Tagged: Nanotubes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:34 am on February 13, 2015 Permalink | Reply
    Tags: , , , Nanotubes, ,   

    From phys.org: “Gold nanotubes launch a three-pronged attack on cancer cells” 


    Feb 13, 2015

    Pulsed near infrared light (shown in red) is shone onto a tumour (shown in white) that is encased in blood vessels. The tumour is imaged by multispectral optoacoustic tomography via the ultrasound emission (shown in blue) from the gold nanotubes. Credit: Jing Claussen (Ithera Medical, Germany)

    Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging; drug delivery vehicles; and agents for destroying cancer cells.

    The study, published today in the journal Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer.

    Study lead author Dr Sunjie Ye, who is based in both the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds, said: “High recurrence rates of tumours after surgical removal remain a formidable challenge in cancer therapy. Chemo- or radiotherapy is often given following surgery to prevent this, but these treatments cause serious side effects.

    Gold nanotubes – that is, gold nanoparticles with tubular structures that resemble tiny drinking straws – have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system.”

    The researchers say that a new technique to control the length of nanotubes underpins the research. By controlling the length, the researchers were able to produce gold nanotubes with the right dimensions to absorb a type of light called ‘near infrared’.

    The study’s corresponding author Professor Steve Evans, from the School of Physics and Astronomy at the University of Leeds, said: “Human tissue is transparent for certain frequencies of light – in the red/infrared region. This is why parts of your hand appear red when a torch is shone through it.

    “When the gold nanotubes travel through the body, if light of the right frequency is shone on them they absorb the light. This light energy is converted to heat, rather like the warmth generated by the Sun on skin. Using a pulsed laser beam, we were able to rapidly raise the temperature in the vicinity of the nanotubes so that it was high enough to destroy cancer cells.”

    In cell-based studies, by adjusting the brightness of the laser pulse, the researchers say they were able to control whether the gold nanotubes were in cancer-destruction mode, or ready to image tumours.

    In order to see the gold nanotubes in the body, the researchers used a new type of imaging technique called ‘multispectral optoacoustic tomography’ (MSOT) to detect the gold nanotubes in mice, in which gold nanotubes had been injected intravenously. It is the first biomedical application of gold nanotubes within a living organism. It was also shown that gold nanotubes were excreted from the body and therefore are unlikely to cause problems in terms of toxicity, an important consideration when developing nanoparticles for clinical use.

    Study co-author Dr James McLaughlan, from the School of Electronic & Electrical Engineering at the University of Leeds, said: “This is the first demonstration of the production, and use for imaging and cancer therapy, of gold nanotubes that strongly absorb light within the ‘optical window’ of biological tissue.

    “The nanotubes can be tumour-targeted and have a central ‘hollow’ core that can be loaded with a therapeutic payload. This combination of targeting and localised release of a therapeutic agent could, in this age of personalised medicine, be used to identify and treat cancer with minimal toxicity to patients.”

    The use of gold nanotubes in imaging and other biomedical applications is currently progressing through trial stages towards early clinical studies.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 6:29 pm on October 29, 2014 Permalink | Reply
    Tags: , , , Nanotubes   

    From LLNL: “Tiny carbon nanotube pores make big impact “ 

    Lawrence Livermore National Laboratory

    Oct. 29, 2014

    Anne M Stark

    A team led by the Lawrence Livermore scientists has created a new kind of ion channel consisting of short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores that transport water, protons, small ions and DNA.

    These carbon nanotube “porins” have significant implications for future health care and bioengineering applications. Nanotube porins eventually could be used to deliver drugs to the body, serve as a foundation of novel biosensors and DNA sequencing applications, and be used as components of synthetic cells.

    Researchers have long been interested in developing synthetic analogs of biological membrane channels that could replicate high efficiency and extreme selectivity for transporting ions and molecules that are typically found in natural systems. However, these efforts always involved problems working with synthetics and they never matched the capabilities of biological proteins.

    Unlike taking a pill which is absorbed slowly and is delivered to the entire body, carbon nanotubes can pinpoint an exact area to treat without harming surrounding other organs.

    “Many good and efficient drugs that treat diseases of one organ are quite toxic to another,” said Aleksandr Noy, an LLNL biophysicist who led the study and is the senior author on the paper appearing in the Oct. 30 issue of the journal, Nature. “This is why delivery to a particular part of the body and only releasing it there is much better.”

    From left: Lawrence Livermore National Laboratory scientists Aleksandr Noy, Kyunghoon Kim and Jia Geng hold up a model of a carbon nanotube that can be inserted into live cells, which can pinpoint an exact area to treat without harming other organs. Photo by Julie Russell.

    The Lawrence Livermore team, together with colleagues at the Molecular Foundry at the Lawrence Berkeley National Laboratory, University of California Merced and Berkeley campuses, and University of Basque Country in Spain created a much more efficient, biocompatible membrane pore channel out of a carbon nanotube (CNT) — a straw-like molecule that consists of a rolled up graphene sheet.

    This research showed that despite their structural simplicity, CNT porins display many characteristic behaviors of natural ion channels: they spontaneously insert into the membranes, switch between metastable conductance states, and display characteristic macromolecule-induced blockades. The team also found that, just like in the biological channels, local channel and membrane charges could control the ionic conductance and ion selectivity of the CNT porins.

    “We found that these nanopores are a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating biosensors,” Noy said. “We are thinking about CNT porins as a first truly versatile synthetic nanopore that can create a range of applications in biology and materials science.”

    “Taken together, our findings establish CNT porins as a promising prototype of a synthetic membrane channel with inherent robustness toward biological and chemical challenges and exceptional biocompatibility that should prove valuable for bionanofluidic and cellular interface applications,” said Jia Geng, a postdoc who is the first co-author of the paper.

    Kyunghoon Kim, a postdoc and another co-author, added: “We also expect that our CNT porins could be modified with synthetic ‘gates’ to dramatically alter their selectivity, opening up exciting possibilities for their use in synthetic cells, drug delivery and biosensing.”

    Other LLNL researchers include Ramya Tunuguntla, Kang Rae Cho, Dayannara Munoz and Morris Wang. The team members performed some of the work at the Molecular Foundry, a DOE user facility as a part of its user project.

    See the full article here.

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security
    DOE Seal
    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 1:07 pm on November 12, 2013 Permalink | Reply
    Tags: , , , Nanotubes   

    From Berkeley Lab: “Taking a New Look at Carbon Nanotubes” 

    Berkeley Lab

    Berkeley Researchers Develop Technique For Imaging Individual Carbon Nanotubes

    November 12, 2013
    Lynn yarris (510) 486-5375 lcyarris@lbl.gov

    Despite their almost incomprehensibly small size – a diameter about one ten-thousandth the thickness of a human hair – single-walled carbon nanotubes come in a plethora of different “species,” each with its own structure and unique combination of electronic and optical properties. Characterizing the structure and properties of an individual carbon nanotube has involved a lot of guesswork – until now.

    Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have developed a technique that can be used to identify the structure of an individual carbon nanotube and characterize its electronic and optical properties in a functional device.

    “Using a novel high-contrast polarization-based optical microscopy set-up, we’ve demonstrated video-rate imaging and in-situ spectroscopy of individual carbon nanotubes on various substrates and in functional devices,” says Feng Wang, a condensed matter physicist with Berkeley Lab’s Materials Sciences Division. “For the first time, we can take images and spectra of individual nanotubes in a general environment, including on substrates or in functional devices, which should be a great tool for advancing nanotube technology.”

    In this display showing optical imaging and spectroscopy of an individual nanotube on substrates and in devices, (a–c) are schematics of a nanotube on a fused-silica substrate, in a field-effect transistor device with two gold electrodes, and under an alumina dielectric layer; (d–f) are SEM images and (g-i) are direct optical images of these individual nanotubes.

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

    ScienceSprings is powered by MAINGEAR computers

  • richardmitnick 5:17 pm on August 17, 2012 Permalink | Reply
    Tags: , , , , , , Nanotubes,   

    From Computing For Clean Water at WCG Status Update 

    World Community Grid (WCG) brings people together from across the globe to create the largest non-profit computing grid benefiting humanity. It does this by pooling surplus computer processing power. We believe that innovation combined with visionary scientific research and large-scale volunteerism can help make the planet smarter. Our success depends on like-minded individuals – like you.”

    “The Computing for Clean Water (C4CW) project has returned over 90 million results!”

    The mission of Computing for Clean Water is to provide deeper insight on the molecular scale into the origins of the efficient flow of water through a novel class of filter materials. This insight will in turn guide future development of low-cost and more efficient water filters.

    Lack of access to clean water is one of the major humanitarian challenges for many regions in the developing world. It is estimated that 1.2 billion people lack access to safe drinking water, and 2.6 billion have little or no sanitation. Millions of people die annually – estimates are 3,900 children a day – from the results of diseases transmitted through unsafe water, in particular diarrhea.

    Technologies for filtering dirty water exist, but are generally quite expensive. Desalination of sea water, a potentially abundant source of drinking water, is similarly limited by filtering costs. Therefore, new approaches to efficient water filtering are a subject of intense research. Carbon nanotubes, stacked in arrays so that water must pass through the length of the tubes, represent a new approach to filtering water.

    Normally, the extremely small pore size of nanotubes, typically only a few water molecules in diameter, would require very large pressures and hence expensive equipment in order to filter useful amounts of water. However, in 2005 experiments showed that such arrays of nanotubes allow water to flow at much higher rates than expected. This surprising result has spurred many scientists to invest considerable effort in studying the underlying processes that facilitate water flow in nanotubes.

    This project uses large-scale molecular dynamics calculations – where the motions of individual water molecules through the nanotubes are simulated – in order to get a deeper understanding of the mechanism of water flow in the nanotubes. For example, there has been speculation about whether the water molecules in direct contact with the nanotube might behave more like ice. This in turn might reduce the friction felt by the rest of the water, hence increasing the rate of flow. Realistic computer simulations are one way to test such hypotheses.

    Ultimately, the scientists hope to use the insights they glean from the simulations in order to optimize the underlying process that is enabling water to flow much more rapidly through nanotubes and other nanoporous materials. This optimization process will allow water to flow even more easily, while retaining sources of contamination. The simulations may also reveal under what conditions such filters can best assist in a desalination process.”

    C4CF had its origin in the Center for Nano and Micro Mechanics at Tsinghua University, Beijing, China

    From CNMM

    “The Computing for Clean Water (C4CW) project is a joint project between CNMM and several international research institutions [The University of Sydney, Monash University, The National Centre of Nanoscience and Technology, Chinese Academy of Sciences, Institute of High Energy Physics, The Citizen Cyberscience Centre, with the support of IBM’s World Community Grid, and thousands of volunteers.

    The team at CNMM is investigating how water flows in nanotubes, using a computer-based simulation technique known as molecular dynamics. The ultimate goal of this research is deeper insight into how nanotubes and other porous nanomaterials can be used to build a new generation of cheap water filters, to alleviate the pressing demand for clean water in large parts of China and many other parts of the developing world.

    To do these simulations with the sort of accuracy we need takes a lot of computing power, far more than is accessible to us currently. Volunteers provide this computing power by allowing some simulations to run using the idle time of the processor chips in their laptops and PCs, for example while they are writing emails or surfing the web. Indeed, when doing these common tasks, the processor is idle often more than 90% of the time, and using some of that idle time turns out to be energetically very efficient, since it only adds a few percent extra power to what the computer would otherwise consume.

    The results from each simulation, when combined together statistically for millions of runs, help us create a pool of necessary data that can be analyzed to understand why recent experiments show that water flows much more easily in nanotubes than standard hydrodynamical considerations would normally lead us to believe. Understanding this process is a first step to optimizing it for practical purposes, in particular to make cheaper filters that do not require so much pressue to filter water through them.
    This is an exciting project, but it is also complicated and will run over some time. World Community Grid enables scientists and volunteers to co-operate in a very simple and powerful way. We are grateful for the continuing support of every one of our volunteers and will post our progress here to keep you updated.”

    WCG projects run on BOINC software from UC Berkeley.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing.


    “Download and install secure, free software that captures your computer’s spare power when it is on, but idle. You will then be a World Community Grid volunteer. It’s that simple!” You can download the software at either WCG or BOINC.

    Please visit the project pages-

    Say No to Schistosoma

    GO Fight Against Malaria

    Drug Search for Leishmaniasis

    Computing for Clean Water

    The Clean Energy Project

    Discovering Dengue Drugs – Together

    Help Cure Muscular Dystrophy

    Help Fight Childhood Cancer

    Help Conquer Cancer

    Human Proteome Folding


    Computing for Sustainable Water

    World Community Grid is a social initiative of IBM Corporation
    IBM Corporation

    IBM – Smarter Planet

    ScienceSprings is powered by MAINGEAR computers

    • richardmitnick 12:16 pm on September 5, 2012 Permalink | Reply

      Jefferson- Thanks for the vote of confidence. WCG projects are direct ed at immediate problems for life around the globe.


  • richardmitnick 12:54 pm on July 19, 2012 Permalink | Reply
    Tags: , , , , Nanotubes   

    From MIT News: “Dripping faucets inspire new way of creating structured particles” 

    July 18, 2012
    David L. Chandler

    Researchers at MIT and the University of Central Florida (UCF) have developed a versatile new fabrication technique for making large quantities of uniform spheres from a wide variety of materials — a technique that enables unprecedented control over the design of individual, microscopic particles. The particles, including complex, patterned spheres, could find uses in everything from biomedical research and drug delivery to electronics and materials processing.

    This illustration shows how a molten fiber, because of a phenomenon known as Rayleigh instability, naturally breaks up into spherical droplets. Researchers from MIT and UCF have figured out how to use this natural tendency as a way to make large quantities of perfectly uniform particles, which can have quite complex structures. Image: Yan Liang/Fink Lab

    See the full article here.

  • richardmitnick 9:44 pm on July 17, 2012 Permalink | Reply
    Tags: , , , Nanotubes   

    From Argonne Lab: “Synthetic nanotubes lay foundation for new technology: Artificial pores mimic key features of natural pores” 

    News from Argonne National Laboratory

    July 17, 2012
    No writer credit

    Scientists have overcome key design hurdles to expand the potential uses of nanopores and nanotubes. The creation of smart nanotubes with selective mass transport opens up a wider range of applications for water purification, chemical separation and fighting disease.

    A snapshot of a helical stack of macryocycles generated in the computer simulation. NO image credit

    Nanopores and their rolled up version, nanotubes, consist of atoms bonded to each other in a hexagonal pattern to create an array of nanometer-scale openings or channels. This structure creates a filter that can be sized to select which molecules and ions pass into drinking water or into a cell. The same filter technique can limit the release of chemical by-products from industrial processes.

    Successes in making synthetic nanotubes from various materials have been reported previously, but their use has been limited because they degrade in water, the pore size of water-resistant carbon nanotubes is difficult to control, and, more critically, the inability to assemble them into appropriate filters.

    An international team of researchers, with help of the Advanced Photon Source at Argonne National Laboratory, have succeeded in overcoming these hurdles by building self-assembling, size-specific nanopores. This new capability enables them to engineer nanotubes for specific functions and use pore size to selectively block specific molecules and ions.”

    See the full article here.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

  • richardmitnick 2:13 pm on July 11, 2012 Permalink | Reply
    Tags: , , , , , , , , Nanotubes   

    From MIT News: “Researchers explain how dye-based nanotubes can help harvest light’s energy” 

    July 6, 2012
    David L. Chandler

    Companies that make commercial solar cells are happy if they can achieve 20 percent efficiency when converting sunlight to electricity; an improvement of even 1 percent is seen as major progress. But nature, which has had billions of years to fine-tune photosynthesis, can do much better: Microorganisms called green sulfur bacteria, which live deep in the ocean where there’s hardly any light available, manage to harvest 98 percent of the energy in the light that reaches them.

    Green sulfur bacteria, whose exceptional light-harvesting capabilities inspired the artificial system analyzed by postdoc Dörthe Eisele and her co-workers, dominate this hot spring at Yellowstone National Park and give it its striking green color.

    Now, researchers led by an MIT postdoc have analyzed an artificial system that models the light-capturing method used by deep-sea bacteria. Further advances in understanding fundamental light-harvesting processes may yield entirely new approaches to capturing solar energy, the researchers say. Their results were reported July 1 in the journal Nature Chemistry.”

    See the full article here.

  • richardmitnick 1:38 pm on June 29, 2011 Permalink | Reply
    Tags: , , Nanotubes   

    From Berkeley Labs: “Splitsville for Boron Nitride Nanotubes” 

    Lynn Yarris
    June 28, 2011

    Berkeley Lab Researchers Find New Way to Mass Produce High Quality Boron Nitride Nanoribbons

    “Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, working with scientists at Rice University, have developed a technique in which boron nitride nanotubes are stuffed with atoms of potassium until the tubes split open along a longitudinal seam. This creates defect-free boron nitride nanoribbons of uniform lengths and thickness. Boron nitride nanoribbons are projected to display a variety of intriguing magnetic and electronic properties that hold enormous potential for future devices.

    Splitting of a boron nitride nanotube to form a boron nitride nanoribbon shows atoms of boron in blue, nitrogen in yellow and potassium in pink. Pressure from potassium intercalation unzips the BNNT and forms layers of BNNRs.

    ‘There has been a significant amount of theoretical work indicating that, depending on the ribbon edges, boron nitride nanoribbons may exhibit ferromagnetism or anti-ferromagnetism, as well as spin-polarized transport which is either metallic or semi-conducting,’ says physicist Alex Zettl, one of the world’s foremost researchers into nanoscale systems and devices who holds joint appointments with Berkeley Lab’s Materials Sciences Division (MSD) and the Physics Department at UC Berkeley, where he is the director of the Center of Integrated Nanomechanical Systems (COINS)”

    Alex Zettl holds joint appointments with Berkeley Lab and UC Berkeley where he directs the Center of Integrated Nanomechanical Systems.

    See the full article here.

    A U.S. Department of Energy National Laboratory Operated by the University of California


Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: