Tagged: NAOJ ATERUI II Cray XC50 supercomputer Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:15 am on December 28, 2018 Permalink | Reply
    Tags: , , , , NAOJ ATERUI II Cray XC50 supercomputer, , , The cosmos in a computer   

    From Science Node: “The cosmos in a computer” 

    Science Node bloc
    From Science Node

    28 Nov, 2018
    Ellen Glover

    How simulated galaxies could bring us one step closer to the origin of our universe.

    Thanks to telescopes like the Hubble and spacecrafts like Kepler, we know more than ever about the Milky Way Galaxy and what lies beyond. However, these observations only tell part of the story.

    NASA/ESA Hubble Telescope

    NASA/Kepler Telescope

    How did our incomprehensively vast universe come to be? What’s it going to look like millions of years from now? These age-old questions are now getting answers thanks to simulations created by supercomputers.

    One of these supercomputers is a Cray XC50, nicknamed ATERUI II and located at the National Astronomical Observatory in Japan (NAOJ).

    NAOJ ATERUI II Cray XC50 supercomputer ocated at the National Astronomical Observatory in Japan (NAOJ)

    It is the fastest supercomputer dedicated to astronomy and is ranked #83 of the top 500 most powerful supercomputers in the world.

    Named after a prominent 9th century chief, the ATERUI II is located in the same city where Aterui led his tribe in a battle against Emperor Kanmu. Despite the odds, Aterui and his people fought well. Since then, Aterui has become a symbol of intelligence, bravery, and unification.

    2
    100 billion. ATERUI II is able to calculate the mutual gravitational interactions between each of the more than 100 billion stars that make up our galaxy, allowing for the most detailed Milky Way simulation yet. Courtesy National Astronomical Observatory of Japan.

    “We named the supercomputer after him so that our astronomers can be brave and smart. While we are not the fastest in the world, we hope the ATERUI II can be used in a smart way to help unify us so we can better understand the universe,” says Eiichiro Kokubo, project director of the Center for Computational Astrophysics at NAOJ.

    ATERUI II was officially launched last June and serves as a bigger and better version of its decommissioned predecessor, ATERUI. With more than 40,000 processing cores and 385 Terabytes of memory, ATERUI II can perform as many as 3 quadrillion operations per second.

    In other words: it’s an incredibly powerful machine that is allowing us to boldly go where no one has ever gone before, from the Big Bang to the death of a star. It’s also exceedingly popular with researchers—150 astronomers are slated to use the supercomputer by the end of the year.

    ATERUI II’s unique power means it is capable of solving problems deemed too difficult for other supercomputers. For example, an attempt to simulate the Milky Way on a different machine meant researchers had to group the stars together in order to calculate their gravitational interactions.

    ATERUI II doesn’t have that problem. It’s able to calculate the mutual gravitational interactions between each of the more than 100 billion stars that make up our galaxy individually, allowing for the most detailed Milky Way Galaxy simulation yet.

    3
    The death of a star a thousand years ago left behind a superdense neutron star that expels extremely high-energy particles. By simulating events like these, ATERUI II gives astronomer’s insights that can’t be discovered through observation alone. Courtesy NASA/JPL-Caltech/ESA/CXC/Univ. of Ariz./Univ. of Szeged.

    While computational astronomy is a fairly young field, we need it in order to understand the universe beyond just observing celestial bodies. With its superior computational power, Kokubo says there are plans for ATERUI II to simulate everything from Saturn’s rings through a binary star formation to the large scale structure of the universe.

    “If we produce the universe in a computer, then we can use it to simulate the past and the future as well,” Kokubo says. “The universe exists in four dimensions: the first three are space and the last one is time. If we can capture the space, then we can better observe it through time.”

    ATERUI II isn’t only working on ways to better understand the stars and planets that make up the universe, it is also being used to explore the possibility of alien life. This starts with life on Earth.

    “If we can simulate and understand the origin of life on Earth and what it means to be habitable, we will be even closer to finding it elsewhere in the universe,” Kokubo says. “I’m interested in life and why we are here.”

    Kokubo isn’t alone. The mystery of how we came to be and what it all means has fascinated mankind for centuries. Our unknown origins have been explored in great pieces of art and literature throughout history and are at the core of every religion. Now, thanks to ATERUI II, we are one step closer to getting our answer.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Science Node is an international weekly online publication that covers distributed computing and the research it enables.

    “We report on all aspects of distributed computing technology, such as grids and clouds. We also regularly feature articles on distributed computing-enabled research in a large variety of disciplines, including physics, biology, sociology, earth sciences, archaeology, medicine, disaster management, crime, and art. (Note that we do not cover stories that are purely about commercial technology.)

    In its current incarnation, Science Node is also an online destination where you can host a profile and blog, and find and disseminate announcements and information about events, deadlines, and jobs. In the near future it will also be a place where you can network with colleagues.

    You can read Science Node via our homepage, RSS, or email. For the complete iSGTW experience, sign up for an account or log in with OpenID and manage your email subscription from your account preferences. If you do not wish to access the website’s features, you can just subscribe to the weekly email.”

     
  • richardmitnick 1:29 pm on June 3, 2018 Permalink | Reply
    Tags: , Computational astronomy, NAOJ ATERUI II Cray XC50 supercomputer,   

    From Astro Watch: “Supercomputer Astronomy: The Next Generation” 

    Astro Watch bloc

    From Astro Watch

    NAOJ ATERUI II Cray XC50 supercomputer

    The supercomputer Cray XC50, nicknamed NS-05 “ATERUI II” started operation on June 1, 2018. With a theoretical peak performance of 3.087 petaflops, ATERUI II is the world’s fastest supercomputer for astrophysical simulations. ATERUI II simulates a wide range of astronomical phenomena inaccessible to observational astronomy, allowing us to boldly go where no one has gone before, from the birth of the Universe itself to the interior of a dying star.

    Professor Eiichiro Kokubo, the CfCA Project Director says, “Computational astronomy is gaining popularity in many fields. A new ‘telescope’ for theoretical astronomy has opened its eyes. I expect that ATERUI II will explore the Universe through more realistic simulations.”

    ATERUI II is a massive parallel supercomputer and the 5th generation of systems operated by the National Astronomical Observatory of Japan (NAOJ). Linking forty thousand cores allows ATERUI II to calculate rapidly. ATERUI II has three times better performance than the previous “ATERUI” system. A high-speed network enables astronomers to access ATERUI II from their home institutes. In this year, about 150 researchers will use ATERUI II.

    With its superior computational capability, ATERUI II will tackle problems too difficult for previous computers. For example, ATERUI II is able to calculate the mutual gravitational forces among the 200 billion stars in the Milky Way Galaxy, rather than bunching them into groups of stars the way other simulations do. In this way ATERUI II will generate a full-scale high-resolution model of the Milky Way Galaxy.

    Computational astronomy is still a young discipline compared to observational astronomy, in which researchers use telescopes to observe celestial objects and phenomena, and theoretical astronomy, where researchers describe the Universe in terms of mathematics and physical laws. Thanks to the rapid advancement of computational technology in recent decades, astronomical simulations to recreate celestial objects, phenomena, or even the whole Universe within the computer, have risen up as the third pillar in astronomy.

    “Aterui” is the name of a historical hero who lived in the Mizusawa area, where ATERUI II is located. With his comrades he fought bravely against conquerors 1200 years ago. ATERUI II is nicknamed after this brave hero in hopes that it will boldly confront the formidable enigmas of the Universe. The reimagined tensyo kanji (traditional block style lettering) for “ATERUI II” (阿弖流為 弐) designed by artist Jun Kosaka are written on the housing.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: