Tagged: NASA Chandra Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:05 am on October 17, 2017 Permalink | Reply
    Tags: , , , , NASA Chandra, Tycho's Supernova Remnant   

    From Chandra via Manu: “Tycho’s Supernova Remnant: Chandra Movie Captures Expanding Debris From a Stellar Explosion” 


    Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.

    NASA Chandra Banner
    NASA Chandra Telescope

    NASA Chandra

    1
    Credit X-ray: NASA/CXC/GSFC/B.Williams et al; Optical: DSS
    Release Date May 12, 2016

    For the first time, a movie has been made of the evolution of Tycho’s supernova remnant.

    This sequence includes X-rays observations from Chandra spaced out over a decade and a half.

    Tycho belongs to a class of supernovas used to measure the expansion of the Universe so the details of these explosions are very important.

    By combining the Chandra data with 30 years worth of observations with the VLA, scientists have learned new things about this remnant and its history.

    When the star that created this supernova remnant exploded in 1572, it was so bright that it was visible during the day. And though he wasn’t the first or only person to observe this stellar spectacle, the Danish astronomer Tycho Brahe wrote a book about his extensive observations of the event, gaining the honor of it being named after him.

    In modern times, astronomers have observed the debris field from this explosion – what is now known as Tycho’s supernova remnant – using data from NASA’s Chandra X-ray Observatory, the NSF’s Karl G. Jansky Very Large Array (VLA) and many other telescopes.

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    Today, they know that the Tycho remnant was created by the explosion of a white dwarf star, making it part of the so-called Type Ia class of supernovas used to track the expansion of the Universe.

    Since much of the material being flung out from the shattered star has been heated by shock waves – similar to sonic booms from supersonic planes – passing through it, the remnant glows strongly in X-ray light. Astronomers have now used Chandra observations from 2000 through 2015 to create the longest movie of the Tycho remnant’s X-ray evolution over time, using five different images. This shows the expansion from the explosion is still continuing about 450 years later, as seen from Earth’s vantage point roughly 10,000 light years away.

    By combining the X-ray data with some 30 years of observations in radio waves with the VLA, astronomers have also produced a movie, using three different images. Astronomers have used these X-ray and radio data to learn new things about this supernova and its remnant.

    For the videos, see the full article.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

    Advertisements
     
  • richardmitnick 9:28 pm on October 4, 2017 Permalink | Reply
    Tags: , , , NASA Chandra, , , ,   

    From Goddard: “NASA’s Webb Telescope to Witness Galactic Infancy” 

    NASA Goddard Banner
    NASA Goddard Space Flight Center

    Oct. 4, 2017
    Eric Villard
    eric.s.villard@nasa.gov
    NASA’s Goddard Space Flight Center

    Starfield
    The Hubble Ultra Deep Field is a snapshot of about 10,000 galaxies in a tiny patch of sky, taken by NASA’s Hubble Space Telescope.
    Credits: NASA, ESA, S. Beckwith (STScI), the HUDF Team

    After it launches and is fully commissioned, scientists plan to focus Webb telescope on sections of the Hubble Ultra-Deep Field (HUDF) and the Great Observatories Origins Deep Survey (GOODS).

    NASA/ESA Hubble Telescope

    NASA/Chandra Telescope

    NASA/Spitzer Infrared Telescope

    These sections of sky are among Webb’s list of targets chosen by guaranteed time observers, scientists who helped develop the telescope and thus get to be among the first to use it to observe the universe. The group of scientists will primarily use Webb’s mid-infrared instrument (MIRI) to examine a section of HUDF, and Webb’s near infrared camera (NIRCam) to image part of GOODS.

    NASA Webb MIRI

    NASA Webb NIRCam

    “By mixing [the data from] these instruments, we’ll get information about the current star formation rate, but we’ll also get information about the star formation history,” explained Hans Ulrik Nørgaard-Nielsen, an astronomer at the Danish Space Research Institute in Denmark and the principal investigator for the proposed observations.

    Pablo Pérez-González, an astrophysics professor at the Complutense University of Madrid in Spain and one of several co-investigators on Nørgaard-Nielsen’s proposed observation, said they will use Webb to observe about 40 percent of the HUDF area with MIRI, in roughly the same location that ground-based telescopes like the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope array (VLT) obtained ultra-deep field data.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    The iconic HUDF image shows about 10,000 galaxies in a tiny section of the sky, equivalent to the amount of sky you would see with your naked eye if you looked at it through a soda straw. Many of these galaxies are very faint, more than 1 billion times fainter than what the naked human eye can see, marking them as some of the oldest galaxies within the visible universe.

    With its powerful spectrographic instruments, Webb will see much more detail than imaging alone can provide. Spectroscopy measures the spectrum of light, which scientists analyze to determine physical properties of what is being observed, including temperature, mass, and chemical composition. Pérez-González explained this will allow scientists to study how gases transformed into stars in the first galaxies, and to better understand the first phases in the formation of supermassive black holes, including how those black holes affect the formation of their home galaxy. Astronomers believe the center of nearly every galaxy contains a supermassive black hole, and that these black holes are related to galactic formation.

    MIRI can observe in the infrared wavelength range of 5 to 28 microns. Pérez-González said they will use the instrument to observe a section of HUDF in 5.6 microns, which Spitzer is capable of, but that Webb will be able to see objects 250 times fainter and with eight times more spatial resolution. In this case, spatial resolution is the ability of an optical telescope, such as Webb, to see the smallest details of an object.

    Pérez-González said in the area of HUDF they will observe, Hubble was able to see about 4,000 galaxies. He added that, with Webb, they “will detect around 2,000 to 2,500 galaxies, but in a completely different spectral band, so many galaxies will be quite different from the ones that [Hubble] detected.”

    With NIRCam, the team will observe a piece of the GOODS region near their selected section of HUDF. The entire GOODS survey field includes observations from Hubble, Spitzer, and several other space observatories.

    “These NIRCam images will be taken in three bands, and they will be the deepest obtained by any guaranteed time observation team,” explained Pérez-González.

    NIRCam can observe in the infrared wavelength range of 0.6 to 5 microns. Pérez-González explained they will use it to observe a section of GOODS in the 1.15 micron band, which Hubble is capable of, but that Webb will be able to see objects 50 times fainter and with two times more spatial resolution. They will also use it to observe the 2.8 and 3.6 micron bands. Spitzer is able to do this as well, but Webb will be able to observe objects nearly 100 times fainter and with eight times greater spatial resolution.

    Because the universe is expanding, light from distant objects in the universe is “redshifted,” meaning the light emitted by those objects is visible in the redder wavelengths by the time it reaches us. The objects farthest away from us, those with the highest redshifts, have their light shifted into the near- and mid-infrared part of the electromagnetic spectrum. The Webb telescope is specifically designed to observe the objects in that area of the spectrum, which makes it ideal for looking at the early universe.

    “When you build an observatory with unprecedented capabilities, most probably the most interesting results will not be those that you can expect or predict, but those that no one can imagine,” said Pérez-González.

    The James Webb Space Telescope, the scientific complement to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).

    MIRI was built by ESA, in partnership with the European Consortium, a group of scientists and engineers from European countries; a team from NASA’s Jet Propulsion Laboratory in Pasadena, California; and scientists from several U.S. institutions. NIRCam was built by Lockheed Martin and the University of Arizona in Tucson.

    For more information about Webb telescope, visit: http://www.webb.nasa.gov or http://www.nasa.gov/webb

    For more information about Hubble telescope, visit: http://www.nasa.gov/hubble

    For more information about Spitzer telescope, visit: http://www.nasa.gov/spitzer

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.


    NASA/Goddard Campus

     
  • richardmitnick 7:14 pm on October 3, 2017 Permalink | Reply
    Tags: , , , Five new pairs of supermassive black holes, NASA Chandra, Seeing Double: Scientists Find Elusive Giant Black Hole Pairs   

    From Chandra- “Seeing Double: Scientists Find Elusive Giant Black Hole Pairs” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    2017-10-03
    For Press release
    Media contacts:
    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    Astronomers have identified a bumper crop of dual supermassive black holes in the centers of galaxies. This discovery could help astronomers better understand how giant black holes grow and how they may produce the strongest gravitational wave signals in the Universe.

    From Chandra Photo Release
    Five new pairs of merging supermassive black holes have been discovered by combining data from different telescopes.

    Models predict such growing dual supermassive black holes, but relatively few have been found.

    Researchers used Chandra observations to follow up on promising candidate mergers identified in optical and infrared studies.

    X-ray and infrared radiation is able to penetrate obscuring clouds of gas and dust that keep these black hole pairs otherwise hidden.

    1
    Credit X-ray: NASA/CXC/Univ. of Victoria/S.Ellison et al.; Optical: SDSS
    Release Date October 3, 2017
    This graphic shows two of five new pairs of supermassive black holes recently identified by astronomers using a combination of data from NASA’s Chandra X-ray Observatory, the Wide-Field Infrared Sky Explorer Survey (WISE), the ground-based Large Binocular Telescope in Arizona, and the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at APO (MaNGA) survey.

    NASA/WISE Telescope

    U Arizona Large Binocular Telescope, Mount Graham, Arizona, USA

    SDSS Telescope at Apache Point Observatory, NM, USA

    SDSS APOGEE spectrograph

    This discovery could help astronomers better understand how giant black holes grow and how they may produce the strongest gravitational wave signals in the Universe, as described in our press release.

    Each pair contains two supermassive black holes weighing millions of times the mass of the Sun. These black hole couples formed when two galaxies collided and merged with each other, forcing their supermassive black holes close together. While theoretical models have predicted such giant growing black hole pairings should be relatively abundant, they have been difficult to find.

    From the press release:
    “Our work shows that combining the infrared selection with X-ray follow-up is a very effective way to find these black hole pairs,” said Sara Ellison of the University of Victoria in Canada, who led the other paper describing these results. “X-rays and infrared radiation are able to penetrate the obscuring clouds of gas and dust surrounding these black hole pairs, and Chandra’s sharp vision is needed to separate them”.

    The paper led by Ellison used additional optical data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to pinpoint one of the new black hole pairs. One member of this black hole pair is particularly powerful, having the highest X-ray luminosity in a black hole pair observed by Chandra to date.

    This work has implications for the burgeoning field of gravitational wave astrophysics. While scientists using the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the VIRGO interferometer have detected the signals of merging black holes, these black holes have been of the smaller variety weighing between about eight and 36 times the mass of the Sun.

    The merging black holes in the centers of galaxies are much larger. When these supermassive black holes draw even closer together, they should start producing gravitational waves. The eventual merger of the dual supermassive black holes in hundreds of millions of years would forge an even bigger black hole. This process would produce an astonishing amount of energy when some of the mass is converted into gravitational waves.

    “It is important to understand how common supermassive black hole pairs are, to help in predicting the signals for gravitational wave observatories,” said Satyapal. “With experiments already in place and future ones coming online, this is an exciting time to be researching merging black holes. We are in the early stages of a new era in exploring the universe.”

    LIGO/VIRGO is not able to detect gravitational waves from supermassive black hole pairs. Instead, pulsar timing arrays such as the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) are currently performing this search. In the future, the Laser Interferometer Space Antenna (LISA) project could also search for these gravitational waves.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    2
    llustration of a pair of black holes.
    Credit: NASA/CXC/A.Hobart

    To uncover these latest supermassive black hole pairs, astronomers used optical data from the Sloan Digital Sky Survey (SDSS) — shown in the main panel of each image — to identify galaxies where it appeared that a merger between two smaller galaxies was underway. Next, they selected objects where the separation between the centers of the two galaxies in the SDSS data is less than 30,000 light years, and the infrared colors from WISE data match those predicted for a rapidly growing supermassive black hole.

    Seven merging systems containing at least one supermassive black hole were found with this technique. Because strong X-ray emission is a hallmark of growing supermassive black holes, the team then observed these systems with Chandra. They found that five systems contained pairs of X-ray sources that were separated by a relatively small distance (see inset for two examples), providing compelling evidence that they contain two growing, or feeding, supermassive black holes.

    Both the X-ray data from Chandra and the infrared WISE observations suggest that the supermassive black holes are buried in large amounts of dust and gas. Because these two wavelengths are able to penetrate the obscuring clouds, this makes the combination of infrared selection with X-ray follow-up a very effective way to find these black hole pairs. Chandra’s sharp vision is also critical as it is able to resolve each of the X-ray sources in the pairs.

    Four of the dual black hole candidates were reported in a paper by Satyapal et al. that was recently accepted for publication in The Astrophysical Journal, and appears online. The other dual black hole candidate was reported in a paper by Ellison et al., which was published in the September 2017 issue of the Monthly Notices of the Royal Astronomical Society and appears online.

    See the full article here .
    See the press Release here .
    See the Photo Release here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 2:06 pm on September 7, 2017 Permalink | Reply
    Tags: , , , , , NASA Chandra, X-rays Reveal Temperament of Possible Planet-hosting Stars   

    From Chandra: “X-rays Reveal Temperament of Possible Planet-hosting Stars” 

    NASA Chandra Banner
    NASA Chandra Telescope

    NASA Chandra

    September 6, 2017

    1
    Credit X-ray: NASA/CXC/Queens Univ. of Belfast/R.Booth, et al.; Illustration: NASA/CXC/M.Weiss

    X-rays may provide valuable information about whether a star system will be hospitable to life on planets.

    Stellar X-rays mirror magnetic activity, which can produce energetic radiation and eruptions that could impact surrounding planets.

    Researchers used Chandra and XMM-Newton to study 24 stars like the Sun that were at least one billion years old.

    ESA/XMM Newton X-ray telescope

    The latest study indicates older Sun-like stars settle down relatively quickly, boosting prospects for life to develop on planets around them.

    A new study using data from NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton suggests X-rays emitted by a planet’s host star may provide critical clues to just how hospitable a star system could be. A team of researchers looked at 24 stars similar to the Sun, each at least one billion years old, and how their X-ray brightness changed over time.

    Since stellar X-rays mirror magnetic activity, X-ray observations can tell astronomers about the high-energy environment around the star. In the new study the X-ray data from Chandra and XMM-Newton revealed that stars like the Sun and their less massive cousins calm down surprisingly quickly after a turbulent youth.

    To understand how quickly stellar magnetic activity level changes over time, astronomers need accurate ages for many different stars. This is a difficult task, but new precise age estimates have recently become available from studies of the way that a star pulsates using NASA’s Kepler and ESA’s CoRoT missions. These new age estimates were used for most of the 24 stars studied here.

    Astronomers have observed that most stars are very magnetically active when they are young, since the stars are rapidly rotating. As the rotating star loses energy over time, the star spins more slowly and the magnetic activity level, along with the associated X-ray emission, drops.

    Although it is not certain why older stars settle down relatively quickly, astronomers have ideas they are exploring. One possibility is that the decrease in rate of spin of the older stars occurs more quickly than it does for the younger stars. Another possibility is that the X-ray brightness declines more quickly with time for older, more slowly rotating stars than it does for younger stars.

    A paper describing these results has been accepted for publication in the Monthly Notices of the Royal Astronomical Society, and is available online. The other co-authors are Victor Silva Aguirre from Aarhus University in Denmark and Scott Wolk from CfA.

    A Quick Look at GJ 176

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 2:14 pm on August 15, 2017 Permalink | Reply
    Tags: , , , , M82 starburst, NASA Chandra   

    From Chandra- “M82: Images From Space Telescopes Produce Stunning View of Starburst Galaxy” 2006 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    April 24, 2006 [Before my time on this blog.]

    1
    Credit X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

    Images from three of NASA’s Great Observatories were combined to create this spectacular, multiwavelength view of the starburst galaxy M82. Optical light from stars (yellow-green/Hubble Space Telescope) shows the disk of a modest-sized, apparently normal galaxy.

    NASA/ESA Hubble Telescope

    Another Hubble observation designed to image 10,000 degree Celsius hydrogen gas (orange) reveals a startlingly different picture of matter blasting out of the galaxy. The Spitzer Space Telescope infrared image (red) shows that cool gas and dust are also being ejected.

    NASA/Spitzer Infrared Telescope

    Chandra’s X-ray image (blue) reveals gas that has been heated to millions of degrees by the violent outflow. The eruption can be traced back to the central regions of the galaxy where stars are forming at a furious rate, some 10 times faster than in the Milky Way Galaxy.

    Many of these newly formed stars are very massive and race through their evolution to explode as supernovas. Vigorous mass loss from these stars before they explode, and the heat generated by the supernovas drive the gas out of the galaxy at millions of miles per hour. It is thought that the expulsion of matter from a galaxy during bursts of star formation is one of the main ways of spreading elements like carbon and oxygen throughout the universe.

    The burst of star formation in M82 is thought to have been initiated by shock waves generated in a close encounter with a large nearby galaxy, M81, about 100 million years ago. These shock waves triggered the collapse of giant clouds of dust and gas in M82. In another 100 million years or so, most of the gas and dust will have been used to form stars, or blown out of the galaxy, so the starburst will subside.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 1:28 pm on August 12, 2017 Permalink | Reply
    Tags: astronomers found over a dozen black holes and neutron stars feeding off gas from young massive stellar companions, , , , , IC 10, If the separation between the compact objects becomes small enough as time passes they will produce gravitational waves, NASA Chandra,   

    From Chandra: ” IC 10: A Starburst Galaxy with the Prospect of Gravitational Waves” 

    NASA Chandra Banner
    NASA Chandra Telescope

    NASA Chandra

    1
    Credit: X-ray: NASA/CXC/UMass Lowell/S. Laycock et al.; Optical: Bill Snyder Astrophotography

    In 1887, American astronomer Lewis Swift discovered a glowing cloud, or nebula, that turned out to be a small galaxy about 2.2 million light years from Earth. Today, it is known as the “starburst” galaxy IC 10, referring to the intense star formation activity occurring there.

    More than a hundred years after Swift’s discovery, astronomers are studying IC 10 with the most powerful telescopes of the 21st century. New observations with NASA’s Chandra X-ray Observatory reveal many pairs of stars that may one day become sources of perhaps the most exciting cosmic phenomenon observed in recent years: gravitational waves.

    By analyzing Chandra observations of IC 10 spanning a decade, astronomers found over a dozen black holes and neutron stars feeding off gas from young, massive stellar companions. Such double star systems are known as “X-ray binaries” because they emit large amounts of X-ray light. As a massive star orbits around its compact companion, either a black hole or neutron star, material can be pulled away from the giant star to form a disk of material around the compact object. Frictional forces heat the infalling material to millions of degrees, producing a bright X-ray source.

    When the massive companion star runs out fuel, it will undergo a catastrophic collapse that will produce a supernova explosion, and leave behind a black hole or neutron star. The end result is two compact objects: either a pair of black holes, a pair of neutron stars, or a black hole and neutron star. If the separation between the compact objects becomes small enough as time passes, they will produce gravitational waves. Over time, the size of their orbit will shrink until they merge. LIGO has found three examples of black hole pairs merging in this way in the past two years.

    Starburst galaxies like IC 10 are excellent places to search for X-ray binaries because they are churning out stars rapidly. Many of these newly born stars will be pairs of young and massive stars. The most massive of the pair will evolve more quickly and leave behind a black hole or a neutron star partnered with the remaining massive star. If the separation of the stars is small enough, an X-ray binary system will be produced.

    This new composite image of IC 10 combines X-ray data from Chandra (blue) with an optical image (red, green, blue) taken by amateur astronomer Bill Snyder from the Heavens Mirror Observatory in Sierra Nevada, California. The X-ray sources detected by Chandra appear as a darker blue than the stars detected in optical light.

    The young stars in IC 10 appear to be just the right age to give a maximum amount of interaction between the massive stars and their compact companions, producing the most X-ray sources. If the systems were younger, then the massive stars would not have had time to go supernova and produce a neutron star or black hole, or the orbit of the massive star and the compact object would not have had time to shrink enough for mass transfer to begin. If the star system were much older, then both compact objects would probably have already formed. In this case transfer of matter between the compact objects is unlikely, preventing the formation of an X-ray emitting disk.

    2
    X-ray image of IC 10

    Chandra detected 110 X-ray sources in IC 10. Of these, over forty are also seen in optical light and 16 of these contain “blue supergiants”, which are the type of young, massive, hot stars described earlier. Most of the other sources are X-ray binaries containing less massive stars. Several of the objects show strong variability in their X-ray output, indicative of violent interactions between the compact stars and their companions.

    A pair of papers describing these results were published in the February 10th, 2017 issue of The Astrophysical Journal and is available online here and here. The authors of the study are Silas Laycock from the UMass Lowell’s Center for Space Science and Technology (UML); Rigel Capallo, a graduate student at UML; Dimitris Christodoulou from UML; Benjamin Williams from the University of Washington in Seattle; Breanna Binder from the California State Polytechnic University in Pomona; and, Andrea Prestwich from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 11:35 am on July 23, 2017 Permalink | Reply
    Tags: , , , , Hot gas in the center of the milky way, NASA Chandra, Universo Magico   

    From Universo Magico: “Hot gas in the center of the milky way” 

    Universo Magico

    July 23, 2017
    Juan Carlos

    1

    This image was produced by combining 12 observations of the X Chandra x-ray Observatory of a region 130 light-years from the center of the Milky way .

    NASA/Chandra Telescope

    The colors represent low-energy red X rays, average energy in green and high power in azul. Thanks to the unique power of resolution of Chandra, astronomers have been able to identify thousands of x-ray sources, as well as neutron stars, black holes, white dwarfs, stars in the foreground and the background galaxies. What remains is a diffuse glow of x-rays that extends from the upper left to the lower right, along the direction of the Galactic disk. The spectrum of the diffuse glow is consistent with a cloud of hot gas that contains two components, 10 million degrees Celsius and gas to 100 million degrees. Diffuse x-rays seem to be the brightest part of a crest of x-ray emission measuring thousands of years light across the disk of the Galaxy. The extension of this Crest implies that the diffuse hot gas in this image, probably not is being warmed by the supermassive black hole at the center of the milky way, known by astronomers as Sagittarius A.

    The shockwaves from explosions of supernovae are the most likely explanation to heat the gas up to 10 million degrees, but it is not known how heats the gas of 100 million degrees. Ordinary shock waves from supernova would not warm by very high energy particles that produces the wrong spectrum of x-rays. Moreover, the observed Galactic magnetic field appears to discard the heating and confinement by magnetic turbulence. It is possible that the high energy of the hot gas x-ray component seem only diffuse and, indeed, is due to the combined glow of a yet undetected population of point sources, as well as diffuse lights of a city seen at a great distance. The difficulty with this explanation is that 200,000 radioactive sources in the observed region would be necessary. A population so large sources undetected, would produce a glow of x-rays much softer than is observed. In addition, there is a known class of objects that can account for such a large number of high energy x-ray sources in the center of the milky way.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:33 am on July 20, 2017 Permalink | Reply
    Tags: , , , , Cygnus X-1: NASA's Chandra Adds to Black Hole Birth Announcement 2011, NASA Chandra   

    From Chandra: “Cygnus X-1: NASA’s Chandra Adds to Black Hole Birth Announcement” 2011 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    1
    Credit Optical: DSS; Illustration: NASA/CXC/M.Weiss

    Cygnus X-1 is a black hole about 15 times the mass of the Sun in orbit with a massive blue companion star.

    Astronomers used several telescopes including Chandra to study Cygnus X-1.

    The combined data have revealed the spin, mass, and distance of this black hole more precisely than ever before.

    Stephen Hawking lost a bet — originally placed in 1974 — that Cygnus X-1 did not contain a black hole.

    On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist’s illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole pulls material from a massive, blue companion star toward it. This material forms a disk (shown in red and orange) that rotates around the black hole before falling into it or being redirected away from the black hole in the form of powerful jets.

    A trio of papers with data from radio, optical and X-ray telescopes, including NASA’s Chandra X-ray Observatory, has revealed new details about the birth of this famous black hole that took place millions of years ago.

    The Extreme Spin of the Black Hole in Cygnus X-1 ApJ in press

    The Mass of the Black Hole in Cygnus X-1 ApJ in press

    The Trigonometric Parallax of Cygnus X-1 ApJ in press

    Using X-ray data from Chandra, the Rossi X-ray Timing Explorer, and the Advanced Satellite for Cosmology and Astrophysics, scientists were able to determine the spin of Cygnus X-1 with unprecedented accuracy, showing that the black hole is spinning at very close to its maximum rate. Its event horizon — the point of no return for material falling towards a black hole — is spinning around more than 800 times a second.

    NASA RXTE

    JAXA ASCA ASTRO-D satellite

    2
    Chandra X-ray of Cygnus X-1.

    Using optical observations of the companion star and its motion around its unseen companion, the team also made the most precise determination ever for the mass of Cygnus X-1, of 14.8 times the mass of the Sun. It was likely to have been almost this massive at birth, because of lack of time for it to grow appreciably.

    The researchers also announced that they have made the most accurate distance estimate yet of Cygnus X-1 using the National Radio Observatory’s Very Long Baseline Array (VLBA).

    NRAO VLBA

    The new distance is about 6,070 light years from Earth. This accurate distance was a crucial ingredient for making the precise mass and spin determinations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 11:05 am on July 20, 2017 Permalink | Reply
    Tags: , , , , CTIO 36 Inch (.91 meter) Telescope, DLR/NASA ROSAT satellite, NASA Chandra, RX J0822-4300 in Puppis A: Chandra Discovers Cosmic Cannonball   

    From Chandra: “RX J0822-4300 in Puppis A: Chandra Discovers Cosmic Cannonball” 2007 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    November 28, 2007

    1
    Credit Chandra: NASA/CXC/Middlebury College/F.Winkler et al; ROSAT: NASA/GSFC/S.Snowden et al.; Optical: NOAO/AURA/NSF/Middlebury College/F.Winkler et al.

    This graphic shows a wide-field view of the Puppis A supernova remnant along with a close-up image of the neutron star, known as RX J0822-4300, that is moving at a blistering pace. The larger field-of-view is a composite of X-ray data from the ROSAT satellite (pink) and optical data (purple), from the Cerro Tololo Inter-American Observatory 0.9-meter telescope, which highlights oxygen emission.

    DLR/NASA ROSAT satellite


    CTIO 36 Inch (.91 meter) Telescope

    Astronomers think Puppis A was created when a massive star ended its life in a supernova explosion about 3,700 years ago, forming an incredibly dense object called a neutron star and releasing debris into space.

    The neutron star was ejected by the explosion. The inset box shows two observations of this neutron star obtained with the Chandra X-ray Observatory over the span of five years, between December 1999 and April 2005. By combining how far it has moved across the sky with its distance from Earth, astronomers determined the cosmic cannonball is moving at over 3 million miles per hour, one of the fastest moving stars ever observed. At this rate, RX J0822-4300 is destined to escape from the Milky Way after millions of years, even though it has only traveled about 20 light years so far.

    The results from this study suggest the supernova explosion was lop-sided, kicking the neutron star in one direction and much of the debris from the explosion in the other. The estimated location of the explosion is shown in a labeled version of the composite image. The direction of motion of the cannonball, shown by an arrow, is in the opposite direction to the overall motion of the oxygen debris, seen in the upper left. In each case, the arrows show the estimated motion over the next 1,000 years. The oxygen clumps are believed to be massive enough so that momentum is conserved in the aftermath of the explosion, as required by fundamental physics.

    Science paper:
    EXPANDING EJECTA IN THE OXYGEN-RICH SUPERNOVA REMNANT G292.0+1.8: DIRECT MEASUREMENT THROUGH PROPER MOTIONS The Astrophysical Journal.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 12:54 pm on July 12, 2017 Permalink | Reply
    Tags: , , , , NASA Chandra, , W51   

    From Chandra: “W51: Chandra Peers into a Nurturing Cloud” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    July 12, 2017


    Optical

    2
    X-ray

    3
    Infrared
    Credit X-ray: NASA/CXC/PSU/L.Townsley et al; Infrared: NASA/JPL-Caltech
    Release Date July 12, 2017

    Giant molecular clouds, containing mostly hydrogen and helium, are where most new stars and planets form.

    W51 is one of the closest such objects to Earth so it is an excellent target for learning more about the star-formation process.

    A new composite image of W51 with X-ray data from Chandra (blue) and Spitzer (orange and yellow-green) is being released.

    The X-ray data show the young stars are often clumped together in clusters, while bathing their surroundings in high-energy light.

    In the context of space, the term ‘cloud’ can mean something rather different from the fluffy white collections of water in the sky or a way to store data or process information. Giant molecular clouds are vast cosmic objects, composed primarily of hydrogen molecules and helium atoms, where new stars and planets are born. These clouds can contain more mass than a million suns, and stretch across hundreds of light years.

    The giant molecular cloud known as W51 is one of the closest to Earth at a distance of about 17,000 light years. Because of its relative proximity, W51 provides astronomers with an excellent opportunity to study how stars are forming in our Milky Way galaxy.

    A new composite image of W51 shows the high-energy output from this stellar nursery, where X-rays from Chandra are colored blue. In about 20 hours of Chandra exposure time, over 600 young stars were detected as point-like X-ray sources, and diffuse X-ray emission from interstellar gas with a temperature of a million degrees or more was also observed. Infrared light observed with NASA’s Spitzer Space Telescope appears orange and yellow-green and shows cool gas and stars surrounded by disks of cool material.

    NASA/Spitzer Telescope

    W51 contains multiple clusters of young stars. The Chandra data show that the X-ray sources in the field are found in small clumps, with a clear concentration of more than 100 sources in the central cluster, called G49.5−0.4.

    Although the W51 giant molecular cloud fills the entire field-of-view of this image, there are large areas where Chandra does not detect any diffuse, low energy X-rays from hot interstellar gas. Presumably dense regions of cooler material have displaced this hot gas or blocked X-rays from it.

    4
    X-ray Image of W51 (cropped)

    One of the massive stars in W51 is a bright X-ray source that is surrounded by a concentration of much fainter X-ray sources, as shown in a close-up view of the Chandra image. This suggests that massive stars can form nearly in isolation, with just a few lower mass stars rather than the full set of hundreds that are expected in typical star clusters.

    Another young, massive cluster located near the center of W51 hosts a star system that produces an extraordinarily large fraction of the highest energy X-rays detected by Chandra from W51. Theories for X-ray emission from massive single stars can’t explain this mystery, so it likely requires the close interaction of two very young, massive stars. Such intense, energetic radiation must change the chemistry of the molecules surrounding the star system, presenting a hostile environment for planet formation.

    A paper describing these results, led by Leisa Townsley (Penn State), appeared in the July 14th 2014 issue of The Astrophysical Journal Supplement Series.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: