Tagged: NASA Ames Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:33 am on March 20, 2017 Permalink | Reply
    Tags: , , , , , , , NASA Ames, , Sardines in Space   

    From astrobites: “Sardines in Space: The Intensely Densely-Packed Planets Orbiting Kepler-11” 

    Astrobites bloc


    Title: A Closely-Packed System of Low-Mass, Low-Density Planets Transiting Kepler-11
    Authors: Jack J. Lissauer, Daniel C. Fabrycky, Eric B. Ford, et al.
    Lead Author’s Institution: NASA Ames Research Center, Moffett Field, CA, 94035, USA

    Status: Published in Nature 2011 [open access]

    The dawn of the Kepler Space Telescope data has unearthed a treasure trove of new and unusual celestial objects. Among these new discoveries is the planetary system Kepler-11. The system contains six transiting planets that are packed incredibly close around the Sun-like star, much like sardines are packed very closely in cans. The first five of these planets fall within the orbit of Mercury, and the sixth one falls well within the orbit of Venus. Few systems like this have been discovered; most planetary systems have a much larger separation between the planets, yet this system has its planets arranged in an extremely packed, yet extraordinarily still stable, way.

    Figure 1: This figure from the NASA website is a visual representation of the Kepler-11 system, overlaid with the orbits of Mercury and Venus.

    When a single planet orbits a star, its period follows Kepler’s Laws to a tee; however, when other planets are introduced in the system, the orbiting bodies tend to perturb each other’s orbits. Their periods differ slightly according to the gravitational perturbations, and this variation is called a transit timing variation (TTV). Since Kepler-11 has five planets orbiting in extreme proximity to one another, it is the perfect illustration of measurements from transit-timing variations.

    Planet transit. NASA/Ames

    The photometric Kepler data marked the discovery of this system. The transits for each of the planets appeared separately in the light curve of the system. The light curve is just a measurement of the brightness of the star over time, so when a planet passes in front of the star, the brightness decreases, causing the dip in the light curve. The shape varies with each planet based on differences in size of the planet and orbital radius. From this data, it is possible to measure the radius of the transiting planet. This team followed up their photometric data with spectroscopic analysis from the Keck I telescope. This additional data allowed for the precise measurements of transit-timing variations, which yielded mass measurements for the inner five planets.

    For the first five planets, the TTVs were successfully measured, and with this information, the research team found the densities of the inner five planets, which yielded a surprising result. These planets, despite being densely packed, are not made of very dense material. Kepler-11b is both closest to the Sun and densest, but only with an overall density of 3.31 g/cm3. For comparison, Earth has an overall density of about 5.5 g/cm3. The densities of the planets orbiting Kepler-11 are depicted in Figure 2.

    Figure 2: This shows the mass versus radius of the planets in the Kepler-11 system. The planets orbiting Kepler-11 are represented by the filled in circles. The other marking on the graph indicate planets in our solar system, shown for comparison. Figure 5 from today’s paper.

    While transit timing variations worked like a charm for the inner five planets, the sixth planet (Kepler-11g) was too distant from the others for this method to work well, so to confirm this planet, another method was employed. This team used several simulations to rule out alternate scenarios, which include chance alignment of the Kepler-11 system with and eclipsing star or with another star-planet system. This analysis successfully confirmed Kepler-11g , but because no TTVs could be measured for this particular planet, its mass and radius remain unknown.

    Even though this system has been more closely studied than most, the measurements have raised nearly as many questions as they have answered. The inner five have small inclinations and eccentricities, which implies some planetary migration process. However, since the periods of these planets are not in resonance, slow and convergent migration theories—which would naturally force the planets into resonant orbits—seem unlikely to be at play in this system. Formation of such a system is still a bit of a mystery. After all, such low-density planets are unusual and do not completely fit within the current understanding of planet formation.

    Kepler-11 continues to be one of the more intriguing planetary systems discovered, and its formation is not fully understood. Even though this system has been more closely studied than most, the measurements have raised nearly as many questions as they have answered. Systems like this extend our understanding of astrophysics, perhaps in a bit of an unexpected way; these closely packed planets have so much more to teach us about their system formation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

  • richardmitnick 12:40 pm on March 18, 2017 Permalink | Reply
    Tags: , , , , NASA Ames, NASA Selects New Research Teams to Further Solar System Exploration Research   

    From NASA Ames: “NASA Selects New Research Teams to Further Solar System Exploration Research” 

    NASA Ames Icon

    March 17, 2017
    Kimberly Williams
    Ames Research Center, Silicon Valley

    No image credit

    In an effort to advance basic and applied research for lunar and planetary science, and advance human exploration of the solar system through scientific discovery, NASA created the Solar System Exploration Research Virtual Institute or SSERVI. The institute fosters collaborations with science and exploration communities, which enables cross-disciplinary partnerships with research institutions, both domestic and abroad.

    NASA has selected four new research teams to join the existing nine teams in SSERVI to address scientific questions about the moon, near-Earth asteroids, the Martian moons Phobos and Deimos, and their near space environments, in cooperation with international partners.

    “We look forward to collaborative scientific discoveries from these teams,” said Jim Green, director of the Planetary Science Division of NASA’s Science Mission Directorate in Washington. “These results will be vital to NASA successfully conducting the ambitious activities of exploring the solar system with robots and humans.”

    SSERVI members include academic institutions, non-profit research institutes, private companies, NASA centers and other government laboratories. The new teams – which SSERVI will support for five years at a combined total of about $3-5 million per year – were selected from a pool of 22 proposals based on competitive peer-review evaluation.

    The selected SSERVI member teams, listed with their principal investigators and research topics, are:

    Network for Exploration and Space Science (NESS); Jack Burns, University of Colorado, Boulder, Colorado. NESS will implement cross-disciplinary partnerships to advance scientific discovery and human exploration at target destinations by conducting research in robotics, cosmology, astrophysics and heliophysics that is uniquely enabled by human and robotic exploration at the moon, near-Earth asteroids and comets, and Phobos and Deimos.

    Toolbox for Research and Exploration (TREX); Amanda Hendrix, Planetary Science Institute, Tucson, Arizona. TREX aims to develop tools and research methods for exploration of airless bodies, like the moon and asteroids, that are coated in fine-grained dust in order to prepare for human missions. Laboratory spectral measurements and experiments will accompany studies of existing datasets to understand surface characteristics and to investigate potential resources on airless bodies.

    Radiation Effects on Volatiles and Exploration of Asteroids and Lunar Surfaces (REVEALS); Thomas Orlando, Georgia Institute of Technology, Atlanta, Georgia. The REVEALS team will explore radiation processing of natural regolith and human-made composite materials to understand the condensed-matter physics and radiation chemistry that can lead to volatile formation, sequestration and transport. This team also will explore how novel materials and real-time radiation detectors can minimize risks and exposure to dangerous radiation during human exploration missions.

    Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO); Alex Parker, Southwest Research Institute, Boulder, Colorado. Team ESPRESSO will focus on characterizing target surfaces and mitigating hazards that create risk for robotic and human explorers. It will work to assess the geotechnical and thermomechanical properties of target body surfaces to help us understand and predict hazards like landslides, and to improve our understanding of impact ejecta dynamics.

    “We are extremely pleased that the community responded with such high-quality proposals, and look forward to the many contributions SSERVI will make in addressing NASA’s science and exploration goals,” said SSERVI Director Yvonne Pendleton.

    The SSERVI central office, located at NASA’s Ames Research Center in Silicon Valley, is funded by the agency’s Science Mission Directorate and Human Exploration and Operations Mission Directorate, and manages national and international collaborative partnerships, designed to push the boundaries of science and exploration.

    For more information about SSERVI and selected member teams, visit:


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

  • richardmitnick 8:02 pm on October 13, 2016 Permalink | Reply
    Tags: , , NASA Ames, ,   

    From SETI and UNLV: “A New Species of Planetary System” 

    SETI Logo new
    SETI Institute



    Oct 11, 2016
    Shane Bevell

    Artist’s rendition of a hot Earth-sized planet. (Courtesy of NASA/Ames/JPL-Caltech)

    Using the most recent results from the Kepler space telescope, scientists from UNLV and the SETI Institute, which searches for intelligent extraterrestrial life, have identified a new kind of planetary system.

    UNLV astrophysicist Jason Steffen and SETI scientist Jeffrey Coughlin have shown that there must be a population of planetary systems whose formation or dynamical history are distinct from their counterparts across the galaxy. The results of their study, A Population of Planetary Systems Characterized by Short-period, Earth-sized Planets, will appear in the Proceedings of the National Academy of Sciences.

    The key feature of these systems is an isolated, very hot, rocky planet.

    “We’ve shown that a large fraction of systems with hot earths can’t have the same makeup as other planetary systems discovered so far,” Steffen said. “They aren’t like the solar system, they aren’t like most Kepler systems, and they aren’t false positives.”

    Hot Jupiters

    The best analogy, he indicated, is the population of hot jupiters — giant planets on three-day orbits that dominated the initial discoveries in the field two decades ago. Hot jupiter systems are widely viewed as having had a major difference in their formation and evolutionary past compared with other systems, and a variety of theories have been put forward to explain their origins. The number of hot earth systems is similar in number to the hot jupiters and may yield a similar advancement in our understanding of the processes involved in making planets.

    To identify this new group of planets, Steffen and Coughlin relied on the process of elimination. Starting with a sample of about 150 hot earth systems, they systematically tallied the number that could be from known origins – eclipsing binary stars, noise in the data, “typical” planetary systems, and other sources.

    “When we were done counting,” said Coughlin, “we still had about 20 percent that were left over — at least one in six of these systems has a different story to tell.”

    Prevailing Theories

    The scientists noted a few existing theories that may explain the origins of these systems. They may be the leftover planet cores of hot jupiters, where the giant planet lost its large atmosphere to the central star. They may be the consequence of interactions between the planets and the last vestiges of the gas disk from which they formed. They may result from strong dynamical interactions from a newly formed system where the planet’s orbit eventually passes very close to the central star and is captured as its orbital energy is dissipated through tides. Or, they could come from some other process not yet considered.

    While the origin of these systems is not known, more information about them should be forthcoming. NASA’s Transiting Exoplanet Survey Satellite (TESS) mission, which is slated for launch within the next few years, should find many similar systems that can be studied in more detail using ground-based instruments.


    (Kepler targets are often too dim for such follow-up observations). As scientists learn more about these systems, the information gathered should provide additional clues to their past, and help researchers better understand how unique our own solar system is, or isn’t.

    “We are hopeful that this, and future studies, will steer us toward a more complete picture of how planets form and how the systems then evolve.” said Steffen. “Finding and understanding different planetary systems can tell us a lot about our own origins and how we fit into that picture.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

  • richardmitnick 9:18 am on July 7, 2016 Permalink | Reply
    Tags: , , NASA Ames, NASA Supercomputer Help Further Discovery of the Origin of Stars, Pleiades supercomputer   

    From NASA Ames: “3-D Simulations and NASA Supercomputer Help Further Discovery of the Origin of Stars” 

    NASA Ames Icon

    July 6, 2016

    Author: Jill Dunbar, Ames Research Center
    Media contact: Kimberly Williams, Ames Research Center

    This simulation captures a mix of radiation, magnetic fields, gravity and other physical phenomena. It was produced with UC Berkeley’s code and run on the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA’s Ames Research Center. Credits: NASA Ames/David Ellsworth/Tim Sandstrom

    What processes are involved in the formation of individual stars and stellar clusters in our own galaxy and other galaxies? Scientists at the University of California, Berkeley, and Lawrence Livermore National Laboratory are using NASA’s most powerful supercomputer, Pleiades, to create unique star-formation simulations to answer this fundamental scientific question.

    NASA SGI Advanced Supercomputing Center Pleiades Supercomputer
    NASA SGI Advanced Supercomputing Center Pleiades Supercomputer

    Like something from a video game, the simulations zoom through the entire evolution of young star clusters. A giant cloud of interstellar gas and dust collapses under the forces of gravity. Inside the cloud, turbulent clumps of gas form and then collapse. The collapsed clumps form star clusters, and then the magnetized, swirling cores further evolve to form individual or small groups of stars.

    These complex simulations as seen here — which capture a mix of radiation, magnetic fields, gravity and other physical phenomena — were produced with UC Berkeley’s code and run on the Pleiades supercomputer, located at the NASA Advanced Supercomputing (NAS) facility at NASA’s Ames Research Center in California’s Silicon Valley. Currently ranked as the seventh most powerful system in the U.S., the Pleiades supercomputer was critical for obtaining the high-resolution results that match closely with observations from the Hubble Space Telescope and other observing telescopes. Scientists demonstrated the accuracy of the code by performing many independent tests of different elements of physics modeled against real known data.

    The science team is enhancing the code to produce new simulations that will allow them to zoom in on the formation of stellar disks — pancake-shaped disks of gas and dust surrounding protostars that are believed to be the first stage of planet formation.

    Reaching this goal will require even more computing power. The NAS facility is continuously growing its supercomputing capability to support even higher resolution star-formation simulations — plus hundreds of other NASA mission projects in aeronautics, Earth and space science and exploration of planets and the universe.

    For more information about NAS and to view simulation video, visit: http://www.nas.nasa.gov/publications/articles/feature_origin_of_stars_Kl…

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

  • richardmitnick 3:55 pm on May 16, 2016 Permalink | Reply
    Tags: , , , NASA Ames, NASA Nodes mission   

    From NASA Ames: “NASA Small Satellites to Demonstrate Swarm Communications and Autonomy” 

    NASA Ames Icon

    Dec. 7, 2015 [But pertinent, read on]
    Author: Julianna Fishman
    Small Spacecraft Technology Program

    Media contact: Kimberly Williams
    Ames Research Center

    Last Updated: April 19, 2016
    Editor: Kimberly Williams


    NASA’s two Nodes small satellites hitched a ride to the International Space Station on the fourth Orbital ATK cargo mission, which launched on Dec. 6. The satellites are slated for deployment into low-Earth orbit in May 2016.

    The Nodes mission, which consists of two CubeSats weighing just 4.5 pounds each and measuring 4 inches by 4 inches by 6.5 inches, will test new network capabilities for operating swarms of spacecraft in the future.

    “The purpose of the Nodes demonstration is to test out the potential for using multiple, small, low-cost satellites to perform complex science missions,” said Andrew Petro, program executive for the Small Spacecraft Technology Program (SSTP) in the Space Technology Mission Directorate at NASA Headquarters in Washington.

    A first for small satellites, Nodes will demonstrate the ability to receive and distribute commands in space from the ground in addition to periodically exchanging scientific data from their onboard radiation instruments. The satellites will be able to configure their data network autonomously by determining which spacecraft is best suited to communicate with the ground each day of the mission.

    “The technologies demonstrated during this mission are important, as they will show that a network of satellites can be controlled without communicating to each satellite directly,” said Roger Hunter, program manager for SSTP at NASA’s Ames Research Center at Moffett Field, California. “Nodes will demonstrate inter-satellite communications and autonomous command and control; this will help enable future constellation command and control capabilities.”

    Upon deployment from the station, the Energetic Particle Integrating Space Environment Monitor (EPISEM) radiation sensor aboard each Nodes satellite will collect data on the charged particle environment at an altitude of about 250 miles above Earth. The EPISEM instruments were provided under contract by Montana State University. The Nodes satellites will demonstrate their networking capabilities through communication of this data with each other and the ground.

    As part of a partnership with Ames, Santa Clara University in California will conduct ground operations for the nominal two-week mission. Acting as a ground station, the university will provide an online mission dashboard with current mission status, including operational status of satellite subsystems, ground segment communications status and satellite location tracking. The dashboard is currently available for viewing, but will not be active until after the Nodes deploy from the ISS in mid-May.

    The mission is scheduled to last for two weeks, though the CubeSats will remain in orbit for several more months before their orbit decays, they re-enter and burn up in the atmosphere.

    Nodes continues the legacy of the Phonesat series of small satellites by using commercially developed Android smartphone technology augmented with additional custom software that enables the satellites to perform spacecraft functions.

    The launch of the Nodes small satellites follows last month’s launch of the eight small satellites of the Edison Demonstration of Smallsat Networks (EDSN) mission, which was lost in the failure of the U.S. Air Force-led Operationally Responsive Space Office’s ORS-4 mission. However, the Nodes spacecraft were developed at Ames by the same team that developed the EDSN spacecraft and many of the same capabilities planned for EDSN will be demonstrated in the Nodes mission, with additional software enhancements.

    “The Nodes mission concept was an opportunity to leverage the excellent work done on EDSN, and extend the systems at a low-cost and effort,” stated David Korsmeyer, director of engineering at Ames. “This is the value of the nanosat model of mission — quickly adapt to new opportunities and leverage systems for incremental missions.”

    Networked swarms of small satellites will open new horizons in astronomy, Earth observation and solar physics. Their range of applications includes multi-satellite science missions, the formation of synthetic aperture radars for Earth sensing systems, as well as large aperture observatories for next-generation telescopes. They can also serve to collect science measurements distributed over space and time to study the Earth, the Earth’s magnetosphere, gravity field, and Earth-Sun interactions.

    The Nodes project is sponsored by the SSTP, a program within NASA’s Space Technology Mission Directorate, and received additional funding from the Ames Research Center.

    For more information on NASA’s Small Spacecraft Technology Program, visit:


    Nodes Fact Sheet

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

  • richardmitnick 11:19 am on September 10, 2015 Permalink | Reply
    Tags: , NASA Ames,   

    From Nautilus: “This Used To Be the Future” 



    September 10, 2015
    Rachel B. Sussman

    A look inside NASA’s Ames Research Center.

    NASA Ames Research Center
    NASA Ames

    NASA Ames is filled with the exotic technologies of a future that didn’t quite come to pass. Ancient computers still operate equipment in the machine shop. A decommissioned nuclear missile sits in a parking lot, and the twin of the International Space Station sits out in the open air, under a tarp.

    Originally dedicated as the Sunnyvale Naval Air Station in 1933, the site was to serve as a home base for the Navy dirigible, the U.S.S. Macon, which crashed in 1935. The Aeronautical Laboratory was founded in 1939, and in 1958 became a part of the newly formed National Aeronautics and Space Administration, or NASA. In its earliest days, Ames broke new ground in aerodynamics and high-speed flight. Today it is still an active participant in various NASA missions, including leading the Kepler space telescope mission, and partnering on the Mars Curiosity Rover.

    I came to Ames as part of a creatively motivated examination of the felt experience of deep time and deep space, in conjunction with the LACMA Art + Tech Lab. How does one make art—let alone make sense—out of our human experience of the cosmos?

    As I visited Ames, along with SpaceX, JPL, and CERN, I began to reconsider our contemporary relationship to space. Without fail, someone would always lament that we have never regained the promise and excitement of the early space era, epitomized by the moon landing. The Ames campus itself embodies that sentiment in its architecture; some structures are perfectly preserved and others are in varying degrees of disrepair.

    As I took in the campus, I couldn’t help but think: This used to be the future.

    Pre-fabricated surplus storage sheds, of a type that are common to Naval installations. The sheds contain the detritus from decades of research and experimentation, including machines, electronics and even old vehicles. As one employee put it, “If it’s in the surplus sheds, it’s junk.” It was unclear what these particular sheds held, or the last time their bay doors had been opened. Rachel B. Sussman

    Temp 1
    Titan 1 #61-4492 (apparently) arriving at NASA Ames Research Center Building N242 in 1969. Photo courtesy of Arthur LeBrun

    On my first visit to NASA Ames, my contact took me to see the Titan, sitting in a parking lot next to an old McDonald’s that had been converted into a moon research office. When we reached the nosecone he pointed out an unplugged cable, and asked me to guess what it might have connected to. I was stymied.

    The Titan is an intercontinental ballistic missile. The cable was for a nuclear warhead.

    I was struck how, up until this moment, I had not consciously contemplated the military aspects of space exploration. Later, when giving a lecture about my process at LACMA, someone asked me if my work is moral. My encounter with the Titan made clear to me that the answer is yes.

    A 1999 image of Hangar 1 taken in Moffett Field, Calif. Credit: NASA Ames Research Center

    Hangar One was built in the 1930s to house “rigid airships,” à la Hindenburg. It stands 200 feet tall, and covers a footprint of eight acres.

    In the best thinking of the times,
 it was constructed with lead, PCBs, and asbestos, contaminating both the surrounding ground as well
 as San Francisco Bay. The toxins have all since been removed
from the structure, leaving only 
its steel skeleton.

    Hangar One will soon get a second life: It has recently been leased 
by Planetary Ventures, a Google subsidiary.

    Microbial mats, NASA Ames Research Greenhouse #0415-1408 Rachel B. Sussman

    A row of research greenhouses, established in 1999, sits atop the roof of the astrobiology building. This one is filled with trays 
of cultivated microbial mats of cyanobacteria collected from a field site in Mexico, and maintained in corrosive brines.

    One of the most ancient organisms on Earth, cyanobacteria could be similar to simple life on other planets. They could also indicate which organic compounds are associated with the presence of life.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

  • richardmitnick 9:21 am on July 31, 2014 Permalink | Reply
    Tags: , , , , NASA Ames   

    From NASA: “New NASA Research Shows Giant Asteroids Battered Early Earth” 


    July 30, 2014
    Rachel Hoover
    Ames Research Center, Moffett Field, Calif. 


    New research shows that more than four billion years ago the surface of Earth was heavily reprocessed – or melted, mixed, and buried – as a result of giant asteroid impacts. A new terrestrial bombardment model, calibrated using existing lunar and terrestrial data, sheds light on the role asteroid collisions played in the evolution of the uppermost layers of the early Earth during the geologic eon called the “Hadean” (approximately 4 to 4.5 billion years ago).

    An artistic conception of the early Earth, showing a surface pummeled by large impact, resulting in extrusion of deep seated magma onto the surface. At the same time, distal portion of the surface could have retained liquid water.
    Image Credit:
    Simone Marchi

    An international team of researchers from academic and government institutions, including NASA’s Solar System Exploration Research Virtual Institute (SSERVI) at NASA’s Ames Research Center in Moffett Field, California, published their findings in a paper, Widespread Mixing and Burial of Earth’s Hadean Crust by Asteroid Impacts in the July 31, 2014 issue of Nature.

    “A large asteroid impact could have buried a substantial amount of Earth’s crust with impact-generated melt,” said Yvonne Pendleton, SSERVI Director at Ames. “This new model helps explain how repeated asteroid impacts may have buried Earth’s earliest and oldest rocks.”

    Terrestrial planet formation models indicate Earth went through a sequence of major growth phases: initially accretion of planetesimals – planetary embryos – over many tens of millions of years, then a giant impact by a large proto-planet that led to the formation of our moon, followed by the late bombardment when giant asteroids several tens to hundreds of miles in size periodically hit ancient Earth, dwarfing the one that killed the dinosaurs (estimated to be six miles in size) only 65 million years ago.

    Researchers estimate accretion during the late bombardment contributed less than one percent of Earth’s present-day mass, but the giant asteroid impacts still had a profound effect on the geological evolution of early Earth. Prior to four billion years ago Earth was resurfaced over and over by voluminous impact-generated melt. Furthermore, large collisions as late as about four billion years ago may have repeatedly boiled away existing oceans into steamy atmospheres. Despite the heavy bombardment, the findings are compatible with the claim of liquid water on Earth’s surface as early as about 4.3 billion years ago based on geochemical data.

    The new research reveals that asteroidal collisions not only severely altered the geology of the Hadean eon Earth, but likely also played a major role in the subsequent evolution of life on Earth as well.

    “Prior to approximately four billion years ago, no large region of Earth’s surface could have survived untouched by impacts and their effects,” said Simone Marchi, SSERVI senior researcher at the Southwest Research Institute in Boulder, Colorado, and the paper’s lead author. “The new picture of the Hadean Earth emerging from this work has important implications for its habitability.”

    Spatial distribution and sizes of craters formed on the early Earth. Each circle indicates the final estimated crater size. Color-coding indicates the time of impact. Image Credit: Simone Marchi et al. 2014

    Large impacts had particularly severe effects on existing ecosystems. Researchers found that on average, Hadean Earth more than four billion years ago could have been hit by one to four impactors that were more than 600 miles wide and capable of global sterilization, and by three to seven impactors more than 300 miles wide and capable of global ocean vaporization.

    “During that time, the lag between major collisions was long enough to allow intervals of more clement conditions, at least on a local scale,” said Marchi. “Any life emerging during the Hadean eon likely needed to be resistant to high temperatures, and could have survived such a violent period in Earth’s history by thriving in niches deep underground or in the ocean’s crust.”

    The research was an international effort led by Marchi and William Bottke from the Southwest Research Institute in Boulder; Linda Elkins-Tanton from Carnegie Institution for Science in Washington; Michael Bierhaus and Kai Wünnemann from the Museum fur Naturkunde in Berlin, Germany; Alessandro Morbidelli from Observatoire de la Côte d’Azur in Nice, France, and David Kring from the Universities Space Research Association and Lunar and Planetary Institute in Houston.

    The research was supported in part by SSERVI, a virtual institute that, with international partnerships, brings science and exploration researchers together in a collaborative virtual setting. SSERVI is funded by the Science Mission Directorate and Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington.

    For more information about SSERVI and selected member teams, visit: http://sservi.nasa.gov

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble,
    Chandra, Spitzer ]and associated programs. NASA shares data with various national and international organizations such as from the Greenhouse Gases Observing Satellite.

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 8:18 am on July 31, 2014 Permalink | Reply
    Tags: , , , , NASA Ames,   

    From SETI Institute: “SETI Institute To Support Scientific Research At NASA Ames” 

    SETI Institute

    July 30 2014
    David C. Black
    President and CEO
    SETI Institute

    Edna DeVore
    Director of Education and Public Outreach
    SETI Institute

    The SETI Institute has been chosen as a key partner to support scientific and technical mission and project services at NASA Ames Research Center. On July 24, NASA awarded the Fully Integrated Mission Support Services (FILMSS) contract to Wyle Incorporated as the prime contractor. Wyle, with headquarters in Houston, Texas, provides a wide range of science, engineering and technical services to government agencies, including NASA. The SETI Institute is part of the contract awarded to Wyle to provide support to NASA’s Ames Research Center. These services were previously managed by Lockheed Martin.

    NASA Ames Research Center

    “We are delighted to be a key partner on FILMSS at NASA Ames,” said David Black, the SETI Institute’s president. “Today, Institute scientists and educators are key contributors to the success of NASA Ames’ research projects and space missions such as Kepler and SOFIA. The Institute has a 30-year history of working closely with NASA Ames in these areas as well as associated education projects. The FILMSS contract expands those opportunities.”

    NASA Ames research Center is located at Moffett Field, CA in the heart of the Silicon Valley.

    For further information about the Wyle Laboratories, Inc. team and FILMSS, go to: https://join.wylehou.com/FILMSS

    See the full article here.

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 12:30 pm on April 16, 2014 Permalink | Reply
    Tags: , , NASA Ames, ,   

    From NASA: “New Study Outlines ‘Water World’ Theory of Life’s Origins” 

    April 15, 2014
    Whitney Clavin
    Jet Propulsion Laboratory, Pasadena, Calif.

    Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed into slime molds, frogs, elephants, humans and the rest of our planet’s living kingdoms. How did it all begin?

    A new study from researchers at NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the Icy Worlds team at NASA’s Astrobiology Institute, based at NASA’s Ames Research Center in Moffett Field, Calif., describes how electrical energy naturally produced at the sea floor might have given rise to life. While the scientists had already proposed this hypothesis — called “submarine alkaline hydrothermal emergence of life” — the new report assembles decades of field, laboratory and theoretical research into a grand, unified picture.

    According to the findings, which also can be thought of as the “water world” theory, life may have begun inside warm, gentle springs on the sea floor, at a time long ago when Earth’s oceans churned across the entire planet. This idea of hydrothermal vents as possible places for life’s origins was first proposed in 1980 by other researchers, who found them on the sea floor near Cabo San Lucas, Mexico. Called “black smokers,” those vents bubble with scalding hot, acidic fluids. In contrast, the vents in the new study — first hypothesized by scientist Michael Russell of JPL in 1989 — are gentler, cooler and percolate with alkaline fluids. One such towering complex of these alkaline vents was found serendipitously in the North Atlantic Ocean in 2000, and dubbed the Lost City.

    Michael Russell and Laurie Barge of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., are pictured in their Icy Worlds laboratory, where they mimic the conditions of Earth billions of years ago, attempting to answer the question of how life first arose.
    Image Credit: NASA/JPL-Caltech

    This image from the floor of the Atlantic Ocean shows a collection of limestone towers known as the “Lost City.” Alkaline hydrothermal vents of this type are suggested to be the birthplace of the first living organisms on the ancient Earth.
    Image Credit: D. Kelley and M. Elend/University of Washington

    “Life takes advantage of unbalanced states on the planet, which may have been the case billions of years ago at the alkaline hydrothermal vents,” said Russell. “Life is the process that resolves these disequilibria.” Russell is lead author of the new study, published in the April issue of the journal Astrobiology.

    Other theories of life’s origins describe ponds, or “soups,” of chemicals, pockmarking Earth’s battered, rocky surface. In some of those chemical soup models, lightning or ultraviolet light is thought to have fueled life in the ponds.

    The water world theory from Russell and his team says that the warm, alkaline hydrothermal vents maintained an unbalanced state with respect to the surrounding ancient, acidic ocean — one that could have provided so-called free energy to drive the emergence of life. In fact, the vents could have created two chemical imbalances. The first was a proton gradient, where protons — which are hydrogen ions — were concentrated more on the outside of the vent’s chimneys, also called mineral membranes. The proton gradient could have been tapped for energy — something our own bodies do all the time in cellular structures called mitochondria.

    Underwater Chimney Created in Lab
    A close-up of chimney structures created in the Icy Worlds lab at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. Chimney structures like these can be found on the sea floor, surrounding warm, alkaline hydrothermal vents. Researchers are recreating the chimneys in the lab to test the “water world” theory of life’s origins, which says the warm, underwater vents helped kick-start life on Earth billions of years ago. The vents were thought to have been out of balance with respect to the ancient oceans, leading to proton gradients and electron transfer processes — two essential energy sources that all life forms use on Earth. Image credit: NASA/JPL-Caltech

    The second imbalance could have involved an electrical gradient between the hydrothermal fluids and the ocean. Billions of years ago, when Earth was young, its oceans were rich with carbon dioxide. When the carbon dioxide from the ocean and fuels from the vent — hydrogen and methane — met across the chimney wall, electrons may have been transferred. These reactions could have produced more complex carbon-containing, or organic compounds — essential ingredients of life as we know it. Like proton gradients, electron transfer processes occur regularly in mitochondria.

    “Within these vents, we have a geological system that already does one aspect of what life does,” said Laurie Barge, second author of the study at JPL. “Life lives off proton gradients and the transfer of electrons.”

    As is the case with all advanced life forms, enzymes are the key to making chemical reactions happen. In our ancient oceans, minerals may have acted like enzymes, interacting with chemicals swimming around and driving reactions. In the water world theory, two different types of mineral “engines” might have lined the walls of the chimney structures.

    “These mineral engines may be compared to what’s in modern cars,” said Russell.

    “They make life ‘go’ like the car engines by consuming fuel and expelling exhaust. DNA and RNA, on the other hand, are more like the car’s computers because they guide processes rather than make them happen.”

    One of the tiny engines is thought to have used a mineral known as green rust, allowing it to take advantage of the proton gradient to produce a phosphate-containing molecule that stores energy. The other engine is thought to have depended on a rare metal called molybdenum. This metal also is at work in our bodies, in a variety of enzymes. It assists with the transfer of two electrons at a time rather than the usual one, which is useful in driving certain key chemical reactions.

    “We call molybdenum the Douglas Adams element,” said Russell, explaining that the atomic number of molybdenum is 42, which also happens to be the answer to the “ultimate question of life, the universe and everything” in Adams’ popular book, “The Hitchhiker’s Guide to the Galaxy.” Russell joked, “Forty-two may in fact be one answer to the ultimate question of life!”

    The team’s origins of life theory applies not just to Earth but also to other wet, rocky worlds.

    “Michael Russell’s theory originated 25 years ago and, in that time, JPL space missions have found strong evidence for liquid water oceans and rocky sea floors on Europa and Enceladus,” said Barge. “We have learned much about the history of water on Mars, and soon we may find Earth-like planets around faraway stars. By testing this origin-of-life hypothesis in the lab at JPL, we may explain how life might have arisen on these other places in our solar system or beyond, and also get an idea of how to look for it.”

    For now, the ultimate question of whether the alkaline hydrothermal vents are the hatcheries of life remains unanswered. Russell says the necessary experiments are jaw-droppingly difficult to design and carry out, but decades later, these are problems he and his team are still happy to tackle.

    See the full article here.

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 5:49 pm on January 7, 2014 Permalink | Reply
    Tags: , , , , , NASA Ames   

    From NASA/Kepler: “NASA’s Kepler Provides Insights on Enigmatic Planets” 

    NASA Kepler Logo

    NASA Kepler Telescope

    January 06, 2014

    Whitney Clavin 818-354-4673
    Jet Propulsion Laboratory, Pasadena, Calif.

    Michele Johnson 650-604-4789
    Ames Research Center, Moffett Field, Calif.

    J.D. Harrington 202-358-5241
    Headquarters, Washington

    More than three-quarters of the planet candidates discovered by NASA’s Kepler spacecraft have sizes ranging from that of Earth to that of Neptune, which is nearly four times as big as Earth. Such planets dominate the galactic census but are not represented in our own solar system. Astronomers don’t know how they form or if they are made of rock, water or gas.

    The Kepler team today reports on four years of ground-based follow-up observations targeting Kepler’s exoplanet systems at the American Astronomical Society meeting in Washington. These observations confirm the numerous Kepler discoveries are indeed planets and yield mass measurements of these enigmatic worlds that vary between Earth and Neptune in size.

    Included in the findings are five new rocky planets ranging in size from 10 to 80 percent larger than Earth. Two of the new rocky worlds, dubbed Kepler-99b and Kepler-406b, are both 40 percent larger in size than Earth and have a density similar to lead. The planets orbit their host stars in less than five and three days respectively, making these worlds too hot for life as we know it.

    A major component of these follow-up observations was Doppler measurements of the planets’ host stars. The team measured the reflex wobble of the host star, caused by the gravitational tug on the star exerted by the orbiting planet. That measured wobble reveals the mass of the planet: the higher the mass of the planet, the greater the gravitational tug on the star and hence the greater the wobble.

    “This marvelous avalanche of information about the mini-Neptune planets is telling us about their core-envelope structure, not unlike a peach with its pit and fruit,” said Geoff Marcy, professor of astronomy at the University of California, Berkeley, who led the summary analysis of the high-precision Doppler study. “We now face daunting questions about how these enigmas formed and why our solar system is devoid of the most populous residents in the galaxy.”

    Using one of the world’s largest ground-based telescopes at the W. M. Keck Observatory in Hawaii, scientists confirmed 41 of the exoplanets discovered by Kepler and determined the masses of 16. With the mass and diameter in hand, scientists could immediately determine the density of the planets, characterizing them as rocky or gaseous, or mixtures of the two.

    The density measurements dictate the possible chemical composition of these strange, but ubiquitous planets. The density measurements suggest that the planets smaller than Neptune — or mini-Neptunes — have a rocky core but the proportions of hydrogen, helium and hydrogen-rich molecules in the envelope surrounding that core vary dramatically, with some having no envelope at all.

    The ground-based observation research validates 38 new planets, six of which are non-transiting planets only seen in the Doppler data. The paper detailing the research is published in the Astrophysical Journal today.

    A complementary technique used to determine mass, and in turn density of a planet, is by measuring the transit timing variations (TTV). Much like the gravitational force of a planet on its star, neighboring planets can tug on one another, causing one planet to accelerate and another planet to decelerate along its orbit.

    Ji-Wei Xie of the University of Toronto used TTV to validate 15 pairs of Kepler planets ranging from Earth-sized to a little larger than Neptune. Xie measured masses of the 30 planets, thereby adding to the compendium of planetary characteristics for this new class of planets. The result also was published in the Astrophysical Journal in Dec. 2013.

    “Kepler’s primary objective is to determine the prevalence of planets of varying sizes and orbits. Of particular interest to the search for life is the prevalence of Earth-sized planets in the habitable zone,” said Natalie Batalha, Kepler mission scientist at NASA’s Ames Research Center in Moffett Field, Calif. “But the question in the back of our minds is: are all planets the size of Earth rocky? Might some be scaled-down versions of icy Neptunes or steamy water worlds? What fraction are recognizable as kin of our rocky, terrestrial globe?”

    The dynamical mass measurements produced by Doppler and TTV analyses will help to answer these questions. The results hint that a large fraction of planets smaller than 1.5 times the radius of Earth may be comprised of the silicates, iron, nickel and magnesium that are found in the terrestrial planets here in the solar system.

    Armed with this type of information, scientists will be able to turn the fraction of stars harboring Earth-sizes planets into the fraction of stars harboring bona-fide rocky planets. And that’s a step closer to finding a habitable environment beyond the solar system.

    See the full article here.

    The Kepler Mission, NASA Discovery mission #10, is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone→ and determine the fraction of the hundreds of billions of stars in our galaxy that might have such planets.
    The operations phase of the Kepler mission is managed for NASA by the Ames Research Center, Moffett Field, CA. NASA’s Jet Propulsion Laboratory (JPL), Pasadena, CA, managed the mission through development, launch and the start of science operations. Dr. William Borucki of NASA Ames is the mission’s Science Principal Investigator. Ball Aerospace and Technologies Corp., Boulder, CO, developed the Kepler flight system.

    In October 2009, oversight of the Kepler project was transferred from the Discovery Program at NASA’s Marshall Space Flight Center, Huntsville, AL, to the Exoplanet Exploration Program at JPL


    NASA JPL Icon

    ScienceSprings is powered by MAINGEAR computers

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: