Tagged: NASA Ames Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:05 am on August 23, 2018 Permalink | Reply
    Tags: , , , Bouncing barrier, , , , NASA Ames, NASA Researchers Find Evidence of Planet-Building Clumps, Planetesimal formation   

    From NASA Ames: “NASA Researchers Find Evidence of Planet-Building Clumps” 

    NASA Ames Icon

    From NASA AMES

    Aug. 21, 2018
    Darryl Waller
    NASA Ames Research Center, Silicon Valley
    650-604-2675
    darryl.e.waller@nasa.gov

    Noah Michelsohn
    NASA Johnson Space Center, Houston
    281-483-5111
    noah.j.michelsohn@nasa.gov

    1
    False-color image of Allendale meteorite showing the apparent golf ball size clumps. Credits: NASA/J. Simon and J. Cuzzi

    NASA scientists have found the first evidence supporting a theory that golf ball-size clumps of space dust formed the building blocks of our terrestrial planets.

    A new paper from planetary scientists at the Astromaterials Research and Exploration Science Division (ARES) at NASA’s Johnson Space Center in Houston, Texas, and NASA’s Ames Research Center in Silicon Valley, California, provides evidence for an astrophysical theory called “pebble accretion” where golf ball-sized clumps of space dust came together to form tiny planets, called planetesimals, during the early stages of planetary formation.

    “This is very exciting because our research provides the first direct evidence supporting this theory,” said Justin Simon, a planetary researcher in ARES. “There have been a lot of theories about planetesimal formation, but many have been stymied by a factor called the ‘bouncing barrier.’”

    “The bouncing barrier principle stipulates that planets cannot form directly through the accumulation of small dust particles colliding in space because the impact would knock off previously attached aggregates, stalling growth. Astrophysicists had hypothesized that once the clumps grew to the size of a golf ball, any small particle colliding with the clump would knock other material off. Yet, if the colliding objects were not the size of a particle, but much larger – for example, clumps of dust the size of a golf ball – that they could exhibit enough gravity to hold themselves together in clusters to form larger bodies.”

    2
    Mosaic photograph of the ancient Northwest Africa 5717 ordinary chondrite with clusters of particles. Credits: NASA/J. Simon and J. Cuzzi

    The research provides evidence of a common, possibly universal, dust sticking process from studying two ancient meteorites – Allende and Northwest Africa 5717 – that formed in the pre-planetary period of the Solar System and have remained largely unaltered since that time. Scientists know through dating methods that these meteorites are older than Earth, Moon, and Mars, which means they have remained unaltered since the birth of the Solar System. The meteorites studied for this research are so old that they are often used to date the Solar System itself.

    The meteorites were analyzed using electron microscope images and high-resolution photomicrographs that showed particles within the meteorite slices appeared to concentrate together in three to four-centimeter clumps. The existence of the clumps demonstrates that the meteorites themselves were produced by the clustering of golf ball-sized objects, providing strong evidence that the process was possible for other bodies as well.

    The research, titled “Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories,” was published in the journal Earth and Planetary Science Letters in July. The publication culminated six years of research that was led by planetary scientists Simon at Johnson and Jeffrey Cuzzi at Ames.

    Dig up more about how NASA studies meteorites, visit:

    https://ares.jsc.nasa.gov/

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

    Advertisements
     
  • richardmitnick 4:10 pm on August 9, 2018 Permalink | Reply
    Tags: , , , , NASA Ames, Then Reborn in Ultrahot Jupiters, Water Is Destroyed   

    From NASA Ames and JPL: “Water Is Destroyed, Then Reborn in Ultrahot Jupiters” 

    NASA JPL Banner

    From JPL-Caltech

    and

    NASA Ames Icon

    From NASA Ames

    Aug. 9, 2018

    Calla Cofield
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-1821
    Calla.e.cofield@jpl.nasa.gov

    Written by Adam Hadhazy

    1
    These simulated views of the ultrahot Jupiter WASP-121b show what the planet might look like to the human eye from five different vantage points, illuminated to different degrees by its parent star. The images were created using a computer simulation being used to help scientists understand the atmospheres of these ultra-hot planets. Ultrahot Jupiters reflect almost no light, rather like charcoal. However, the daysides of ultrahot Jupiters have temperatures of between 3600°F and 5400°F (2000°C and 3000°C), so the planets produce their own glow, like a hot ember. The orange color in this simulated image is thus from the planet’s own heat. The computer model was based on observations of WASP-121b conducted using NASA’s Spitzer and Hubble space telescopes. Credits: NASA/JPL-Caltech/Vivien Parmentier/Aix-Marseille University (AMU)

    NASA/Spitzer Infrared Telescope

    NASA/ESA Hubble Telescope

    Imagine a place where the weather forecast is always the same: scorching temperatures, relentlessly sunny, and with absolutely zero chance of rain. This hellish scenario exists on the permanent daysides of a type of planet found outside our solar system dubbed an “ultrahot Jupiter.” These worlds orbit extremely close to their stars, with one side of the planet permanently facing the star.

    What has puzzled scientists is why water vapor appears to be missing from the toasty worlds’ atmospheres, when it is abundant in similar but slightly cooler planets. Observations of ultrahot Jupiters by NASA’s Spitzer and Hubble space telescopes, combined with computer simulations, have served as a springboard for a new theoretical study that may have solved this mystery.

    According to the new study, ultrahot Jupiters do in fact possess the ingredients for water (hydrogen and oxygen atoms). But due to strong irradiation on the planet’s daysides, temperatures there get so intense that water molecules are completely torn apart.

    “The daysides of these worlds are furnaces that look more like a stellar atmosphere than a planetary atmosphere,” said Vivien Parmentier, an astrophysicist at Aix Marseille University in France and lead author of the new study. “In this way, ultrahot Jupiters stretch out what we think planets should look like.”

    While telescopes like Spitzer and Hubble can gather some information about the daysides of ultrahot Jupiters, the nightsides are difficult for current instruments to probe. The new paper proposes a model for what might be happening on both the illuminated and dark sides of these planets, based largely on observations and analysis of the ultrahot Jupiter known as WASP-121b, and from three recently published studies, coauthored by Parmentier, that focus on the ultrahot Jupiters WASP-103b, WASP-18b and HAT-P-7b, respectively. The new study suggests that fierce winds may blow the sundered water molecules into the planets’ nightside hemispheres. On the cooler, dark side of the planet, the atoms can recombine into molecules and condense into clouds, all before drifting back into the dayside to be splintered again.

    Water is not the only molecule that may undergo a cycle of chemical reincarnation on these planets, according to the new study. Previous detections of clouds by Hubble at the boundary between day and night, where temperatures mercifully fall, have shown that titanium oxide (popular as a sunscreen) and aluminum oxide (the basis for ruby, the gemstone) could also be molecularly reborn on the ultrahot Jupiters’ nightsides. These materials might even form clouds and rain down as liquid metals and fluidic rubies.

    Star-planet hybrids

    Among the growing catalog of planets outside our solar system — known as exoplanets — ultrahot Jupiters have stood out as a distinct class for about a decade. Found in orbits far closer to their host stars than Mercury is to our Sun, the giant planets are tidally locked, meaning the same hemisphere always faces the star, just as the Moon always presents the same side to Earth. As a result, ultrahot Jupiters’ daysides broil in a perpetual high noon. Meanwhile, their opposite hemispheres are gripped by endless nights. Dayside temperatures reach between 3,600 and 5,400 degrees Fahrenheit (2,000 and 3,000 degrees Celsius), ranking ultrahot Jupiters among the hottest exoplanets on record. Nightside temperatures are around 1,800 degrees Fahrenheit cooler (1,000 degrees Celsius), cold enough for water to re-form and, along with other molecules, coalesce into clouds.

    Hot Jupiters, cousins to ultrahot Jupiters with dayside temperatures below 3,600 degrees Fahrenheit (2,000 Celsius), were the first widely discovered type of exoplanet, starting back in the mid-1990s. Water has turned out to be common in their atmospheres. One hypothesis for why it appeared absent in ultrahot Jupiters has been that these planets must have formed with very high levels of carbon instead of oxygen. Yet the authors of the new study say this idea could not explain the traces of water also sometimes detected at the dayside-nightside boundary.

    To break the logjam, Parmentier and colleagues took a cue from well-established physical models of the atmospheres of stars, as well as “failed stars,” known as brown dwarfs, whose properties overlap somewhat with hot and ultrahot Jupiters. Parmentier adapted a brown dwarf model developed by Mark Marley, one of the paper’s coauthors and a research scientist at NASA’s Ames Research Center in Silicon Valley, California, to the case of ultrahot Jupiters. Treating the atmospheres of ultrahot Jupiters more like blazing stars than conventionally colder planets offered a way to make sense of the Spitzer and Hubble observations.

    “With these studies, we are bringing some of the century-old knowledge gained from studying the astrophysics of stars, to the new field of investigating exoplanetary atmospheres,” said Parmentier.

    Spitzer’s observations in infrared light zeroed in on carbon monoxide in the ultrahot Jupiters’ atmospheres. The atoms in carbon monoxide form an extremely strong bond that can uniquely withstand the thermal and radiational assault on the daysides of these planets. The brightness of the hardy carbon monoxide revealed that the planets’ atmospheres burn hotter higher up than deeper down. Parmentier said verifying this temperature difference was key for vetting Hubble’s no-water result, because a uniform atmosphere can also mask the signatures of water molecules.

    “These results are just the most recent example of Spitzer being used for exoplanet science — something that was not part of its original science manifest,” said Michael Werner, project scientist for Spitzer at NASA’s Jet Propulsion Laboratory in Pasadena, California. “In addition, it’s always heartening to see what we can discover when scientists combine the power of Hubble and Spitzer, two of NASA’s Great Observatories.”

    Although the new model adequately described many ultrahot Jupiters on the books, some outliers do remain, suggesting that additional aspects of these worlds’ atmospheres still need to be understood. Those exoplanets not fitting the mold could have exotic chemical compositions or unanticipated heat and circulation patterns. Prior studies have argued that there is a more significant amount of water in the dayside atmosphere of WASP-121b than what is apparent from observations, because most of the signal from the water is obscured. The new paper provides an alternative explanation for the smaller-than-expected water signal, but more studies will be required to better understand the nature of these ultrahot atmospheres.

    Resolving this dilemma could be a task for NASA’s next-generation James Webb Space Telescope, slated for a 2021 launch. Parmentier and colleagues expect it will be powerful enough to glean new details about the daysides, as well as confirm that the missing dayside water and other molecules of interest have gone to the planets’ nightsides.

    “We now know that ultrahot Jupiters exhibit chemical behavior that is different and more complex than their cooler cousins, the hot Jupiters,” said Parmentier. “The studies of exoplanet atmospheres is still really in its infancy and we have so much to learn.”

    The new study is forthcoming in the journal Astronomy and Astrophysics.

    NASA’s Jet Propulsion Laboratory, Pasadena, California, manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena. Spacecraft operations are based at Lockheed Martin Space, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at IPAC at Caltech. Caltech manages JPL for NASA.

    Hubble is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages Hubble. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations.

    Further information from
    mwatzke@cfa.harvard.edu

    The Kreidberg et al. paper reports observations of the ultra-hot Jupiter WASP-103b by NASA’s Hubble Space Telescope (HST) and Spitzer Space Telescope. The researchers estimate the dayside temperature of the planet is 4800 degrees Fahrenheit (2700 degrees Celsius) making it one of the hottest exoplanets known. The nightside temperature of the planet is much cooler, at 2900 degrees Fahrenheit (1600 degrees Celsius).

    Unlike the case for cooler hot Jupiters, Kreidberg and collaborators do not detect any sign of water vapor in WASP-103b using Hubble data. As explained in papers led by Vivien Parmentier, Jacob Arcangeli and Megan Mansfield, and the JPL press release, the water is being torn apart by radiation from the planet’s host star. However, Kreidberg and collaborators do detect evidence for carbon monoxide on the dayside of WASP-103b using Spitzer data. This is a much hardier molecule than water.

    They also detect evidence for a temperature inversion, formed by the same mechanism as temperature inversions on the Earth. In both planets this effect is caused by ultraviolet radiation being absorbed in the upper atmosphere, causing it to become hotter. In the case of Earth, ozone is the molecule most responsible for the absorption, while in the case of WASP-103b sodium might be responsible or perhaps exotic molecules like titanium or vanadium oxides.

    A crucial observational advance by Kreidberg and her team was that they observed the planet for an entire orbit, enabling them to map the climate at every longitude and derive detailed information about the temperatures on the planet’s dayside and nightside. This is only the second time that such a complete exoplanet observation has been performed with HST.

    Kreidberg and collaborators also use modeling of the WASP-103b data to estimate the magnetic field of the planet. They estimate that the magnetic field is about twice that of the Earth and half that of Jupiter.

    “WASP-103b is unlike anything in our Solar System”, said Kreidberg. “It orbits right next to its parent star — less than 2 million miles, 20 times closer than Mercury is to the Sun. The planet completes a full orbit (its “year”) every 22 hours, and the strong pull of its star’s gravity distorts it into an egg-like shape. It’s heated up on the permanent hot dayside to 4800 degrees F, which is hotter than many stars. You definitely wouldn’t want to live there! And yet in some ways, the planet isn’t so exotic — we found that it has a thermal inversion in its atmosphere that formed in a very similar way as the stratosphere on Earth. It serves as a reminder that even on the most unwelcoming of extrasolar worlds, they’re still subject to the same laws of physics and chemistry that we abide by here on Earth.”

    The Kreidberg et al. paper is available online at https://xxx.lanl.gov/abs/1805.00029 and has been published in The Astronomical Journal.

    Other papers included in the JPL press release are:

    • Mansfield et al: https://arxiv.org/abs/1805.00424 and published in The Astronomical Journal: http://iopscience.iop.org/article/10.3847/1538-3881/aac497/pdf
    • Parmentier et al: https://arxiv.org/abs/1805.00096 and published in Astronomy & Astrophysics
    • Arcangeli et al: https://arxiv.org/abs/1801.02489 and published in The Astrophysical Journal Letters: http://iopscience.iop.org/article/10.3847/2041-8213/aab272/pdf

    Contact information for Dr Laura Kreidberg:
    laura.kreidberg@cfa.harvard.edu
    775-233-7497

    Contact information for Professor Avi Loeb:
    aloeb@cfa.harvard.edu
    617-913-5598

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 6:22 pm on December 4, 2017 Permalink | Reply
    Tags: , , , , , NASA Ames, NASA has selected nine university teams to collaborate on the development and demonstration of new technologies and capabilities for small spacecraft   

    From NASA Ames: “NASA Selects University Partners for Small Spacecraft Collaboration” 

    NASA Ames Icon

    Dec. 4, 2017
    Editor: Loura Hall

    1
    CSUNSat1, designed by California State University, Northridge in partnership with NASA’s Jet Propulsion Laboratory, was awarded Smallsat Technology Partnership funding in 2013. The 2U CubeSat deployed from the International Space Station in May 2017 and successfully demonstrated the effectiveness of JPL’s energy storage system that is targeted to help small spacecraft explore deep space in extremely cold temperatures. Credits: California State University, Northridge

    NASA has selected nine university teams to collaborate on the development and demonstration of new technologies and capabilities for small spacecraft. Beginning this winter, each university team will work with NASA engineers and scientists on two-year projects.

    These collaborations are directed toward making small spacecraft, some of which weigh only a few pounds, into powerful and affordable tools for science and exploration missions. This is the fourth round of projects selected under the Smallsat Technology Partnerships initiative, managed by the Small Spacecraft Technology program within NASA’s Space Technology Mission Directorate (STMD).

    “U.S. universities are great partners for space technology research and development and this may be especially true with small spacecraft,” said Chris Baker, the Small Spacecraft Technology program executive. “The ability for educational institutions to take technology from the laboratory to orbit with low cost small spacecraft provides an immense source of innovation and fresh perspective in the development of new space capabilities.”

    Proposals were requested in three topic areas: instrument technologies for small spacecraft; technologies that enable large swarms of small spacecraft; and technologies that enable deep space small spacecraft missions.

    The selected project teams will have the opportunity to establish a cooperative agreement with NASA, through which each university will be funded up to $200,000 per year. As part of the agreement, researchers and technologists from NASA’s centers across the country will collaborate in the project work.

    The following university teams were selected from a highly competitive pool of proposals:

    “Active Thermal Architecture for Cryogenic Optical Instruments,” Utah State University in Logan, collaborating with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California

    This award will develop a system-level thermal control solution for electro-optical instrumentation on 6U and larger CubeSats. Building on prior work, this current effort will produce a proto-flight unit thermal system with an additively manufactured deployable radiator, vibration isolation for the cooled detector, and the required mechanisms and elements for deploying the actively controlled radiator.

    “SPRINT: Scheduling Planning Routing Intersatellite Network Tool,” Massachusetts Institute of Technology in Cambridge, collaborating with NASA’s Goddard Space Flight Center in Greenbelt, Maryland and NASA’s Ames Research Center in Silicon Valley

    This award will develop a software tool that schedules satellite observations, intersatellite crosslink communications, and downlink activities to enable large constellations of hundreds of resource-constrained small satellites for scientific observation. At completion of the effort, the software will be delivered as a complete open-source package.

    “High SPecific-impulse Electrospray Explorer for Deep-space (HiSPEED),” Massachusetts Institute of Technology collaborating with JPL

    This award will address the current life limitations of developing a staged system that will eject degraded thruster heads, revealing new thruster heads beneath. The thruster heads are currently the life-limiting component of the system and staging multiple thruster heads may be a low-cost way to extend the life of the overall thruster.

    “Autonomous Nanosatellite Swarming using Radio Frequency and Optical Navigation,” Stanford University, California, collaborating with NASA’s Ames Research Center

    This effort integrates novel dynamics, guidance, navigation, and control algorithms to overcome current limitations for autonomous operations in the vicinity of near-Earth objects (NEOs). The algorithms developed will enable autonomous fuel-optimal operations for a swarm of spacecraft and onboard characterization of NEO shape, gravity, and dynamical properties while remaining compatible with commercial-off-the-shelf CubeSat systems.

    “Application of Machine-learning Algorithms for On-board Asteroid Shape Model Determination and Spacecraft Navigation,” University of Arizona in Tucson, collaborating with Michigan State University in East Lansing, and NASA’s Goddard Space Flight Center

    This effort is designed to address challenges associated with navigation around asteroids and precision targeting of asteroid surface locations for sample collection by applying natural cognitive algorithms (commonly referred to as machine learning) to perform on-board image processing and shape model generation of asteroids.

    “Move to Talk, Talk to Move: Tightly Integrated Communication and Controls for Coordinated Swarms of Small Spacecraft,” Colorado School of Mines in Golden, collaborating with JPL

    This effort will develop and evaluate algorithms for dynamic spacecraft networking and network-aware coordination of dissimilar multi-spacecraft swarms and sub-swarm ensembles for distributed data collection around small-bodies or other targets of interest. An integrated prototype system using a swarm of unmanned aerial vehicle (UAV) drones will be tested in an underground mine to evaluate the algorithms in a challenging wireless network environment.

    “Enabling Deep Space SmallSat Missions using Magnetoshell Aerocapture,” University of Washington in Seattle, collaborating with NASA’s Langley Research Center in Hampton, Virginia

    This effort builds off of a NASA Innovative Advanced Concepts study exploring a technology that can enable aerocapture and orbit insertion using magnetic fields and plasma instead of a physical decelerator. Magnetoshell aerocapture could be enabling for interplanetary small spacecraft missions where the size and weight constraints of low-cost small spacecraft can prohibit the carriage of sufficient propellant, physical aeroshell or other deceleration devices for orbital insertion, braking, or atmospheric entry.

    “Distributed Attitude Control and Maneuvering for Deep Space SmallSats,” Purdue University in West Lafayette, Indiana, collaborating with NASA’s Goddard Space Flight Center and NASA’s Marshall Space Flight Center in Huntsville, Alabama

    This award will further develop a film-evaporation micro-scale thruster that uses water as a propellant for precision pointing and attitude control of small spacecraft and deployable structures.

    “Milli-Arcsecond (MAS) Imaging with Smallsat-Enabled Super-resolution,” University of Illinois, Urbana-Champaign, collaborating with NASA’s Goddard Space Flight Center

    This award will conduct laboratory testing of novel computational diffractive optical sensing and advanced image processing that makes use of small satellite formation flying to enable extremely high-resolution imaging capability that is otherwise unattainable with conventional approaches.

    “These partnerships between the university community and NASA help cultivate the rapid, agile and cost-conscious small spacecraft approaches that are evolving in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.” said Jim Cockrell the Small Spacecraft Technology program chief technologist.

    Managed by NASA’s Ames Research Center in California’s Silicon Valley, the Small Spacecraft Technology program expands U.S. capability to execute unique and more affordable missions through rapid development and in-space demonstration of capabilities for small spacecraft that are applicable to exploration, science, and the commercial space sector. The program enables new mission architectures through the use of small spacecraft while seeking to expand the reach of small spacecraft to new destinations and challenging new environments.

    For more information about the Small Spacecraft Technology program, visit:

    https://www.nasa.gov/directorates/spacetech/small_spacecraft

    For more information about NASA’s small satellite activities, visit:

    https://www.nasa.gov/mission_pages/smallsats

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 2:41 pm on May 25, 2017 Permalink | Reply
    Tags: , , , , NASA Ames,   

    NASA Ames: “NASA Selects New Research Teams to Further Solar System Exploration Research” 

    NASA Ames Icon

    March 17, 2017 [How did this slip by me?]
    Kimberly Williams
    Ames Research Center, Silicon Valley
    650-604-2457
    kimberly.k.williams@nasa.gov

    1
    No image caption or credit

    In an effort to advance basic and applied research for lunar and planetary science, and advance human exploration of the solar system through scientific discovery, NASA created the Solar System Exploration Research Virtual Institute or SSERVI. The institute fosters collaborations with science and exploration communities, which enables cross-disciplinary partnerships with research institutions, both domestic and abroad.

    NASA has selected four new research teams to join the existing nine teams in SSERVI to address scientific questions about the moon, near-Earth asteroids, the Martian moons Phobos and Deimos, and their near space environments, in cooperation with international partners.

    “We look forward to collaborative scientific discoveries from these teams,” said Jim Green, director of the Planetary Science Division of NASA’s Science Mission Directorate in Washington. “These results will be vital to NASA successfully conducting the ambitious activities of exploring the solar system with robots and humans.”

    SSERVI members include academic institutions, non-profit research institutes, private companies, NASA centers and other government laboratories. The new teams – which SSERVI will support for five years at a combined total of about $3-5 million per year – were selected from a pool of 22 proposals based on competitive peer-review evaluation.

    The selected SSERVI member teams, listed with their principal investigators and research topics, are:

    Network for Exploration and Space Science (NESS); Jack Burns, University of Colorado, Boulder, Colorado. NESS will implement cross-disciplinary partnerships to advance scientific discovery and human exploration at target destinations by conducting research in robotics, cosmology, astrophysics and heliophysics that is uniquely enabled by human and robotic exploration at the moon, near-Earth asteroids and comets, and Phobos and Deimos.

    Toolbox for Research and Exploration (TREX); Amanda Hendrix, Planetary Science Institute, Tucson, Arizona. TREX aims to develop tools and research methods for exploration of airless bodies, like the moon and asteroids, that are coated in fine-grained dust in order to prepare for human missions. Laboratory spectral measurements and experiments will accompany studies of existing datasets to understand surface characteristics and to investigate potential resources on airless bodies.

    Radiation Effects on Volatiles and Exploration of Asteroids and Lunar Surfaces (REVEALS); Thomas Orlando, Georgia Institute of Technology, Atlanta, Georgia. The REVEALS team will explore radiation processing of natural regolith and human-made composite materials to understand the condensed-matter physics and radiation chemistry that can lead to volatile formation, sequestration and transport. This team also will explore how novel materials and real-time radiation detectors can minimize risks and exposure to dangerous radiation during human exploration missions.

    Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO); Alex Parker, Southwest Research Institute, Boulder, Colorado. Team ESPRESSO will focus on characterizing target surfaces and mitigating hazards that create risk for robotic and human explorers. It will work to assess the geotechnical and thermomechanical properties of target body surfaces to help us understand and predict hazards like landslides, and to improve our understanding of impact ejecta dynamics.

    “We are extremely pleased that the community responded with such high-quality proposals, and look forward to the many contributions SSERVI will make in addressing NASA’s science and exploration goals,” said SSERVI Director Yvonne Pendleton.

    The SSERVI central office, located at NASA’s Ames Research Center in Silicon Valley, is funded by the agency’s Science Mission Directorate and Human Exploration and Operations Mission Directorate, and manages national and international collaborative partnerships, designed to push the boundaries of science and exploration.

    For more information about SSERVI and selected member teams, visit:

    http://sservi.nasa.gov

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 10:33 am on March 20, 2017 Permalink | Reply
    Tags: , , , , , , , NASA Ames, , Sardines in Space   

    From astrobites: “Sardines in Space: The Intensely Densely-Packed Planets Orbiting Kepler-11” 

    Astrobites bloc

    Astrobites

    Title: A Closely-Packed System of Low-Mass, Low-Density Planets Transiting Kepler-11
    Authors: Jack J. Lissauer, Daniel C. Fabrycky, Eric B. Ford, et al.
    Lead Author’s Institution: NASA Ames Research Center, Moffett Field, CA, 94035, USA

    Status: Published in Nature 2011 [open access]

    The dawn of the Kepler Space Telescope data has unearthed a treasure trove of new and unusual celestial objects. Among these new discoveries is the planetary system Kepler-11. The system contains six transiting planets that are packed incredibly close around the Sun-like star, much like sardines are packed very closely in cans. The first five of these planets fall within the orbit of Mercury, and the sixth one falls well within the orbit of Venus. Few systems like this have been discovered; most planetary systems have a much larger separation between the planets, yet this system has its planets arranged in an extremely packed, yet extraordinarily still stable, way.

    1
    Figure 1: This figure from the NASA website is a visual representation of the Kepler-11 system, overlaid with the orbits of Mercury and Venus.

    When a single planet orbits a star, its period follows Kepler’s Laws to a tee; however, when other planets are introduced in the system, the orbiting bodies tend to perturb each other’s orbits. Their periods differ slightly according to the gravitational perturbations, and this variation is called a transit timing variation (TTV). Since Kepler-11 has five planets orbiting in extreme proximity to one another, it is the perfect illustration of measurements from transit-timing variations.


    Planet transit. NASA/Ames

    The photometric Kepler data marked the discovery of this system. The transits for each of the planets appeared separately in the light curve of the system. The light curve is just a measurement of the brightness of the star over time, so when a planet passes in front of the star, the brightness decreases, causing the dip in the light curve. The shape varies with each planet based on differences in size of the planet and orbital radius. From this data, it is possible to measure the radius of the transiting planet. This team followed up their photometric data with spectroscopic analysis from the Keck I telescope. This additional data allowed for the precise measurements of transit-timing variations, which yielded mass measurements for the inner five planets.

    For the first five planets, the TTVs were successfully measured, and with this information, the research team found the densities of the inner five planets, which yielded a surprising result. These planets, despite being densely packed, are not made of very dense material. Kepler-11b is both closest to the Sun and densest, but only with an overall density of 3.31 g/cm3. For comparison, Earth has an overall density of about 5.5 g/cm3. The densities of the planets orbiting Kepler-11 are depicted in Figure 2.

    2
    Figure 2: This shows the mass versus radius of the planets in the Kepler-11 system. The planets orbiting Kepler-11 are represented by the filled in circles. The other marking on the graph indicate planets in our solar system, shown for comparison. Figure 5 from today’s paper.

    While transit timing variations worked like a charm for the inner five planets, the sixth planet (Kepler-11g) was too distant from the others for this method to work well, so to confirm this planet, another method was employed. This team used several simulations to rule out alternate scenarios, which include chance alignment of the Kepler-11 system with and eclipsing star or with another star-planet system. This analysis successfully confirmed Kepler-11g , but because no TTVs could be measured for this particular planet, its mass and radius remain unknown.

    Even though this system has been more closely studied than most, the measurements have raised nearly as many questions as they have answered. The inner five have small inclinations and eccentricities, which implies some planetary migration process. However, since the periods of these planets are not in resonance, slow and convergent migration theories—which would naturally force the planets into resonant orbits—seem unlikely to be at play in this system. Formation of such a system is still a bit of a mystery. After all, such low-density planets are unusual and do not completely fit within the current understanding of planet formation.

    Kepler-11 continues to be one of the more intriguing planetary systems discovered, and its formation is not fully understood. Even though this system has been more closely studied than most, the measurements have raised nearly as many questions as they have answered. Systems like this extend our understanding of astrophysics, perhaps in a bit of an unexpected way; these closely packed planets have so much more to teach us about their system formation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
  • richardmitnick 12:40 pm on March 18, 2017 Permalink | Reply
    Tags: , , , , NASA Ames,   

    From NASA Ames: “NASA Selects New Research Teams to Further Solar System Exploration Research” 

    NASA Ames Icon

    March 17, 2017
    Kimberly Williams
    Ames Research Center, Silicon Valley
    650-604-2457
    kimberly.k.williams@nasa.gov

    1
    No image credit

    In an effort to advance basic and applied research for lunar and planetary science, and advance human exploration of the solar system through scientific discovery, NASA created the Solar System Exploration Research Virtual Institute or SSERVI. The institute fosters collaborations with science and exploration communities, which enables cross-disciplinary partnerships with research institutions, both domestic and abroad.

    NASA has selected four new research teams to join the existing nine teams in SSERVI to address scientific questions about the moon, near-Earth asteroids, the Martian moons Phobos and Deimos, and their near space environments, in cooperation with international partners.

    “We look forward to collaborative scientific discoveries from these teams,” said Jim Green, director of the Planetary Science Division of NASA’s Science Mission Directorate in Washington. “These results will be vital to NASA successfully conducting the ambitious activities of exploring the solar system with robots and humans.”

    SSERVI members include academic institutions, non-profit research institutes, private companies, NASA centers and other government laboratories. The new teams – which SSERVI will support for five years at a combined total of about $3-5 million per year – were selected from a pool of 22 proposals based on competitive peer-review evaluation.

    The selected SSERVI member teams, listed with their principal investigators and research topics, are:

    Network for Exploration and Space Science (NESS); Jack Burns, University of Colorado, Boulder, Colorado. NESS will implement cross-disciplinary partnerships to advance scientific discovery and human exploration at target destinations by conducting research in robotics, cosmology, astrophysics and heliophysics that is uniquely enabled by human and robotic exploration at the moon, near-Earth asteroids and comets, and Phobos and Deimos.

    Toolbox for Research and Exploration (TREX); Amanda Hendrix, Planetary Science Institute, Tucson, Arizona. TREX aims to develop tools and research methods for exploration of airless bodies, like the moon and asteroids, that are coated in fine-grained dust in order to prepare for human missions. Laboratory spectral measurements and experiments will accompany studies of existing datasets to understand surface characteristics and to investigate potential resources on airless bodies.

    Radiation Effects on Volatiles and Exploration of Asteroids and Lunar Surfaces (REVEALS); Thomas Orlando, Georgia Institute of Technology, Atlanta, Georgia. The REVEALS team will explore radiation processing of natural regolith and human-made composite materials to understand the condensed-matter physics and radiation chemistry that can lead to volatile formation, sequestration and transport. This team also will explore how novel materials and real-time radiation detectors can minimize risks and exposure to dangerous radiation during human exploration missions.

    Exploration Science Pathfinder Research for Enhancing Solar System Observations (ESPRESSO); Alex Parker, Southwest Research Institute, Boulder, Colorado. Team ESPRESSO will focus on characterizing target surfaces and mitigating hazards that create risk for robotic and human explorers. It will work to assess the geotechnical and thermomechanical properties of target body surfaces to help us understand and predict hazards like landslides, and to improve our understanding of impact ejecta dynamics.

    “We are extremely pleased that the community responded with such high-quality proposals, and look forward to the many contributions SSERVI will make in addressing NASA’s science and exploration goals,” said SSERVI Director Yvonne Pendleton.

    The SSERVI central office, located at NASA’s Ames Research Center in Silicon Valley, is funded by the agency’s Science Mission Directorate and Human Exploration and Operations Mission Directorate, and manages national and international collaborative partnerships, designed to push the boundaries of science and exploration.

    For more information about SSERVI and selected member teams, visit:

    http://sservi.nasa.gov

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 8:02 pm on October 13, 2016 Permalink | Reply
    Tags: , , NASA Ames, ,   

    From SETI and UNLV: “A New Species of Planetary System” 

    SETI Logo new
    SETI Institute

    1

    UNLV

    Oct 11, 2016
    Shane Bevell

    2
    Artist’s rendition of a hot Earth-sized planet. (Courtesy of NASA/Ames/JPL-Caltech)

    Using the most recent results from the Kepler space telescope, scientists from UNLV and the SETI Institute, which searches for intelligent extraterrestrial life, have identified a new kind of planetary system.

    UNLV astrophysicist Jason Steffen and SETI scientist Jeffrey Coughlin have shown that there must be a population of planetary systems whose formation or dynamical history are distinct from their counterparts across the galaxy. The results of their study, A Population of Planetary Systems Characterized by Short-period, Earth-sized Planets, will appear in the Proceedings of the National Academy of Sciences.

    The key feature of these systems is an isolated, very hot, rocky planet.

    “We’ve shown that a large fraction of systems with hot earths can’t have the same makeup as other planetary systems discovered so far,” Steffen said. “They aren’t like the solar system, they aren’t like most Kepler systems, and they aren’t false positives.”

    Hot Jupiters

    The best analogy, he indicated, is the population of hot jupiters — giant planets on three-day orbits that dominated the initial discoveries in the field two decades ago. Hot jupiter systems are widely viewed as having had a major difference in their formation and evolutionary past compared with other systems, and a variety of theories have been put forward to explain their origins. The number of hot earth systems is similar in number to the hot jupiters and may yield a similar advancement in our understanding of the processes involved in making planets.

    To identify this new group of planets, Steffen and Coughlin relied on the process of elimination. Starting with a sample of about 150 hot earth systems, they systematically tallied the number that could be from known origins – eclipsing binary stars, noise in the data, “typical” planetary systems, and other sources.

    “When we were done counting,” said Coughlin, “we still had about 20 percent that were left over — at least one in six of these systems has a different story to tell.”

    Prevailing Theories

    The scientists noted a few existing theories that may explain the origins of these systems. They may be the leftover planet cores of hot jupiters, where the giant planet lost its large atmosphere to the central star. They may be the consequence of interactions between the planets and the last vestiges of the gas disk from which they formed. They may result from strong dynamical interactions from a newly formed system where the planet’s orbit eventually passes very close to the central star and is captured as its orbital energy is dissipated through tides. Or, they could come from some other process not yet considered.

    While the origin of these systems is not known, more information about them should be forthcoming. NASA’s Transiting Exoplanet Survey Satellite (TESS) mission, which is slated for launch within the next few years, should find many similar systems that can be studied in more detail using ground-based instruments.

    NASA/TESS
    NASA/TESS

    (Kepler targets are often too dim for such follow-up observations). As scientists learn more about these systems, the information gathered should provide additional clues to their past, and help researchers better understand how unique our own solar system is, or isn’t.

    “We are hopeful that this, and future studies, will steer us toward a more complete picture of how planets form and how the systems then evolve.” said Steffen. “Finding and understanding different planetary systems can tell us a lot about our own origins and how we fit into that picture.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 9:18 am on July 7, 2016 Permalink | Reply
    Tags: , , NASA Ames, NASA Supercomputer Help Further Discovery of the Origin of Stars, Pleiades supercomputer   

    From NASA Ames: “3-D Simulations and NASA Supercomputer Help Further Discovery of the Origin of Stars” 

    NASA Ames Icon

    July 6, 2016

    Author: Jill Dunbar, Ames Research Center
    Media contact: Kimberly Williams, Ames Research Center
    kimberly.k.williams@nasa.gov

    1
    This simulation captures a mix of radiation, magnetic fields, gravity and other physical phenomena. It was produced with UC Berkeley’s code and run on the Pleiades supercomputer at the NASA Advanced Supercomputing facility at NASA’s Ames Research Center. Credits: NASA Ames/David Ellsworth/Tim Sandstrom

    What processes are involved in the formation of individual stars and stellar clusters in our own galaxy and other galaxies? Scientists at the University of California, Berkeley, and Lawrence Livermore National Laboratory are using NASA’s most powerful supercomputer, Pleiades, to create unique star-formation simulations to answer this fundamental scientific question.

    NASA SGI Advanced Supercomputing Center Pleiades Supercomputer
    NASA SGI Advanced Supercomputing Center Pleiades Supercomputer

    Like something from a video game, the simulations zoom through the entire evolution of young star clusters. A giant cloud of interstellar gas and dust collapses under the forces of gravity. Inside the cloud, turbulent clumps of gas form and then collapse. The collapsed clumps form star clusters, and then the magnetized, swirling cores further evolve to form individual or small groups of stars.

    These complex simulations as seen here — which capture a mix of radiation, magnetic fields, gravity and other physical phenomena — were produced with UC Berkeley’s code and run on the Pleiades supercomputer, located at the NASA Advanced Supercomputing (NAS) facility at NASA’s Ames Research Center in California’s Silicon Valley. Currently ranked as the seventh most powerful system in the U.S., the Pleiades supercomputer was critical for obtaining the high-resolution results that match closely with observations from the Hubble Space Telescope and other observing telescopes. Scientists demonstrated the accuracy of the code by performing many independent tests of different elements of physics modeled against real known data.

    The science team is enhancing the code to produce new simulations that will allow them to zoom in on the formation of stellar disks — pancake-shaped disks of gas and dust surrounding protostars that are believed to be the first stage of planet formation.

    Reaching this goal will require even more computing power. The NAS facility is continuously growing its supercomputing capability to support even higher resolution star-formation simulations — plus hundreds of other NASA mission projects in aeronautics, Earth and space science and exploration of planets and the universe.

    For more information about NAS and to view simulation video, visit: http://www.nas.nasa.gov/publications/articles/feature_origin_of_stars_Kl…

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 3:55 pm on May 16, 2016 Permalink | Reply
    Tags: , , , NASA Ames, NASA Nodes mission   

    From NASA Ames: “NASA Small Satellites to Demonstrate Swarm Communications and Autonomy” 

    NASA Ames Icon

    Dec. 7, 2015 [But pertinent, read on]
    Author: Julianna Fishman
    Small Spacecraft Technology Program

    Media contact: Kimberly Williams
    kimberly.k.williams@nasa.gov
    Ames Research Center

    Last Updated: April 19, 2016
    Editor: Kimberly Williams

    1

    NASA’s two Nodes small satellites hitched a ride to the International Space Station on the fourth Orbital ATK cargo mission, which launched on Dec. 6. The satellites are slated for deployment into low-Earth orbit in May 2016.

    The Nodes mission, which consists of two CubeSats weighing just 4.5 pounds each and measuring 4 inches by 4 inches by 6.5 inches, will test new network capabilities for operating swarms of spacecraft in the future.

    “The purpose of the Nodes demonstration is to test out the potential for using multiple, small, low-cost satellites to perform complex science missions,” said Andrew Petro, program executive for the Small Spacecraft Technology Program (SSTP) in the Space Technology Mission Directorate at NASA Headquarters in Washington.

    A first for small satellites, Nodes will demonstrate the ability to receive and distribute commands in space from the ground in addition to periodically exchanging scientific data from their onboard radiation instruments. The satellites will be able to configure their data network autonomously by determining which spacecraft is best suited to communicate with the ground each day of the mission.

    “The technologies demonstrated during this mission are important, as they will show that a network of satellites can be controlled without communicating to each satellite directly,” said Roger Hunter, program manager for SSTP at NASA’s Ames Research Center at Moffett Field, California. “Nodes will demonstrate inter-satellite communications and autonomous command and control; this will help enable future constellation command and control capabilities.”

    Upon deployment from the station, the Energetic Particle Integrating Space Environment Monitor (EPISEM) radiation sensor aboard each Nodes satellite will collect data on the charged particle environment at an altitude of about 250 miles above Earth. The EPISEM instruments were provided under contract by Montana State University. The Nodes satellites will demonstrate their networking capabilities through communication of this data with each other and the ground.

    As part of a partnership with Ames, Santa Clara University in California will conduct ground operations for the nominal two-week mission. Acting as a ground station, the university will provide an online mission dashboard with current mission status, including operational status of satellite subsystems, ground segment communications status and satellite location tracking. The dashboard is currently available for viewing, but will not be active until after the Nodes deploy from the ISS in mid-May.

    The mission is scheduled to last for two weeks, though the CubeSats will remain in orbit for several more months before their orbit decays, they re-enter and burn up in the atmosphere.

    Nodes continues the legacy of the Phonesat series of small satellites by using commercially developed Android smartphone technology augmented with additional custom software that enables the satellites to perform spacecraft functions.

    The launch of the Nodes small satellites follows last month’s launch of the eight small satellites of the Edison Demonstration of Smallsat Networks (EDSN) mission, which was lost in the failure of the U.S. Air Force-led Operationally Responsive Space Office’s ORS-4 mission. However, the Nodes spacecraft were developed at Ames by the same team that developed the EDSN spacecraft and many of the same capabilities planned for EDSN will be demonstrated in the Nodes mission, with additional software enhancements.

    “The Nodes mission concept was an opportunity to leverage the excellent work done on EDSN, and extend the systems at a low-cost and effort,” stated David Korsmeyer, director of engineering at Ames. “This is the value of the nanosat model of mission — quickly adapt to new opportunities and leverage systems for incremental missions.”

    Networked swarms of small satellites will open new horizons in astronomy, Earth observation and solar physics. Their range of applications includes multi-satellite science missions, the formation of synthetic aperture radars for Earth sensing systems, as well as large aperture observatories for next-generation telescopes. They can also serve to collect science measurements distributed over space and time to study the Earth, the Earth’s magnetosphere, gravity field, and Earth-Sun interactions.

    The Nodes project is sponsored by the SSTP, a program within NASA’s Space Technology Mission Directorate, and received additional funding from the Ames Research Center.

    For more information on NASA’s Small Spacecraft Technology Program, visit:

    http://www.nasa.gov/smallsats

    Nodes Fact Sheet

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Ames Research Center, one of 10 NASA field Centers, is located in the heart of California’s Silicon Valley. For over 60 years, Ames has led NASA in conducting world-class research and development. With 2500 employees and an annual budget of $900 million, Ames provides NASA with advancements in:
    Entry systems: Safely delivering spacecraft to Earth & other celestial bodies
    Supercomputing: Enabling NASA’s advanced modeling and simulation
    NextGen air transportation: Transforming the way we fly
    Airborne science: Examining our own world & beyond from the sky
    Low-cost missions: Enabling high value science to low Earth orbit & the moon
    Biology & astrobiology: Understanding life on Earth — and in space
    Exoplanets: Finding worlds beyond our own
    Autonomy & robotics: Complementing humans in space
    Lunar science: Rediscovering our moon
    Human factors: Advancing human-technology interaction for NASA missions
    Wind tunnels: Testing on the ground before you take to the sky

    NASA image

     
  • richardmitnick 11:19 am on September 10, 2015 Permalink | Reply
    Tags: , NASA Ames,   

    From Nautilus: “This Used To Be the Future” 

    Nautilus

    Nautilus

    September 10, 2015
    Rachel B. Sussman

    A look inside NASA’s Ames Research Center.

    NASA Ames Research Center
    NASA Ames

    NASA Ames is filled with the exotic technologies of a future that didn’t quite come to pass. Ancient computers still operate equipment in the machine shop. A decommissioned nuclear missile sits in a parking lot, and the twin of the International Space Station sits out in the open air, under a tarp.

    Originally dedicated as the Sunnyvale Naval Air Station in 1933, the site was to serve as a home base for the Navy dirigible, the U.S.S. Macon, which crashed in 1935. The Aeronautical Laboratory was founded in 1939, and in 1958 became a part of the newly formed National Aeronautics and Space Administration, or NASA. In its earliest days, Ames broke new ground in aerodynamics and high-speed flight. Today it is still an active participant in various NASA missions, including leading the Kepler space telescope mission, and partnering on the Mars Curiosity Rover.

    I came to Ames as part of a creatively motivated examination of the felt experience of deep time and deep space, in conjunction with the LACMA Art + Tech Lab. How does one make art—let alone make sense—out of our human experience of the cosmos?

    As I visited Ames, along with SpaceX, JPL, and CERN, I began to reconsider our contemporary relationship to space. Without fail, someone would always lament that we have never regained the promise and excitement of the early space era, epitomized by the moon landing. The Ames campus itself embodies that sentiment in its architecture; some structures are perfectly preserved and others are in varying degrees of disrepair.

    As I took in the campus, I couldn’t help but think: This used to be the future.

    2
    Pre-fabricated surplus storage sheds, of a type that are common to Naval installations. The sheds contain the detritus from decades of research and experimentation, including machines, electronics and even old vehicles. As one employee put it, “If it’s in the surplus sheds, it’s junk.” It was unclear what these particular sheds held, or the last time their bay doors had been opened. Rachel B. Sussman

    Temp 1
    Titan 1 #61-4492 (apparently) arriving at NASA Ames Research Center Building N242 in 1969. Photo courtesy of Arthur LeBrun

    On my first visit to NASA Ames, my contact took me to see the Titan, sitting in a parking lot next to an old McDonald’s that had been converted into a moon research office. When we reached the nosecone he pointed out an unplugged cable, and asked me to guess what it might have connected to. I was stymied.

    The Titan is an intercontinental ballistic missile. The cable was for a nuclear warhead.

    I was struck how, up until this moment, I had not consciously contemplated the military aspects of space exploration. Later, when giving a lecture about my process at LACMA, someone asked me if my work is moral. My encounter with the Titan made clear to me that the answer is yes.

    3
    A 1999 image of Hangar 1 taken in Moffett Field, Calif. Credit: NASA Ames Research Center

    Hangar One was built in the 1930s to house “rigid airships,” à la Hindenburg. It stands 200 feet tall, and covers a footprint of eight acres.

    In the best thinking of the times,
 it was constructed with lead, PCBs, and asbestos, contaminating both the surrounding ground as well
 as San Francisco Bay. The toxins have all since been removed
from the structure, leaving only 
its steel skeleton.

    Hangar One will soon get a second life: It has recently been leased 
by Planetary Ventures, a Google subsidiary.

    4
    Microbial mats, NASA Ames Research Greenhouse #0415-1408 Rachel B. Sussman

    A row of research greenhouses, established in 1999, sits atop the roof of the astrobiology building. This one is filled with trays 
of cultivated microbial mats of cyanobacteria collected from a field site in Mexico, and maintained in corrosive brines.

    One of the most ancient organisms on Earth, cyanobacteria could be similar to simple life on other planets. They could also indicate which organic compounds are associated with the presence of life.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: