that a black occulting disk is used to block out its glare so that the dust ring can be photographed. In 2008, astronomers saw what they thought was the first direct image of a planet orbiting far from the star. However, by 2014, the planet candidate faded below Hubble’s detection. The best interpretation is that the object wasn’t ever a fully formed planet at all, but an expanding cloud of dust from a collision between two minor bodies, each about 125 miles across. The diagram at the right is based on a simulation of the expanding and fading cloud. The cloud, made of very fine dust particles, is currently estimated to be over 200 million miles across. Smashups like this are estimated to happen around Fomalhaut once every 200,000 years. Therefore, Hubble was looking at the right place at the right time to capture this transient event.

    NASA/ESA and A. Gáspár and G. Rieke (University of Arizona)

    Fomalhaut b may be slowly expanding from the smashup that blasted a dissipating dust cloud into space.

    What do astronomers do when a planet they are studying suddenly seems to disappear from sight? In the legendary Star Wars galaxy (you know, “a long time ago and far, far away”) the planet might have been the victim of the evil empire’s planet-zapping Death Star. But this is pretty improbable in our own cosmic back yard. The missing-in-action planet was last seen orbiting the star Fomalhaut, just 25 light-years away. (In fact, Fomalhaut is so close to us that it’s one of the brightest stars in the sky, in the constellation of Pisces Austrinus, the Southern Fish.)

    A team of researchers from the University of Arizona believe a full-grown planet never existed in the first place. Instead, they concluded that the Hubble Space Telescope was looking at an expanding cloud of very fine dust particles from two icy bodies that smashed into each other. Hubble came along too late to witness the suspected collision, but may have captured its aftermath. This happened in 2008, when astronomers eagerly announced that Hubble took its first image of a planet orbiting another star. The diminutive-looking object appeared as a dot next to a vast ring of icy debris encircling Fomalhaut. In following years, they tracked the planet along its trajectory. But over time the dot, based on their analysis of Hubble data, got fainter until it simply dropped out of sight, say the researchers, as they pored through the Hubble archival data.

    Asteroid families in our own solar system are considered fossil relics of such collisions which happened here billions of years ago, in the solar system’s rambunctious youth. But no such cataclysm has ever been seen happening around another star. Why? In the case of Fomalhaut, such smashups are estimated to happen once every 200,000 years. Therefore, Hubble astronomers may have been lucky enough to be looking at the right place at the right time.

    Follow-up observations will likely be needed to test this startling conclusion.

    Now you see it, now you don’t.

    What astronomers thought was a planet beyond our solar system, has now seemingly vanished from sight. Though this happens in science fiction, such as Superman’s home planet Krypton exploding, astronomers are looking for a plausible explanation.

    One interpretation is that, rather than being a full-sized planetary object, which was first photographed in 2004, it could instead be a vast, expanding cloud of dust produced in a collision between two large bodies orbiting the bright nearby star Fomalhaut. Potential follow-up observations might confirm this extraordinary conclusion.

    “These collisions are exceedingly rare and so this is a big deal that we actually get to see one,” said András Gáspár of the University of Arizona, Tucson. “We believe that we were at the right place at the right time to have witnessed such an unlikely event with NASA’s Hubble Space Telescope.”

    “The Fomalhaut system is the ultimate test lab for all of our ideas about how exoplanets and star systems evolve,” added George Rieke of the University of Arizona’s Steward Observatory. “We do have evidence of such collisions in other systems, but none of this magnitude has been observed in our solar system. This is a blueprint of how planets destroy each other.”

    The object, called Fomalhaut b, was first announced in 2008, based on data taken in 2004 and 2006. It was clearly visible in several years of Hubble observations that revealed it was a moving dot. Until then, evidence for exoplanets had mostly been inferred through indirect detection methods, such as subtle back-and-forth stellar wobbles, and shadows from planets passing in front of their stars.

    Unlike other directly imaged exoplanets, however, nagging puzzles arose with Fomalhaut b early on. The object was unusually bright in visible light, but did not have any detectable infrared heat signature. Astronomers conjectured that the added brightness came from a huge shell or ring of dust encircling the planet that may possibly have been collision-related. The orbit of Fomalhaut b also appeared unusual, possibly very eccentric.

    “Our study, which analyzed all available archival Hubble data on Fomalhaut revealed several characteristics that together paint a picture that the planet-sized object may never have existed in the first place,” said Gáspár.

    The team emphasizes that the final nail in the coffin came when their data analysis of Hubble images taken in 2014 showed the object had vanished, to their disbelief. Adding to the mystery, earlier images showed the object to continuously fade over time, they say. “Clearly, Fomalhaut b was doing things a bona fide planet should not be doing,” said Gáspár.

    The interpretation is that Fomalhaut b is slowly expanding from the smashup that blasted a dissipating dust cloud into space. Taking into account all available data, Gáspár and Rieke think the collision occurred not too long prior to the first observations taken in 2004. By now the debris cloud, consisting of dust particles around 1 micron (1/50th the diameter of a human hair), is below Hubble’s detection limit. The dust cloud is estimated to have expanded by now to a size larger than the orbit of Earth around our Sun.

    Equally confounding is that the team reports that the object is more likely on an escape path, rather than on an elliptical orbit, as expected for planets. This is based on the researchers adding later observations to the trajectory plots from earlier data. “A recently created massive dust cloud, experiencing considerable radiative forces from the central star Fomalhaut, would be placed on such a trajectory,” said Gáspár. “Our model is naturally able to explain all independent observable parameters of the system: its expansion rate, its fading, and its trajectory.”

    Because Fomalhaut b is presently inside a vast ring of icy debris encircling the star, colliding bodies would likely be a mixture of ice and dust, like the comets that exist in the Kuiper belt on the outer fringe of our solar system. Gáspár and Rieke estimate that each of these comet-like bodies measured about 125 miles (200 kilometers) across (roughly half the size of the asteroid Vesta).

    According to the authors, their model explains all the observed characteristics of Fomalhaut b. Sophisticated dust dynamical modeling done on a cluster of computers at the University of Arizona shows that such a model is able to fit quantitatively all the observations. According to the author’s calculations, the Fomalhaut system, located about 25 light-years from Earth, may experience one of these events only every 200,000 years.

    Gáspár and Rieke – along with other members of an extended team – will also be observing the Fomalhaut system with NASA’s upcoming James Webb Space Telescope in its first year of science operations. The team will be directly imaging the inner warm regions of the system, spatially resolving for the first time the elusive asteroid-belt component of an extrasolar planetary system. The team will also search for bona fide planets orbiting Fomalhaut, that might be gravitationally sculpting the outer disk. They will also analyze the chemical composition of the disk.

    Their paper, “New HST [Hubble] data and modeling reveal a massive planetesimal collision around Fomalhaut” is being published on April 20, 2020, in the Proceedings of the National Academy of Sciences.
    .

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
  • richardmitnick 8:29 am on April 13, 2020 Permalink | Reply
    Tags: "Lose Yourself in a Breathtaking New NASA Image of The 'Pillars of Creation'", , , , , NASA ESA Hubble,   

    From Science Alert: “Lose Yourself in a Breathtaking New NASA Image of The ‘Pillars of Creation'” 

    ScienceAlert

    From Science Alert

    13 APRIL 2020
    VICTOR TANGERMANN

    1
    (NASA, ESA/Hubble and the Hubble Heritage Team)

    NASA and ESA’s incredible view of the ‘Pillars of Creation’, courtesy of the Hubble Space Telescope, has become one of the most iconic views of our cosmos since it was first captured in 1995.

    The agencies’ newest image of the structure in the Eagle Nebula, however, has left us speechless.

    It shows the radiating glow of the pillars in infrared light – and you can see the infrared light piercing through dust and gas, giving the pillars a spectacular blueish shadow.

    2
    (NASA, ESA/Hubble and the Hubble Heritage Team)

    The 1995 image of the pillars, a composite of three different images compiled using visible light, shows the pillars located in the Eagle Nebula throwing off cool hydrogen gas and cosmic dust.

    3
    The 1995 image of the pillars. (NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University))

    The new infrared version is not the first time images of this cosmic structure have been revisited. In 2015, astronomers assembled a more detailed image captured in visible light.

    4
    (NASA, ESA/Hubble and the Hubble Heritage Team)

    First discovered in 1745 by Swiss astronomer Jean-Philippe Loys de Cheseaux, the Eagle Nebula is roughly 7,000 light-years from Earth, a nursery for stars in the Serpens constellation.

    At four to five light-years in width, the pillar structure is immense, although it’s just a relatively small structure compared to the overall nebula, which spans a staggering 70 by 55 light-years.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:29 pm on March 31, 2020 Permalink | Reply
    Tags: "Hubble Finds Best Evidence for Elusive Mid-Sized Black Hole", (IMBH)-intermediate-mass black hole, , , , , , , NASA ESA Hubble, The X-ray source named 3XMM J215022.4−055108   

    From NASA/ESA Hubble Telescope: “Hubble Finds Best Evidence for Elusive Mid-Sized Black Hole” 

    NASA/ESA Hubble Telescope

    From NASA/ESA Hubble Telescope

    March 31, 2020

    Leah Ramsay
    Space Telescope Science Institute, Baltimore, Maryland
    667-218-6439
    lramsay@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Dacheng Lin
    University of New Hampshire, Durham, New Hampshire
    dacheng.lin@unh.edu

    High-resolution imaging reveals black hole’s hideout in extra-galactic star cluster.

    1
    About This Image. Illustration of Mid-Sized Black Hole Eating a Star
    This artist’s concept depicts a cosmic homicide in action. A wayward star is being shredded by the intense gravitational pull of a black hole that contains tens of thousands of solar masses. The stellar remains are forming an accretion disk around the black hole. Flares of X-ray light from the super-heated gas disk alerted astronomers to the black hole’s location; otherwise it lurked unknown in the dark. The elusive object is classified as an intermediate-mass black hole (IMBH), as it is much less massive than the monster black holes that dwell in the centers of galaxies. Therefore, IMBHs are mostly quiescent because they do not pull in as much material, and are hard to find. Hubble observations provide evidence that the IMBH dwells inside a dense star cluster. The cluster itself may be the stripped-down core of a dwarf galaxy. Credits: NASA/ESA and D. Player (STScI)

    Astronomers have found the best evidence for the perpetrator of a cosmic homicide: a black hole of an elusive class known as “intermediate-mass,” which betrayed its existence by tearing apart a wayward star that passed too close.

    Weighing in at about 50,000 times the mass of our Sun, the black hole is smaller than the supermassive black holes (at millions or billions of solar masses) that lie at the cores of large galaxies, but larger than stellar-mass black holes formed by the collapse of a massive star.

    These so-called intermediate-mass black holes (IMBHs) are a long-sought “missing link” in black hole evolution. Though there have been a few other IMBH candidates, researchers consider these new observations the strongest evidence yet for mid-sized black holes in the universe.

    It took the combined power of two X-ray observatories and the keen vision of NASA’s Hubble Space Telescope to nail down the cosmic beast.

    “Intermediate-mass black holes are very elusive objects, and so it is critical to carefully consider and rule out alternative explanations for each candidate. That is what Hubble has allowed us to do for our candidate,” said Dacheng Lin of the University of New Hampshire, principal investigator of the study. The results are published on March 31, 2020 in The Astrophysical Journal Letters.

    The story of the discovery reads like a Sherlock Holmes story, involving the meticulous step-by-step case-building necessary to catch the culprit.

    Lin and his team used Hubble to follow up on leads from NASA’s Chandra X-ray Observatory and the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton).

    NASA/Chandra X-ray Telescope

    ESA/XMM Newton

    In 2006 these high-energy satellites detected a powerful flare of X-rays, but were not sure if they originated from inside or outside of our galaxy. Researchers attributed it to a star being torn apart after coming too close to a gravitationally powerful compact object, like a black hole.

    Surprisingly, the X-ray source, named 3XMM J215022.4−055108, was not located in a galaxy’s center, where massive black holes normally would reside. This raised hopes that an IMBH was the culprit, but first another possible source of the X-ray flare had to be ruled out: a neutron star in our own Milky Way galaxy, cooling off after being heated to a very high temperature. Neutron stars are the crushed remnants of an exploded star.

    Hubble was pointed at the X-ray source to resolve its precise location. Deep, high-resolution imaging provides strong evidence that the X-rays emanated not from an isolated source in our galaxy, but instead in a distant, dense star cluster on the outskirts of another galaxy — just the type of place astronomers expected to find an IMBH. Previous Hubble research has shown that the mass of a black hole in the center of a galaxy is proportional to that host galaxy’s central bulge. In other words, the more massive the galaxy, the more massive its black hole. Therefore, the star cluster that is home to 3XMM J215022.4−055108 may be the stripped down core of a lower-mass dwarf galaxy that has been gravitationally and tidally disrupted by its close interactions with its current larger galaxy host.

    IMBHs have been particularly difficult to find because they are smaller and less active than supermassive black holes; they do not have readily available sources of fuel, nor as strong a gravitational pull to draw stars and other cosmic material which would produce telltale X-ray glows. Astronomers essentially have to catch an IMBH red-handed in the act of gobbling up a star. Lin and his colleagues combed through the XMM-Newton data archive, searching hundreds of thousands of observations to find one IMBH candidate.

    The X-ray glow from the shredded star allowed astronomers to estimate the black hole’s mass of 50,000 solar masses. The mass of the IMBH was estimated based on both X-ray luminosity and the spectral shape. “This is much more reliable than using X-ray luminosity alone as typically done before for previous IMBH candidates,” said Lin. “The reason why we can use the spectral fits to estimate the IMBH mass for our object is that its spectral evolution showed that it has been in the thermal spectral state, a state commonly seen and well understood in accreting stellar-mass black holes.”

    This object isn’t the first to be considered a likely candidate for an intermediate-mass black hole. In 2009 Hubble teamed up with NASA’s Swift observatory and the XMM-Newton X-ray space telescope to identify what is interpreted as an IMBH, called HLX-1, located towards the edge of the galaxy ESO 243-49.

    NASA Neil Gehrels Swift Observatory

    It too is in the center of a young, massive cluster of blue stars, that may be a stripped down dwarf galaxy core. The X-rays come from a hot accretion disk around the black hole. “The main difference is that our object is tearing a star apart, providing strong evidence that it is a massive black hole, instead of a stellar-mass black hole as people often worry about for previous candidates including HLX-1,” Lin said.

    Finding this IMBH opens the door to the possibility of many more lurking undetected in the dark, waiting to be given away by a star passing too close. Lin plans to continue his meticulous detective work, using the methods his team has proved successful. Many questions remain to be answered. Does a supermassive black hole grow from an IMBH? How do IMBHs themselves form? Are dense star clusters their favored home?

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: