Tagged: NASA Chandra Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:40 am on January 12, 2018 Permalink | Reply
    Tags: , , , , NASA Chandra, Scientists Take Viewers to the Center of the Milky Way, ,   

    From Chandra: “Scientists Take Viewers to the Center of the Milky Way” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    Jan. 10, 2018

    Molly Porter
    NASA Marshall Space Flight Center, Huntsville, Ala.
    +1 256-424-5158
    molly.a.porter@nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    +1 617-496-7998
    mwatzke@cfa.harvard.edu


    A 360-degree movie immerses viewers into a simulation of the center of our Galaxy. This visualization was enabled by data from Chandra and other telescopes and allows viewers to control their own exploration of this region. From the vantage point of the Milky Way’s supermassive black hole, Sgr A*, the viewer can see about 25 Wolf-Rayet stars (white, twinkling objects) as they continuously eject stellar winds (black to red to yellow color scale). These winds collide with each other, and then some of this material (yellow blobs) spirals towards Sgr A*. The movie shows two simulations, each of which start around 350 years in the past and span 500 years. The first simulation shows Sgr A* in a calm state, while the second contains a more violent Sgr A* that is expelling its own material, thereby turning off the accretion of clumped material (yellow blobs) that is so prominent in the first portion. Credits: NASA/CXC/SAO/C. Russell

    A new visualization provides an exceptional virtual trip — complete with a 360-degree view — to the center of our home galaxy, the Milky Way. This project, made using data from NASA’s Chandra X-ray Observatory and other telescopes, allows viewers to control their own exploration of the fascinating environment of volatile massive stars and powerful gravity around the monster black hole that lies in the center of the Milky Way.

    The Earth is located about 26,000 light years, or about 150,000 trillion miles, from the center of the Galaxy. While humans cannot physically travel there, scientists have been able to study this region by using data from powerful telescopes that can detect light in a variety of forms, including X-ray and infrared light.

    This visualization builds on infrared data with the European Southern Observatory’s Very Large Telescope of 30 massive stellar giants called Wolf-Rayet stars that orbit within about 1.5 light years of the center of our Galaxy.

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    Powerful winds of gas streaming from the surface of these stars are carrying some of their outer layers into interstellar space.

    2
    A visualization of the center of our galaxy. Credits: NASA/CXC/Pontifical Catholic Univ. of Chile /C.Russell et al.

    When the outflowing gas collides with previously ejected gas from other stars, the collisions produce shock waves, similar to sonic booms, which permeate the area. These shock waves heat the gas to millions of degrees, which causes it to glow in X-rays. Extensive observations with Chandra of the central regions of the Milky Way have provided critical data about the temperature and distribution of this multimillion-degree gas.

    Astronomers are interested in better understanding what role these Wolf-Rayet stars play in the cosmic neighborhood at the Milky Way’s center. In particular, they would like to know how the stars interact with the Galactic center’s most dominant resident: the supermassive black hole known as Sagittarius A* (abbreviated Sgr A*). Pre-eminent yet invisible, Sgr A* has the mass equivalent to some four million Suns.

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    The Galactic Center visualization is a 360-degree movie that immerses the viewer into a simulation of the center of our Galaxy. The viewer is at the location of Sgr A* and is able to see about 25 Wolf-Rayet stars (white, twinkling objects) orbiting Sgr A* as they continuously eject stellar winds (black to red to yellow color scale). These winds collide with each other, and then some of this material (yellow blobs) spirals towards Sgr A*. The movie shows two simulations, each of which start around 350 years in the past and span 500 years. The first simulation shows Sgr A* in a calm state, while the second contains a more violent Sgr A* that is expelling its own material, thereby turning off the accretion of clumped material (yellow blobs) that is so prominent in the first portion.

    4
    Labeled Image of Galactic Center. Credits: NASA/CXC/Pontifical Catholic Univ. of Chile /C.Russell et al.

    Scientists have used the visualization to examine the effects Sgr A* has on its stellar neighbors. As the strong gravity of Sgr A* pulls clumps of material inwards, tidal forces stretch the clumps as they get closer to the black hole. Sgr A* also impacts its surroundings through occasional outbursts from its vicinity that result in the expulsion of material away from the giant black hole, as shown in the later part of the movie. These outbursts can have the effect of clearing away some of the gas produced by the Wolf-Rayet winds.

    The researchers, led by Christopher Russell of the Pontifical Catholic University of Chile, used the visualization to understand the presence of previously detected X-rays in the shape of a disk that extend about 0.6 light years outward from Sgr A*. Their work shows that the amount of X-rays generated by these colliding winds depends on the strength of outbursts powered by Sgr A*, and also the amount of time that has elapsed since an eruption occurred. Stronger and more recent outbursts result in weaker X-ray emission.

    The information provided by the theoretical modeling and a comparison with the strength of X-ray emission observed with Chandra led Russell and his colleagues to determine that Sgr A* most likely had a relatively powerful outburst that started within the last few centuries. Moreover, their findings suggest the outburst from the supermassive black hole is still affecting the region around Sgr A* even though it ended about one hundred years ago.

    The 360-degree video of the Galactic Center is ideally viewed in virtual reality (VR) goggles, such as Samsung Gear VR or Google Cardboard. The video can also be viewed on smartphones using the YouTube app. Moving the phone around pans to show a different portion of the movie, mimicking the effect in the VR goggles. Finally, most browsers on a computer also allow 360-degree videos to be shown on YouTube. To look around, either click and drag the video, or click the direction pad in the corner.

    Christopher Russell presented this new visualization and the related scientific findings at the 231st meeting of the American Astronomical Society in Washington, DC. Some of the results are based on a paper by Russell et al published in 2017 in the Monthly Notices of the Royal Astronomical Society. An online version is here. The co-authors of this paper are Daniel Wang from University of Massachusetts in Amherst, Mass. and Jorge Cuadra from Pontifical Catholic University of Chile. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    Read More from NASA’s Chandra X-ray Observatory.

    For more Chandra images, multimedia and related materials, visit:
    http://www.nasa.gov/chandra

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

    Advertisements
     
  • richardmitnick 1:07 pm on January 11, 2018 Permalink | Reply
    Tags: Apache Point Observatory, , , , , , NASA Chandra, , Researchers Catch Supermassive Black Hole Burping – Twice, SDSS J1354+1327   

    From Hubble: “Researchers Catch Supermassive Black Hole Burping – Twice” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jan 11, 2018

    Julie Comerford
    University of Colorado, Boulder, Colorado
    303-735-7032
    julie.comerford@colorado.edu

    Trent Knoss
    University of Colorado, Boulder, Colorado
    303-735-0528
    trent.knoss@colorado.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Megan Watzke
    Chandra X-ray Center, Cambridge, Massachusetts
    617-496-7998
    mwatzke@cfa.harvard.edu

    1
    Supermassive black holes, weighing millions of times as much as our Sun, are gatherers not hunters. Embedded in the hearts of galaxies, they will lie dormant for a long time until the next meal happens to come along.
    The team of astronomers using observations from the Hubble Space Telescope, the Chandra X-ray Observatory, and as well as the W.M. Keck Observatory in Mauna Kea, Hawaii, and the Apache Point Observatory (APO) near Sunspot, New Mexico, zeroed in on a flickering black hole.

    NASA/Chandra Telescope


    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level, showing also NASA’s IRTF and NAOJ Subaru

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft)

    A black hole in the center of galaxy SDSS J1354+1327, located about 800 million light-years away, appears to have consumed large amounts of gas while blasting off an outflow of high-energy particles. The fresh burst of fuel might have been supplied by a bypassing galaxy. The outflow eventually switched off then turned back on about 100,000 years later. This is strong evidence that accreting black holes can switch their power output off and on again over timescales that are short compared to the 13.8-billion-year age of the universe.

    Astronomers have caught a supermassive black hole in a distant galaxy snacking on gas and then “burping” — not once, but twice.

    The galaxy under study, called SDSS J1354+1327 (J1354 for short), is about 800 million light-years from Earth.

    Chandra detected a bright, point-like source of X-ray emission from J1354, a telltale sign of the presence of a supermassive black hole millions or billions of times more massive than our Sun. The X-rays are produced by gas heated to millions of degrees by the enormous gravitational and magnetic forces near the black hole. Some of this gas will fall into the black hole, while a portion will be expelled in a powerful outflow of high-energy particles.

    By comparing X-ray images from Chandra and visible-light (optical) images from Hubble, the team determined that the black hole is located in the center of the galaxy, the expected address for such an object. The X-ray data also provide evidence that the supermassive black hole is embedded in a heavy veil of dust and gas.

    The results indicate that in the past, the supermassive black hole in J1354 appears to have consumed, or accreted, large amounts of gas while blasting off an outflow of high-energy particles. The outflow eventually switched off then turned back on about 100,000 years later. This is strong evidence that accreting black holes can switch their power output off and on again over timescales that are short compared to the 13.8-billion-year age of the universe.

    “We are seeing this object feast, burp, and nap, and then feast and burp once again, which theory had predicted,” said Julie Comerford of the University of Colorado (CU) at Boulder’s Department of Astrophysical and Space Science, who led the study. “Fortunately, we happened to observe this galaxy at a time when we could clearly see evidence for both events.”

    So why did the black hole have two separate meals? The answer lies in a companion galaxy that is linked to J1354 by streams of stars and gas produced by a collision between the two galaxies. The team concluded that clumps of material from the companion galaxy swirled toward the center of J1354 and then were eaten by the supermassive black hole.

    The team used optical data from Hubble, Keck, and APO to show that electrons had been stripped from atoms in a cone of gas extending some 30,000 light-years south from the galaxy’s center. This stripping was likely caused by a burst of radiation from the vicinity of the black hole, indicating that a feasting event had occurred. To the north they found evidence for a shock wave, similar to a sonic boom, located about 3,000 light-years from the black hole. This suggests that a burp occurred after a different clump of gas had been consumed roughly 100,000 years later.

    “This galaxy really caught us off guard,” said CU Boulder doctoral student Rebecca Nevin, a study co-author who used data from APO to look at the velocities and intensities of light from the gas and stars in J1354. “We were able to show that the gas from the northern part of the galaxy was consistent with an advancing edge of a shock wave, and the gas from the south was consistent with an older outflow from the black hole.”

    Our Milky Way galaxy’s supermassive black hole has had at least one burp. In 2010, another research team discovered a Milky Way belch using observations from the orbiting Fermi Gamma-ray Observatory to look at the galaxy edge on. Astronomers saw gas outflows dubbed “Fermi bubbles” that shine in the gamma-ray, X-ray, and radio wave portion of the electromagnetic spectrum.

    “These are the kinds of bubbles we see after a black hole feeding event,” said CU postdoctoral fellow Scott Barrows. “Our galaxy’s supermassive black hole is now napping after a big meal, just like J1354’s black hole has in the past. So we also expect our massive black hole to feast again, just as J1354’s has.”

    Other co-authors on the new study include postdoctoral fellow Francisco Muller-Sanchez of CU Boulder, Jenny Greene of Princeton University, David Pooley from Trinity University, Daniel Stern from NASA’s Jet Propulsion Laboratory in Pasadena, California, and Fiona Harrison from the California Institute of Technology.

    A paper on the subject was published in a recent issue of The Astrophysical Journal. Comerford presented the team’s findings in a January 11th, 2018 press briefing at the 231st meeting of the American Astronomical Society held in Washington D.C.

    NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington, D.C. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations. The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 10:07 am on January 4, 2018 Permalink | Reply
    Tags: A supernova called SN 2010jl was discovered in the galaxy UGC 5189A, , , , , NASA Chandra,   

    From Chandra via Manu: “SN 2010jl: A Supernova Cocoon Breakthrough” 


    Manu Garcia, a friend from IAC.

    The universe around us.
    Astronomy, everything you wanted to know about our local universe and never dared to ask.
    Thanks, Manu

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    May 15, 2012

    1
    Composite

    2
    X-ray

    3
    Optical

    Credit: X-ray: NASA/CXC/Royal Military College of Canada/P.Chandra et al); Optical: NASA/STScI

    The first evidence in X-rays of a supernova shock wave breaking through a cocoon of gas around the star has been found.

    This discovery may help explain why some supernova explosions are more powerful than others.

    This supernova is called SN 2010jl and is found in a galaxy about 160 million light years from Earth.

    SN 2010jl was first spotted by astronomers on November 3, 2010, and probably exploded about a month before that.

    Observations with NASA’s Chandra X-ray Observatory have provided the first X-ray evidence of a supernova shock wave breaking through a cocoon of gas surrounding the star that exploded. This discovery may help astronomers understand why some supernovas are much more powerful than others.

    On November 3, 2010, a supernova was discovered in the galaxy UGC 5189A, located about 160 million light years away. Using data from the All Sky Automated Survey telescope in Hawaii taken earlier, astronomers determined this supernova exploded in early October 2010 (in Earth’s time-frame).

    This composite image of UGC 5189A shows X-ray data from Chandra in purple and optical data from Hubble Space Telescope in red, green and blue.

    NASA/ESA Hubble Telescope

    SN 2010jl is the very bright X-ray source near the top of the galaxy (mouse-over for a labeled version [in the full article]).

    A team of researchers used Chandra to observe this supernova in December 2010 and again in October 2011. The supernova was one of the most luminous that has ever been detected in X-rays.

    In optical light, SN 2010jl was about ten times more luminous than a typical supernova resulting from the collapse of a massive star, adding to the class of very luminous supernovas that have been discovered recently with optical surveys. Different explanations have been proposed to explain these energetic supernovas including (1) the interaction of the supernova’s blast wave with a dense shell of matter around the pre-supernova star, (2) radioactivity resulting from a pair-instability supernova (triggered by the conversion of gamma rays into particle and anti-particle pairs), and (3) emission powered by a neutron star with an unusually powerful magnetic field.

    In the first Chandra observation of SN 2010jl, the X-rays from the explosion’s blast wave were strongly absorbed by a cocoon of dense gas around the supernova. This cocoon was formed by gas blown away from the massive star before it exploded.

    In the second observation taken almost a year later, there is much less absorption of X-ray emission, indicating that the blast wave from the explosion has broken out of the surrounding cocoon. The Chandra data show that the gas emitting the X-rays has a very high temperature — greater than 100 million degrees Kelvin – strong evidence that it has been heated by the supernova blast wave.

    The energy distribution, or spectrum, of SN 2010jl in optical light reveals features that the researchers think are explained by the following scenario: matter around the supernova has been heated and ionized (electrons stripped from atoms) by X-rays generated when the blast wave plows through this material. While this type of interaction has been proposed before, the new observations directly show, for the first time, that this is happening.

    Therefore, this discovery supports the idea that some supernovas are unusually luminous because their blast waves ram into material around them.

    In a rare example of a cosmic coincidence, analysis of the X-rays from the supernova shows that there is a second unrelated source at almost the same location as the supernova. These two sources strongly overlap one another as seen on the sky. This second source is likely to be an ultraluminous X-ray source, possibly containing an unusually heavy stellar-mass black hole, or an intermediate mass black hole.

    These results were published in a paper appearing in the May 1st, 2012 issue of The Astrophysical Journal Letters. The authors were Poonam Chandra (Royal Military College of Canada, Kingston, Canada), Roger Chevalier and Christopher Irwin (University of Virginia, Charlottsville, VA), Nikolai Chugai (Institute of Astronomy of Russian Academy of Sciences, Moscow, Russia), Claes Fransson (Stockholm University, Sweden), and Alicia Soderberg (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 3:43 pm on December 27, 2017 Permalink | Reply
    Tags: , , , , , , , , NASA Chandra, Toothbrush Cluster   

    From CfA: “The Toothbrush Cluster” 

    Harvard Smithsonian Center for Astrophysics


    Center For Astrophysics

    1
    A multiwavelength false-color image of the “Toothbrush” cluster of galaxies, 1RXS J0603.3+4214. The intensity in red shows the radio emission, blue is X -ray, and the background color composite is optical emission. Astronomers studying the cluster with new radio observations combined with other wavelengths have been able to confirm the galaxy merger scenario and estimate the magnetic field strength in the shocks. van Weeren et al.

    Most galaxies lie in clusters containing from a few to thousands of objects. Our Milky Way, for example, belongs to a cluster of about fifty galaxies called the Local Group whose other large member is the Andromeda galaxy about 2.3 million light-years away.

    Local Group. Andrew Z. Colvin 3 March 2011

    Andromeda Galaxy Adam Evans

    Clusters are the most massive gravitationally bound objects in the universe and form (according to current ideas) in a “bottoms-up” fashion with smaller structures developing first and larger groupings assembling later in cosmic history. Dark matter plays an important role in this growth process.

    Dark matter cosmic web and the large-scale structure it forms The Millenium Simulation, V. Springel et al

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    Dark matter halo Image credit: Virgo consortium / A. Amblard / ESA

    Exactly how they grow, however, appears to depend on several competing physical processes including the behavior of the intracluster gas. There is more mass in this gas than there is in all the stars of a cluster’s galaxies, and the gas can have a temperature of ten million kelvin or even higher. As a result, the gas plays an important role in the cluster’s evolution. The hot intracluster gas contains rapidly moving charged particles that radiate strongly at radio wavelengths, sometimes revealing long filamentary structures.

    The “Toothbrush” galaxy cluster, 1RXS J0603.3+4214, hosts three of these radio structures as well as a large halo. The most prominent radio feature extends over more than six million light years, with three distinct components that resemble the brush and handle of a toothbrush. The handle is particularly enigmatic because, besides being large and very straight, it is off center from the axis of the cluster. The halo is thought to result from turbulence produced by the merger of galaxies, although some other possibilities have been suggested.

    CfA astronomers Reinout van Weeren, Bill Forman, Felipe Andrade-Santos, Ralph Kraft, and Christine Jones and their colleagues used the Very Large Array (VLA) facility to observe the relativistic particles in the cluster with precise, sensitive radio imaging, which they compared with Chandra X-ray and other datasets.

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    NASA/Chandra Telescope

    In the radio, the Toothbrush has a very narrow ridge, created by a huge shock resulting from the merger, and at least thirty-two previously undetected compact sources. The halo’s radio and X-ray morphologies are very similar and lend support to the merger scenario. Astronomers are also able to estimate the strength of the magnetic field, and combined with other results, use it to conclude that the merger scenario is most suitable.

    Reference(s):

    Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range 1-2 GHz, K. Rajpurohit, M. Hoeft, R. J. van Weeren, L. Rudnick, H. J. A. R ottgering, W. R. Forman, M. Bruggen, J. H. Croston, F. Andrade-Santos, W. A. Dawson, H. T. Intema, R. P. Kraft, C. Jones, and M. James Jee, http://lanl.arxiv.org/abs/1712.01327

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Center for Astrophysics combines the resources and research facilities of the Harvard College Observatory and the Smithsonian Astrophysical Observatory under a single director to pursue studies of those basic physical processes that determine the nature and evolution of the universe. The Smithsonian Astrophysical Observatory (SAO) is a bureau of the Smithsonian Institution, founded in 1890. The Harvard College Observatory (HCO), founded in 1839, is a research institution of the Faculty of Arts and Sciences, Harvard University, and provides facilities and substantial other support for teaching activities of the Department of Astronomy.

     
  • richardmitnick 2:01 pm on December 27, 2017 Permalink | Reply
    Tags: A New Stellar X-ray "Reality" Show Debuts, , , , , NASA Chandra   

    From Chandra: “A New Stellar X-ray “Reality” Show Debuts” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    Dec 27, 2017
    CXC

    1
    Walking Among the Stars website

    A new project using data from NASA’s Chandra X-ray Observatory and other telescopes allows people to navigate through real data of the remains of an exploded star for the first time.

    This three-dimensional virtual reality (VR) project with augmented reality (AR) allows users to explore inside the debris from actual observations of the supernova remnant called Cassiopeia A. Cassiopeia A (Cas A, for short) is the debris field of a massive star that blew itself apart over 400 years ago.

    The new 3D VR/AR project of Cas A is a collaboration between the Chandra X-ray Center in Cambridge, Mass., and Brown University’s Center for Computation and Visualization in Providence, RI, and will provide new opportunities for public communications, informal education, and research.

    “The stars are much too far away to touch, but this project will let experts and non-experts — at least virtually — walk among one of the most famous supernova remnants in our sky,” said Kimberly Arcand, Visualization Lead at the Chandra X-ray Center.

    VR is computer technology that simulates a user’s physical presence in a virtual environment. AR adds elements, such as text, overlays and audio, to enhance that experience with sensory input.

    23
    Cassiopeia A

    Chandra has repeatedly observed Cas A since the telescope was launched into space in 1999. Each exposure has added new and important data to the growing bank of information that astronomers use to study this object. This deep reservoir of data has allowed astronomers and visualization specialists to take the Cas A far beyond the two-dimensional imagery that exists for most astronomical objects.

    In 2009, a team of scientists, including astrophysicist Tracy Delaney (then of the Massachusetts Institute of Technology) and visualization experts used data from Chandra, NASA’s Spitzer Space Telescope, and ground-based optical facilities to generate a three-dimensional (3D) digital model of Cas A, the first ever of a supernova remnant. In 2013, a team of data specialists translated that into the first 3D print of a supernova remnant.

    “As technology has advanced in the VR and AR realms in recent years, we realized that we could go further with the 3D Cas A model,” said Arcand. “Instead of us telling people where to look in Cas A, this project lets them decide for themselves.”

    “The visualization of the Cas A supernova remnant took years to put together, and it deserves a magnificent way to experience it,” said Tom Sgouros of Brown’s Virtual Reality Lab. “Short of creating a building-size replica of the data, we think virtual reality is the best way to do that.”

    The 3D visualization and VR/AR may also pay scientific dividends as well. It shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The insight into the structure of Cas A gained from the 3D visualization is important for astronomers who build models of supernova explosions.

    The VR project is being made available in an open access format suitable for VR caves or “Yurts,” as well as on the Oculus Rift platform. Please contact Kimberly Kowal Arcand (kkowal “at” cfa.harvard.edu) for more information on accessing those files. The project coordinators plan for a Google Cardboard version in future iterations. Additional data-driven 3D astronomical objects are also in the works for the Chandra VR/AR experience.

    3
    Screen shot of the VR model in production.

    More information on Cas A in VR is available at http://chandra.si.edu/vr.

    For access to non-VR versions, the Smithsonian Learning Lab has created an interactive 3D application for the 3D Cas A with related resources and activities. Visit http://s.si.edu/cas-a

    More from access to the web page:

    One of the most famous objects in the sky, the Cassiopeia A supernova remnant, can be seen like never before, thanks to NASA’s Chandra X-ray Observatory, and Brown University. A three-dimensional virtual reality (VR) with augmented reality (AR) version of the 3D data allows you to walk inside the debris from a massive stellar explosion, select the parts of the supernova remnant to engage with, and access short captions on what the materials are.

    Scientists combined data from Chandra, NASA’s Spitzer Space Telescope, and ground-based facilities to construct a unique 3D model of the 300-year old remains of a stellar explosion that blew a massive star apart, sending the stellar debris rushing into space at millions of miles per hour. A collaboration with Brown University’s Center for Computation and Visualization allowed the 3D astronomical data collected on Cassiopeia A, or Cas A for short, to be featured in the VR/AR program -an innovation in digital technologies with public, education, and research-based impacts.

    To create the 3D data visualization, Chandra scientists took advantage of both a previously known phenomenon, the Doppler effect, and a new technology that bridges astronomy and medicine. When elements created inside a supernova, such as iron, silicon and argon, are heated they emit light at specific wavelengths. The motion of the material Doppler-shifts the light so that material moving towards the observer is seen at shorter wavelengths and material moving away is seen at longer wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris are expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer, modified for astronomical use by the Astronomical Medicine Project at Harvard, was used to display and manipulate the 3-D model.

    This visualization [at the web page] shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component — that astronomers were unable to map into 3-D prior to these recent observations — consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and position with respect to the rest of the debris field had never been mapped before now.

    The insight into the structure of Cas A gained from this 3-D visualization is important for astronomers who build models of supernova explosions. Now, they must consider that the outer layers of the star come off spherically, but the inner layers come out more disk-like with high-velocity jets in multiple directions.

    The VR project is being made available in an open access format suitable for VR caves as well as on the Oculus Rift platform. Please contact Kimberly Arcand for more information on accessing those files. The project coordinators plan for a Google Cardboard version in future iterations. Additional data-driven 3D astronomical objects are also in the works for the Chandra VR/AR experience.

    Additionally, Chandra has worked with the Smithsonian Learning Lab to create a browser-based interactive 3D application, and 360 degree video that works with Google Cardboard for Chandra’s 3D Cas A object. The activity has related educational resources and activities at http://s.si.edu/cas-a

    Or download the Cas A 3D model in a printable format at http://chandra.si.edu/deadstar/deadstar.html

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 1:51 pm on December 19, 2017 Permalink | Reply
    Tags: A specific wavelength of X-rays (3.5 keV) in the hot gas within the central region of the Perseus cluster, , In 2014 astronomers reported the detection of an unusual emission line in X-ray light from the Perseus and other galaxy clusters, NASA Chandra, , , Perseus Cluster: A New Twist in the Dark Matter Tale   

    From Chandra: “Perseus Cluster: A New Twist in the Dark Matter Tale” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    December 19, 2017

    1
    Composite

    2
    X-ray

    3
    Optical/Radio
    Credit X-ray: NASA/CXO/Oxford University/J. Conlon et al. Radio: NRAO/AUI/NSF/Univ. of Montreal/Gendron-Marsolais et al. Optical: NASA/ESA/IoA/A. Fabian et al.; DSS

    Dark matter is a mysterious invisible substance that makes up about 85% of matter in the Universe.

    In 2014, astronomers reported the detection of an unusual emission line in X-ray light from the Perseus and other galaxy clusters.

    A new interpretation of this detection and follow up observations may provide an explanation of this signal.

    If confirmed with future observations, this result could help resolve the nature of dark matter.

    An innovative interpretation of X-ray data from a galaxy cluster could help scientists understand the nature of dark matter, as described in our latest press release [written by Megan Watzke, Chandra X-ray Center, Cambridge, Mass. 617-496-7998 mwatzke@cfa.harvard.edu]. The finding involves a new explanation for a set of results made with NASA’s Chandra X-ray Observatory, ESA’s XMM-Newton and Hitomi, a Japanese-led X-ray telescope.

    ESA/XMM Newton X-ray telescope

    JAXA/Hitomi telescope lost

    If confirmed with future observations, this may represent a major step forward in understanding the nature of the mysterious, invisible substance that makes up about 85% of matter in the Universe.

    The image shown here contains X-ray data from Chandra (blue) of the Perseus galaxy cluster, which has been combined with optical data from the Hubble Space Telescope (pink) and radio emission from the Very Large Array (red).

    NASA/ESA Hubble Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    In 2014, researchers detected an unusual spike of intensity, known as an emission line, at a specific wavelength of X-rays (3.5 keV) in the hot gas within the central region of the Perseus cluster. They also reported the presence of this same emission line in a study of 73 other galaxy clusters.

    In the subsequent months and years, astronomers have tried to confirm the existence of this 3.5 keV line. They are eager to do so because it may give us important clues about the nature of dark matter. However, it has been debated in the astronomical community exactly what the original and follow-up observations have revealed.

    4
    Credit: NASA/CXC/M. Weiss

    A new analysis of Chandra data by a team from Oxford University, however, is providing a fresh take on this debate. The latest work shows that absorption of X-rays at an energy of 3.5 keV is detected when observing the region surrounding the supermassive black hole at the center of Perseus. This suggests that dark matter particles in the cluster are both absorbing and emitting X-rays (see our artist’s impression above for a diagram helping to explain this behavior, where 3.5 keV X-rays are shown). If the new model turns out to be correct, it could provide a path for scientists to one day identify the true nature of dark matter. For next steps, astronomers will need further observations of the Perseus cluster and others like it with current X-ray telescopes and those being planned for the next decade and beyond.

    A paper describing these results was published in Physical Review D on December 19, 2017 and a preprint is available online. The authors of the paper are Joseph Conlon, Francesca Day, Nicolas Jennings, Sven Krippendorf and Markus Rummel, all from Oxford University in the UK. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    From the Press Release

    Other materials about the findings are available at:
    http://chandra.si.edu/photo/2017/dark/

    For more Chandra images, multimedia and related materials, visit:
    http://www.nasa.gov/chandra

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 11:45 am on December 14, 2017 Permalink | Reply
    Tags: , , , , NASA Chandra,   

    From Hubble: “Dawn of a galactic collision” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    14 December 2017

    Mathias Jäger
    ESA/Hubble, Public Information Officer
    Garching bei München, Germany
    Tel: +49 176 62397500
    Email: mjaeger@partner.eso.org

    1
    A riot of colour and light dances through this peculiarly shaped galaxy, NGC 5256. Its smoke-like plumes are flung out in all directions and the bright core illuminates the chaotic regions of gas and dust swirling through the galaxy’s centre. Its odd structure is due to the fact that this is not one galaxy, but two — in the process of a galactic collision.

    NGC 5256, also known as Markarian 266, is about 350 million light-years away from Earth, in the constellation of Ursa Major (The Great Bear) [1]. It is composed of two disc galaxies whose nuclei are currently just 13 000 light-years apart. Their constituent gas, dust, and stars are swirling together in a vigorous cosmic blender, igniting newborn stars in bright star formation regions across the galaxy.

    Interacting galaxies can be found throughout the Universe, producing a variety of intricate structures. Some are quiet, with one galaxy nonchalantly absorbing another. Others are violent and chaotic, switching on quasars, detonating supernovae, and triggering bursts of star formation.

    While these interactions are destructive on a galactic scale, stars very rarely collide with each other in this process because the distances between them are so vast. But as the galaxies entangle themselves, strong tidal effects produce new structures — like the chaotic-looking plumes of NGC 5256 — before settling into a stable arrangement after millions of years.

    In addition to the bright and chaotic features, each merging galaxy of NGC 5256 contains an active galactic nucleus, where gas and other debris are fed into a hungry supermassive black hole. Observations from NASA’s Chandra X-ray Observatory show that both of these nuclei — and the region of hot gas between them — have been heated by shock waves created as gas clouds collide at high velocities.

    NASA/Chandra Telescope

    Galaxy mergers, like the one NGC 5256 is currently experiencing, were more common early in the Universe and are thought to drive galactic evolution. Today most galaxies show signs of past mergers and near-collisions. Our own Milky Way too has a long history of interaction: it contains the debris of many smaller galaxies it has absorbed in the past; it is currently cannibalising the Sagittarius Dwarf Spheroidal Galaxy; and in a kind of cosmic payback, the Milky Way will merge with our neighbour, the Andromeda Galaxy in about two billion years.

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Andromeda Galaxy NASA/ESA Hubble

    Also in this Hubble image is another pair of probably interacting galaxies — they are hiding to the right of NGC 5256 in the far distance, and have not yet been explored by any astronomer. From our perspective here on Earth, NGC 5256 is also just a few degrees away from another famous pair of interacting galaxies, Messier 51, which was observed by Hubble in 2005 (heic0506).
    Notes

    [1] NGC 5256 has previously been imaged by Hubble as part of a collection of 59 images of merging galaxies, released on Hubble’s 18th anniversary on 24 April 2008. This new image adds H-alpha data taken from the Wide-Field Camera 3 to the previously available data, making the gas visible.

    NASA/ESA Hubble WFC3


    This video starts with a view of the night sky as seen from and zoom in the constellation of Ursa Major (The Great Bear). Within this location the galaxy NGC 5256 can be found, about 350 million light-years away. The zoom ends with a view of this galaxy, as it is seen with the NASA/ESA Hubble Space Telescope. Credit: ESA/Hubble, NASA


    This video pans over NASA/ESA Hubble Space Telescope observations of the galaxy NGC 5256, about 350 million light-years from Earth. The galaxy is actually the result of two galaxies merging: the pan shows that the galaxy is composed of two disc galaxies whirling around each other in the last stage of a cosmic collision. In the process the gas from within the galaxies — coloured in red in this image — is thrown into space and performs a slow dance around the merging galactic nuclei. Credit: ESA/Hubble, NASA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 4:17 pm on December 12, 2017 Permalink | Reply
    Tags: , , , , , NASA Chandra, Oxygen is the most abundant element in the human body (about 65% by mass),   

    From Chandra: “Chandra Reveals the Elementary Nature of Cassiopeia A” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    2017-12-12

    1
    Cassiopeia A

    Where do most of the elements essential for life on Earth come from? The answer: inside the furnaces of stars and the explosions that mark the end of some stars’ lives.

    Astronomers have long studied exploded stars and their remains — known as “supernova remnants” — to better understand exactly how stars produce and then disseminate many of the elements observed on Earth, and in the cosmos at large.

    Due to its unique evolutionary status, Cassiopeia A (Cas A) is one of the most intensely studied of these supernova remnants. A new image from NASA’s Chandra X-ray Observatory shows the location of different elements in the remains of the explosion: silicon (red), sulfur (yellow), calcium (green) and iron (purple). Each of these elements produces X-rays within narrow energy ranges, allowing maps of their location to be created. The blast wave from the explosion is seen as the blue outer ring.

    X-ray telescopes such as Chandra are important to study supernova remnants and the elements they produce because these events generate extremely high temperatures — millions of degrees — even thousands of years after the explosion. This means that many supernova remnants, including Cas A, glow most strongly at X-ray wavelengths that are undetectable with other types of telescopes.

    Chandra’s sharp X-ray vision allows astronomers to gather detailed information about the elements that objects like Cas A produce. For example, they are not only able to identify many of the elements that are present, but how much of each are being expelled into interstellar space.

    The Chandra data indicate that the supernova that produced Cas A has churned out prodigious amounts of key cosmic ingredients. Cas A has dispersed about 10,000 Earth masses worth of sulfur alone, and about 20,000 Earth masses of silicon. The iron in Cas A has the mass of about 70,000 times that of the Earth, and astronomers detect a whopping one million Earth masses worth of oxygen being ejected into space from Cas A, equivalent to about three times the mass of the Sun. (Even though oxygen is the most abundant element in Cas A, its X-ray emission is spread across a wide range of energies and cannot be isolated in this image, unlike with the other elements that are shown.)

    Astronomers have found other elements in Cas A in addition to the ones shown in this new Chandra image. Carbon, nitrogen, phosphorus and hydrogen have also been detected using various telescopes that observe different parts of the electromagnetic spectrum. Combined with the detection of oxygen, this means all of the elements needed to make DNA, the molecule that carries genetic information, are found in Cas A.

    2
    Periodic Table of Elements. Credit: NASA/CXC/K. Divona

    Oxygen is the most abundant element in the human body (about 65% by mass), calcium helps form and maintain healthy bones and teeth, and iron is a vital part of red blood cells that carry oxygen through the body. All of the oxygen in the Solar System comes from exploding massive stars. About half of the calcium and about 40% of the iron also come from these explosions, with the balance of these elements being supplied by explosions of smaller mass, white dwarf stars.

    While the exact date is not confirmed , many experts think that the stellar explosion that created Cas A occurred around the year 1680 in Earth’s timeframe. Astronomers estimate that the doomed star was about five times the mass of the Sun just before it exploded. The star is estimated to have started its life with a mass about 16 times that of the Sun, and lost roughly two-thirds of this mass in a vigorous wind blowing off the star several hundred thousand years before the explosion.

    Earlier in its lifetime, the star began fusing hydrogen and helium in its core into heavier elements through the process known as “nucleosynthesis.” The energy made by the fusion of heavier and heavier elements balanced the star against the force of gravity. These reactions continued until they formed iron in the core of the star. At this point, further nucleosynthesis would consume rather than produce energy, so gravity then caused the star to implode and form a dense stellar core known as a neutron star.

    3
    Pre-Supernova Star: As it nears the end of its evolution, heavy elements produced by nuclear fusion inside the star are concentrated toward the center of the star. Illustration Credit: NASA/CXC/S. Lee

    The exact means by which a massive explosion is produced after the implosion is complicated, and a subject of intense study, but eventually the infalling material outside the neutron star was transformed by further nuclear reactions as it was expelled outward by the supernova explosion.

    Chandra has repeatedly observed Cas A since the telescope was launched into space in 1999. The different datasets have revealed new information about the neutron star in Cas A, the details of the explosion, and specifics of how the debris is ejected into space.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 5:04 pm on December 5, 2017 Permalink | Reply
    Tags: Abell 2744, , , NASA Chandra, , , ,   

    From Hubble: “Hubble’s First Frontier Field Finds Thousands of Unseen, Faraway Galaxies” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope

    NASA/ESA Hubble Telescope

    Jan 7, 2014
    Ray Villard
    Space Telescope Science Institute, Baltimore, Md.
    410-338-4514
    villard@stsci.edu

    1
    Hubble Frontier Field Abell 2744

    2
    Frontier Fields Footprint: Galaxy Cluster Abell 2744

    The first of a set of unprecedented, super-deep views of the universe from an ambitious collaborative program called The Frontier Fields is being released today at the 223rd meeting of the American Astronomical Society in Washington, D.C.

    The long-exposure image taken with NASA’s Hubble Space Telescope is the deepest-ever picture taken of a cluster of galaxies, and also contains images of some of the intrinsically faintest and youngest galaxies ever detected.

    The target is the massive cluster Abell 2744, which contains several hundred galaxies as they looked 3.5 billion years ago. The immense gravity in this foreground cluster is being used as a “gravitational lens,” which warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.

    “The Frontier Fields is an experiment; can we use Hubble’s exquisite image quality and Einstein’s theory of General Relativity to search for the first galaxies?” said Space Telescope Science Institute Director Matt Mountain. “With the other Great Observatories, we are undertaking an ambitious joint program to use galaxy clusters to explore the first billion years of the universe’s history.”

    Simultaneous observations of this field are being done with NASA’s two other Great Observatories, the Spitzer Space Telescope and the Chandra X-ray Observatory.

    NASA/Spitzer Infrared Telescope

    NASA/Chandra Telescope

    The assembly of all this multispectral information is expected to provide new insights into the origin and evolution of galaxies and their accompanying black holes.

    The Hubble exposure reveals nearly 3,000 of these background galaxies interleaved with images of hundreds of foreground galaxies in the cluster. The many background galaxies would otherwise be invisible without the boost from gravitational lensing. Their images not only appear brighter, but also smeared, stretched, and duplicated across the field.

    Thanks to the gravitational lensing phenomenon, the background galaxies are magnified to appear up to 10 to 20 times larger than they would normally appear.

    Gravitational Lensing NASA/ESA

    What’s more, the faintest of these highly magnified objects have intrinsic brightnesses roughly 10 to 20 times fainter than any galaxies ever previously observed.

    The Hubble data are immediately being made available to the worldwide astronomy community where teams of researchers will do a detailed study of the visual crazy quilt of intermingled background and cluster galaxies to better understand the stages of galaxy development.

    Though the foreground cluster Abell 2744 has been intensively studied as one of the most massive clusters in the universe, the Frontier Fields exposure reveals new details of the cluster population. Hubble sees dwarf galaxies in the cluster as small as 1/1,000th the mass of the Milky Way. At the other end of the size spectrum, Hubble detects the extended light from several monster central cluster galaxies that are as much as 100 times more massive than our Milky Way. Also visible is faint intra-cluster light from stars inside the cluster that have been stripped out of galaxies by gravitational interactions. These new deep images will also help astronomers map out the dark matter in the cluster with unprecedented detail, by charting its distorting effects on background light. An unseen form of matter, dark matter makes up the bulk of the mass of the cluster.

    As the Abell cluster was being photographed with Hubble’s Wide Field Camera 3, the telescope’s Advanced Camera for Surveys was trained on a nearby parallel field that is 6 arc minutes away from the cluster.

    NASA/ESA Hubble WFC3

    NASA/ESA Hubble ACS

    In this field, Hubble resolves roughly 10,000 galaxies seen in visible light, most of which are randomly scattered galaxies. The blue galaxies are distant star-forming galaxies seen from up to 8 billion years ago; the handful of larger, red galaxies are in the outskirts of the Abell 2744 cluster.

    Hubble will again view these two Frontier Fields in May 2014, but Hubble’s visible-light and infrared camera will switch targets. This will allow for both fields to be observed over a full range of colors, from ultraviolet light to near-infrared.

    With each new camera installed on Hubble, the space telescope has been used to make successively deeper, groundbreaking views of the universe. To get a better assessment of whether doing more deep field observations was scientifically compelling or urgent, the Space Telescope Science Institute or STScI in Baltimore, Md., chartered a “Hubble Deep Field Initiative” working group. The Hubble Frontier Fields initiative grew out of the working group’s high-level discussions at STScI concerning what important, forward-looking science Hubble should be doing in upcoming years. Despite several deep field surveys, astronomers realized that a lot was still to be learned about the far universe. Such knowledge would help in planning the observing strategy for the upcoming James Webb Space Telescope.

    The astronomers also considered synergies with other observatories, such as Spitzer, Chandra, and the new Atacama Large Millimeter/submillimeter Array or ALMA.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Over the coming years five more pairs of fields will be imaged. The next scheduled target is the massive cluster MACS J0416.1-2403, for which observations are starting this week.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

    NASA image

     
  • richardmitnick 5:48 pm on November 30, 2017 Permalink | Reply
    Tags: , , , , , NASA Chandra   

    From Chandra: “Giant Black Hole Pair Photobombs Andromeda Galaxy” 

    NASA Chandra Banner

    NASA Chandra Telescope

    NASA Chandra

    11.30.17

    1
    Credit: X-ray: NASA/CXC/Univ. of Washington/T.Dorn-Wallenstein et al.; Optical: NASA/ESA/J. Dalcanton, et al. & R. Gendler

    A pair of supermassive black holes has “photobombed” the Andromeda galaxy.

    Astronomers previously thought this source, known as J0045+41, was part of Andromeda, which is about 2.5 million light years from Earth.

    New data from Chandra and ground-based optical data reveal J0045+41 is actually 1,000 times more distant.

    The latest information suggests J0045+41 contains a pair of giant black holes orbiting one another extremely closely.

    An intriguing source has been discovered in the nearby Andromeda galaxy using data from NASA’s Chandra X-ray Observatory and ground-based optical telescopes. Previously thought to be part of the Milky Way’s neighbor galaxy, the new research shows this source is actually a very distant object 2.6 billion light years away that is acting as a cosmic bomb, as reported in our press release.

    This graphic shows the Chandra data (blue in inset) of the source known as LGGS J004527.30+413254.3 (J0045+41 for short) in the context of optical images of Andromeda from the Hubble Space Telescope.

    NASA/ESA Hubble Telescope

    In the inset image, north is up and in the large image north is to the lower right. Andromeda, also known as Messier 31, is a spiral galaxy located about 2.5 million light years from Earth.

    Even more intriguing than the large distance of J0045+41 is that it likely contains a pair of giant black holes in close orbit around each other. The estimated total mass for these two supermassive black holes is about two hundred million times that of our Sun.

    J0045+41 was previously classified as a different type of object — a pair of orbiting stars — when it was thought to occupy Andromeda. A team of researchers combined the Chandra X-ray data with spectra from the Gemini North telescope in Hawaii, providing evidence that J0045+41 contained at least one supermassive black hole. Using data from the Palomar Transient Factory telescopes in California, the team found repeating variations in the light from J0045+41, a pointer to the presence of two orbiting giant black holes.

    The researchers estimate that the two putative black holes orbit each other with a separation of only a few hundred times the distance between the Earth and the Sun. This corresponds to less than one hundredth of a light year. By comparison, the nearest star to our Sun is about four light years away.

    Such a system could be formed as a consequence of the merger, billions of years earlier, of two galaxies that each contained a supermassive black hole. At their current close separation, the two black holes are inevitably being drawn closer together as they emit gravitational waves.

    A paper describing this result was accepted for publication in The Astrophysical Journal.

    See the full article here .
    See the Press Release here.
    Written by
    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: