Tagged: NASA Dawn Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:47 am on February 26, 2015 Permalink | Reply
    Tags: , , NASA Dawn, ,   

    From The Conversation : “NASA missions may re-elevate Pluto and Ceres from dwarf planets to full-on planet status” 

    Conversation
    The Conversation

    February 25 2015
    David A Weintraub, Professor of Astronomy at Vanderbilt University

    1
    Two views of Ceres acquired by NASA’s Dawn spacecraft ten hours apart on Feb. 12, 2015, from a distance of about 52,000 miles as the dwarf planet rotated. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

    Ceres is the largest object in the asteroid belt, and NASA’s Dawn spacecraft will arrive at this dwarf planet on March 6, 2015.

    2

    NASA Dawn Spacescraft
    Dawn


    Pluto is the largest object in the Kuiper belt, and NASA’s New Horizons spacecraft will arrive at this dwarf planet on July 15, 2015.

    2
    Kuiper Belt

    NASA New Horizons spacecraft
    New Horizons

    These two events will make 2015 an exciting year for solar system exploration and discovery. But there is much more to this story than mere science. I expect 2015 will be the year when general consensus, built upon our new knowledge of these two objects, will return Pluto and add Ceres to our family of solar system planets.

    The efforts of a very small clique of Pluto-haters within the International Astronomical Union (IAU) plutoed Pluto in 2006. Of the approximately 10,000 internationally registered members of the IAU in 2006, only 237 voted in favor of the resolution redefining Pluto as a “dwarf planet” while 157 voted against; the other 9,500 members were not present at the closing session of the IAU General Assembly in Prague at which the vote to demote Pluto was taken. Yet Pluto’s official planetary status was snatched away.

    Ceres and Pluto are both spheroidal objects, like Mercury, Earth, Jupiter and Saturn. That’s part of the agreed upon definition of a planet. They both orbit a star, the Sun, like Venus, Mars, Uranus and Neptune. That’s also part of the widely accepted definition of a planet.

    Unlike the larger planets, however, Ceres, like Pluto, according to the IAU definition, “has not cleared the neighborhood around its orbit.” The asteroid belt is, apparently, Ceres’ neighborhood while the Kuiper Belt is Pluto’s neighborhood – though no definition of a planet’s neighborhood exists, and no agreed upon understanding of what “clearing the neighborhood” yet exists. Furthermore, no broad-based agreement exists as to why “clearing the neighborhood” need be a requirement in order for an object to be considered a planet.

    Some planetary astronomers would argue that were the Earth placed in the Kuiper Belt, it would not be able to clear its neighborhood and thus would not be considered, by the IAU definition, a planet; apparently location matters. Here a planet, there not a planet. I’d argue that location shouldn’t matter; instead, the intrinsic properties of the objects themselves should matter more. And so we are led back to Ceres and Pluto.

    Never before visited by human spacecraft, Ceres and Pluto, as we will soon bear witness, are both evolving, changing worlds. Yesterday, Ceres and Pluto were strangers, distant, barely known runt members of our solar system. By the end of this calendar year, however, we will have showered both objects with our passion and our attention, we will have welcomed them both into our embrace. And we almost certainly will once again call both of them planets.

    Ceres, temporarily a planet

    Ceres was discovered on New Year’s Day in 1801, by Italian astronomer Giuseppe Piazzi, a member of an international team of astronomers dubbed the Celestial Police, who were searching for a supposedly missing planet in between the orbits of Mars and Jupiter. When discovered, Ceres was immediately recognized as a planet, the eighth one known at the time (neither Neptune nor Pluto had been discovered yet).

    But within a few years, other objects in the asteroid belt were discovered and Ceres no longer seemed to stand out as far from the crowd. In 1802, the great astronomer [Sir Frederick] William Herschel suggested that Ceres and Pallas and any other smaller solar system objects should be called asteroids – meaning star-like. In telescope images, they were so tiny that they looked point-like, like stars, rather than disk-like, like planets. And so, more than a century before Pluto was discovered, Ceres was plutoed.

    3
    Animation of rotating Ceres, made from a series of images taken by NASA’s Dawn spacecraft on February 4, 2015, at a distance of about 90,000 miles from the planet.

    With increasing knowledge and familiarity, we’ll no longer be able to identify meaningful criteria to keep these good planets down.

    These two events will make 2015 an exciting year for solar system exploration and discovery. But there is much more to this story than mere science. I expect 2015 will be the year when general consensus, built upon our new knowledge of these two objects, will return Pluto and add Ceres to our family of solar system planets.

    The efforts of a very small clique of Pluto-haters within the International Astronomical Union (IAU) plutoed Pluto in 2006. Of the approximately 10,000 internationally registered members of the IAU in 2006, only 237 voted in favor of the resolution redefining Pluto as a “dwarf planet” while 157 voted against; the other 9,500 members were not present at the closing session of the IAU General Assembly in Prague at which the vote to demote Pluto was taken. Yet Pluto’s official planetary status was snatched away.

    Ceres and Pluto are both spheroidal objects, like Mercury, Earth, Jupiter and Saturn. That’s part of the agreed upon definition of a planet. They both orbit a star, the Sun, like Venus, Mars, Uranus and Neptune. That’s also part of the widely accepted definition of a planet.

    Unlike the larger planets, however, Ceres, like Pluto, according to the IAU definition, “has not cleared the neighborhood around its orbit.” The asteroid belt is, apparently, Ceres’ neighborhood while the Kuiper Belt is Pluto’s neighborhood – though no definition of a planet’s neighborhood exists, and no agreed upon understanding of what “clearing the neighborhood” yet exists. Furthermore, no broad-based agreement exists as to why “clearing the neighborhood” need be a requirement in order for an object to be considered a planet.

    Some planetary astronomers would argue that were the Earth placed in the Kuiper Belt, it would not be able to clear its neighborhood and thus would not be considered, by the IAU definition, a planet; apparently location matters. Here a planet, there not a planet. I’d argue that location shouldn’t matter; instead, the intrinsic properties of the objects themselves should matter more. And so we are led back to Ceres and Pluto.

    Never before visited by human spacecraft, Ceres and Pluto, as we will soon bear witness, are both evolving, changing worlds. Yesterday, Ceres and Pluto were strangers, distant, barely known runt members of our solar system. By the end of this calendar year, however, we will have showered both objects with our passion and our attention, we will have welcomed them both into our embrace. And we almost certainly will once again call both of them planets.

    Ceres, temporarily a planet

    Ceres was discovered on New Year’s Day in 1801, by Italian astronomer Giuseppe Piazzi, a member of an international team of astronomers dubbed the Celestial Police, who were searching for a supposedly missing planet in between the orbits of Mars and Jupiter. When discovered, Ceres was immediately recognized as a planet, the eighth one known at the time (neither Neptune nor Pluto had been discovered yet).

    But within a few years, other objects in the asteroid belt were discovered and Ceres no longer seemed to stand out as far from the crowd. In 1802, the great astronomer [Sir Frederick] William Herschel suggested that Ceres and Pallas and any other smaller solar system objects should be called asteroids – meaning star-like. In telescope images, they were so tiny that they looked point-like, like stars, rather than disk-like, like planets. And so, more than a century before Pluto was discovered, Ceres was plutoed.

    6
    Animation of rotating Ceres, made from a series of images taken by NASA’s Dawn spacecraft on February 4, 2015, at a distance of about 90,000 miles from the planet. NASA

    But Ceres does still stand out. It’s the largest asteroid, by far, nearly 1,000 kilometers across (twice as large in diameter as Vesta, the second largest asteroid), though not perfectly spherical in shape.

    As happened inside Earth and other planets, planetary scientists think that long ago, the denser material in Ceres separated from the lighter material and sank to form a core.

    Astronomers think Ceres is rich in water – as much as one-third of Ceres might be water – and may have a thin atmosphere. Bright, white spots on its surface might even be large frozen lakes. Ceres may, in fact, have as much fresh water as Earth, have Earth-like polar caps, and might even have a sub-surface liquid ocean layer, like Jupiter’s moon Europa and Saturn’s moon Enceladus.

    Beginning this month, we’ll start to learn more about these tantalizing possibilities. With our increasing knowledge of and familiarity with Ceres, we will no longer be able to identify meaningful criteria that will allow us to continue to classify Ceres as not-a-planet. Ceres will continue to be a small planet, but in 2015 we will come to understand that dwarf planets are planets, too.

    Pluto’s short planetary reign

    Pluto also has an unusual orbit, as it crosses Neptune’s orbit, though it does so in such a way that it can never collide with Neptune.

    Pluto’s modern-day troubles began in 1992, when astronomers David Jewitt and Jane Luu discovered the first objects in the region of the solar system now known as the Kuiper Belt. Whereas the asteroid belt where Ceres resides is made mostly of house- and mountain-sized rocks that orbit the Sun in between the orbits of Mars and Jupiter, the Kuiper Belt is made mostly of house- and mountain-sized chunks of ice that orbit the Sun beyond the orbit of Neptune. Pluto, as it turns out, is one of the biggest objects in the Kuiper Belt.

    So what is Pluto?

    7
    Image of Pluto and its moon Charon, taken by NASA’s New Horizons spacecraft on January 25, 2015, from a distance of 125 million miles. NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

    Pluto is the last unexplored planet in our solar system. And the Kuiper Belt may contain hundreds of other planetary worlds like Pluto. These may be the most numerous worlds in the solar system; they may contain, together, the most total surface area of all the solid-surfaced planets.

    8
    Pluto and its five moons – as seen from the Hubble Space Telescope in July, 2012. NASA, ESA, and M. Showalter (SETI Institute)

    NASA Hubble Telescope
    Hubble

    Pluto has one large moon, Charon, and at least four small moons: Nix, Hydra, Kerberos and Styx. It has an atmosphere that expands and contracts as Pluto warms and cools during its 248 year orbit around the Sun. The surface is likely rich in water ice, enriched with methane and nitrogen and carbon monoxide frosts; these ices might contain complex organic molecules.

    The New Horizons mission is poised to answer some of our myriad questions about Pluto. How did it form? What is the atmosphere made of? What is the surface like? Does Pluto have a magnetic field? What are the moons like? Does Pluto have a subsurface ocean? Is the surface of Pluto’s moon Charon pure water ice?

    Pluto has guarded its secrets for four and half billion years. But in a few months, a few intrepid humans will pull back the curtain on Pluto and say “Hello, Pluto, we’re here.” And Pluto will begin to share her secrets with us. When she does, as with Ceres, our familiarity with Pluto will help us recognize that Pluto is, was, and has always been a planet, albeit a small one.

    We only get to visit Ceres and Pluto for the very first time, once. This year. March 6 and July 15. In your lifetime. In this incredible year of the dwarf planet. Get ready to party. Ceres and Pluto are coming home.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Conversation US launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 8:43 am on January 30, 2015 Permalink | Reply
    Tags: , , , NASA Dawn   

    From Space.com- “Vesta: Facts About the Brightest Asteroid” 

    space-dot-com logo

    SPACE.com

    January 29, 2015
    Nola Redd

    1
    Vesta with comparative asteroids

    Vesta is the second most massive body in the asteroid belt, surpassed only by Ceres, which is classified as a dwarf planet. The brightest asteroid in the sky, Vesta is occasionally visible from Earth with the naked eye. It is the first asteroid to be visited by a spacecraft. The Dawn mission orbited Vesta in 2011, providing new insights into this rocky world.

    NASA Dawn Spacecraft
    NASA/Dawn

    Celestial Police

    In 1596, while determining the elliptical shape of planetary orbits, Johannes Kepler came to believe that a planet should exist in the gap between Mars and Jupiter. Mathematical calculations by Johann Daniel Titius and Johann Elert Bode in 1772 — later known as the Titus-Bode law — seemed to support this prediction. In August 1798, a group known as the Celestial Police formed to search for this missing planet. Among these was German astronomer Heinrich Olbers. Olbers discovered the second known asteroid, Pallas. In a letter to a fellow astronomer, he put forth the first theory of asteroid origin. He wrote, “Could it be that Ceres and Pallas are just a pair of fragments … of a once greater planet which at one time occupied its proper place between Mars and Jupiter?”

    Olbers reasoned that the fragments of such a planet would intersect at the point of the explosion, and again in the orbit directly opposite. He observed these two areas nightly, and on March 29, 1807, discovered Vesta, becoming the first person to discover two asteroids. After measuring several nights’ worth of observations, Olbers sent his calculations to mathematician Carl Friedrich Gauss, who remarkably computed the orbit of Pallas in only 10 hours. As such, he was given the honor of naming the new body. He chose the name Vesta, goddess of the hearth, and sister to Ceres.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 3:08 pm on January 28, 2015 Permalink | Reply
    Tags: , , NASA Dawn   

    From Space.com: “NASA Finds Mysterious Bright Spot on Dwarf Planet Ceres: What Is It?” 

    space-dot-com logo

    SPACE.com

    January 23, 2015
    Calla Cofield

    1
    A mysterious white spot can be seen in the newest images from NASA’s Dawn space telescope, which is rapidly approaching the dwarf planet.
    Credit:NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

    A strange, flickering white blotch found on the dwarf planet Ceres by a NASA spacecraft has scientists scratching their heads.

    The white spot on Ceres in a series of new photos taken on Jan. 13 by NASA’s Dawn spacecraft, which is rapidly approaching the round dwarf planet in the asteroid belt between the orbits of Mars and Jupiter. But when the initial photo release on Monday (Jan. 19), the Dawn scientists gave no indication of what the white dot might be.

    NASA Dawn Spacecraft
    Dawn

    a
    Asteroid Belt
    The inner Solar System, from the Sun to Jupiter. Also includes the asteroid belt (the white donut-shaped cloud), the Hildas (the orange “triangle” just inside the orbit of Jupiter), the Jupiter trojans (green), and the near-Earth asteroids. The group that leads Jupiter are called the “Greeks” and the trailing group are called the “Trojans” (Murray and Dermott, Solar System Dynamics, pg. 107).

    “Yes, we can confirm that it is something on Ceres that reflects more sunlight, but what that is remains a mystery,” Marc Rayman, mission director and chief engineer for the Dawn mission, told Space.com in an email.

    The new images show areas of light and dark on the face of Ceres, which indicate surface features like craters. But at the moment, none of the specific features can be resolved, including the white spot.

    “We do not know what the white spot is, but it’s certainly intriguing,” Rayman said. “In fact, it makes you want to send a spacecraft there to find out, and of course that is exactly what we are doing! So as Dawn brings Ceres into sharper focus, we will be able to see with exquisite detail what [the white spot] is.”

    Ceres is a unique object in our solar system. It is the largest object in the asteroid belt and is classified as an asteroid. It is simultaneously classified as a dwarf planet, and at 590 miles across (950 kilometers, or about the size of Texas), Ceres is the smallest known dwarf planet in the solar system.

    The $466 million Dawn spacecraft is set to enter into orbit around Ceres on March 6. Dawn left Earth in 2007 and in the summer of 2011, it made a year-long pit stop at the asteroid Vesta, the second largest object in the asteroid belt.

    While Vesta shared many properties with our solar system’s inner planets, scientists with the Dawn mission suspect that Ceres has more in common with the outer most planets. 25 percent of Ceres’ mass is thought to be composed of water, which would mean the space rock contains even more fresh water than Earth. Scientists have observed water vapor plumes erupting off the surface of Ceres, which may erupt from volcano-like ice geysers.

    The mysterious white spot captured by the Dawn probe is one more curious feature of this already intriguing object.

    See the full article here.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Dawn mission for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. The University of California at Los Angeles (UCLA) is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Virginia, designed and built the spacecraft. UCLA is responsible for overall Dawn mission science. The Dawn framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research, Gottingen, Germany, with significant contributions by German Aerospace Center (DLR), Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The Framing Camera project is funded by the Max Planck Society, DLR, and NASA/JPL. The Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:17 pm on January 22, 2015 Permalink | Reply
    Tags: , , NASA Dawn   

    From NASA Dawn: “Gullies on Vesta Suggest Past Water-Mobilized Flows” 

    NASA Dawn

    NASA Dawn Spacescraft
    Dawn
    January 21, 2015
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    elizabeth.landau@jpl.nasa.gov

    1
    This image shows Cornelia Crater on the large asteroid Vesta. On the right is an inset image showing an example of curved gullies, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

    Protoplanet Vesta, visited by NASA’s Dawn spacecraft from 2011 to 2013, was once thought to be completely dry, incapable of retaining water because of the low temperatures and pressures at its surface. However, a new study shows evidence that Vesta may have had short-lived flows of water-mobilized material on its surface, based on data from Dawn.

    3
    As NASA’s Dawn spacecraft takes off for its next destination, this mosaic synthesizes some of the best views the spacecraft had of the giant asteroid Vesta. Dawn studied Vesta from July 2011 to September 2012. The towering mountain at the south pole — more than twice the height of Mount Everest — is visible at the bottom of the image. The set of three craters known as the “snowman” can be seen at the top left.

    “Nobody expected to find evidence of water on Vesta. The surface is very cold and there is no atmosphere, so any water on the surface evaporates,” said Jennifer Scully, postgraduate researcher at the University of California, Los Angeles. “However, Vesta is proving to be a very interesting and complex planetary body.”

    The study has broad implications for planetary science.

    “These results, and many others from the Dawn mission, show that Vesta is home to many processes that were previously thought to be exclusive to planets,” said UCLA’s Christopher Russell, principal investigator for the Dawn mission. “We look forward to uncovering even more insights and mysteries when Dawn studies Ceres.”

    Dawn is currently in the spotlight because it is approaching dwarf planet Ceres, the largest object in the main asteroid belt between Mars and Jupiter. It will be captured into orbit around Ceres on March 6. Yet data from Dawn’s exploration of Vesta continue to capture the interest of the scientific community.

    5
    The Dawn spacecraft observed Ceres for an hour on Jan. 13, 2015, from a distance of 238,000 miles (383,000 kilometers). A little more than half of its surface was observed at a resolution of 27 pixels. This animated GIF shows bright and dark features.

    Scully and colleagues, publishing in the journal Earth and Planetary Science Letters, identified a small number of young craters on Vesta with curved gullies and fan-shaped (“lobate”) deposits.

    “We’re not suggesting that there was a river-like flow of water. We’re suggesting a process similar to debris flows, where a small amount of water mobilizes the sandy and rocky particles into a flow,” Scully said.

    The curved gullies are significantly different from those formed by the flow of purely dry material, scientists said. “These features on Vesta share many characteristics with those formed by debris flows on Earth and Mars,” Scully said.

    The gullies are fairly narrow, on average about 100 feet (30 meters) wide. The average length of the gullies is a little over half a mile (900 meters). Cornelia Crater, with a width of 9 miles (15 kilometers), contains some of the best examples of the curved gullies and fan-shaped deposits.

    The leading theory to explain the source of the curved gullies is that Vesta has small, localized patches of ice in its subsurface. No one knows the origin of this ice, but one possibility is that ice-rich bodies, such as comets, left part of their ice deep in the subsurface following impact. A later impact would form a crater and heat up some of the ice patches, releasing water onto the walls of the crater.

    “If present today, the ice would be buried too deeply to be detected by any of Dawn’s instruments,” Scully said. “However, the craters with curved gullies are associated with pitted terrain, which has been independently suggested as evidence for loss of volatile gases from Vesta.” Also, evidence from Dawn’s visible and infrared mapping spectrometer and gamma ray and neutron detector indicates that there is hydrated material within some rocks on Vesta’s surface, suggesting that Vesta is not entirely dry.

    It appears the water mobilized sandy and rocky particles to flow down the crater walls, carving out the gullies and leaving behind the fan-shaped deposits after evaporation. The craters with curvy gullies appear to be less than a few hundred million years old, which is still young compared to Vesta’s age of 4.6 billion years.

    Laboratory experiments performed at NASA’s Jet Propulsion Laboratory, Pasadena, California, indicate that there could be enough time for curved gullies to form on Vesta before all of the water evaporated. “The sandy and rocky particles in the flow help to slow the rate of evaporation,” Scully said.

    The Dawn mission to Vesta and Ceres is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA’s Science Mission Directorate, Washington. UCLA is responsible for overall Dawn mission science.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Dawn mission for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. The University of California at Los Angeles (UCLA) is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Virginia, designed and built the spacecraft. UCLA is responsible for overall Dawn mission science. The Dawn framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research, Gottingen, Germany, with significant contributions by German Aerospace Center (DLR), Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The Framing Camera project is funded by the Max Planck Society, DLR, and NASA/JPL. The Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

     
  • richardmitnick 5:16 am on December 30, 2014 Permalink | Reply
    Tags: , , , , NASA Dawn   

    From JPL: “Dawn Spacecraft Begins Approach to Dwarf Planet Ceres” 

    NASA

    NASA

    December 29, 2014
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.Landau@jpl.nasa.gov

    Dawn has entered its approach phase toward Ceres
    The spacecraft will arrive at Ceres on March 6, 2015

    NASA’s Dawn spacecraft has entered an approach phase in which it will continue to close in on Ceres, a Texas-sized dwarf planet never before visited by a spacecraft. Dawn launched in 2007 and is scheduled to enter Ceres orbit in March 2015.

    c
    NASA’s Hubble Space Telescope color image of Ceres, the largest object in the asteroid belt. Astronomers optimized spatial resolution to about 18 km per pixel, enhancing the contrast in these images to bring out features on Ceres’ surface, that are both brighter and darker than the average which absorbs 91% of sunlight falling on it. (Original description by NASA) (Earth Distance: 1.64 AU and Angular diameter: 0.798″)

    NASA Hubble Telescope
    NASA Hubble schematic
    NASA/ESA Huble

    NASA Dawn Spacecraft
    NASA Dawn schematic
    NASA/Dawn

    Dawn recently emerged from solar conjunction, in which the spacecraft is on the opposite side of the sun, limiting communication with antennas on Earth. Now that Dawn can reliably communicate with Earth again, mission controllers have programmed the maneuvers necessary for the next stage of the rendezvous, which they label the Ceres approach phase. Dawn is currently 400,000 miles (640,000 kilometers) from Ceres, approaching it at around 450 miles per hour (725 kilometers per hour).

    The spacecraft’s arrival at Ceres will mark the first time that a spacecraft has ever orbited two solar system targets. Dawn previously explored the protoplanet Vesta for 14 months, from 2011 to 2012, capturing detailed images and data about that body.

    “Ceres is almost a complete mystery to us,” said Christopher Russell, principal investigator for the Dawn mission, based at the University of California, Los Angeles. “Ceres, unlike Vesta, has no meteorites linked to it to help reveal its secrets. All we can predict with confidence is that we will be surprised.”

    The two planetary bodies are thought to be different in a few important ways. Ceres may have formed later than Vesta, and with a cooler interior. Current evidence suggests that Vesta only retained a small amount of water because it formed earlier, when radioactive material was more abundant, which would have produced more heat. Ceres, in contrast, has a thick ice mantle and may even have an ocean beneath its icy crust.

    Ceres, with an average diameter of 590 miles (950 kilometers), is also the largest body in the asteroid belt, the strip of solar system real estate between Mars and Jupiter. By comparison, Vesta has an average diameter of 326 miles (525 kilometers), and is the second most massive body in the belt.

    The spacecraft uses ion propulsion to traverse space far more efficiently than if it used chemical propulsion. In an ion propulsion engine, an electrical charge is applied to xenon gas, and charged metal grids accelerate the xenon particles out of the thruster. These particles push back on the thruster as they exit, creating a reaction force that propels the spacecraft. Dawn has now completed five years of accumulated thrust time, far more than any other spacecraft.

    “Orbiting both Vesta and Ceres would be truly impossible with conventional propulsion. Thanks to ion propulsion, we’re about to make history as the first spaceship ever to orbit two unexplored alien worlds,” said Marc Rayman, Dawn’s chief engineer and mission director, based at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    The next couple of months promise continually improving views of Ceres, prior to Dawn’s arrival. By the end of January, the spacecraft’s images and other data will be the best ever taken of the dwarf planet.

    The Dawn mission to Vesta and Ceres is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA’s Science Mission Directorate, Washington. UCLA is responsible for overall Dawn mission science.

    More information about Dawn:

    http://dawn.jpl.nasa.gov

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 12:07 pm on December 6, 2014 Permalink | Reply
    Tags: , , , , NASA Dawn   

    From NASA: “Dawn Snaps Its Best-Yet Image of Dwarf Planet Ceres” 

    NASA

    NASA

    December 5, 2014
    Elizabeth Landau
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.Landau@jpl.nasa.gov

    The Dawn spacecraft has delivered a glimpse of Ceres, the largest body in the main asteroid belt, in a new image taken 740,000 miles (1.2 million kilometers) from the dwarf planet. This is Dawn’s best image yet of Ceres as the spacecraft makes its way toward this unexplored world.

    c

    NASA Dawn Spacescraft
    NASA/Dawn

    “Now, finally, we have a spacecraft on the verge of unveiling this mysterious, alien world. Soon it will reveal myriad secrets Ceres has held since the dawn of the solar system,” said Marc Rayman, of NASA’s Jet Propulsion Laboratory in Pasadena, California, chief engineer and mission director of the Dawn mission.

    Dawn will be captured into Ceres’ orbit in March, marking the first visit to a dwarf planet by a spacecraft. To date, the best images of Ceres come from the Hubble Space Telescope. In early 2015, however, Dawn will begin delivering images at much higher resolution.

    ce
    NASA’s Hubble Space Telescope color image of Ceres, the largest object in the asteroid belt. Astronomers optimized spatial resolution to about 18 km per pixel, enhancing the contrast in these images to bring out features on Ceres’ surface, that are both brighter and darker than the average which absorbs 91% of sunlight falling on it. (Original description by NASA) (Earth Distance: 1.64 AU and Angular diameter: 0.798″)
    NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)
    Taken: 2004-01-23. Released 7 September 2005

    Since launching in 2007, Dawn has already visited Vesta, a giant protoplanet currently located 104 million miles (168 million kilometers) away from Ceres. The distance between Vesta and Ceres is greater than the distance between the Earth and the sun. During its 14 months in orbit around Vesta, the spacecraft delivered unprecedented scientific insights, including images of its cratered surface and important clues about its geological history. Vesta and Ceres are the two most massive bodies in the main asteroid belt.

    v
    Composite greyscale image of Vesta taken by the Dawn spacecraft.

    The nine-pixel-wide image of Ceres released today serves as a final calibration of the science camera that is necessary before Dawn gets to Ceres. The dwarf planet appears approximately as bright as Venus sometimes appears from Earth. Ceres has an average diameter of about 590 miles (950 kilometers).

    Dawn begins its approach phase toward Ceres on December 26.

    The Dawn mission to Vesta and Ceres is managed by NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, for NASA’s Science Mission Directorate, Washington D.C. UCLA is responsible for overall Dawn mission science. The Dawn framing cameras were developed and built under the leadership of the Max Planck Institute for Solar System Research, Gottingen, Germany, with significant contributions by German Aerospace Center (DLR), Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The Framing Camera project is funded by the Max Planck Society, DLR, and NASA/JPL.

    More information about Dawn is online at http://dawn.jpl.nasa.gov.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.

     
  • richardmitnick 8:46 pm on November 17, 2014 Permalink | Reply
    Tags: , , , , NASA Dawn   

    From JPL: “Geologic Maps of Vesta from NASA’s Dawn Mission Published” 

    JPL

    November 17, 2014
    Media Contact
    Elizabeth Landau
    NASA’s Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-6425
    Elizabeth.Landau@jpl.nasa.gov

    Robert Burnham
    Arizona State University, Tempe, Ariz.
    480-458-8207
    Robert.Burnham@asu.edu

    Images from NASA’s Dawn Mission have been used to create a series of high-resolution geological maps of the large asteroid Vesta, revealing the variety of surface features in unprecedented detail. These maps are included with a series of 11 scientific papers published this week in a special issue of the journal Icarus.

    NASA Dawn Spacecraft
    NASA Dawn schematic
    NASA/Dawn

    Geological mapping is a technique used to derive the geologic history of a planetary object from detailed analysis of surface morphology, topography, color and brightness information. A team of 14 scientists mapped the surface of Vesta using Dawn spacecraft data, led by three NASA-funded participating scientists: David A. Williams of Arizona State University, Tempe; R. Aileen Yingst of the Planetary Science Institute, Tucson, Arizona; and W. Brent Garry of the NASA Goddard Spaceflight Center, Greenbelt, Maryland.

    “The geologic mapping campaign at Vesta took about two-and-a-half years to complete, and the resulting maps enabled us to recognize a geologic timescale of Vesta for comparison to other planets,” said Williams.

    1
    This high-resolution geological map of Vesta is derived from Dawn spacecraft data. Credit: NASA/JPL-Caltech/ASU

    Scientists discovered through these maps that impacts from several large meteorites have shaped Vesta’s history. Asteroids like Vesta are remnants of the formation of the solar system, giving scientists a peek at its history. Asteroids could also harbor molecules that are the building blocks of life and reveal clues about the origins of life on Earth.

    The geologic mapping of Vesta is enabled by images obtained by the framing camera provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center. This camera takes panchromatic images and seven bands of color-filtered images. Stereo photos are used to create topographic models of the surface that aid in the geologic interpretation.

    Vesta’s geologic timescale is determined by the sequence of large impact events, primarily by the Veneneia and Rheasilvia impacts in Vesta’s early history and the Marcia impact in its late history. The oldest crust on Vesta pre-dates the Veneneia impact.The relative timescale is supplemented by model-based absolute ages from two different approaches that apply crater statistics to date the surface.

    “This mapping was crucial for getting a better understanding of Vesta’s geological history, as well as providing context for the compositional information that we received from other instruments on the spacecraft: the visible and infrared (VIR) mapping spectrometer and the gamma-ray and neutron detector (GRaND),” said Carol Raymond, Dawn’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California.

    The objective of NASA’s Dawn mission is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter – Vesta and the dwarf planet Ceres. The spacecraft launched in 2007. Vesta, orbited by the Dawn spacecraft between July 2011 and September 2012, was thought to be the source of a unique set of basaltic meteorites (called HEDs, for howardite-eucrite-diogenite), and Dawn confirmed the Vesta-HED connection.

    The Dawn spacecraft is currently on its way to Ceres, the largest object in the asteroid belt. Dawn will arrive at Ceres in March 2015.

    Dawn uses ion propulsion in spiraling trajectories to travel from Earth to Vesta, orbit Vesta and then continue on to orbit the dwarf planet Ceres. Ion engines use very small amounts of onboard fuel, enabling a mission that would be unaffordable or impossible without them.

    JPL manages the Dawn mission for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. The University of California at Los Angeles (UCLA) is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team.

    For more information about Dawn, visit:

    http://www.nasa.gov/dawn

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl

    ScienceSprings relies on technology from

    MAINGEAR computers

    Lenovo
    Lenovo

    Dell
    Dell

     
  • richardmitnick 8:31 pm on December 3, 2013 Permalink | Reply
    Tags: , , , , NASA Dawn   

    From NASA/JPL at Caltech: “NASA’s Dawn Fills out its Ceres Dance Card” 

    December 03, 2013
    Jia-Rui Cook 818-354-0850
    Jet Propulsion Laboratory, Pasadena, Calif.
    jccook@jpl.nasa.gov

    It’s going to be a ball when NASA’s Dawn spacecraft finally arrives at the dwarf planet Ceres, and mission managers have now inked in the schedule on Dawn’s dance card.

    dawn
    DAWN

    ceres
    Ceres

    Dawn has been cruising toward Ceres, the largest object in the main asteroid belt between Mars and Jupiter, since September 2012. That’s when it departed from its first dance partner, Vesta.

    vesta
    Vesta

    Ceres presents an icy — possibly watery — counterpoint to the dry Vesta, where Dawn spent almost 14 months. Vesta and Ceres are two of the largest surviving protoplanets — bodies that almost became planets — and will give scientists clues about the planet-forming conditions at the dawn of our solar system.

    When Dawn enters orbit around Ceres, it will be the first spacecraft to see a dwarf planet up-close and the first spacecraft to orbit two solar system destinations beyond Earth.

    “Our flight plan around Ceres will be choreographed to be very similar to the strategy that we successfully used around Vesta,” said Bob Mase, Dawn’s project manager at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “This approach will build on that and enable scientists to make direct comparisons between these two giants of the asteroid belt.”

    As a prelude, the team will begin approach operations in late January 2015. The next month, Ceres will be big enough in Dawn’s view to be imaged and used for navigation purposes. Dawn will arrive at Ceres — or, more accurately, it will be captured by Ceres’ gravity — in late March or the beginning of April 2015.

    Dawn will make its first full characterization of Ceres later in April, at an altitude of about 8,400 miles (13,500 kilometers) above the icy surface. Then, it will spiral down to an altitude of about 2,750 miles (4,430 kilometers), and obtain more science data in its survey science orbit. This phase will last for 22 days, and is designed to obtain a global view of Ceres with Dawn’s framing camera, and global maps with the visible and infrared mapping spectrometer (VIR).

    Dawn will then continue to spiral its way down to an altitude of about 920 miles (1,480 kilometers), and in August 2015 will begin a two-month phase known as the high-altitude mapping orbit. During this phase, the spacecraft will continue to acquire near-global maps with the VIR and framing camera at higher resolution than in the survey phase. The spacecraft will also image in “stereo” to resolve the surface in 3-D.

    Then, after spiraling down for two months, Dawn will begin its closest orbit around Ceres in late November, at a distance of about 233 miles (375 kilometers). The dance at low-altitude mapping orbit will be a long waltz — three months — and is specifically designed to acquire data with Dawn’s gamma ray and neutron detector (GRaND) and gravity investigation. GRaND will reveal the signatures of the elements on and near the surface. The gravity experiment will measure the tug of the dwarf planet, as monitored by changes in the high-precision radio link to NASA’s Deep Space Network on Earth.

    At this low-altitude mapping orbit, Dawn will begin using a method of pointing control that engineers have dubbed “hybrid” mode because it utilizes a combination of reaction wheels and thrusters to point the spacecraft. Up until this final mission phase, Dawn will have used just the small thruster jets, which use a fuel called hydrazine, to control its orientation and pointing. While it is possible to explore Ceres completely using only these jets, mission managers want to conserve precious fuel. At this lowest orbit, using two of the reaction wheels to help with pointing will provide the biggest hydrazine savings. So Dawn will be spinning up two of the gyroscope-like devices to aid the thrusters.

    In 2011, the Dawn team prepared the capability to operate in a hybrid mode, but it wasn’t needed during the Vesta mission. It was only when a second (of four) reaction wheels developed excessive friction while Dawn was leaving Vesta in 2012 that mission managers decided to use the hybrid mode at Ceres. To prove the technique works, Dawn engineers completed a 27-hour in-flight test of the hybrid mode, ending on Nov. 13. It operated just as expected.

    “The successful test of this new way to control our orientation gives us great confidence that we’ll have a steady hand at Ceres, which will enable us to get really close to a world that we only know now as a fuzzy dot amidst the stars,” said Marc Rayman, Dawn’s chief engineer and mission director, based at JPL.

    Of course, mission planners have built some extra days into the schedule to account for the small uncertainty in the efficiency of the solar arrays at such a large distance from the sun, where sunlight will be very faint. The solar arrays provide power to the ion propulsion system, in addition to operating power for the spacecraft and instruments. Mission planners also account for potential variations in the gravity field of Ceres, which will not be known precisely until Dawn measures them.

    “We are expecting changes when we get to Ceres and, fortunately, we built a very capable spacecraft and developed flexible plans to accommodate the unknowns,” said Rayman. “There’s great excitement in the unexpected — that’s part of the thrill of exploration.”

    See the full article here.

    Dawn is a space probe launched by NASA on September 27, 2007, to study the two most massive objects of the asteroid belt – the protoplanet Vesta and the dwarf planet Ceres. Currently en route to Ceres and scheduled and expected to arrive in February 2015,[2][5] Dawn was the first spacecraft to visit Vesta, entering orbit on July 16, 2011.[6][7] Should its mission succeed, it will also be the first spacecraft to visit Ceres and to orbit two separate extraterrestrial bodies.[8]

    Dawn’s mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Ala. UCLA is responsible for overall Dawn mission science. Orbital Sciences Corp. in Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are international partners on the mission team. The California Institute of Technology in Pasadena manages JPL for NASA.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo
    jpl


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:27 pm on April 1, 2013 Permalink | Reply
    Tags: , , , , NASA Dawn   

    From JPL at Caltech: “A Hard Day’s Flight: Dawn Achieves Orbital Velocity” 

    NASA Dawn Banner

    “As NASA’s Dawn spacecraft makes its journey to its second target, the dwarf planet Ceres, Marc Rayman, Dawn’s chief engineer, shares a monthly update on the mission’s progress.

    NASA Dawn Spacescraft

    April 1, 2013
    Marc Rayman

    The indefatigable Dawn spacecraft is continuing to forge through the main asteroid belt, gently thrusting with its ion propulsion system. As it gradually changes its orbit around the sun, the distance to dwarf planet Ceres slowly shrinks. The pertinacious probe will arrive there in 2015 to explore the largest body between the sun and Neptune that has not yet been glimpsed by a visitor from Earth. Meanwhile, Vesta, the fascinating alien world Dawn revealed in 2011 and 2012, grows ever more distant. The mini-planet it orbited and studied in such detail now appears only as a pinpoint of light 15 times farther from Dawn than the moon is from Earth.

    Climbing through the solar system atop a column of blue-green xenon ions, Dawn has a great deal of powered flight ahead in order to match orbits with faraway Ceres. Nevertheless, it has shown quite admirably that it is up to the task. The craft has spent more time thrusting and has changed its orbit under its own power more than any other ship from Earth. While most of the next two years will be devoted to still more thrusting, the ambitious adventurer has already accomplished much more than it has left to do. And now it is passing an interesting milestone on its interplanetary trek.”

    See the full post here.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    caltech

    jpl


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 434 other followers

%d bloggers like this: