Tagged: NASA Chandra Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:16 pm on May 14, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “Magnetar Near Supermassive Black Hole Delivers Surprises” 

    NASA Chandra

    May 13, 2015
    Janet Anderson
    Marshall Space Flight Center, Huntsville, Ala.
    256-544-0034
    janet.l.anderson@nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    1
    Credit NASA/CXC/INAF/F.Coti Zelati et al
    Release Date May 14, 2015

    A magnetar near the Milky Way’s supermassive black hole is exhibiting some unusual behavior.

    Since its discovery in 2013, this magnetar has been monitored by Chandra and XMM-Newton.

    The X-ray output from this magnetar is dropping more slowly than others and its surface is exceptionally hot.

    In 2013, astronomers announced they had discovered a magnetar exceptionally close to the supermassive black hole at the center of the Milky Way using a suite of space-borne telescopes including NASA’s Chandra X-ray Observatory.

    Magnetars are dense, collapsed stars (called “neutron stars“) that possess enormously powerful magnetic fields. At a distance that could be as small as 0.3 light years (or about 2 trillion miles) from the 4-million-solar mass black hole in the center of our Milky Way galaxy, the magnetar is by far the closest neutron star to a supermassive black hole ever discovered and is likely in its gravitational grip.

    Since its discovery two years ago when it gave off a burst of X-rays, astronomers have been actively monitoring the magnetar, dubbed SGR 1745-2900, with Chandra and the European Space Agency’s XMM-Newton.

    ESA XMM Newton
    ESA/XMM-Newton

    The main image of the graphic shows the region around the Milky Way’s black hole in X-rays from Chandra (red, green, and blue are the low, medium, and high-energy X-rays respectively). The inset contains Chandra’s close-up look at the area right around the black hole, showing a combined image obtained between 2005 and 2008 (left) when the magnetar was not detected, during a quiescent period, and an observation in 2013 (right) when it was caught as a bright point source during the X-ray outburst that led to its discovery.

    A new study uses long-term monitoring observations to reveal that the amount of X-rays from SGR 1745-2900 is dropping more slowly than other previously observed magnetars, and its surface is hotter than expected.

    The team first considered whether “starquakes” are able to explain this unusual behavior. When neutron stars, including magnetars, form, they can develop a tough crust on the outside of the condensed star. Occasionally, this outer crust will crack, similar to how the Earth’s surface can fracture during an earthquake. Although starquakes can explain the change in brightness and cooling seen in many magnetars, the authors found that this mechanism by itself was unable to explain the slow drop in X-ray brightness and the hot crustal temperature. Fading in X-ray brightness and surface cooling occur too quickly in the starquake model.

    The researchers suggest that bombardment of the surface of the magnetar by charged particles trapped in twisted bundles of magnetic fields above the surface may provide the additional heating of the magnetar’s surface, and account for the slow decline in X-rays. These twisted bundles of magnetic fields can be generated when the neutron star forms.

    2
    This illustration shows how an extremely rapidly rotating neutron star, which has formed from the collapse of a very massive star, can produce incredibly powerful magnetic fields. (Illustration: NASA/CXC/M.Weiss)

    The researchers do not think that the magnetar’s unusual behavior is caused by its proximity to a supermassive black hole, as the distance is still too great for strong interactions via magnetic fields or gravity.

    Astronomers will continue to study SGR 1745-2900 to glean more clues about what is happening with this magnetar as it orbits our galaxy’s supermassive black hole.

    These results appear in Monthly Notices of the Royal Astronomical Society in a paper led by the PhD student Francesco Coti Zelati (Universita’ dell’ Insubria, University of Amsterdam, INAF-OAB), within a large international collaboration including N. Rea (University of the Amsterdam, CSIC-IEEC), A. Papitto, D. Viganò (CSIC-IEEC), J. A. Pons (Universitat d’Alacant), R. Turolla (Universita’ di Padova, MSSL), P. Esposito (INAF, CfA), D. Haggard (Amherst college), F. K. Baganoff (MIT), G. Ponti (MPE), G. L. Israel, S. Campana (INAF), D. F. Torres (CSIC-IEEC, ICREA), A. Tiengo (IUSS, INAF), S. Mereghetti (INAF), R. Perna (Stony Brook University), S. Zane (MSSL), R. P. Mignani (INAF, University of Zielona Gora), A. Possenti, L. Stella (INAF).

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
    • kagmi 5:37 pm on May 14, 2015 Permalink | Reply

      Thanks for explaining about the colors in the images!

      I always wonder, looking at these telescopic images, how close to “true color” they are.

      You can often find images of the same nebula in a variety of color schemes depending on how they’re coding color, I presume, which makes me wonder if any of them are anything akin to “real color” or if many of these objects (like nebulae) are just too faint to be seen in any meaningful capacity by the naked eye, even from close-up.

      Like

    • richardmitnick 6:09 pm on May 14, 2015 Permalink | Reply

      I would love to take credit for the explanations. But I cannot. Everything I give you was in the article from the source. The link to the original article is near the bottom of every post.

      Thanks for all of your comments.

      Like

  • richardmitnick 7:39 am on May 12, 2015 Permalink | Reply
    Tags: , , NASA Chandra, ,   

    From Hubble: “NASA’s Great Observatories Celebrate International Year of Astronomy” old but worth it. 

    NASA Hubble Telescope

    Hubble

    November 10, 2009
    CONTACT

    Donna Weaver / Ray Villard
    Space Telescope Science Institute, Baltimore, Md.
    410-338-4493 / 410-338-4514
    dweaver@stsci.edu / villard@stsci.edu

    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-354-4673
    whitney.clavin@jpl.nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    A never-before-seen view of the turbulent heart of our Milky Way galaxy is being unveiled by NASA on Nov. 10. This event will commemorate the 400 years since Galileo first turned his telescope to the heavens in 1609.

    1
    In celebration of the International Year of Astronomy 2009, NASA’s Great Observatories — the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory — have collaborated to produce an unprecedented image of the central region of our Milky Way galaxy.

    In this spectacular image, observations using infrared light and X-ray light see through the obscuring dust and reveal the intense activity near the galactic core. Note that the center of the galaxy is located within the bright white region to the right of and just below the middle of the image. The entire image width covers about one-half a degree, about the same angular width as the full moon.

    Each telescope’s contribution is presented in a different color:

    • Yellow represents the near-infrared observations of Hubble. These observations outline the energetic regions where stars are being born as well as reveal hundreds of thousands of stars.
    • Red represents the infrared observations of Spitzer.

    NASA Spitzer Telescope
    Spitzer

    The radiation and winds from stars create glowing dust clouds that exhibit complex structures from compact, spherical globules to long, stringy filaments.

    • Blue and violet represent the X-ray observations of Chandra.

    NASA Chandra Telescope
    Chandra

    X-rays are emitted by gas heated to millions of degrees by stellar explosions and by outflows from the supermassive black hole in the galaxy’s center. The bright blue blob on the left side is emission from a double star system containing either a neutron star or a black hole.

    When these views are brought together, this composite image provides one of the most detailed views ever of our galaxy’s mysterious core.

    In celebration of this International Year of Astronomy, NASA is releasing images of the galactic center region as seen by its Great Observatories to more than 150 planetariums, museums, nature centers, libraries, and schools across the country.

    The sites will unveil a giant, 6-foot-by-3-foot print of the bustling hub of our galaxy that combines a near-infrared view from the Hubble Space Telescope, an infrared view from the Spitzer Space Telescope, and an X-ray view from the Chandra X-ray Observatory into one multiwavelength picture. Experts from all three observatories carefully assembled the final image from large mosaic photo surveys taken by each telescope. This composite image provides one of the most detailed views ever of our galaxy’s mysterious core.

    Participating institutions also will display a matched trio of Hubble, Spitzer, and Chandra images of the Milky Way’s center on a second large panel measuring 3 feet by 4 feet. Each image shows the telescope’s different wavelength view of the galactic center region, illustrating not only the unique science each observatory conducts, but also how far astronomy has come since Galileo.

    The composite image features the spectacle of stellar evolution: from vibrant regions of star birth, to young hot stars, to old cool stars, to seething remnants of stellar death called black holes. This activity occurs against a fiery backdrop in the crowded, hostile environment of the galaxy’s core, the center of which is dominated by a supermassive black hole nearly four million times more massive than our Sun. Permeating the region is a diffuse blue haze of X-ray light from gas that has been heated to millions of degrees by outflows from the supermassive black hole as well as by winds from massive stars and by stellar explosions. Infrared light reveals more than a hundred thousand stars along with glowing dust clouds that create complex structures including compact globules, long filaments, and finger-like “pillars of creation,” where newborn stars are just beginning to break out of their dark, dusty cocoons.

    The unveilings will take place at 152 institutions nationwide, reaching both big cities and small towns. Each institution will conduct an unveiling celebration involving the public, schools, and local media.

    The Astrophysics Division of NASA’s Science Mission Directorate supports the International Year of Astronomy Great Observatories image unveiling. The project is a collaboration among the Space Telescope Science Institute in Baltimore, Md., the Spitzer Science Center in Pasadena, Calif., and the Chandra X-ray Center in Cambridge, Mass.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 3:39 pm on May 1, 2015 Permalink | Reply
    Tags: , , NASA Chandra,   

    From Chandra: “NASA’s Chandra Suggests Black Holes Gorging at Excessive Rates” 

    NASA Chandra

    April 30, 2015
    Jennifer Harbaugh

    1
    Illustration: CXC/M. Weiss
    X-ray images: NASA/CXC/Penn State/B. Luo et al.

    A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA’s Chandra X-ray Observatory. This finding may help astronomers understand how the largest black holes were able to grow so rapidly in the early Universe.

    Astronomers have known for some time that supermassive black holes − with masses ranging from millions to billions of times the mass of the Sun and residing at the centers of galaxies − can gobble up huge quantities of gas and dust that have fallen into their gravitational pull. As the matter falls towards these black holes, it glows with such brilliance that they can be seen billions of light years away. Astronomers call these extremely ravenous black holes “quasars.”

    This new result suggests that some quasars are even more adept at devouring material than scientists previously knew.

    “Even for famously prodigious consumers of material, these huge black holes appear to be dining at enormous rates, at least five to ten times faster than typical quasars,” said Bin Luo of Penn State University in State College, Pennsylvania, who led the study.

    Luo and his colleagues examined data from Chandra for 51 quasars that are located at a distance between about 5 billion and 11.5 billion light years from Earth. These quasars were selected because they had unusually weak emission from certain atoms, especially carbon, at ultraviolet wavelengths. About 65% of the quasars in this new study were found to be much fainter in X-rays, by about 40 times on average, than typical quasars.

    The weak ultraviolet atomic emission and X-ray fluxes from these objects could be an important clue to the question of how a supermassive black hole pulls in matter. Computer simulations show that, at low inflow rates, matter swirls toward the black hole in a thin disk. However, if the rate of inflow is high, the disk can puff up dramatically, because of pressure from the high radiation, into a torus or donut that surrounds the inner part of the disk.

    “This picture fits with our data,” said co-author Jianfeng Wu of the Harvard-Smithsonian Center for Astrophysics, in Cambridge, Massachusetts. “If a quasar is embedded in a thick donut-shaped structure of gas and dust, the donut will absorb much of the radiation produced closer to the black hole and prevent it from striking gas located further out, resulting in weaker ultraviolet atomic emission and X-ray emission.”

    The usual balance between the inward pull of gravity and the outward pressure of radiation would also be affected.

    “More radiation would be emitted in a direction perpendicular to the thick disk, rather than along the disk, allowing material to fall in at higher rates,” said co-author Niel Brandt, also of Penn State University.

    The important implication is that these “thick-disk” quasars may harbor black holes growing at an extraordinarily rapid rate. The current study and previous ones by different teams suggest that such quasars might have been more common in the early Universe, only about a billion years after the Big Bang. Such rapid growth might also explain the existence of huge black holes at even earlier times.

    A paper describing these results appears in an upcoming issue of The Astrophysical Journal and is available online.

    Read More from NASA’s Chandra X-ray Observatory

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 10:57 am on April 17, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “NGC 6388: White Dwarf May Have Shredded Passing Planet” 

    NASA Chandra

    April 16, 2015

    1
    Composite

    2
    X-ray

    3
    Optical
    Credit X-ray: NASA/CXC/IASF Palermo/M.Del Santo et al; Optical: NASA/STScI
    Release Date April 16, 2015

    A planet may have been ripped apart by a white dwarf star in the outskirts of the Milky Way.

    A white dwarf is the dense core of a star like the Sun that has run out of nuclear fuel.

    Combining data from Chandra and several other telescopes, researchers think a “tidal disruption” may explain what is observed.

    The destruction of a planet may sound like the stuff of science fiction, but a team of astronomers has found evidence that this may have happened in an ancient cluster of stars at the edge of the Milky Way galaxy.

    Using several telescopes, including NASA’s Chandra X-ray Observatory, researchers have found evidence that a white dwarf star – the dense core of a star like the Sun that has run out of nuclear fuel – may have ripped apart a planet as it came too close.

    How could a white dwarf star, which is only about the size of the Earth, be responsible for such an extreme act? The answer is gravity. When a star reaches its white dwarf stage, nearly all of the material from the star is packed inside a radius one hundredth that of the original star. This means that, for close encounters, the gravitational pull of the star and the associated tides, caused by the difference in gravity’s pull on the near and far side of the planet, are greatly enhanced. For example, the gravity at the surface of a white dwarf is over ten thousand times higher than the gravity at the surface of the Sun.

    Researchers used the European Space Agency’s INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) to discover a new X-ray source near the center of the globular cluster NGC 6388.

    ESA Integral
    ESA/INTEGRAL

    Optical observations had hinted that an intermediate-mass black hole with mass equal to several hundred Suns or more resides at the center of NGC 6388. The X-ray detection by INTEGRAL then raised the intriguing possibility that the X-rays were produced by hot gas swirling towards an intermediate-mass black hole.

    In a follow-up X-ray observation, Chandra’s excellent X-ray vision enabled the astronomers to determine that the X-rays from NGC 6388 were not coming from the putative black hole at the center of the cluster, but instead from a location slightly off to one side. A new composite image shows NGC 6388 with X-rays detected by Chandra in pink and visible light from the Hubble Space Telescope in red, green, and blue, with many of the stars appearing to be orange or white.

    NASA Hubble Telescope
    NASA/ESA Hubble

    Overlapping X-ray sources and stars near the center of the cluster also causes the image to appear white.

    With the central black hole ruled out as the potential X-ray source, the hunt continued for clues about the actual source in NGC 6388. The source was monitored with the X-ray telescope on board NASA’s Swift Gamma Ray Burst mission for about 200 days after the discovery by INTEGRAL.

    NASA SWIFT Telescope
    NASA/Swift

    The source became dimmer during the period of Swift observations. The rate at which the X-ray brightness dropped agrees with theoretical models of a disruption of a planet by the gravitational tidal forces of a white dwarf. In these models, a planet is first pulled away from its parent star by the gravity of the dense concentration of stars in a globular cluster. When such a planet passes too close to a white dwarf, it can be torn apart by the intense tidal forces of the white dwarf. The planetary debris is then heated and glows in X-rays as it falls onto the white dwarf. The observed amount of X-rays emitted at different energies agrees with expectations for a tidal disruption event.

    The researchers estimate that the destroyed planet would have contained about a third of the mass of Earth, while the white dwarf has about 1.4 times the Sun’s mass.

    While the case for the tidal disruption of a planet is not iron-clad, the argument for it was strengthened when astronomers used data from the multiple telescopes to help eliminate other possible explanations for the detected X-rays. For example, the source does not show some of the distinctive features of a binary containing a neutron star, such as pulsations or rapid X-ray bursts. Also, the source is much too faint in radio waves to be part of a binary system with a stellar-mass black hole.

    A paper describing these results was published in an October 2014 issue of the Monthly Notices of the Royal Astronomical Society. The first author is Melania Del Santo of the National Institute for Astrophysics (INAF), IASF-Palermo, Italy, and the co-authors are Achille Nucita of the Universitá del Salento in Lecce, Italy; Giuseppe Lodato of the Universitá Degli Studi di Milano in Milan, Italy; Luigi Manni and Francesco De Paolis of the Universitá del Salento in Lecce, Italy; Jay Farihi of University College London in London, UK; Giovanni De Cesare of the National Institute for Astrophysics in IAPS-Rome, Italy and Alberto Segreto of the National Institute for Astrophysics (INAF), IASF-Palermo, Italy.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 4:12 pm on March 16, 2015 Permalink | Reply
    Tags: , NASA Chandra   

    From Chandra: “GK Persei: “Mini Supernova” Explosion Could Have Big Impact” 

    NASA Chandra

    March 16, 2015

    GK Persei is a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star. Classical novas are considered to be miniature versions of supernova explosions. Astronomers used Chandra to observe differences in GK Persei over a span of nearly 14 years. A new image of GK Persei contains X-rays (blue), optical data (yellow), and radio data (pink).

    comp
    Composite

    2
    X-ray

    3
    Optical

    4
    Radio
    Credit X-ray: NASA/CXC/RIKEN/D.Takei et al; Optical: NASA/STScI; Radio: NRAO/VLA
    Release Date March 16, 2015

    In Hollywood blockbusters, explosions are often among the stars of the show. In space, explosions of actual stars are a focus for scientists who hope to better understand their births, lives, and deaths and how they interact with their surroundings.

    Using NASA’s Chandra X-ray Observatory, astronomers have studied one particular explosion that may provide clues to the dynamics of other, much larger stellar eruptions.

    A team of researchers pointed the telescope at GK Persei, an object that became a sensation in the astronomical world in 1901 when it suddenly appeared as one of the brightest stars in the sky for a few days, before gradually fading away in brightness. Today, astronomers cite GK Persei as an example of a “classical nova,” an outburst produced by a thermonuclear explosion on the surface of a white dwarf star, the dense remnant of a Sun-like star.

    A nova can occur if the strong gravity of a white dwarf pulls material from its orbiting companion star. If enough material, mostly in the form of hydrogen gas, accumulates on the surface of the white dwarf, nuclear fusion reactions can occur and intensify, culminating into a cosmic-sized hydrogen bomb blast. The outer layers of the white dwarf are blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space.

    Classical novas can be considered to be “miniature” versions of supernova explosions. Supernovas signal the destruction of an entire star and can be so bright that they outshine the whole galaxy where they are found. Supernovas are extremely important for cosmic ecology because they inject huge amounts of energy into the interstellar gas, and are responsible for dispersing elements such as iron, calcium and oxygen into space where they may be incorporated into future generations of stars and planets.

    Although the remnants of supernovas are much more massive and energetic than classical novas, some of the fundamental physics is the same. Both involve an explosion and creation of a shock wave that travels at supersonic speeds through the surrounding gas.

    The more modest energies and masses associated with classical novas means that the remnants evolve more quickly. This, plus the much higher frequency of their occurrence compared to supenovas, makes classical novas important targets for studying cosmic explosions.

    Chandra first observed GK Persei in February 2000 and then again in November 2013. This 13-year baseline provides astronomers with enough time to notice important differences in the X-ray emission and its properties.

    This new image of GK Persei contains X-rays from Chandra (blue), optical data from NASA’s Hubble Space Telescope (yellow), and radio data from the National Science Foundation’s [NRAO] Very Large Array [VLA](pink). The X-ray data show hot gas and the radio data show emission from electrons that have been accelerated to high energies by the nova shock wave. The optical data reveal clumps of material that were ejected in the explosion. The nature of the point-like source on the lower left is unknown.

    NASA Hubble Telescope
    NASA/ESA Hubble

    NRAO VLA
    NRAO/VLA

    Over the years that the Chandra data span, the nova debris expanded at a speed of about 700,000 miles per hour. This translates to the blast wave moving about 90 billion miles during that period.

    One intriguing discovery illustrates how the study of nova remnants can provide important clues about the environment of the explosion. The X-ray luminosity of the GK Persei remnant decreased by about 40% over the 13 years between the Chandra observations, whereas the temperature of the gas in the remnant has essentially remained constant, at about one million degrees Celsius. As the shock wave expanded and heated an increasing amount of matter, the temperature behind the wave of energy should have decreased. The observed fading and constant temperature suggests that the wave of energy has swept up a negligible amount of gas in the environment around the star over the past 13 years. This suggests that the wave must currently be expanding into a region of much lower density than before, giving clues to stellar neighborhood in which GK Persei resides.

    A paper describing these results appeared in the March 10th issue of The Astrophysical Journal. The authors were Dai Takei (RIKEN, SPring-8 Center Japan), Jeremy Drake (Smithsonian Astrophysical Observatory), Hiroya Yamaguichi (Goddard Space Flight Center), Patrick Slane (Smithsonian Astrophysical Observatory), Yasunobu Uchimaya (Rikkyo University, Japan), Satoru Katsuda (Japan Aerospace Exploration Agency).

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 4:53 am on March 16, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “PSR B1509-58: A Young Pulsar Shows its Hand” 2009 

    April 3, 2009

    NASA Chandra

    1
    Credit NASA/CXC/SAO/P.Slane, et al.
    Release Date April 3, 2009

    A small, dense object only twelve miles in diameter is responsible for this beautiful X-ray nebula that spans 150 light years. At the center of this image made by NASA’s Chandra X-ray Observatory is a very young and powerful pulsar, known as PSR B1509-58, or B1509 for short. The pulsar is a rapidly spinning neutron star which is spewing energy out into the space around it to create complex and intriguing structures, including one that resembles a large cosmic hand. In this image, the lowest energy X-rays that Chandra detects are colored red, the medium range is green, and the most energetic ones are blue. Astronomers think that B1509 is about 1700 years old as measured in Earth’s time-frame (referring to when events are observable at Earth) and is located about 17,000 light years away.

    Neutron stars are created when massive stars run out of fuel and collapse. B1509 is spinning completely around almost 7 times every second and is releasing energy into its environment at a prodigious rate – presumably because it has an intense magnetic field at its surface, estimated to be 15 trillion times stronger than the Earth’s magnetic field.

    The combination of rapid rotation and ultra-strong magnetic field makes B1509 one of the most powerful electromagnetic generators in the Galaxy. This generator drives an energetic wind of electrons and ions away from the neutron star. As the electrons move through the magnetized nebula, they radiate away their energy and create the elaborate nebula seen by Chandra.

    In the innermost regions, a faint circle surrounds the pulsar, and marks the spot where the wind is rapidly decelerated by the slowly expanding nebula. In this way, B1509 shares some striking similarities to the famous Crab Nebula. However B1509’s nebula is 15 times wider than the Crab’s diameter of 10 light years.

    Finger-like structures extend to the north, apparently energizing knots of material in a neighboring gas cloud known as RCW 89. The transfer of energy from the wind to these knots makes them glow brightly in X-rays (orange and red features to the upper right). The temperature in this region appears to vary in a circular pattern around this ring of emission, suggesting that the pulsar may be precessing like a spinning top and sweeping an energizing beam around the gas in RCW 89.

    See the full article here.

    Another view

    3

    Pareidolia is the psychological phenomenon where people see recognizable shapes in clouds, rock formations, or otherwise unrelated objects or data. There are many examples of this phenomenon on Earth and in space.

    When an image from NASA’s Chandra X-ray Observatory of PSR B1509-58 — a spinning neutron star surrounded by a cloud of energetic particles –was released in 2009, it quickly gained attention because many saw a hand-like structure in the X-ray emission. In a new image of the system, X-rays from Chandra in gold are seen along with infrared data from NASA’s Wide-field Infrared Survey Explorer (WISE) telescope in red, green and blue. Pareidolia may strike again as some people report seeing a shape of a face in WISE’s infrared data. What do you see?

    NASA Wise Telescope
    WISE

    NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, also took a picture of the neutron star nebula in 2014, using higher-energy X-rays than Chandra.

    NASA NuSTAR

    PSR B1509-58 is about 17,000 light-years from Earth.
    JPL, a division of the California Institute of Technology in Pasadena, manages the WISE mission for NASA.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 6:05 pm on March 4, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “Abell 2597: NASA’s Chandra Observatory Finds Cosmic Showers Halt Galaxy Growth” 

    NASA Chandra

    March 4, 2015

    Media contacts:
    Felicia Chou
    Headquarters, Washington
    202-358-0257
    felicia.chou@nasa.gov

    Janet Anderson
    Marshall Space Flight Center
    256-544-6162
    janet.l.anderson@nasa.gov

    Megan Watzke
    Chandra X-ray Center, Cambridge, Mass.
    617-496-7998
    mwatzke@cfa.harvard.edu

    New research shows how an unusual form of cosmic precipitation can affect the growth and evolution of galaxies. Over 200 galaxy clusters were surveyed in this new study using X-ray data from Chandra. These results provide evidence that this precipitation can slow down star formation in galaxies with giant black holes.

    1
    Composite

    2
    X-ray

    3
    H-alpha

    4
    Optical
    Credit X-ray: NASA/CXC/Michigan State Univ/G.Voit et al; Optical: NASA/STScI & DSS; H-alpha: Carnegie Obs./Magellan/W.Baade Telescope
    Release Date March 4, 2015

    This galaxy cluster comes from a sample of over 200 that were studied to determine how giant black holes at their centers affect the growth and evolution of their host galaxy, as reported in our latest press release. This study revealed that an unusual form of cosmic precipitation enables a feedback loop of cooling and heating, stifling star formation in the middle of these galaxy clusters.

    Abell 2597, shown here, is a galaxy cluster located about one billion light years from Earth. This image contains X-rays from NASA’s Chandra X-ray Observatory (blue), optical data from the Hubble Space Telescope and the Digitized Sky Survey (yellow) and emission from hydrogen atoms (red) from the Walter Baade Telescope in Chile.

    NASA Hubble Telescope
    Hubble

    Magellan 6.5 meter telescopes
    Magellan 6.5 meter Interior
    Walter Baade Telescope

    According to this new study, the regulation of the largest black hole and their host galaxies works as follows: in some galaxies, such as NGC 2597, hot gas is able to quickly cool through radiation and energy loss, in a process called precipitation. The clouds of cool gas that result then fall into the central supermassive black hole, producing jets that heat the gas and prevent further cooling.

    The researchers used Chandra data to estimate how long it should take for the gas to cool at different distances from the black holes in the study. Using that information, they were able to accurately predict the “weather” around each of the black holes.

    They found that the precipitation feedback loop driven by energy produced by the black hole jets prevents the showers of cold clouds from getting too strong. The Chandra data indicate that the regulation of this precipitation has been going on for the last 7 billion years or more.

    While a rain of cool clouds appears to play a key role in regulating the growth of some galaxies, the researchers have found other galaxies where the cosmic precipitation had shut off. The intense heat in these central galaxies, possibly from colliding with another galaxy cluster, likely “dried up” the precipitation around the black hole.

    Evidence was also found, in a few galaxy clusters, that strong bursts of outflows from regions near the black hole may have temporarily shut down precipitation, but the heating is not strong enough to result in conduction. In these cases, further cooling of gas should occur and active precipitation should resume in a few hundred million years.

    A pre-print of the Nature study by Mark Voit (Michigan State University), Megan Donahue (Michigan State), Greg Bryan (Columbia University), and Michael McDonald (Massachusetts Institute of Technology) is available online; the study builds on work by Voit and Donahue that was published in the January 20th, 2015 issue of The Astrophysical Journal Letters and is available online.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 4:45 am on February 26, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra- “NGC 2276: NASA’s Chandra Finds Intriguing Member of Black Hole Family Tree “ 

    NASA Chandra

    1
    Credit X-ray: NASA/CXC/SAO/M.Mezcua et al & NASA/CXC/INAF/A.Wolter et al; Optical: NASA/STScI and DSS; Inset: Radio: EVN/VLBI
    Release Date February 25, 2015

    An intriguing object has been found in one of the spiral arms of the galaxy NGC 2276. This source, called NGC 2276-3c, appears to be an intermediate-mass black hole. According to X-ray and radio data, NGC 2276-3c contains about 50,000 times the mass of the Sun.

    A newly discovered object in the galaxy NGC 2276 may prove to be an important black hole that helps fill in the evolutionary story of these exotic objects, as described in our latest press release. The main image in this graphic contains a composite image of NGC 2766 that includes X-rays from NASA’s Chandra X-ray Observatory (pink) combined with optical data from the Hubble Space Telescope and the Digitized Sky Survey (red, green and blue). The inset is a zoom into the interesting source that lies in one of the galaxy’s spiral arms. This object, called NGC 2276-3c, is seen in radio waves (red) in observations from the European Very Long Baseline Interferometry Network, or EVN.

    NASA Hubble Telescope
    Hubble

    European VLBI
    European VLBI

    Astronomers have combined the X-ray and radio data to determine that NGC 2766-3c is likely an intermediate-mass black hole (IMBH). As the name suggests, IMBHs are black holes that are larger than stellar mass black holes that contain about five to thirty times the mass of the Sun, but smaller than supermassive black holes that are millions or even billions of solar masses. The researchers estimated the mass of NGC 2766-3c using a well-known relationship between how bright the source is in radio and X-rays, and the mass of the black hole. The X-ray and radio brightness were based on observations with Chandra and the EVN. They found that NGC 2276-3c contains about 50,000 times the mass of the Sun.

    IMBHs are interesting to astronomers because they may be the seeds that eventually evolve into supermassive black holes. They also may be strongly influencing their environment. This latest result on NGC 2276-3c suggests that it may be suppressing the formation of new stars around it. The EVN radio data reveal an inner jet that extends about 6 light years from NGC 2276-3c. Additional observations by the NSF’s Karl Jansky Very Large Array (VLA) show large-scale radio emission extending out to over 2,000 light years away from the source.

    NRAO VLA
    NRAO/VLA

    A region along the jet extending to about 1,000 light years away from NGC 2766-3c is devoid of young stars. This might provide evidence that the jet has cleared out a cavity in the gas, preventing new stars from forming there. The VLA data also reveal a large population of stars at the edge of the radio emission from the jet. This enhanced star formation could take place either when the material swept out by the jet collides with dust and gas in between the stars in NGC 2276, or when triggered by the merger of NGC 2276 with a dwarf galaxy.

    In a separate study, Chandra observations of this galaxy have also been used to examine its rich population of ultraluminous X-ray sources (ULXs). Sixteen X-ray sources are found in the deep Chandra dataset seen in this composite image, and eight of these are ULXs including NGC 2276-3c. Chandra observations show that one apparent ULX observed by ESA’s XMM-Newton is actually five separate ULXs, including NGC 2276-3c.

    ESA XMM Newton
    ESA/XMM-Newton

    This ULX study shows that about five to fifteen solar masses worth of stars are forming each year in NGC 2276. This high rate of star formation may have been triggered by a collision with a dwarf galaxy, supporting the merger idea for the IMBH’s origin.

    The study on NGC 2276-3c was conducted by Mar Mezcua (previously in the Instituto de Astrofisica de Canarias and now at the Harvard-Smithsonian Center for Astrophysics), Tim Roberts (University of Durham, UK), Andrei Lobanov ( Max Planck Institute for Radio Astronomy, Germany), and Andrew Sutton (University of Durham) and will appear in the Monthly Notices of the Royal Astronomical Society (MNRAS). A separate paper on the ULX population in NGC 2276 will also appear in MNRAS and the authors on that study are Anna Wolter (National Institute for Astrophysics (INAF) in Milan, Italy), Paolo Esposito (INAF), Michela Mapelli (INAF, Padova), Fabio Pizzolato (University of Milan, Italy), and Emanuele Ripamonti (University of Padova, Italy).

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 4:32 pm on February 12, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “G299.2-2.9: Exploded Star Blooms Like a Cosmic Flower” 

    NASA Chandra

    February 12, 2015

    Chandra observations of the supernova remnant G299.2-2.9 reveal important information about this object.The shape of the supernova remnant today gives clues about the explosion that created it about 4,500 years ago. G299.2-2.9 belongs to the class of supernovas known as type 1as. Astronomers are trying to determine the exact mechanisms that produce these particular explosions.

    1
    Composite

    2
    X-ray

    3
    Infrared
    Credit X-ray: NASA/CXC/U.Texas/S.Post et al, Infrared: 2MASS/UMass/IPAC-Caltech/NASA/NSF

    Because the debris fields of exploded stars, known as supernova remnants, are very hot, energetic, and glow brightly in X-ray light, NASA’s Chandra X-ray Observatory has proven to be a valuable tool in studying them. The supernova remnant called G299.2-2.9 (or G299 for short) is located within our Milky Way galaxy, but Chandra’s new image of it is reminiscent of a beautiful flower here on Earth.

    G299 was left over by a particular class of supernovas called Type Ia. Astronomers think that a Type Ia supernova is a thermonuclear explosion – involving the fusion of elements and release of vast amounts of energy – of a white dwarf star in a tight orbit with a companion star. If the white dwarf’s partner is a typical, Sun-like star, the white dwarf can become unstable and explode as it draws material from its companion. Alternatively, the white dwarf is in orbit with another white dwarf, the two may merge and can trigger an explosion.

    Regardless of their triggering mechanism, Type Ia supernovas have long been known to be uniform in their extreme brightness, usually outshining the entire galaxy where they are found. This is important because scientists use these objects as cosmic mileposts [“standard candles“], allowing them to accurately measure the distances of galaxies billions of light years away, and to determine the rate of expansion of the Universe.

    Traditional theoretical models of Type Ia supernovas generally predict that these explosions would be symmetric, creating a near perfect sphere as they expand. These models have been supported by results showing that remnants of Type Ia supernovas are more symmetric than remnants of supernovas involving the collapse of massive stars.

    However, astronomers are discovering that some Type Ia supernova explosions may not be as symmetric as previously thought. G299 could be an example of such an “unusual” Type Ia supernova. Using a long observation from Chandra, researchers discovered the shell of debris from the exploded star is expanding differently in various directions.

    In this new Chandra image, red, green, and blue represent low, medium, and high-energy X-rays, respectively, detected by the telescope. The medium energy X-rays include emission from iron and the hard-energy X-rays include emission from silicon and sulfur. The X-ray data have been combined with infrared data from ground-based 2MASS survey that shows the stars in the field of view.

    By performing a detailed analysis of the X-rays, researchers found several clear examples of asymmetry in G299. For example, the ratio between the amounts of iron and silicon in the part of the remnant just above the center is larger than in the part of the remnant just below the center. This difference can be seen in the greener color of the upper region compared to the bluer color of the lower region. Also, there is a strongly elongated portion of the remnant extending to the right. In this region, the relative amount of iron to silicon is similar to that found in the southern region of the remnant.

    The patterns seen in the Chandra data suggest that a very lopsided explosion may have produced this Type Ia supernova. It might also be that the remnant has been expanding into an environment where the medium it encountered was uneven. Regardless of the ultimate explanation, observations of G299 and others like it are showing astronomers just how varied such beautiful cosmic flowers can be.

    A paper describing these results was published in the September 1st, 2014 issue of The Astrophysical Journal, and is available online. The authors are Seth Post and Sangwook Park from the University of Texas at Arlington in Texas; Carles Badenes from the University of Pittsburgh, in Pittsburgh, Pennsylvania; David Burrows from Pennsylvania State University in University Park, Pennsylvania; John Hughes from Rutgers University in Piscataway, New Jersey; Jae-Joon Lee from the Korea Astronomy and Space Science Institute; Koji Mori from the University of Miyazaki in Japan and Patrick Slane from the Harvard-Smithsonian Center of Astrophysics in Cambridge, Massachusetts.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
  • richardmitnick 5:49 pm on January 26, 2015 Permalink | Reply
    Tags: , , NASA Chandra   

    From Chandra: “IYL 2015: Chandra Celebrates The International Year of Light” 

    NASA Chandra

    New images are being released to celebrate the International Year of Light 2015. Each image contains X-rays from Chandra, along with data in other types of light from various telescopes.
    These images illustrate how astronomers use different types of light together to get a more complete view of objects in space.

    The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining together for this yearlong celebration to help spread the word about the wonders of light.

    In many ways, astronomy uses the science of light. By building telescopes that can detect light in its many forms, from radio waves on one end of the “electromagnetic spectrum” to gamma rays on the other, scientists can get a better understanding of the processes at work in the Universe.

    NASA’s Chandra X-ray Observatory explores the Universe in X-rays, a high-energy form of light. By studying X-ray data and comparing them with observations in other types of light, scientists can develop a better understanding of objects likes stars and galaxies that generate temperatures of millions of degrees and produce X-rays.

    To recognize the start of IYL, the Chandra X-ray Center is releasing a set of images that combine data from telescopes tuned to different wavelengths of light. From a distant galaxy to the relatively nearby debris field of an exploded star, these images demonstrate the myriad ways that information about the Universe is communicated to us through light.

    1
    SNR E0519-69.0:
    When a massive star exploded in the Large Magellanic Cloud, a satellite galaxy to the Milky Way, it left behind an expanding shell of debris called SNR 0519-69.0. Here, multimillion degree gas is seen in X-rays from Chandra (blue). The outer edge of the explosion (red) and stars in the field of view are seen in visible light from Hubble.

    2
    Messier 51 (M51):
    This galaxy, nicknamed the “Whirlpool,” is a spiral galaxy, like our Milky Way, located about 30 million light years from Earth. This composite image combines data collected at X-ray wavelengths by Chandra (purple), ultraviolet by the Galaxy Evolution Explorer (GALEX, blue); visible light by Hubble (green), and infrared by Spitzer (red).

    3
    MSH 11-62:
    When X-rays, shown in blue, from Chandra and XMM-Newton are joined in this image with radio data from the Australia Telescope Compact Array (pink) and visible light data from the [Sloan] Digitized Sky Survey ([S]DSS, yellow), a new view of the region emerges. This object, known as MSH 11-62, contains an inner nebula of charged particles that could be an outflow from the dense spinning core left behind when a massive star exploded.

    4
    Cygnus A:
    This galaxy, at a distance of some 700 million light years, contains a giant bubble filled with hot, X-ray emitting gas detected by Chandra (blue). Radio data from the NSF’s Very Large Array (red) reveal “hot spots” about 300,000 light years out from the center of the galaxy where powerful jets emanating from the galaxy’s supermassive black hole end. Visible light data (yellow) from both Hubble and the DSS complete this view.

    5
    RCW 86:
    This supernova remnant is the remains of an exploded star that may have been witnessed by Chinese astronomers almost 2,000 years ago. Modern telescopes have the advantage of observing this object in light that is completely invisible to the unaided human eye. This image combines X-rays from Chandra (pink and blue) along with visible emission from hydrogen atoms in the rim of the remnant, observed with the 0.9-m Curtis Schmidt telescope at the Cerro Tololo Inter-American Observatory (yellow).

    Credit X-ray: NASA/CXC/SAO; UV: NASA/JPL-Caltech; Optical: NASA/STScI; IR: NASA/JPL-Caltech
    Release Date January 22, 2015

    NASA Hubble Telescope
    Hubble

    NASA Galex telescope
    GALEX

    NASA Spitzer Telescope
    Spitzer

    ESA XMM Newton
    ESA/XMM-Newton

    Australian Telescope Compact Array
    Australia Compact Telescope Array

    Sloan Digital Sky Survey Telescope
    SDSS Telescope

    NRAO VLA
    NRAO VLA

    NOAO Curtis Schmidt Telescope Exterior
    NOAO Curtis Schmidt Telescope

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 443 other followers

%d bloggers like this: