Tagged: Nanotechnology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:13 am on October 7, 2022 Permalink | Reply
    Tags: "Why NIST Is Putting Its CHIPS Into U.S. Manufacturing", A typical integrated circuit today contains billions of tiny on-off switches known as transistors., An area of major excitement at NIST is “advanced packaging.”, Artificial diamonds are currently used as the semiconductors in chips for aerospace applications., “Integrated circuits”, Cell phones send and receive Wi-Fi and cellular signals thanks to semiconductor chips inside them., Chips also abound on the exteriors of homes inside everything from security cameras to solar panels., Chips typically need to go through a dizzying series of steps-and different suppliers-before they become finished products., CPUs and GPUs in computers, Digital cameras contain chips that detect light and turn it into an image., , Gallium nitride is resistant to damage from cosmic rays and other radiation in space so it’s commonly the material of choice for electronic devices in satellites., Light emitting diodes (LEDs) on chips, Manufacturers typically mass-produce dozens of integrated circuits on a single semiconductor wafer and then dice the wafer to separate the individual pieces., Measurement science plays a key role in up to 50% of semiconductor manufacturing steps., Memory chips store data., Nanotechnology, NIST has the measurement science and technical standards expertise that is needed by the U.S. chip industry., President Joe Biden recently signed into law the "CHIPS Act"., Semiconductor chips, Silicon carbide can handle larger amounts of electricity and voltage than other materials so it has been used in chips for electric vehicles., Silicon is a type of material known as a semiconductor., Silicon is the most frequently used raw material for chips., The average car can have upward of 1200 chips in it., , Today’s cars are computers on wheels.   

    From The National Institute of Standards and Technology: “Why NIST Is Putting Its CHIPS Into U.S. Manufacturing” 

    From The National Institute of Standards and Technology

    10.7.22

    Ben P. Stein

    1
    A NIST NanoFab user works with an optical microscope and computer software to inspect samples and take pictures.
    Credit: B. Hayes/NIST.

    Right after the pandemic hit, I bought a new vacuum cleaner. I wanted to step up my housecleaning skills since I knew I’d be home a lot more. I was able to buy mine right away, but friends who wanted new appliances weren’t so lucky. My relatives had to wait months for their new refrigerator to arrive. And it wasn’t just appliances. New cars were absent from dealership lots, while used cars commanded a premium. What do all these things have in common? Semiconductor chips.

    The pandemic disrupted the global supply chain, and semiconductor chips were particularly vulnerable. The chip shortage delivered a wakeup call for our country to make our supply chain more resilient and increase domestic manufacturing of chips, which are omnipresent in modern life.

    “To an astonishing degree, the products and services we encounter every day are powered by semiconductor chips,” says Mike Molnar, director of NIST’s Office of Advanced Manufacturing.

    Think about your kitchen. Dishwashers have chips that sense how dirty your loads are and precisely time their cleaning cycles to reduce your energy and water bills. Some rice cookers use chips with “fuzzy logic” to judge how long to cook rice. Many toasters now have chips that make sure your bread is perfectly browned.

    We commonly think of chips as the “brains” that crunch numbers, and that is certainly true for the CPUs in computers, but chips do all sorts of useful things. Memory chips store data. Digital cameras contain chips that detect light and turn it into an image. Modern TVs produce their colorful displays with arrays of light emitting diodes (LEDs) on chips. Phones send and receive Wi-Fi and cellular signals thanks to semiconductor chips inside them. Chips also abound on the exteriors of homes, inside everything from security cameras to solar panels.

    The average car can have upward of 1,200 chips in it, and you can’t make a new car unless you have all of them. “Today’s cars are computers on wheels,” an auto mechanic said to me a few years ago, and his words were never more on point than during the height of the pandemic. In 2021, the chip shortage was estimated to have caused a loss of $110 billion in new vehicle sales worldwide.

    The chips in today’s cars are a combination of low-tech, mature chips and high-tech, state-of-the-art processors (which you’ll especially find in electric vehicles and those that have autonomous driving capabilities).

    2
    It takes a lot of chemistry to make a computer chip. Here a NanoFab user is working with acids while wearing the proper personal protective equipment (PPE). Credit: B. Hayes/NIST.

    Whether mature or cutting-edge, chips typically need to go through a dizzying series of steps — and different suppliers — before they become finished products. And most of this work is currently done outside this country. The U.S., once a leader in chip manufacturing, currently only has about a 12% share in the market.

    To reestablish our nation’s leadership in chip manufacturing, Congress recently passed, and President Joe Biden recently signed into law, the “CHIPS Act”. The CHIPS Act aims to help U.S. manufacturers grow an ecosystem in which they produce both mature and state-of-the-art chips at all stages of the manufacturing process and supply chain, and NIST is going to play a big role in this effort.

    The Dirt on Semiconductor Chips

    Silicon is the most frequently used raw material for chips, and one of the most abundant atomic elements on Earth. To give you a sense of its abundance, silicon and oxygen are the main ingredients of most beach sand, and a major component of glass, rocks and soil (which means that you can also find it in actual, not just metaphorical, dirt).

    3
    Making a “wafer” of semiconductor material, like the one shown here, is the first step for making a chip.
    Credit: MS Mikel/Shutterstock.

    Silicon is a type of material known as a semiconductor. Electricity flows through semiconductors better than it does through insulators (such as rubber and cotton), but not quite as well as it does through conductors (such as metals and water).

    But that’s a good thing. In semiconductors, you can control electric current precisely — and without any moving parts. By applying a small voltage to them, you can either cause current to flow or to stop — making the semiconductor (or a small region within it) act like a conductor or insulator depending on what you want to do.

    The first step for making a chip is to start with a thin slice of a semiconductor material, known as a “wafer,” often round in shape. On top of the wafer, manufacturers then create complex miniature electric circuits, commonly called “integrated circuits” (ICs) because they are embedded as one piece on the wafer. A typical IC today contains billions of tiny on-off switches known as transistors that enable a chip to perform a wide range of complex tasks from sending signals to processing information. Increasingly, these circuits also have “photonic” components in which light travels alongside electricity.

    Manufacturers typically mass-produce dozens of ICs on a single semiconductor wafer and then dice the wafer to separate the individual pieces. When each of them is packaged as a self-contained device, you have a “chip,” which can then be placed in smartphones, computers and so many other products.

    4
    An array of photonic integrated circuit chips, which use light to process information. These diced photonics chips are ready for assembly and packaging at AIM Photonics, an Albany, New York-based research facility that is part of the national Manufacturing USA network. Credit: AIM Photonics.

    Though silicon is the most commonly used raw material for chips, other semiconductors are used depending on the application. For example, gallium nitride is resistant to damage from cosmic rays and other radiation in space, so it’s commonly the material of choice for electronic devices in satellites. Gallium arsenide is frequently employed to make LEDs, because silicon typically produces heat instead of light if you try to make an LED with it.

    Non-silicon semiconductors are used in the growing field of “power electronics” in vehicles and energy systems such as wind and solar. Silicon carbide can handle larger amounts of electricity and voltage than other materials, so it has been used in chips for electric vehicles to perform functions such as converting DC battery power into the AC power delivered to the motors.

    Diamonds are semiconductors too — and they have the greatest ability to conduct heat of any known material. Artificial diamonds are currently used as the semiconductors in chips for aerospace applications, as they can draw heat away from the power loads generated in those chips.

    So Why NIST?

    Measurement science plays a key role in up to 50% of semiconductor manufacturing steps, according to a recent NIST report. Good measurements enable manufacturers to mass-produce high-quality, high-performance chips.

    NIST has the measurement science and technical standards expertise that is needed by the U.S. chip industry, and our programs to advance manufacturing and support manufacturing networks across the U.S. mean we can partner with industry to find out what they need and deliver on it.

    5
    This is a test chip NIST has developed, as part of a research and development agreement with Google, for measuring the performance of semiconductor devices used in a range of advanced applications such as artificial intelligence. Credit: B. Hoskins/NIST.

    NIST researchers already work on semiconductor materials for many reasons. For example, researchers have developed new ways to measure semiconductor materials in order to detect defects (such as a stray aluminum atom in silicon) that could cause chips to malfunction. As electronic components get smaller, chips need to be increasingly free of such defects.

    “Modern chips may contain over 100 billion complex nanodevices that are less than 50 atoms across — all must work nearly identically for the chip to function,” the NIST report points out.

    Flexible and Printable Chips

    NIST researchers also measure the properties of new materials that could be useful for future inventions. All of the semiconductor materials I mentioned above are brittle and can’t be bent. But devices with chips — from pacemakers to blood pressure monitors to defibrillators — are increasingly being made with flexible materials so they can be “wearable” and you can attach them comfortably to the contours of your body. NIST researchers have been at the forefront of the work to develop these “flexible” chips.

    6
    A circuit made from organic thin-film transistors is fabricated on a flexible plastic substrate. Credit: Patrick Mansell/Penn State.

    Researchers are also studying materials that could serve as “printable” chips that would be cheaper and more environmentally friendly. Instead of going through the complicated multistep process of making chips in a factory, we are developing ways to print circuits directly onto materials such as paper using technology that’s similar to ink-jet printers.

    And while we’ve lost a lot of overall chip manufacturing share, U.S. companies still make many of the machines that carry out the individual steps for fabricating chips, such as those that deposit ultrathin layers of material on top of semiconductors. But what if, instead of these machines being shipped abroad, more domestic manufacturers developed expertise in using them?

    To support this effort, NIST researchers are planning to perform measurements with these very machines in their labs. They will study materials that these machines use and the manufacturing processes associated with them. The information from the NIST work could help more domestic manufacturers develop the know-how for making chips. This work can help create an ecosystem with many domestic chip manufacturers, not just a few, leading to a more resilient supply chain.

    7
    Three researchers at NIST’s NanoFab talk science with a state-of-the-art Atomic Layer Deposition (ALD) system in the background.Credit: B. Hayes/NIST.

    “Reliance on only one supplier is problematic, as we saw with the recent shortage in baby formula,” NIST’s Jyoti Malhotra pointed out to me. Malhotra serves on the senior leadership team of NIST’s Manufacturing Extension Partnership (MEP). MEP has been connecting NIST labs to the U.S. suppliers and manufacturers who produce materials, components, devices and equipment enabling U.S. chip manufacturing.

    Advanced Packaging

    Last but not least, an area of major excitement at NIST is “advanced packaging.” No, we don’t mean the work of those expert gift-wrappers you may find at stores during the holiday season. When we talk about chip packaging, we’re referring to everything that goes around a chip to protect it from damage and connect it to the rest of the device. Advanced packaging takes things to the next level: It uses ingenious techniques during the chipmaking process to connect multiple chips to each other and the rest of the device in as tiny a space as possible.

    But it’s more about just making a smartphone that fits in your pocket. Advanced packaging enables our devices to be faster and more energy-efficient because information can be exchanged between chips over shorter distances and this in turn reduces energy consumption.

    One great byproduct of advanced packaging’s innovations can be found on my wrist — namely, the smartwatch I wear for my long-distance runs. My watch uses GPS to measure how far I ran. It also measures my heart rate, and after my workouts, it uploads my running data wirelessly to my phone. Its battery lasts for days; it had plenty of juice left even after I ran a full marathon last month.

    Twenty years ago, running watches were big and clunky, with much less functionality. My friends and I had a particular model with a huge face and a bulky slab that fit over the insides of our wrists. When a friend and I opened up his watch to replace his battery, we saw that the GPS receiver was on a completely separate circuit board from the rest of the watch electronics.

    9
    A running friend of mine still has his old running watch, and he recently took a picture of it alongside the modern one that he now uses. The GPS chip in the old watch is on its own circuit board underneath the buttons, apart from the rest of the watch electronics. The modern watch has all the electronic components beneath the small watch face. Credit: Ron Weber.

    Under the small and thin face of my current watch you will find all its electronics, including a GPS sensor, battery, heart-rate monitor, wireless communications device and so many other things.

    Further development of advanced packaging could produce even more powerful devices for monitoring a patient’s vitals, measuring pollutants in the environment, and increasing situational awareness for soldiers in the field.

    10
    This illustration shows the staggering number of ultrathin semiconductor layers that are possible thanks to “advanced packaging” techniques. When I saw this, it reminded me of one of those amazing sandwiches that the cartoon character Dagwood would eat, but I think this is even more impressive! Credit: DoE 3DFeM center at Penn State University.

    Advanced packaging is also a potential niche for domestic manufacturers to grow global market share (currently at 3% for this part of the chipmaking process). Chips are becoming so complex that design and manufacturing processes, once separate steps, are now increasingly intertwined — and the U.S. remains a world leader in chip design. NIST’s measurements to support advanced packaging in chips and standards for the packaging process could give domestic manufacturers a decisive edge in this area.

    All the NIST experts I’ve spoken to talk about a future in which chip manufacturers work increasingly closely with their customers, such as automakers. The benefit of closer relationships would mean that customers could collaborate with manufacturers to create more customized chips that bring about completely new products.

    And as we’ve seen, incorporating chips into existing products tends to make them “smart,” whether it’s an appliance figuring out how long to bake the bread, or solar panels that maximize electricity production by coordinating the power output from individual panels. With more domestic manufacturers on the scene, there are more opportunities to incorporate chips into products — that could also be manufactured in the U.S.A.

    I first encountered semiconductor chips in the 1970s, when the U.S. was a dominant force in chip manufacturing. Inside a department store with my mom, I saw pocket calculators on display, and they fascinated me. You could punch their number keys and they would instantly solve any addition or multiplication problem. As a 6-year-old, I thought that they had little brains in them!

    Since then, semiconductor chips have been a big part of my life. And after the pandemic, I realize I can’t take them for granted. I’m glad to be part of an agency that is working to create a more resilient supply chain — and bring back chip manufacturing in this country.
    __________________________________________________

    Semiconductor Chip Glossary

    Semiconductor: Material that can act either as a conductor or an insulator of electricity, depending on small changes in voltage

    Silicon: Semiconductor material that serves as the basis for many circuits in industry

    Transistor: Simple switch, made with a semiconductor material, that turns on or off depending on changes in voltage and can combine with other transistors to create complex devices

    Integrated circuit: Many transistors (anywhere from several to billions) combined to make a small circuit on a chip

    Wafer: Thin piece of semiconductor material (such as silicon) that we use as a base for building multiple integrated circuits

    Lithography: Process of etching into or building onto the surface of a wafer in order to produce patterns of integrated circuits

    Chip: Self-contained piece including the semiconductor surface and integrated circuit, independently packaged for use in electronics such as cellphones or computers

    Fab: Industrial facility where raw silicon wafers become fully functioning electronic chips
    __________________________________________________

    11
    NIST graphic designer Brandon Hayes and me in our bunny suits as we prepared to enter the NIST NanoFab, where Brandon took many amazing pictures, several of which you see in this blog post. Look for more NanoFab photos from Brandon as we continue to cover this topic in the coming months and years!
    Credit: J. Zhang/NIST

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NIST Campus, Gaitherberg, MD.

    The National Institute of Standards and Technology‘s Mission, Vision, Core Competencies, and Core Values

    Mission

    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

    Background

    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “ The National Institute of Standards and Technology” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

    Organization

    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock.

    NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR).

    The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961.

    SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility.

    This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).
    Committees

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

     
  • richardmitnick 1:54 pm on October 3, 2022 Permalink | Reply
    Tags: "Researchers use light to control magnetic fields at nanoscale", , , Nanotechnology, , Precisely manipulating magnetic order within a material., , The fact that we can now use light to manipulate electrons in this way means we have unprecedented control over this magnetic order., The Pritzker School of Molecular Engineering, , This new technique provides a handy way to manipulate electron correlation making the study of the correlated phases much more practical than it has been in the past., This work has implications for both studying the emergence of the correlated phase as well as designing new optoelectronic and spintronic devices., This work offers a jumping off point for a plethora of new studies., Using nanoscale low-power laser beams to precisely control magnetism within a 2-D semiconductor.   

    From The Pritzker School of Molecular Engineering At The University of Chicago: “Researchers use light to control magnetic fields at nanoscale” 

    From The Pritzker School of Molecular Engineering

    At

    U Chicago bloc

    The University of Chicago

    9.30.22
    Sarah C.P. Williams

    1
    Researchers from the University of Chicago’s Pritzker School of Molecular Engineering (PME) discovered how to use a laser beam (red) to control the spin of electrons (purple) within a 2-D semiconductor, letting them precisely manipulate magnetic order within the material. (Photo courtesy of High Lab)

    In thin, two-dimensional semiconductors, electrons move, spin and synchronize in unusual ways. For researchers, understanding the way these electrons carry out their intricate dances— and learning to manipulate their choreography—not only lets them answer fundamental physical questions, but can yield new types of circuits and devices.

    One correlated phase that such electrons can take on is magnetic order, in which they align their spin in the same direction. Traditionally, the ability to manipulate magnetic order within a 2-D semiconductor has been limited; scientists have used unwieldy, external magnetic fields, which limit technological integration and potentially conceal interesting phenomena.

    Now, researchers from the University of Chicago’s Pritzker School of Molecular Engineering (PME) have discovered how to use nanoscale, low-power laser beams to precisely control magnetism within a 2-D semiconductor. Their approach, described online in the journal Science Advances [below], has implications for both studying the emergence of the correlated phase as well as designing new optoelectronic and spintronic devices.

    “The fact that we can now use light to manipulate electrons in this way means we have unprecedented control over this magnetic order,” said Asst. Prof. Alex High, the senior author of the new work.

    Controllable magnets

    High’s lab focused on transition metal dichalcogenides (TMDs), a family of semiconductors that can be exfoliated into single, two-dimensional flakes, measuring just three atoms thick. Scientists had previously hypothesized that electrons within TMDs could assume a correlated phase, with their spin aligned in the same direction to lower the system energy—this ferromagnetic phase is what we colloquially call magnetism. Generating or modeling this transition to the correlated state, however, has been difficult.

    High has long been interested in how light can be controlled and, in turn, can alter states of matter. His team wondered whether, instead of external magnetic fields, miniscule beams of light could be used to create a correlated magnetic phase. They aimed a tightly-focused laser beam, less than a micron (one-thousandth of a millimeter) in diameter at a monolayer TMD. They flashed the laser for nanoseconds at a time, while also monitoring the TMD with an optical probe that let them track the activity of its electrons.

    The probe revealed that the pulsing laser was impacting the spin-polarization of electrons within a 5 micron by 8 micron area of the TMD, spreading a correlated phase outward from the laser. In other words, the electrons were aligning their spin; the researchers could control the magnetic order of electrons within the tiny area.

    “This new technique provides us a handy way to manipulate electron correlation, making the study of the correlated phases much more practical than it has been in the past,” said postdoctoral fellow Kai Hao, co-first author of the paper.

    “One of the things that makes this really attractive is the rather straightforward nature of it,” said graduate student Andrew Kindseth, who also contributed to the new work. “In many ways, it’s as simple as just shining a circularly polarized laser on this material.”

    A New Research Platform

    The new technique for controlling magnetism in atomically thin semiconductors offers a jumping off point for a plethora of new studies, the researchers said.

    Besides magnetic phases, TMD systems have also been hypothesized to form more exotic correlated electronic phases such as Wigner crystals, charge density waves, Mott states and superconductivity. The capability to locally manipulate the electron spins in TMDs within an ultrashort timescale and with nanoscale precision may provide previously inaccessible information, which will further aid the theoretical study of these exotic phases.

    On the application side, there is an urgent need for novel optoelectronic and spintronic devices to meet the explosive growth in the information industry. The demonstration of efficient optical control of spin order has great potential for device applications. Immediate impacts include building on-chip spin sources, tunable optical isolators, and efficient fan-out in spintronic circuits.

    “The capability to optically manipulate magnetic memory and generate spin amplification in TMDs – materials widely studied for next-generation technologies – will push optoelectronics and spintronics in new directions,” said graduate student Robert Shreiner, a co-first author of the paper.

    Science paper:
    Science Advances

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Pritzker School of Molecular Engineering is the first school of engineering at the University of Chicago. It was founded as the Institute for Molecular Engineering in 2011 by the university in partnership with Argonne National Laboratory. When the program was raised to the status of a school in 2019, it became the first school dedicated to molecular engineering in the United States. It is named for a major benefactor, the Pritzker Foundation.

    The scientists, engineers, and students at PME use scientific research to pursue engineering solutions. The school does not have departments. Instead, it organizes its research around interdisciplinary “themes”: immuno-engineering, quantum engineering, autonomous materials, and water and energy. PME works toward technological advancements in areas of global importance, including sustainable energy and natural resources, immunotherapy-based approaches to cancer, “unhackable” communications networks, and a clean global water supply. The school plans to expand its research areas to address more issues of global importance.

    IME was established in 2011, after three years of discussion and review. It was the largest academic program founded by the University of Chicago since 1988, when the Harris School of Public Policy Studies was established.

    Matthew Tirrell was appointed founding Pritzker Director of IME in July 2011. The Pritzker Directorship honors the Pritzker Foundation, which donated a large gift in support of the institute. Tirrell is a researcher in biomolecular engineering and nanotechnology. His honors include election to The National Academy of Engineering, The American Academy of Arts and Sciences, and The National Academy of Sciences. He became dean of PME in 2019.

    The William Eckhardt Research Center (WERC), which houses the school and part of the Physical Sciences Division, was constructed between 2011 and 2015. The WERC was named for alumnus William Eckhardt, in recognition of his donation to support scientific research at the university.

    In 2019, the school received more than $23.1 million in research funding. From 2011 to 2019, faculty at the school have filed 69 invention disclosures and have created six companies.

    On May 28, 2019, the University of Chicago announced a $100 million commitment from the Pritzker Foundation to support the institute’s transition to a school—the first school of molecular engineering in the U.S. The Pritzker Foundation helped establish the school with a new donation of $75 million, adding to an earlier $25 million donation that supported the institute and the construction of the Pritzker Nanofabrication Facility. In 2019, PME became the university’s first new school in three decades.

    PME offers a graduate program in molecular engineering for both Master and Ph.D. students, as well as an undergraduate major and minor in molecular engineering offered with the College of the University of Chicago.

    The institute began accepting applications to its doctoral program in fall 2013. The first class of graduate students was matriculated the following fall. In 2019, the school had 28 faculty members, 91 undergraduate students, 134 graduate students, and 75 postdoctoral fellows.

    The graduate program curriculum includes various science and engineering disciplines, product design, entrepreneurship, and communication. The program is interdisciplinary, featuring a connected art program called STAGE Lab. STAGE Lab creates plays and films in the context of scientific research at PME.

    The undergraduate major was added in spring 2015. It was the first engineering major offered at the University of Chicago. In 2018, the first undergraduate class received degrees in molecular engineering. When the school was established in 2019, it announced plans to expand its undergraduate offerings.

    David Awschalom, a professor at PME, said the school has contributed to Chicago becoming a hub for quantum education and research. PME offers an advanced degree in quantum science and engineering. It also partnered with Harvard University to launch the Quantum Information Science and Engineering Network, a graduate student training program in quantum science and engineering. Participating students are paired with two mentors—one from academia and one from industry. The program was funded by a $1.6 million award from the National Science Foundation.

    The school’s partnership with The DOE’s Argonne National Laboratory provides additional opportunities for research and innovation. Argonne’s facilities include the Advanced Photon Source, the Argonne Leadership Computing Facility, and the Center for Nanoscale Materials. The lab also has experience licensing new technology for industrial and commercial applications.
    PME’s educational outreach initiatives include K-12 programs with events and internships throughout the year. In 2019, with the establishment of PME, the school also launched a partnership with City Colleges of Chicago. The multi-year program connects City College students interested in STEM fields with PME faculty and labs, with the goal of enabling these students to transfer into four-year STEM degree programs.

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    Research

    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.
    _____________________________________________________________________________________

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).
    _____________________________________________________________________________________

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

     
  • richardmitnick 12:09 pm on September 28, 2022 Permalink | Reply
    Tags: "Scientists chip away at a metallic mystery one atom at a time", , , It’s no secret that radiation weakens metal. Uncovering how is complicated work., , Metals and ceramics are made up of microscopic crystals-also called grains. The smaller the crystals-the stronger materials tend to be., Nanotechnology, , Radiation might only strike one atom head on but that atom then pops out of place and collides with others in a chaotic domino effect., Radiation particles pack so much heat and energy that they can momentarily melt the spot where they hit., Radiation smashes and permanently alters the crystal structure of grains., Scientists believe the key to preventing large-scale catastrophic failures in bridges airplanes and power plants is to look — very closely — at damage as it first appears., , The ground truth about how failure begins atom by atom is largely a mystery., The reality is many of the materials around us are unstable., The Sandia team wants to slow — or even stop — the atomic-scale changes to metals that radiation causes.   

    From The DOE’s Sandia National Laboratories: “Scientists chip away at a metallic mystery one atom at a time” 

    From The DOE’s Sandia National Laboratories

    9.28.22
    Troy Rummler,
    trummle@sandia.gov
    505-249-3632

    It’s no secret that radiation weakens metal. Uncovering how is complicated work.

    Gray and white flecks skitter erratically on a computer screen. A towering microscope looms over a landscape of electronic and optical equipment. Inside the microscope, high-energy, accelerated ions bombard a flake of platinum thinner than a hair on a mosquito’s back. Meanwhile, a team of scientists studies the seemingly chaotic display, searching for clues to explain how and why materials degrade in extreme environments.

    Based at Sandia, these scientists believe the key to preventing large-scale, catastrophic failures in bridges, airplanes and power plants is to look — very closely — at damage as it first appears at the atomic and nanoscale levels.

    “As humans, we see the physical space around us, and we imagine that everything is permanent,” Sandia materials scientist Brad Boyce said. “We see the table, the chair, the lamp, the lights, and we imagine it’s always going to be there, and it’s stable. But we also have this human experience that things around us can unexpectedly break. And that’s the evidence that these things aren’t really stable at all. The reality is many of the materials around us are unstable.”

    But the ground truth about how failure begins atom by atom is largely a mystery, especially in complex, extreme environments like space, a fusion reactor or a nuclear power plant. The answer is obscured by complicated, interconnected processes that require a mix of specialized expertise to sort out.

    The team recently published in the academic journal Science Advances [below] research results on the destabilizing effects of radiation. While the findings describe how metals degrade from a fundamental perspective, the results could potentially help engineers predict a material’s response to different kinds of damage and improve the reliability of materials in intense radiation environments.

    For instance, by the time a nuclear power plant reaches retirement age, pipes, cables and containment systems inside the reactor can be dangerously brittle and weak. Decades of exposure to heat, stress, vibration and a constant barrage of radiation break down materials faster than normal. Formerly strong structures become unreliable and unsafe, fit only for decontamination and disposal.

    “If we can understand these mechanisms and make sure that future materials are, basically, adapted to minimize these degradation pathways, then perhaps we can get more life out of the materials that we rely on, or at least better anticipate when they’re going to fail so we can respond accordingly,” Boyce said.

    The research was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science user facility operated for DOE by Sandia and The DOE’s Los Alamos National Laboratories. It was funded by the DOE’s Basic Energy Sciences program.

    Atomic-scale research could protect metals from damage

    Metals and ceramics are made up of microscopic crystals-also called grains. The smaller the crystals-the stronger materials tend to be. Scientists have already shown it is possible to strengthen a metal by engineering incredibly small, nanosized crystals.

    “You can take pure copper, and by processing it so that the grains are nanosized, it can become as strong as some steels,” Boyce said.

    But radiation smashes and permanently alters the crystal structure of grains, weakening metals. A single radiation particle strikes a crystal of metal like a cue ball breaks a neatly racked set of billiard balls, said Rémi Dingreville, a computer simulation and theory expert on the team. Radiation might only strike one atom head on but that atom then pops out of place and collides with others in a chaotic domino effect.

    Unlike a cue ball, Dingreville said, radiation particles pack so much heat and energy that they can momentarily melt the spot where they hit, which also weakens the metal. And in heavy-radiation environments, structures live in a never-ending hailstorm of these particles.

    The Sandia team wants to slow — or even stop — the atomic-scale changes to metals that radiation causes. To do that, the researchers work like forensic investigators replicating crime scenes to understand real ones. Their Science Advances paper details an experiment in which they used their high-powered, highly customized electron microscope to view the damage in the platinum metal grains.

    21
    In this photo from 2020, Christopher Barr, right, a former Sandia National Laboratories postdoctoral researcher, and University of California-Irvine professor Shen Dillon operate the In-situ Ion Irradiation Transmission Electron Microscope. Barr was part of a Sandia team that used the one-of-a-kind microscope to study atomic-scale radiation effects on metal. (Photo by Lonnie Anderson)

    Fig. 1. The analyzed GB and its surrounding environment.
    2
    (A) Automated crystal orientation mapping showing the grain orientations in the vicinity of the interface of interest. The boundary of interest separates the two indicated grains, labeled as A and B, at the center of image (B) and terminates at triple junctions [labeled TJ in (C)]. The boundary is faceted on Σ3 {112} interfaces that intersect at 120°. (D) High-angle annular dark field scanning transmission electron microscopy image showing structure at atomic resolution. (E) Atomistic model [embedded atom method (EAM)] for the ideal facet and junction structure. Fast Fourier transform analysis of the atomic resolution images [inset in (D)] shows that the grains are rotated by 3.2° from the exact Σ3 orientation.

    Fig. 3. Facet junction positions before and after ion irradiation in relationship to the interfacial disconnection content measured before irradiation.
    3
    (A and B) The GB facets before and after irradiation. (C) Plots of the facet positions measured before (red) and after (blue) irradiation. The facets have primarily moved in the upward direction relative to their initial position. The green dots on the plot for the unirradiated boundary in (C) mark the midpoints between facet junction pairs around which Burgers circuits were constructed on higher magnification images. An example of a circuit map is shown in (D) for a facet-junction pair with b = (a/6)[12¯1]= δΑ, referenced to the right crystal (grain B). The observed disconnections have Burgers vectors primarily composed of (a/6)[12¯1] = δΑ, although other components arise where the average boundary inclination deviates substantially from (12¯1).

    More instructive images are available in the science paper.

    Team member Khalid Hattar has been modifying and upgrading this microscope for over a decade, currently housed in Sandia’s Ion Beam Laboratory. This one-of-a-kind instrument can expose materials to all sorts of elements — including heat, cryogenic cold, mechanical strain, and a range of controlled radiation, chemical and electrical environments. It allows scientists to watch degradation occur microscopically, in real time. The Sandia team combined these dynamic observations with even higher magnification microscopy allowing them to see the atomic structure of the boundaries between the grains and determine how the irradiation altered it.

    But such forensics work is fraught with challenges.

    “I mean, these are extremely hard problems,” said Doug Medlin, another member of the Sandia team. Boyce asked for Medlin’s help on the project because of his deep expertise in analyzing grain boundaries. Medlin has been studying similar problems since the 1990s.

    “We’re starting from a specimen that’s maybe three millimeters in diameter when they stick it into the electron microscope,” Medlin said. “And then we’re zooming down to dimensions that are just a few atoms wide. And so, there’s just that practical aspect of: How do you go and find things before and after the experiment? And then, how do you make sense of those atomistic arrangements in a meaningful way?”

    By combining atomic-scale images with nanoscale video collected during the experiment, the team discovered that irradiating the platinum causes the boundaries between grains to move.

    Computer simulations help explain cause and effect

    After the experiment, their next challenge was to translate what they saw in images and video into mathematical models. This is difficult when some atoms might be dislocated because of physical collisions, while others might be moving around because of localized heating. To separate the effects, experimentalists turn to theoreticians like Dingreville.

    “Simulating radiation damage at the atomic scale is very (computationally) expensive,” Dingreville said. Because there are so many moving atoms, it takes a lot of time and processing power on high-performance computers to model the damage.

    Sandia has some of the best modeling capabilities and expertise in the world, he said. Researchers commonly measure the amount of damage radiation causes to a material in units called displacements per atom, or dpa for short. Typical computer models can simulate up to around 0.5 dpa worth of damage. Sandia models can simulate up to 10 times that, around 5 dpa.

    In fact, the combination of in-house expertise in atomic microscopy, the ability to reproduce extreme radiation environments and this specialized niche of computer modeling makes Sandia one of few places in the world where this research can take place, Dingreville said.

    But even Sandia’s high-end software can only simulate a few seconds’ worth of radiation damage. An even better understanding of the fundamental processes will require hardware and software that can simulate longer spans of time. Humans have been making and breaking metals for centuries, so the remaining knowledge gaps are complex, Boyce said, requiring expert teams that spend years honing their skills and refining their theories. Medlin said the long-term nature of the research is one thing that has attracted him to this field of work for nearly 30 years.

    “I guess that’s what drives me,” he said. “It’s this itch to figure it out, and it takes a long time to figure it out.”

    Science paper:
    Science Advances

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sandia National Laboratories managed and operated by the National Technology and Engineering Solutions of Sandia (a wholly owned subsidiary of Honeywell International), is one of three National Nuclear Security Administration research and development laboratories in the United States. Their primary mission is to develop, engineer, and test the non-nuclear components of nuclear weapons and high technology. Headquartered in Central New Mexico near the Sandia Mountains, on Kirtland Air Force Base in Albuquerque, Sandia also has a campus in Livermore, California, next to DOE’s Lawrence Livermore National Laboratory, and a test facility in Waimea, Kauai, Hawaii.

    It is Sandia’s mission to maintain the reliability and surety of nuclear weapon systems, conduct research and development in arms control and nonproliferation technologies, and investigate methods for the disposal of the United States’ nuclear weapons program’s hazardous waste.

    Other missions include research and development in energy and environmental programs, as well as the surety of critical national infrastructures. In addition, Sandia is home to a wide variety of research including computational biology; mathematics (through its Computer Science Research Institute); materials science; alternative energy; psychology; MEMS; and cognitive science initiatives.

    Sandia formerly hosted ASCI Red, one of the world’s fastest supercomputers until its recent decommission, and now hosts ASCI Red Storm supercomputer, originally known as Thor’s Hammer.

    Sandia is also home to the Z Machine.


    The Z Machine is the largest X-ray generator in the world and is designed to test materials in conditions of extreme temperature and pressure. It is operated by Sandia National Laboratories to gather data to aid in computer modeling of nuclear guns. In December 2016, it was announced that National Technology and Engineering Solutions of Sandia, under the direction of Honeywell International, would take over the management of Sandia National Laboratories starting on May 1, 2017.


     
  • richardmitnick 11:11 am on September 23, 2022 Permalink | Reply
    Tags: "Key research tool", A new time-of-flight secondary ion mass spectrometer, , , , Conservation Science, , , Nanotechnology,   

    From The University of Delaware : “Key research tool” 

    U Delaware bloc

    From The University of Delaware

    9.22.22
    Karen B. Roberts
    Photos by Evan Krape and courtesy of Jocelyn Alcántara-García and Xu Feng.

    1
    University of Delaware’s Surface Analysis Facility is home to a new time-of-flight secondary ion mass spectrometer. The instrument offers critical techniques for understanding surface composition and reactivity across chemistry, material science, environmental science, chemical engineering, conservation science and physics.

    The University of Delaware’s chemical detection capabilities gained some extra-powerful research muscle recently, with the acquisition of a time-of-flight secondary ion mass spectrometer (ToF-SIMS).

    The instrument was purchased from ION-TOF USA, Inc., a leading electronics manufacturing company. The purchase was made possible through funding from the National Science Foundation, and it will enable faculty, researchers and students to rapidly analyze the surface of a sample and detect precisely what it’s made of and its reactivity. It’s the kind of information that can help advance research relevant to nanotechnology and materials design, catalysis, solar, cultural heritage, microplastics and more.

    ToF-SIMS mass spectrometry uses a pulsed ion beam to remove the outermost layer of a sample. It’s not like scraping a layer of paint from a piece of furniture, though.

    “Basically, you shoot high-energy clusters of ions at the surface of a material sample and look at the ions that are coming off. This is different from conventional mass spectrometry, and it allows researchers to have an extremely high-resolution look at, for example, biological samples, plastics and even solid films,” said Andrew Teplyakov, professor of chemistry and biochemistry, who led the proposal that brought the instrument to UD.

    It is a critical technique needed to understand surface composition and reactivity across chemistry, material science, environmental science, chemical engineering, conservation science and physics. Before its arrival, no other instrument like it was available to researchers in the state of Delaware.

    The instrument can analyze chemical information from the original surface in the parts-per-million range. It is like detecting a single defective tile among those covering the entire sports complex at UD. It also has the capability to reveal the distribution of elements and molecules on a surface with a lateral resolution down to 70 nanometers, about 1,000 times smaller than a human hair. This resolution is higher than any optical microscope can provide.

    Additionally, ToF-SIMS provides researchers the ability to construct a 3D depth profile of materials at a depth resolution better than one nanometer. For a simple comparison, if the diameter of a marble was one nanometer, then the diameter of our planet would be about one meter.

    This is essential when working with interfaces.

    “My field is surface functionalization and surface chemistry,” Teplyakov said. “My research group focuses on applications for making or controlling molecules at the surface and interfaces between materials. We’re talking about applications where entire devices could be 400 times smaller than a human hair. If you’re making a sensor based on a certain material, having this extremely high-resolution surface and in-depth chemical information that’s accurate down to about one billionth of a meter is critical. This is pretty much the only selective technique that can do this.”

    Among his projects, Teplyakov’s research group will use this instrument to illuminate how organic molecules bond at a solid surface. He also plans to investigate why and how solar cells degrade to develop ways to make solar technology last longer. Understanding where defects occur could be key — and the ToF-SIMS instrument can provide this information.

    Jocelyn Alcántara-García, associate professor in art conservation with a joint appointment in chemistry and biochemistry, as well as at Winterthur Museum’s Scientific Research and Analysis laboratory, is excited to apply the ToF-SIMS to explore how colored historical textiles decay and why some substances applied as part of conservation methods fail, aging and degrading much like the materials they are meant to preserve. Part of studying dyed textiles requires extracting the dye or color molecules, called chromophores, through sampling. Some of these extraction techniques are aggressive and can destroy the fragile color molecules, while others are so mild that the extractions are incomplete and require larger-than-wanted samples.

    “TOF-SIMS will help us to learn how color molecules chemically bond to textile fibers, leading to more efficient extraction procedures from smaller samples,” said Alcántara-García.

    Alcántara-García also is eager to understand how historical materials, such as dyed textiles, painted surfaces and coatings were made to drive better methods for studying and preserving material culture.

    “Studying textiles at different stages of deterioration can help us see, for example, which bond is more prone to a specific type of degradation, say light sensitivity. This would be central for display and storage decisions,” she said.

    The instrument will enable the work of over 25 research groups on campus.

    For instance, for researchers developing microelectronics technologies, the ability to analyze a sample’s depth profile will provide atomic-scale knowledge to advance the creation of very precise and repeatable materials, information useful for design processes or equipment manufacturing. Meanwhile, extreme close-ups of biological devices, films, microfluidic channels and more could one day enable next-generation nanosystems, such as those used in biomedical device interfaces for cardiac stimulation and mapping devices, cochlear and retinal implants, or brain-machine interfaces.

    It also could help researchers better understand microplastics, problematic particles found in various states of repair in the ocean and other waterways. Each microplastic particle degrades at a different rate, so having chemical information about the surface of different samples will provide important clues about what’s happening to the material at different stages and how that affects the surrounding environment.
    ===
    Equipping students for a bright future

    From undergraduate students to postdoctoral fellows, access to this highly sophisticated instrumentation provides unique training opportunities that can help set them apart in the job market.

    “There are not many opportunities for students to gain hands-on experience on these highly-sought instruments in the country. Here at UD, we are proud to offer comprehensive operation training and practical courses to our students at various levels to enrich their skillset in analytical chemistry,” said Xu Feng, director of the Surface Analysis Facility. “As the U.S. works to bring back the manufacturing of semiconductors, it’s a huge boost to get them noticed in the job market of microelectronics and semiconductors.”

    This includes students involved in two UD Research Experience for Undergraduate (REU) programs: the REU program for students with disabilities and a recently established REU program for undergraduate students from South America.

    “Normally REU students come to UD for a reasonably short period of time. The expectation that you can have a result, or maybe even a paper, after a few months’ work … that’s exciting and attractive to students,” said Teplyakov.

    State-of-the-art shared facility

    The ToF-SIMS complements a suite of other contemporary instruments in the Surface Analysis Facility, including an atomic force-Raman microscope (AFM-Raman) to help researchers acquire topographical information about materials and an X-ray photoelectron spectrometer for securing molecular information on solid surfaces. Having these highly complementary techniques available in one laboratory allows researchers to be strategic in considering what information they want to capture.

    “With these three instruments, we now have a first-rate surface analysis capability to support new lines of academic research and attract industrial collaborators,” said Teplyakov.

    Already, the new instrument has drawn inquiries and interest from local companies interested in analyzing samples, including Chemours, Air Liquide, DuPont and others. Feng and his staff, meanwhile, are standing by to help with these inquiries and discuss possible research approaches.

    “We warmly welcome researchers within and beyond the university to come in and enjoy these top-notch surface analysis techniques,” Feng said.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    The University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    The University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    The University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, The University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware (US)’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 [needs an update], University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.

    Academics

    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

     
  • richardmitnick 10:43 am on September 16, 2022 Permalink | Reply
    Tags: , , Building algorithms that could quickly and accurately turn electron microscopy images into 3D visualizations., , , , Nanotechnology, ,   

    From The University of Michigan: “Visualizing nanoscale structures in real time” 

    U Michigan bloc

    From The University of Michigan

    8.18.22 [Received via Brookhaven Laboratory 9.16.22.]
    Written by Jim Lynch | College of Engineering

    Media contact
    Kate McAlpine
    Research News Editor
    (734) 647-7087
    kmca@umich.edu


    A real-time reconstruction of platinum nanoparticles on a carbon nanowire produced with the weighted back projection algorithm in tomviz.

    Computer chip designers, materials scientists, biologists and other scientists now have an unprecedented level of access to the world of nanoscale materials thanks to 3D visualization software that connects directly to an electron microscope. It enables researchers to see and manipulate 3D visualizations of nanomaterials in real time.

    Developed by a University of Michigan-led team of engineers and software developers, the capabilities are included in a new beta version of tomviz, an open-source 3D data visualization tool that’s already used by tens of thousands of researchers. The new version reinvents the visualization process, making it possible to go from microscope samples to 3D visualizations in minutes instead of days.

    In addition to generating results more quickly, the new capabilities enable researchers to see and manipulate 3D visualizations during an ongoing experiment. That could dramatically speed research in fields like microprocessors, electric vehicle batteries, lightweight materials and many others.

    “It has been a longstanding dream of the semiconductor industry, for example, to be able to do tomography in a day, and here we’ve cut it to less than an hour,” said Robert Hovden, assistant professor of materials science and engineering at U-M and corresponding author on the study published in Nature Communications [below]. “You can start interpreting and doing science before you’re even done with an experiment.”


    A real-time reconstruction of cobalt phosphate hyberbranched nanoparticles produced with the simultaneous iterative reconstruction technique algorithm in tomviz.

    2
    This rendering of platinum nanoparticles on a carbon support shows how tomviz interprets microscopy data as it’s created, resolving from a shadowy image to a detailed rendering.

    Hovden explains that the new software pulls data directly from an electron microscope as it’s created and displays results immediately, a fundamental change from previous versions of tomviz. In the past, researchers gathered data from the electron microscope, which takes hundreds of two-dimensional projection images of a nanomaterial from several different angles.

    Next, Hovden and colleagues took the projections back to the lab to interpret and prepare them before feeding them to tomviz, which would take several hours to generate a 3D visualization of an object. The entire process took days to a week, and a problem with one step of the process often meant starting over.

    The new version of tomviz does all the interpretation and processing on the spot. Researchers get a shadowy but useful 3D render within a few minutes, which gradually improves into a detailed visualization.

    “When you’re working in an invisible world like nanomaterials, you never really know what you’re going to find until you start seeing it,” Hovden said. “So the ability to begin interpreting and making adjustments while you’re still on the microscope makes a huge difference in the research process.”

    The sheer speed of the new process could also be useful in industry—semiconductor chip makers, for example, could use tomography to run tests on new chip designs, looking for failures in 3D nanoscale circuitry far too small to see. In the past, the tomography process was too slow to run the hundreds of tests required in a commercial facility, but Hovden believes tomviz could change that.

    Hovden emphasizes that tomviz can be run on a standard consumer-grade laptop. It can connect to newer or older models of electron microscopes. And because it’s open-source, the software itself is accessible to everyone.

    “Open-source software is a great tool for empowering science globally. We made the connection between tomviz and the microscope agnostic to the microscope manufacturer,” he said. “And because the software only looks at the data from the microscope, it doesn’t care whether that microscope is the latest model at U-M or a 20-year-old machine.”

    3
    This diagram illustrates the process of pulling two-dimensional projection images from an electron microscope and rendering them into a three-dimensional visualization.

    To develop the new capabilities, the U-M team drew on its longstanding partnership with software developer Kitware and also brought on a team of scientists who work at the intersection of data science, materials science and microscopy. At the start of the process, Hovden worked with Marcus Hanwell of Kitware and The DOE’s Brookhaven National Laboratory to hone the idea of a version of tomviz that would enable real-time visualization and experimentation.

    Then, Hovden and Kitware’s developers collaborated with U-M materials science and engineering graduate researcher Jonathan Schwartz, microscopy researcher Yi Jiang and machine learning and materials science expert Huihuo Zheng, both of The DOE’s Argonne National Laboratory, to build algorithms that could quickly and accurately turn electron microscopy images into 3D visualizations.

    Once the algorithms were complete, Cornell University professor of applied and engineering physics David Muller and Peter Ericus, a staff scientist at the The DOE’s Berkeley Lab’s Molecular Foundry, worked with Hovden to design a user interface that would support the new capabilities.

    Finally, Hovden teamed up with materials science and engineering professor Nicholas Kotov, undergraduate data scientist Jacob Pietryga, biointerfaces research fellow Anastasiia Visheratina and chemical engineering research fellow Prashant Kumar, all at U-M, to synthesize a nanoparticle that could be used for real-world testing of the new capabilities, to both ensure their accuracy and show off their capabilities.

    They settled on a nanoparticle shaped like a helix, about 100 nanometers wide and 500 nanometers long. The new version of tomviz worked as planned; within minutes, it generated an image that was shadowy but detailed enough for the researchers to make out key details like the way the nanoparticle twists, known as chirality. About 30 minutes later, the shadows resolved into a detailed, three-dimensional visualization.

    4
    A screenshot from tomviz 2.0.

    The source code for the new beta version of tomviz is freely available for download at GitHub. Hovden believes it will open new possibilities to fields beyond materials-related research; fields like biology are also poised to benefit from access to real-time electron tomography. He also hopes the project’s “software as science” approach will spur new innovation across the fields of science and software development.

    “We really have an interdisciplinary approach to research at the intersections of computer science, material science, physics, chemistry,” Hovden said. “It’s one thing to create really cool algorithms that only you and your graduate students know how to use. It’s another thing if you can enable labs across the world to do these state-of-the-art things.”

    Kitware collaborators on the project were Chris Harris, Brianna Major, Patrick Avery, Utkarsh Ayachit, Berk Geveci, Alessandro Genova and Hanwell. Kotov is also the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering, Joseph B. and Florence V. Cejka Professor of Engineering, and a professor of chemical engineering and macromolecular science and engineering.

    “I’m excited for all the new science discoveries and 3D visualizations that will come out of the material science and microscopy community with our new real-time tomography framework,” Schwartz said.

    Science paper:
    Nature Communications

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 12:33 pm on September 15, 2022 Permalink | Reply
    Tags: "New phases of water detected", , , In the "hexatic phase" the water acts as neither a solid nor a liquid but something in between., In the "superionic phase" which occurs at higher pressures the water becomes highly conductive., Nanoconfined water behaves very differently from the water we drink., Nanotechnology, , The “superionic phase” at easily accessible conditions is peculiar as this phase is generally found in extreme conditions like the core of Uranus and Neptune., The Cambridge-led team describe how they have used advances in computational approaches to predict the phase diagram of a one-molecule thick layer of water with unprecedented accuracy., The development of highly conductive electrolytes for batteries and water desalination and the frictionless transport of fluids are all reliant on predicting how confined water will behave., , This superionic phase could be important for future electrolyte and battery materials as it shows an electrical conductivity 100 to 1000 times higher than current battery materials., Understanding the behaviour of water at the nanoscale is critical to many new technologies., Water in a one-molecule layer acts like neither a liquid nor a solid and it becomes highly conductive at high pressures., Water which is confined into a one-molecule thick layer goes through several phases including a ‘hexatic’ phase and a ‘superionic’ phase., When water is compressed to the nanoscale its properties change dramatically.   

    From The University of Cambridge (UK): “New phases of water detected” 

    U Cambridge bloc

    From The University of Cambridge (UK)

    9.14.22

    Sarah Collins
    sarah.collins@admin.cam.ac.uk

    1
    Water can be liquid, gas or ice, right? Think again.

    Scientists at the University of Cambridge have discovered that water in a one-molecule layer acts like neither a liquid nor a solid, and that it becomes highly conductive at high pressures.

    Much is known about how ‘bulk water’ behaves: it expands when it freezes, and it has a high boiling point. But when water is compressed to the nanoscale its properties change dramatically.

    By developing a new way to predict this unusual behaviour with unprecedented accuracy, the researchers have detected several new phases of water at the molecular level.

    Water trapped between membranes or in tiny nanoscale cavities is common – it can be found in everything from membranes in our bodies to geological formations. But this nanoconfined water behaves very differently from the water we drink.

    Until now, the challenges of experimentally characterizing the phases of water on the nanoscale have prevented a full understanding of its behaviour. But in a paper published in the journal Nature [below], the Cambridge-led team describe how they have used advances in computational approaches to predict the phase diagram of a one-molecule thick layer of water with unprecedented accuracy.

    They used a combination of computational approaches to enable the first-principles level investigation of a single layer of water.

    The researchers found that water which is confined into a one-molecule thick layer goes through several phases including a ‘hexatic’ phase and a ‘superionic’ phase. In the “hexatic phase” the water acts as neither a solid nor a liquid but something in between. In the superionic phase which occurs at higher pressures the water becomes highly conductive, propelling protons quickly through ice in a way resembling the flow of electrons in a conductor.

    Understanding the behaviour of water at the nanoscale is critical to many new technologies. The success of medical treatments can be reliant on how water trapped in small cavities in our bodies will react. The development of highly conductive electrolytes for batteries, water desalination, and the frictionless transport of fluids are all reliant on predicting how confined water will behave.

    “For all of these areas, understanding the behaviour of water is the foundational question,” said Dr Venkat Kapil from Cambridge’s Yusuf Hamied Department of Chemistry, the paper’s first author. “Our approach allows the study of a single layer of water in a graphene-like channel with unprecedented predictive accuracy.”

    The researchers found that the one-molecule thick layer of water within the nanochannel showed rich and diverse phase behaviour. Their approach predicts several phases which include the hexatic phase–an intermediate between a solid and a liquid–and also a superionic phase, in which the water has a high electrical conductivity.

    “The hexatic phase is neither a solid nor a liquid, but an intermediate, which agrees with previous theories about two-dimensional materials,” said Kapil. “Our approach also suggests that this phase can be seen experimentally by confining water in a graphene channel.

    “The existence of the superionic phase at easily accessible conditions is peculiar, as this phase is generally found in extreme conditions like the core of Uranus and Neptune. One way to visualize this phase is that the oxygen atoms form a solid lattice, and protons flow like a liquid through the lattice, like kids running through a maze.”

    The researchers say this superionic phase could be important for future electrolyte and battery materials as it shows an electrical conductivity 100 to 1,000 times higher than current battery materials.

    The results will not only help with understanding how water works at the nanoscale, but also suggest that ‘nanoconfinement’ could be a new route into finding superionic behaviour of other materials.

    Dr Venkat Kapil is a Junior Research Fellow at Churchill College, Cambridge. The research team included Dr Christoph Schran and Professor Angelos Michaelides from the Yusuf Hamied Department of Chemistry ICE group, working with Professor Chris Pickard at the Department of Materials Science & Metallurgy, Dr Andrea Zen from the University of Naples Federico II and Dr Ji Chen from Peking University.

    Science paper:
    Nature

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford (UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organized into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organized around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020, 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.

    History

    By the late 12th century, the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However, it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence, it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However, Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalized the organizational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence, the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

     
  • richardmitnick 8:54 am on September 13, 2022 Permalink | Reply
    Tags: "Optical rule was made to be broken", "The Moss rule": A trade-off between a material’s optical absorption and how it refracts light., A number of “super-Mossian” semiconductors exist., A way to manipulate light at the nanoscale that breaks the Moss rule, , , , , If you’re going to break a rule with style make sure everybody sees it., Nanotechnology, , Rice engineers’ formula IDs materials for virtual reality and 3D displays,   

    From Rice University: “Optical rule was made to be broken” 

    From Rice University

    9.12.22
    Mike Williams
    713-348-6728
    mikewilliams@rice.edu

    Jeff Falk
    713-348-6775
    jfalk@rice.edu

    Rice engineers’ formula IDs materials for virtual reality and 3D displays

    If you’re going to break a rule with style make sure everybody sees it. That’s the goal of engineers at Rice University who hope to improve screens for virtual reality, 3D displays and optical technologies in general.

    1
    A scanning electron microscope image of an iron pyrite metasurface created at Rice University to test its ability to transcend the Moss rule, which describes a trade-off between a material’s optical absorption and how it refracts light. The research shows potential to improve screens for virtual reality and 3D displays along with optical technologies in general. Courtesy of The Naik Lab.

    Gururaj Naik, an associate professor of electrical and computer engineering at Rice’s George R. Brown School of Engineering, and Applied Physics Graduate Program alumna Chloe Doiron found a way to manipulate light at the nanoscale that breaks the Moss rule, which describes a trade-off between a material’s optical absorption and how it refracts light.

    Apparently, it’s more like a guideline than an actual rule, because a number of “super-Mossian” semiconductors do exist. Fool’s gold, aka iron pyrite, is one of them.

    For their study in Advanced Optical Materials [below], Naik, Doiron and co-author Jacob Khurgin, a professor of electrical and computer engineering at Johns Hopkins University, find iron pyrite works particularly well as a nanophotonic material and could lead to better and thinner displays for wearable devices.

    More important is that they’ve established a method for finding materials that surpass the Moss rule and offer useful light-handling properties for displays and sensing applications.

    “In optics, we’re still limited to a very few materials,” Naik said. “Our periodic table is really small. But there are so many materials that are simply unknown, just because we haven’t developed any insight on how to find them.

    “That’s what we wanted to show: There are physics that can be applied here to short-list the materials, and then help us look for those that can get us to whatever the industrial needs are,” he said.

    “Let’s say I want to design an LED or a waveguide operating at a given wavelength, say 1.5 micrometers,” Naik said. “For this wavelength, I want the smallest possible waveguide, which has the smallest loss, meaning that can confine light the best.”

    Choosing a material with the highest possible refractive index at that wavelength would normally guarantee success, according to Moss. “That’s generally the requirement for all optical devices at the nanoscale,” he said. “The materials must have a bandgap slightly above the wavelength of interest, because that’s where we begin to see less light getting through.

    “Silicon has a refractive index of about 3.4, and is the gold standard,” Naik said. “But we started asking if we could go beyond silicon to an index of 5 or 10.”

    That prompted their search for other optical options. For that, they developed their formula to identify super-Mossian dielectrics.

    “In this work, we give people a recipe that can be applied to the publicly available database of materials to identify them,” Naik said.

    The researchers settled on experiments with iron pyrite after applying their theory to a database of 1,056 compounds, searching in three bandgap ranges for those with the highest refractive indices. Three compounds along with pyrite were identified as super-Mossian candidates, but pyrite’s low cost and long use in photovoltaic and catalytic applications made it the best choice for experiments.

    “Fool’s gold has traditionally been studied in astrophysics because it’s commonly found in interstellar debris,” Naik said. “But in the context of optics, it’s little-known.”

    He noted iron pyrite has been studied for use in solar cells. “In that context, they showed optical properties in the visible wavelengths, where it’s really lossy,” he said. “But that was a clue for us, because when something is extremely lossy in the visible frequencies, it’s likely going to have a very high refractive index in the near-infrared.”

    So the lab made optical-grade iron pyrite films. Tests of the material revealed a refractive index of 4.37 with a band gap of 1.03 electron volts, surpassing the performance predicted by the Moss rule by about 40%.

    That’s great, Naik said, but the search protocol could — and likely will — find materials that are even better.

    “There are many candidates, some of which haven’t even been made,” he said.

    The National Science Foundation (1935446) and the Army Research Office (W911NF2120031) supported the research.

    Science paper:
    Advanced Optical Materials

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings


    Stem Education Coalition

    Rice University [formally William Marsh Rice University] is a private research university in Houston, Texas. It is situated on a 300-acre campus near the Houston Museum District and is adjacent to the Texas Medical Center.
    Opened in 1912 after the murder of its namesake William Marsh Rice, Rice is a research university with an undergraduate focus. Its emphasis on education is demonstrated by a small student body and 6:1 student-faculty ratio. The university has a very high level of research activity. Rice is noted for its applied science programs in the fields of artificial heart research, structural chemical analysis, signal processing, space science, and nanotechnology. Rice has been a member of the Association of American Universities since 1985 and is classified among “R1: Doctoral Universities – Very high research activity”.
    The university is organized into eleven residential colleges and eight schools of academic study, including the Wiess School of Natural Sciences, the George R. Brown School of Engineering, the School of Social Sciences, School of Architecture, Shepherd School of Music and the School of Humanities. Rice’s undergraduate program offers more than fifty majors and two dozen minors, and allows a high level of flexibility in pursuing multiple degree programs. Additional graduate programs are offered through the Jesse H. Jones Graduate School of Business and the Susanne M. Glasscock School of Continuing Studies. Rice students are bound by the strict Honor Code, which is enforced by a student-run Honor Council.
    Rice competes in 14 NCAA Division I varsity sports and is a part of Conference USA, often competing with its cross-town rival the University of Houston. Intramural and club sports are offered in a wide variety of activities such as jiu jitsu, water polo, and crew.
    The university’s alumni include more than two dozen Marshall Scholars and a dozen Rhodes Scholars. Given the university’s close links to National Aeronautics Space Agency, it has produced a significant number of astronauts and space scientists. In business, Rice graduates include CEOs and founders of Fortune 500 companies; in politics, alumni include congressmen, cabinet secretaries, judges, and mayors. Two alumni have won the Nobel Prize.

    Background

    Rice University’s history began with the demise of Massachusetts businessman William Marsh Rice, who had made his fortune in real estate, railroad development and cotton trading in the state of Texas. In 1891, Rice decided to charter a free-tuition educational institute in Houston, bearing his name, to be created upon his death, earmarking most of his estate towards funding the project. Rice’s will specified the institution was to be “a competitive institution of the highest grade” and that only white students would be permitted to attend. On the morning of September 23, 1900, Rice, age 84, was found dead by his valet, Charles F. Jones, and was presumed to have died in his sleep. Shortly thereafter, a large check made out to Rice’s New York City lawyer, signed by the late Rice, aroused the suspicion of a bank teller, due to the misspelling of the recipient’s name. The lawyer, Albert T. Patrick, then announced that Rice had changed his will to leave the bulk of his fortune to Patrick, rather than to the creation of Rice’s educational institute. A subsequent investigation led by the District Attorney of New York resulted in the arrests of Patrick and of Rice’s butler and valet Charles F. Jones, who had been persuaded to administer chloroform to Rice while he slept. Rice’s friend and personal lawyer in Houston, Captain James A. Baker, aided in the discovery of what turned out to be a fake will with a forged signature. Jones was not prosecuted since he cooperated with the district attorney, and testified against Patrick. Patrick was found guilty of conspiring to steal Rice’s fortune and he was convicted of murder in 1901 (he was pardoned in 1912 due to conflicting medical testimony). Baker helped Rice’s estate direct the fortune, worth $4.6 million in 1904 ($131 million today), towards the founding of what was to be called the Rice Institute, later to become Rice University. The board took control of the assets on April 29 of that year.

    In 1907, the Board of Trustees selected the head of the Department of Mathematics and Astronomy at Princeton University, Edgar Odell Lovett, to head the Institute, which was still in the planning stages. He came recommended by Princeton University‘s president, Woodrow Wilson. In 1908, Lovett accepted the challenge, and was formally inaugurated as the Institute’s first president on October 12, 1912. Lovett undertook extensive research before formalizing plans for the new Institute, including visits to 78 institutions of higher learning across the world on a long tour between 1908 and 1909. Lovett was impressed by such things as the aesthetic beauty of the uniformity of the architecture at the University of Pennsylvania, a theme which was adopted by the Institute, as well as the residential college system at University of Cambridge (UK) in England, which was added to the Institute several decades later. Lovett called for the establishment of a university “of the highest grade,” “an institution of liberal and technical learning” devoted “quite as much to investigation as to instruction.” [We must] “keep the standards up and the numbers down,” declared Lovett. “The most distinguished teachers must take their part in undergraduate teaching, and their spirit should dominate it all.”
    Establishment and growth

    In 1911, the cornerstone was laid for the Institute’s first building, the Administration Building, now known as Lovett Hall in honor of the founding president. On September 23, 1912, the 12th anniversary of William Marsh Rice’s murder, the William Marsh Rice Institute for the Advancement of Letters, Science, and Art began course work with 59 enrolled students, who were known as the “59 immortals,” and about a dozen faculty. After 18 additional students joined later, Rice’s initial class numbered 77, 48 male and 29 female. Unusual for the time, Rice accepted coeducational admissions from its beginning, but on-campus housing would not become co-ed until 1957.

    Three weeks after opening, a spectacular international academic festival was held, bringing Rice to the attention of the entire academic world.

    Per William Marsh Rice’s will and Rice Institute’s initial charter, the students paid no tuition. Classes were difficult, however, and about half of Rice’s students had failed after the first 1912 term. At its first commencement ceremony, held on June 12, 1916, Rice awarded 35 bachelor’s degrees and one master’s degree. That year, the student body also voted to adopt the Honor System, which still exists today. Rice’s first doctorate was conferred in 1918 on mathematician Hubert Evelyn Bray.

    The Founder’s Memorial Statue, a bronze statue of a seated William Marsh Rice, holding the original plans for the campus, was dedicated in 1930, and installed in the central academic quad, facing Lovett Hall. The statue was crafted by John Angel. In 2020, Rice students petitioned the university to take down the statue due to the founder’s history as slave owner.

    During World War II, Rice Institute was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program, which offered students a path to a Navy commission.

    The residential college system proposed by President Lovett was adopted in 1958, with the East Hall residence becoming Baker College, South Hall residence becoming Will Rice College, West Hall becoming Hanszen College, and the temporary Wiess Hall becoming Wiess College.

    In 1959, the Rice Institute Computer went online. 1960 saw Rice Institute formally renamed William Marsh Rice University. Rice acted as a temporary intermediary in the transfer of land between Humble Oil and Refining Company and NASA, for the creation of NASA’s Manned Spacecraft Center (now called Johnson Space Center) in 1962. President John F. Kennedy then made a speech at Rice Stadium reiterating that the United States intended to reach the moon before the end of the decade of the 1960s, and “to become the world’s leading space-faring nation”. The relationship of NASA with Rice University and the city of Houston has remained strong to the present day.

    The original charter of Rice Institute dictated that the university admit and educate, tuition-free, “the white inhabitants of Houston, and the state of Texas”. In 1963, the governing board of Rice University filed a lawsuit to allow the university to modify its charter to admit students of all races and to charge tuition. Ph.D. student Raymond Johnson became the first black Rice student when he was admitted that year. In 1964, Rice officially amended the university charter to desegregate its graduate and undergraduate divisions. The Trustees of Rice University prevailed in a lawsuit to void the racial language in the trust in 1966. Rice began charging tuition for the first time in 1965. In the same year, Rice launched a $33 million ($268 million) development campaign. $43 million ($283 million) was raised by its conclusion in 1970. In 1974, two new schools were founded at Rice, the Jesse H. Jones Graduate School of Management and the Shepherd School of Music. The Brown Foundation Challenge, a fund-raising program designed to encourage annual gifts, was launched in 1976 and ended in 1996 having raised $185 million. The Rice School of Social Sciences was founded in 1979.

    On-campus housing was exclusively for men for the first forty years, until 1957. Jones College was the first women’s residence on the Rice campus, followed by Brown College. According to legend, the women’s colleges were purposefully situated at the opposite end of campus from the existing men’s colleges as a way of preserving campus propriety, which was greatly valued by Edgar Odell Lovett, who did not even allow benches to be installed on campus, fearing that they “might lead to co-fraternization of the sexes”. The path linking the north colleges to the center of campus was given the tongue-in-cheek name of “Virgin’s Walk”. Individual colleges became coeducational between 1973 and 1987, with the single-sex floors of colleges that had them becoming co-ed by 2006. By then, several new residential colleges had been built on campus to handle the university’s growth, including Lovett College, Sid Richardson College, and Martel College.

    Late twentieth and early twenty-first century

    The Economic Summit of Industrialized Nations was held at Rice in 1990. Three years later, in 1993, the James A. Baker III Institute for Public Policy was created. In 1997, the Edythe Bates Old Grand Organ and Recital Hall and the Center for Nanoscale Science and Technology, renamed in 2005 for the late Nobel Prize winner and Rice professor Richard E. Smalley, were dedicated at Rice. In 1999, the Center for Biological and Environmental Nanotechnology was created. The Rice Owls baseball team was ranked #1 in the nation for the first time in that year (1999), holding the top spot for eight weeks.

    In 2003, the Owls won their first national championship in baseball, which was the first for the university in any team sport, beating Southwest Missouri State in the opening game and then the University of Texas and Stanford University twice each en route to the title. In 2008, President David Leebron issued a ten-point plan titled “Vision for the Second Century” outlining plans to increase research funding, strengthen existing programs, and increase collaboration. The plan has brought about another wave of campus constructions, including the erection the newly renamed BioScience Research Collaborative building (intended to foster collaboration with the adjacent Texas Medical Center), a new recreational center and the renovated Autry Court basketball stadium, and the addition of two new residential colleges, Duncan College and McMurtry College.

    Beginning in late 2008, the university considered a merger with Baylor College of Medicine, though the merger was ultimately rejected in 2010. Rice undergraduates are currently guaranteed admission to Baylor College of Medicine upon graduation as part of the Rice/Baylor Medical Scholars program. According to History Professor John Boles’ recent book University Builder: Edgar Odell Lovett and the Founding of the Rice Institute, the first president’s original vision for the university included hopes for future medical and law schools.

    In 2018, the university added an online MBA program, MBA@Rice.

    In June 2019, the university’s president announced plans for a task force on Rice’s “past in relation to slave history and racial injustice”, stating that “Rice has some historical connections to that terrible part of American history and the segregation and racial disparities that resulted directly from it”.

    Campus

    Rice’s campus is a heavily wooded 285-acre (115-hectare) tract of land in the museum district of Houston, located close to the city of West University Place.

    Five streets demarcate the campus: Greenbriar Street, Rice Boulevard, Sunset Boulevard, Main Street, and University Boulevard. For most of its history, all of Rice’s buildings have been contained within this “outer loop”. In recent years, new facilities have been built close to campus, but the bulk of administrative, academic, and residential buildings are still located within the original pentagonal plot of land. The new Collaborative Research Center, all graduate student housing, the Greenbriar building, and the Wiess President’s House are located off-campus.

    Rice prides itself on the amount of green space available on campus; there are only about 50 buildings spread between the main entrance at its easternmost corner, and the parking lots and Rice Stadium at the West end. The Lynn R. Lowrey Arboretum, consisting of more than 4000 trees and shrubs (giving birth to the legend that Rice has a tree for every student), is spread throughout the campus.
    The university’s first president, Edgar Odell Lovett, intended for the campus to have a uniform architecture style to improve its aesthetic appeal. To that end, nearly every building on campus is noticeably Byzantine in style, with sand and pink-colored bricks, large archways and columns being a common theme among many campus buildings. Noteworthy exceptions include the glass-walled Brochstein Pavilion, Lovett College with its Brutalist-style concrete gratings, Moody Center for the Arts with its contemporary design, and the eclectic-Mediterranean Duncan Hall. In September 2011, Travel+Leisure listed Rice’s campus as one of the most beautiful in the United States.

    The university and Houston Independent School District jointly established The Rice School-a kindergarten through 8th grade public magnet school in Houston. The school opened in August 1994. Through Cy-Fair ISD Rice University offers a credit course based summer school for grades 8 through 12. They also have skills based classes during the summer in the Rice Summer School.

    Innovation District

    In early 2019 Rice announced the site where the abandoned Sears building in Midtown Houston stood along with its surrounding area would be transformed into the “The Ion” the hub of the 16-acre South Main Innovation District. President of Rice David Leebron stated “We chose the name Ion because it’s from the Greek ienai, which means ‘go’. We see it as embodying the ever-forward motion of discovery, the spark at the center of a truly original idea.”

    Students of Rice and other Houston-area colleges and universities making up the Student Coalition for a Just and Equitable Innovation Corridor are advocating for a Community Benefits Agreement (CBA)-a contractual agreement between a developer and a community coalition. Residents of neighboring Third Ward and other members of the Houston Coalition for Equitable Development Without Displacement (HCEDD) have faced consistent opposition from the City of Houston and Rice Management Company to a CBA as traditionally defined in favor of an agreement between the latter two entities without a community coalition signatory.

    Organization

    Rice University is chartered as a non-profit organization and is governed by a privately appointed board of trustees. The board consists of a maximum of 25 voting members who serve four-year terms. The trustees serve without compensation and a simple majority of trustees must reside in Texas including at least four within the greater Houston area. The board of trustees delegates its power by appointing a president to serve as the chief executive of the university. David W. Leebron was appointed president in 2004 and succeeded Malcolm Gillis who served since 1993. The provost six vice presidents and other university officials report to the president. The president is advised by a University Council composed of the provost, eight members of the Faculty Council, two staff members, one graduate student, and two undergraduate students. The president presides over a Faculty Council which has the authority to alter curricular requirements, establish new degree programs, and approve candidates for degrees.

    The university’s academics are organized into several schools. Schools that have undergraduate and graduate programs include:

    The Rice University School of Architecture
    The George R. Brown School of Engineering
    The School of Humanities
    The Shepherd School of Music
    The Wiess School of Natural Sciences
    The Rice University School of Social Sciences

    Two schools have only graduate programs:

    The Jesse H. Jones Graduate School of Management
    The Susanne M. Glasscock School of Continuing Studies

    Rice’s undergraduate students benefit from a centralized admissions process which admits new students to the university as a whole, rather than a specific school (the schools of Music and Architecture are decentralized). Students are encouraged to select the major path that best suits their desires; a student can later decide that they would rather pursue study in another field or continue their current coursework and add a second or third major. These transitions are designed to be simple at Rice with students not required to decide on a specific major until their sophomore year of study.

    Rice’s academics are organized into six schools which offer courses of study at the graduate and undergraduate level, with two more being primarily focused on graduate education, while offering select opportunities for undergraduate students. Rice offers 360 degrees in over 60 departments. There are 40 undergraduate degree programs, 51 masters programs, and 29 doctoral programs.

    Faculty members of each of the departments elect chairs to represent the department to each School’s dean and the deans report to the Provost who serves as the chief officer for academic affairs.

    Rice Management Company

    The Rice Management Company manages the $6.5 billion Rice University endowment (June 2019) and $957 million debt. The endowment provides 40% of Rice’s operating revenues. Allison Thacker is the President and Chief Investment Officer of the Rice Management Company, having joined the university in 2011.

    Academics

    Rice is a medium-sized highly residential research university. The majority of enrollments are in the full-time four-year undergraduate program emphasizing arts & sciences and professions. There is a high graduate coexistence with the comprehensive graduate program and a very high level of research activity. It is accredited by the Southern Association of Colleges and Schools Commission on Colleges as well as the professional accreditation agencies for engineering, management, and architecture.

    Each of Rice’s departments is organized into one of three distribution groups, and students whose major lies within the scope of one group must take at least 3 courses of at least 3 credit hours each of approved distribution classes in each of the other two groups, as well as completing one physical education course as part of the LPAP (Lifetime Physical Activity Program) requirement. All new students must take a Freshman Writing Intensive Seminar (FWIS) class, and for students who do not pass the university’s writing composition examination (administered during the summer before matriculation), FWIS 100, a writing class, becomes an additional requirement.

    The majority of Rice’s undergraduate degree programs grant B.S. or B.A. degrees. Rice has recently begun to offer minors in areas such as business, energy and water sustainability, and global health.

    Student body

    As of fall 2014, men make up 52% of the undergraduate body and 64% of the professional and post-graduate student body. The student body consists of students from all 50 states, including the District of Columbia, two U.S. Territories, and 83 foreign countries. Forty percent of degree-seeking students are from Texas.

    Research centers and resources

    Rice is noted for its applied science programs in the fields of nanotechnology, artificial heart research, structural chemical analysis, signal processing and space science.

    Rice Alliance for Technology and Entrepreneurship – supports entrepreneurs and early-stage technology ventures in Houston and Texas through education, collaboration, and research, ranked No. 1 among university business incubators.
    Baker Institute for Public Policy – a leading nonpartisan public policy think-tank
    BioScience Research Collaborative (BRC) – interdisciplinary, cross-campus, and inter-institutional resource between Rice University and Texas Medical Center
    Boniuk Institute – dedicated to religious tolerance and advancing religious literacy, respect and mutual understanding
    Center for African and African American Studies – fosters conversations on topics such as critical approaches to race and racism, the nature of diasporic histories and identities, and the complexity of Africa’s past, present and future
    Chao Center for Asian Studies – research hub for faculty, students and post-doctoral scholars working in Asian studies
    Center for the Study of Women, Gender, and Sexuality (CSWGS) – interdisciplinary academic programs and research opportunities, including the journal Feminist Economics
    Data to Knowledge Lab (D2K) – campus hub for experiential learning in data science
    Digital Signal Processing (DSP) – center for education and research in the field of digital signal processing
    Ethernest Hackerspace – student-run hackerspace for undergraduate engineering students sponsored by the ECE department and the IEEE student chapter
    Humanities Research Center (HRC) – identifies, encourages, and funds innovative research projects by faculty, visiting scholars, graduate, and undergraduate students in the School of Humanities and beyond
    Institute of Biosciences and Bioengineering (IBB) – facilitates the translation of interdisciplinary research and education in biosciences and bioengineering
    Ken Kennedy Institute for Information Technology – advances applied interdisciplinary research in the areas of computation and information technology
    Kinder Institute for Urban Research – conducts the Houston Area Survey, “the nation’s longest running study of any metropolitan region’s economy, population, life experiences, beliefs and attitudes”
    Laboratory for Nanophotonics (LANP) – a resource for education and research breakthroughs and advances in the broad, multidisciplinary field of nanophotonics
    Moody Center for the Arts – experimental arts space featuring studio classrooms, maker space, audiovisual editing booths, and a gallery and office space for visiting national and international artists
    OpenStax CNX (formerly Connexions) and OpenStax – an open source platform and open access publisher, respectively, of open educational resources
    Oshman Engineering Design Kitchen (OEDK) – space for undergraduate students to design, prototype and deploy solutions to real-world engineering challenges
    Rice Cinema – an independent theater run by the Visual and Dramatic Arts department at Rice which screens documentaries, foreign films, and experimental cinema and hosts film festivals and lectures since 1970
    Rice Center for Engineering Leadership (RCEL) – inspires, educates, and develops ethical leaders in technology who will excel in research, industry, non-engineering career paths, or entrepreneurship
    Religion and Public Life Program (RPLP) – a research, training and outreach program working to advance understandings of the role of religion in public life
    Rice Design Alliance (RDA) – outreach and public programs of the Rice School of Architecture
    Rice Center for Quantum Materials (RCQM) – organization dedicated to research and higher education in areas relating to quantum phenomena
    Rice Neuroengineering Initiative (NEI) – fosters research collaborations in neural engineering topics
    Rice Space Institute (RSI) – fosters programs in all areas of space research
    Smalley-Curl Institute for Nanoscale Science and Technology (SCI) – the nation’s first nanotechnology center
    Welch Institute for Advanced Materials – collaborative research institute to support the foundational research for discoveries in materials science, similar to the model of Salk Institute and Broad Institute
    Woodson Research Center Special Collections & Archives – publisher of print and web-based materials highlighting the department’s primary source collections such as the Houston African American, Asian American, and Jewish History Archives, University Archives, rare books, and hip hop/rap music-related materials from the Swishahouse record label and Houston Folk Music Archive, etc.

    Residential colleges

    In 1957, Rice University implemented a residential college system, which was proposed by the university’s first president, Edgar Odell Lovett. The system was inspired by existing systems in place at University of Oxford (UK) and University of Cambridge (UK) and at several other universities in the United States, most notably Yale University. The existing residences known as East, South, West, and Wiess Halls became Baker, Will Rice, Hanszen, and Wiess Colleges, respectively.

    Student-run media

    Rice has a weekly student newspaper (The Rice Thresher), a yearbook (The Campanile), college radio station (KTRU Rice Radio), and now defunct, campus-wide student television station (RTV5). They are based out of the RMC student center. In addition, Rice hosts several student magazines dedicated to a range of different topics; in fact, the spring semester of 2008 saw the birth of two such magazines, a literary sex journal called Open and an undergraduate science research magazine entitled Catalyst.

    The Rice Thresher is published every Wednesday and is ranked by Princeton Review as one of the top campus newspapers nationally for student readership. It is distributed around campus, and at a few other local businesses and has a website. The Thresher has a small, dedicated staff and is known for its coverage of campus news, open submission opinion page, and the satirical Backpage, which has often been the center of controversy. The newspaper has won several awards from the College Media Association, Associated Collegiate Press and Texas Intercollegiate Press Association.

    The Rice Campanile was first published in 1916 celebrating Rice’s first graduating class. It has published continuously since then, publishing two volumes in 1944 since the university had two graduating classes due to World War II. The website was created sometime in the early to mid 2000’s. The 2015 won the first place Pinnacle for best yearbook from College Media Association.

    KTRU Rice Radio is the student-run radio station. Though most DJs are Rice students, anyone is allowed to apply. It is known for playing genres and artists of music and sound unavailable on other radio stations in Houston, and often, the US. The station takes requests over the phone or online. In 2000 and 2006, KTRU won Houston Press’ Best Radio Station in Houston. In 2003, Rice alum and active KTRU DJ DL’s hip-hip show won Houston PressBest Hip-hop Radio Show. On August 17, 2010, it was announced that Rice University had been in negotiations to sell the station’s broadcast tower, FM frequency and license to the University of Houston System to become a full-time classical music and fine arts programming station. The new station, KUHA, would be operated as a not-for-profit outlet with listener supporters. The FCC approved the sale and granted the transfer of license to the University of Houston System on April 15, 2011, however, KUHA proved to be an even larger failure and so after four and a half years of operation, The University of Houston System announced that KUHA’s broadcast tower, FM frequency and license were once again up for sale in August 2015. KTRU continued to operate much as it did previously, streaming live on the Internet, via apps, and on HD2 radio using the 90.1 signal. Under student leadership, KTRU explored the possibility of returning to FM radio for a number of years. In spring 2015, KTRU was granted permission by the FCC to begin development of a new broadcast signal via LPFM radio. On October 1, 2015, KTRU made its official return to FM radio on the 96.1 signal. While broadcasting on HD2 radio has been discontinued, KTRU continues to broadcast via internet in addition to its LPFM signal.

    RTV5 is a student-run television network available as channel 5 on campus. RTV5 was created initially as Rice Broadcast Television in 1997; RBT began to broadcast the following year in 1998, and aired its first live show across campus in 1999. It experienced much growth and exposure over the years with successful programs like Drinking with Phil, The Meg & Maggie Show, which was a variety and call-in show, a weekly news show, and extensive live coverage in December 2000 of the shut down of KTRU by the administration. In spring 2001, the Rice undergraduate community voted in the general elections to support RBT as a blanket tax organization, effectively providing a yearly income of $10,000 to purchase new equipment and provide the campus with a variety of new programming. In the spring of 2005, RBT members decided the station needed a new image and a new name: Rice Television 5. One of RTV5’s most popular shows was the 24-hour show, where a camera and couch placed in the RMC stayed on air for 24 hours. One such show is held in fall and another in spring, usually during a weekend allocated for visits by prospective students. RTV5 has a video on demand site at rtv5.rice.edu. The station went off the air in 2014 and changed its name to Rice Video Productions. In 2015 the group’s funding was threatened, but ultimately maintained. In 2016 the small student staff requested to no longer be a blanket-tax organization. In the fall of 2017, the club did not register as a club.

    The Rice Review, also known as R2, is a yearly student-run literary journal at Rice University that publishes prose, poetry, and creative nonfiction written by undergraduate students, as well as interviews. The journal was founded in 2004 by creative writing professor and author Justin Cronin.

    The Rice Standard was an independent, student-run variety magazine modeled after such publications as The New Yorker and Harper’s. Prior to fall 2009, it was regularly published three times a semester with a wide array of content, running from analyses of current events and philosophical pieces to personal essays, short fiction and poetry. In August 2009, The Standard transitioned to a completely online format with the launch of their redesigned website, http://www.ricestandard.org. The first website of its kind on Rice’s campus, The Standard featured blog-style content written by and for Rice students. The Rice Standard had around 20 regular contributors, and the site features new content every day (including holidays). In 2017 no one registered The Rice Standard as a club within the university.

    Open, a magazine dedicated to “literary sex content,” predictably caused a stir on campus with its initial publication in spring 2008. A mixture of essays, editorials, stories and artistic photography brought Open attention both on campus and in the Houston Chronicle. The third and last annual edition of Open was released in spring of 2010.

    Athletics

    Rice plays in NCAA Division I athletics and is part of Conference USA. Rice was a member of the Western Athletic Conference before joining Conference USA in 2005. Rice is the second-smallest school, measured by undergraduate enrollment, competing in NCAA Division I FBS football, only ahead of Tulsa.

    The Rice baseball team won the 2003 College World Series, defeating Stanford, giving Rice its only national championship in a team sport. The victory made Rice University the smallest school in 51 years to win a national championship at the highest collegiate level of the sport. The Rice baseball team has played on campus at Reckling Park since the 2000 season. As of 2010, the baseball team has won 14 consecutive conference championships in three different conferences: the final championship of the defunct Southwest Conference, all nine championships while a member of the Western Athletic Conference, and five more championships in its first five years as a member of Conference USA. Additionally, Rice’s baseball team has finished third in both the 2006 and 2007 College World Series tournaments. Rice now has made six trips to Omaha for the CWS. In 2004, Rice became the first school ever to have three players selected in the first eight picks of the MLB draft when Philip Humber, Jeff Niemann, and Wade Townsend were selected third, fourth, and eighth, respectively. In 2007, Joe Savery was selected as the 19th overall pick.

    Rice has been very successful in women’s sports in recent years. In 2004–05, Rice sent its women’s volleyball, soccer, and basketball teams to their respective NCAA tournaments. The women’s swim team has consistently brought at least one member of their team to the NCAA championships since 2013. In 2005–06, the women’s soccer, basketball, and tennis teams advanced, with five individuals competing in track and field. In 2006–07, the Rice women’s basketball team made the NCAA tournament, while again five Rice track and field athletes received individual NCAA berths. In 2008, the women’s volleyball team again made the NCAA tournament. In 2011 the Women’s Swim team won their first conference championship in the history of the university. This was an impressive feat considering they won without having a diving team. The team repeated their C-USA success in 2013 and 2014. In 2017, the women’s basketball team, led by second-year head coach Tina Langley, won the Women’s Basketball Invitational, defeating UNC-Greensboro 74–62 in the championship game at Tudor Fieldhouse. Though not a varsity sport, Rice’s ultimate frisbee women’s team, named Torque, won consecutive Division III national championships in 2014 and 2015.

    In 2006, the football team qualified for its first bowl game since 1961, ending the second-longest bowl drought in the country at the time. On December 22, 2006, Rice played in the New Orleans Bowl in New Orleans, Louisiana against the Sun Belt Conference champion, Troy. The Owls lost 41–17. The bowl appearance came after Rice had a 14-game losing streak from 2004–05 and went 1–10 in 2005. The streak followed an internally authorized 2003 McKinsey report that stated football alone was responsible for a $4 million deficit in 2002. Tensions remained high between the athletic department and faculty, as a few professors who chose to voice their opinion were in favor of abandoning the football program. The program success in 2006, the Rice Renaissance, proved to be a revival of the Owl football program, quelling those tensions. David Bailiff took over the program in 2007 and has remained head coach. Jarett Dillard set an NCAA record in 2006 by catching a touchdown pass in 13 consecutive games and took a 15-game overall streak into the 2007 season.

    In 2008, the football team posted a 9-3 regular season, capping off the year with a 38–14 victory over Western Michigan University in the Texas Bowl. The win over Western Michigan marked the Owls’ first bowl win in 45 years.

    Rice Stadium also serves as the performance venue for the university’s Marching Owl Band, or “MOB.” Despite its name, the MOB is a scatter band that focuses on performing humorous skits and routines rather than traditional formation marching.

    Rice Owls men’s basketball won 10 conference titles in the former Southwest Conference (1918, 1935*, 1940, 1942*, 1943*, 1944*, 1945, 1949*, 1954*, 1970; * denotes shared title). Most recently, guard Morris Almond was drafted in the first round of the 2007 NBA Draft by the Utah Jazz. Rice named former Cal Bears head coach Ben Braun as head basketball coach to succeed Willis Wilson, fired after Rice finished the 2007–2008 season with a winless (0-16) conference record and overall record of 3-27.

     
  • richardmitnick 4:05 pm on September 8, 2022 Permalink | Reply
    Tags: "Entanglement" helps protect delicate quantum information and correct errors in quantum computing., "Quantum Mechanics": the laws of physics that govern particles and other very tiny things - foreign to General or Special Relativity, "Through the quantum looking glass", A metasurface is a synthetic material that interacts with light and other electromagnetic waves in ways conventional materials can’t., A thin device triggers one of quantum mechanics’ strangest and most useful phenomena., , Light goes in and entangled photons come out., Nanotechnology, , Some of the entangled pairs can be indistinguishable from each other., The DOE Office of Science, The DOE's Los Alamos National Laboratories, , The MPG Institute for the Science of Light, This device is designed to produce complex webs of entangled photons — not just one pair at a time but several pairs all entangled together., Until now the only way to produce such results was with multiple tables full of lasers and specialized crystals and other optical equipment., When scientists say photons are “entangled” they mean they are linked in such a way that actions on one affect the other no matter where or how far apart the photons are in the universe.   

    From The DOE’s Sandia National Laboratories And The MPG Institute for the Science of Light [MPG Institut für die Physik des Lichts] (DE) And The DOE’s Los Alamos National Laboratory: “Through the quantum looking glass” 

    From The DOE’s Sandia National Laboratories

    9.8.22
    TROY RUMMLER

    A thin device triggers one of quantum mechanics’ strangest and most useful phenomena.

    1
    QUANTUM LOOKING GLASS — Green laser light illuminates a metasurface that is a hundred times thinner than paper, which was fabricated at the Center for Integrated Nanotechnologies. CINT is jointly operated by Sandia and The DOE’s Los Alamos National Laboratories for The DOE Office of Science. (Photo by Craig Fritz)

    An ultrathin invention could make future computing, sensing and encryption technologies remarkably smaller and more powerful by helping scientists control a strange but useful phenomenon of quantum mechanics, according to new research recently published in the journal Science [below].

    Scientists at Sandia and The MPG Institute for the Science of Light have reported on a device that could replace a roomful of equipment to link photons in a bizarre quantum effect called entanglement. This device — a kind of nano-engineered material called a metasurface — paves the way for entangling photons in complex ways that have not been possible with compact technologies.

    When scientists say photons are entangled they mean they are linked in such a way that actions on one affect the other no matter where or how far apart the photons are in the universe. It is an effect of quantum mechanics, the laws of physics that govern particles and other very tiny things.

    Although the phenomenon might seem odd, scientists have harnessed it to process information in new ways. For example, entanglement helps protect delicate quantum information and correct errors in quantum computing, a field that could someday have sweeping impacts in areas such as national security, science and finance. Entanglement is also enabling new, advanced encryption methods for secure communication.

    Research for the groundbreaking device, which is a hundred times thinner than a sheet of paper, was performed, in part, at the Center for Integrated Nanotechnologies, a DOE Office of Science user facility operated by Sandia and Los Alamos national laboratories. Sandia’s team received funding from the Office of Science, Basic Energy Sciences program.

    Light goes in and entangled photons come out

    The new metasurface acts as a doorway to this unusual quantum phenomenon. In some ways, it’s like the mirror in Lewis Carrol’s Through the Looking-Glass, through which the young protagonist Alice experiences a strange, new world.

    Instead of walking through their new device, scientists shine a laser through it. The beam of light passes through an ultrathin sample of glass covered in nanoscale structures made of a common semiconductor material called gallium arsenide.

    “It scrambles all the optical fields,” said Sandia senior scientist Igal Brener, an expert in a field called nonlinear optics who led the Sandia team. Occasionally, he said, a pair of entangled photons at different wavelengths emerge from the sample in the same direction as the incoming laser beam.

    Igal said he is excited about this device because it is designed to produce complex webs of entangled photons — not just one pair at a time, but several pairs all entangled together, and some that can be indistinguishable from each other. Some technologies need these complex varieties of so-called multi-entanglement for sophisticated information processing schemes.

    Other miniature technologies based on silicon photonics can also entangle photons but without the much-needed level of complex multi-entanglement. Until now the only way to produce such results was with multiple tables full of lasers and specialized crystals and other optical equipment.

    “It is quite complicated and kind of intractable when this multi-entanglement needs more than two or three pairs,” Igal said. “These nonlinear metasurfaces essentially achieve this task in one sample when before it would have required incredibly complex optical setups.”

    The Science paper outlines how the team successfully tuned their metasurface to produce entangled photons with varying wavelengths, a critical precursor to generating several pairs of intricately entangled photons simultaneously.

    However, the researchers note in their paper that the efficiency of their device — the rate at which they can generate groups of entangled photons — is lower than that of other techniques and needs to be improved.

    What is a metasurface?

    A metasurface is a synthetic material that interacts with light and other electromagnetic waves in ways conventional materials can’t. Commercial industries, said Igal, are busy developing metasurfaces because they take up less space and can do more with light than, for instance, a traditional lens.

    “You now can replace lenses and thick optical elements with metasurfaces,” Igal said. “Those types of metasurfaces will revolutionize consumer products.”

    Sandia is one of the leading institutions in the world performing research in metasurfaces and metamaterials. Between its Microsystems Engineering, Science and Applications complex, which manufactures compound semiconductors, and the nearby Center for Integrated Nanotechnologies, researchers have access to all the specialized tools they need to design, fabricate and analyze these ambitious new materials.

    3
    IT TAKES TWO TO ENTANGLE — In this artist rendering of a metasurface, light passes through tiny, rectangular structures — the building blocks of the metasurface — and creates pairs of entangled photons at different wavelengths. The device was designed, fabricated and tested through a partnership between Sandia and the Max Planck Institute for the Science of Light. (Image courtesy of Igal Brener)

    “The work was challenging as it required precise nanofabrication technology to obtain the sharp, narrowband optical resonances that seeds the quantum process of the work,” said Sylvain Gennaro, a former postdoctoral researcher at Sandia who worked on several aspects of the project.

    The device was designed, fabricated and tested through a partnership between Sandia and a research group led by physicist Maria Chekhova, an expert in the quantum entanglement of photons at the MPG Institute for the Science of Light.

    “Metasurfaces are leading to a paradigm shift in quantum optics, combining ultrasmall sources of quantum light with far-reaching possibilities for quantum state engineering,” said Tomás Santiago-Cruz, a member of the MPG team and first author on the paper.

    Igal, who has studied metamaterials for more than a decade, said this newest research could possibly spark a second revolution — one that sees these materials developed not just as a new kind of lens, but as a technology for quantum information processing and other new applications.

    “There was one wave with metasurfaces that is already well established and on its way. Maybe there is a second wave of innovative applications coming,” he said.

    Science paper:
    Science

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Sandia National Laboratories managed and operated by the National Technology and Engineering Solutions of Sandia (a wholly owned subsidiary of Honeywell International), is one of three National Nuclear Security Administration research and development laboratories in the United States. Their primary mission is to develop, engineer, and test the non-nuclear components of nuclear weapons and high technology. Headquartered in Central New Mexico near the Sandia Mountains, on Kirtland Air Force Base in Albuquerque, Sandia also has a campus in Livermore, California, next to DOE’s Lawrence Livermore National Laboratory, and a test facility in Waimea, Kauai, Hawaii.

    It is Sandia’s mission to maintain the reliability and surety of nuclear weapon systems, conduct research and development in arms control and nonproliferation technologies, and investigate methods for the disposal of the United States’ nuclear weapons program’s hazardous waste.

    Other missions include research and development in energy and environmental programs, as well as the surety of critical national infrastructures. In addition, Sandia is home to a wide variety of research including computational biology; mathematics (through its Computer Science Research Institute); materials science; alternative energy; psychology; MEMS; and cognitive science initiatives.

    Sandia formerly hosted ASCI Red, one of the world’s fastest supercomputers until its recent decommission, and now hosts ASCI Red Storm supercomputer, originally known as Thor’s Hammer.

    Sandia is also home to the Z Machine.


    The Z Machine is the largest X-ray generator in the world and is designed to test materials in conditions of extreme temperature and pressure. It is operated by Sandia National Laboratories to gather data to aid in computer modeling of nuclear guns. In December 2016, it was announced that National Technology and Engineering Solutions of Sandia, under the direction of Honeywell International, would take over the management of Sandia National Laboratories starting on May 1, 2017.


    The MPG Institute for the Science of Light [MPG Institut für die Physik des Lichts] (DE) performs basic research in optical metrology, optical communication, new optical materials, plasmonics and nanophotonics and optical applications in biology and medicine. It is part of the Max Planck Society and was founded on January 1, 2009 in Erlangen near Nuremberg. The institute is based on the Max Planck Research Group “Optics, Information and Photonics”, which was founded in 2004 at the The Friedrich–Alexander University Erlangen–Nürnberg [Friedrich-Alexander-Universität Erlangen-Nürnberg](DE), as a precursor. The institute currently comprises four divisions.

    The institute currently is organized in four divisions, each led by a director with equal rights. The institute researchers are supported by several scientifically active technology development and service units. It is also the home of several MPG Research Groups that are organizationally independent of the divisions. The MPL hosts an International MPG Research School Physics of Light. Through the appointment of the directors and affiliated professors as university professors, through several affiliated groups and participation in graduate schools, a collaboration between the MPL and the University of Erlangen-Nuremberg is maintained.

    The MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

    The DOE’s Los Alamos National Laboratory mission is to solve national security challenges through scientific excellence.

    LANL campus

    The DOE’s Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is managed by Triad, a public service oriented, national security science organization equally owned by its three founding members: The University of California Texas A&M University, Battelle Memorial Institute (Battelle) for the Department of Energy’s National Nuclear Security Administration. Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

     
  • richardmitnick 1:24 pm on September 5, 2022 Permalink | Reply
    Tags: "Researchers devise tunable conducting edge", , , Nanotechnology, ,   

    From The University of California-Riverside: “Researchers devise tunable conducting edge” 

    UC Riverside bloc

    From The University of California-Riverside

    1
    Technology reported in UC Riverside-led study has nanoelectronic applications. credit: Jae Young Ju/iStock/Getty Images Plus.

    9.6.22
    Iqbal Pittalwala
    Senior Public Information Officer
    (951) 827-6050
    iqbal.pittalwala@ucr.edu

    A research team led by a physicist at the University of California-Riverside, has demonstrated a new magnetized state in a monolayer of tungsten ditelluride, or WTe2, a new quantum material. Called a magnetized or ferromagnetic quantum spin Hall insulator, this material of one-atom thickness has an insulating interior but a conducting edge, which has important implications for controlling electron flow in nanodevices.

    In a typical conductor, electrical current flows evenly everywhere. Insulators, on the other hand, do not readily conduct electricity. Ordinarily, monolayer WTe2 is a special insulator with a conducting edge; magnetizing it bestows upon it more unusual properties.

    1
    In their experiments, the researchers stacked monolayer WTe2 with Cr2Ge2Te6, or CGT. (Shi lab/UC Riverside)

    “We stacked monolayer WTe2 with an insulating ferromagnet of several atomic layer thickness — of Cr2Ge2Te6, or simply CGT — and found that the WTe2 had developed ferromagnetism with a conducting edge,” said Jing Shi, a distinguished professor of physics and astronomy at UCR, who led the study. “The edge flow of the electrons is unidirectional and can be made to switch directions with the use of an external magnetic field.”

    Shi explained that when only the edge conducts electricity, the size of the interior of the material is inconsequential, allowing electronic devices that use such materials to be made smaller — indeed, nearly as small as the conducting edge. Because devices using this material would consume less power and dissipate less energy, they could be made more energy efficient. Batteries using this technology, for example, would last longer.

    Study results appear in Nature Communications [below].

    Currently, the technology works only at very low temperatures; CGT is ferromagnetic at around 60 K (or -350 F). The goal of future research would be to make the technology work at higher temperatures, allowing for many nanoelectronic applications such as non-volatile memory chips used in computers and cell phones.

    According to Shi, the conducting edge in ideal quantum spin Hall insulators comprises two narrow channels running alongside each other, akin to a two-lane highway with cars driving in opposite directions. Electrons flowing in one channel cannot cross over to the other channel, Shi said, unless impurities are introduced. The conducting edge in monolayer WTe2 was first visualized in an earlier study by coauthor Yongtao Cui, an associate professor of physics and astronomy at UCR and Shi’s colleague.

    “It is two channels per edge,” Shi said. “If you eliminate one channel, you end up with a current flowing only in one direction, leaving you with what is called a quantum anomalous Hall insulator, yet another special quantum material. Such an insulator has only one highway lane, to use the highway analogy. This insulator transports electrons in a fully spin-polarized manner.”

    On the other hand, the magnetized WTe2 that Shi and his colleagues experimented with is called a ferromagnetic quantum spin Hall insulator, which has a conducting edge with partially spin-polarized electrons.

    “In the two channels of ferromagnetic quantum spin Hall insulators, we have an unequal number of electrons flowing in opposite directions resulting in a net current, which we can control with an external magnet,” Shi said.

    According to Shi, quantum materials such as WTe2 are the future of nanoelectronics.

    “The CHIPS Act will encourage researchers to come up with new materials whose properties are superior to those of current silicon materials,” he said.

    Shi was joined in the study by Cui and Xi Chen at UCR as well as the following researchers in their labs: Mina Rashetnia, Mark Lohmann, and Youming Xu. First author Junxue Li was a postdoctoral researcher in Shi’s lab when the research was done. Other coauthors on the paper are Jahyun Koo and Binghai Yan of the Weizmann Institute of Science in Israel; Xiao Zhang and Shuang Jia of Peking University in China; and Kenji Watanabe and Takashi Taniguchi of the National Institute for Materials Science in Japan.

    Shi was supported in the research by grants from the Department of Energy and National Science Foundation.

    Science paper:
    Nature Communications

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of California-Riverside Campus

    The University of California-Riverside is a public land-grant research university in Riverside, California. It is one of the 10 campuses of The University of California system. The main campus sits on 1,900 acres (769 ha) in a suburban district of Riverside with a branch campus of 20 acres (8 ha) in Palm Desert. In 1907, the predecessor to The University of California-Riverside was founded as the UC Citrus Experiment Station, Riverside which pioneered research in biological pest control and the use of growth regulators responsible for extending the citrus growing season in California from four to nine months. Some of the world’s most important research collections on citrus diversity and entomology, as well as science fiction and photography, are located at Riverside.

    The University of California-Riverside ‘s undergraduate College of Letters and Science opened in 1954. The Regents of the University of California declared The University of California-Riverside a general campus of the system in 1959, and graduate students were admitted in 1961. To accommodate an enrollment of 21,000 students by 2015, more than $730 million has been invested in new construction projects since 1999. Preliminary accreditation of the The University of California-Riverside School of Medicine was granted in October 2012 and the first class of 50 students was enrolled in August 2013. It is the first new research-based public medical school in 40 years.

    The University of California-Riverside is classified among “R1: Doctoral Universities – Very high research activity.” The 2019 U.S. News & World Report Best Colleges rankings places UC-Riverside tied for 35th among top public universities and ranks 85th nationwide. Over 27 of The University of California-Riverside ‘s academic programs, including the Graduate School of Education and the Bourns College of Engineering, are highly ranked nationally based on peer assessment, student selectivity, financial resources, and other factors. Washington Monthly ranked The University of California-Riverside 2nd in the United States in terms of social mobility, research and community service, while U.S. News ranks The University of California-Riverside as the fifth most ethnically diverse and, by the number of undergraduates receiving Pell Grants (42 percent), the 15th most economically diverse student body in the nation. Over 70% of all The University of California-Riverside students graduate within six years without regard to economic disparity. The University of California-Riverside ‘s extensive outreach and retention programs have contributed to its reputation as a “university of choice” for minority students. In 2005, The University of California-Riverside became the first public university campus in the nation to offer a gender-neutral housing option. The University of California-Riverside’s sports teams are known as the Highlanders and play in the Big West Conference of the National Collegiate Athletic Association (NCAA) Division I. Their nickname was inspired by the high altitude of the campus, which lies on the foothills of Box Springs Mountain. The University of California-Riverside women’s basketball team won back-to-back Big West championships in 2006 and 2007. In 2007, the men’s baseball team won its first conference championship and advanced to the regionals for the second time since the university moved to Division I in 2001.

    History

    At the turn of the 20th century, Southern California was a major producer of citrus, the region’s primary agricultural export. The industry developed from the country’s first navel orange trees, planted in Riverside in 1873. Lobbied by the citrus industry, the University of California Regents established the UC Citrus Experiment Station (CES) on February 14, 1907, on 23 acres (9 ha) of land on the east slope of Mount Rubidoux in Riverside. The station conducted experiments in fertilization, irrigation and crop improvement. In 1917, the station was moved to a larger site, 475 acres (192 ha) near Box Springs Mountain.

    The 1944 passage of the GI Bill during World War II set in motion a rise in college enrollments that necessitated an expansion of the state university system in California. A local group of citrus growers and civic leaders, including many University of California-Berkeley alumni, lobbied aggressively for a University of California -administered liberal arts college next to the CES. State Senator Nelson S. Dilworth authored Senate Bill 512 (1949) which former Assemblyman Philip L. Boyd and Assemblyman John Babbage (both of Riverside) were instrumental in shepherding through the State Legislature. Governor Earl Warren signed the bill in 1949, allocating $2 million for initial campus construction.

    Gordon S. Watkins, dean of the College of Letters and Science at The University of California-Los Angeles, became the first provost of the new college at Riverside. Initially conceived of as a small college devoted to the liberal arts, he ordered the campus built for a maximum of 1,500 students and recruited many young junior faculty to fill teaching positions. He presided at its opening with 65 faculty and 127 students on February 14, 1954, remarking, “Never have so few been taught by so many.”

    The University of California-Riverside’s enrollment exceeded 1,000 students by the time Clark Kerr became president of the University of California system in 1958. Anticipating a “tidal wave” in enrollment growth required by the baby boom generation, Kerr developed the California Master Plan for Higher Education and the Regents designated Riverside a general university campus in 1959. The University of California-Riverside’s first chancellor, Herman Theodore Spieth, oversaw the beginnings of the school’s transition to a full university and its expansion to a capacity of 5,000 students. The University of California-Riverside’s second chancellor, Ivan Hinderaker led the campus through the era of the free speech movement and kept student protests peaceful in Riverside. According to a 1998 interview with Hinderaker, the city of Riverside received negative press coverage for smog after the mayor asked Governor Ronald Reagan to declare the South Coast Air Basin a disaster area in 1971; subsequent student enrollment declined by up to 25% through 1979. Hinderaker’s development of innovative programs in business administration and biomedical sciences created incentive for enough students to enroll at University of California-Riverside to keep the campus open.

    In the 1990s, The University of California-Riverside experienced a new surge of enrollment applications, now known as “Tidal Wave II”. The Regents targeted The University of California-Riverside for an annual growth rate of 6.3%, the fastest in The University of California system, and anticipated 19,900 students at The University of California-Riverside by 2010. By 1995, African American, American Indian, and Latino student enrollments accounted for 30% of The University of California-Riverside student body, the highest proportion of any University of California campus at the time. The 1997 implementation of Proposition 209—which banned the use of affirmative action by state agencies—reduced the ethnic diversity at the more selective UC campuses but further increased it at The University of California-Riverside.

    With The University of California-Riverside scheduled for dramatic population growth, efforts have been made to increase its popular and academic recognition. The students voted for a fee increase to move The University of California-Riverside athletics into NCAA Division I standing in 1998. In the 1990s, proposals were made to establish a law school, a medical school, and a school of public policy at The University of California-Riverside, with The University of California-Riverside School of Medicine and the School of Public Policy becoming reality in 2012. In June 2006, The University of California-Riverside received its largest gift, 15.5 million from two local couples, in trust towards building its medical school. The Regents formally approved The University of California-Riverside’s medical school proposal in 2006. Upon its completion in 2013, it was the first new medical school built in California in 40 years.

    Academics

    As a campus of The University of California system, The University of California-Riverside is governed by a Board of Regents and administered by a president University of California-Riverside ‘s academic policies are set by its Academic Senate, a legislative body composed of all UC-Riverside faculty members.

    The University of California-Riverside is organized into three academic colleges, two professional schools, and two graduate schools. The University of California-Riverside’s liberal arts college, the College of Humanities, Arts and Social Sciences, was founded in 1954, and began accepting graduate students in 1960. The College of Natural and Agricultural Sciences, founded in 1960, incorporated the CES as part of the first research-oriented institution at The University of California-Riverside; it eventually also incorporated the natural science departments formerly associated with the liberal arts college to form its present structure in 1974. The University of California-Riverside ‘s newest academic unit, the Bourns College of Engineering, was founded in 1989. Comprising the professional schools are the Graduate School of Education, founded in 1968, and The University of California-Riverside School of Business, founded in 1970. These units collectively provide 81 majors and 52 minors, 48 master’s degree programs, and 42 Doctor of Philosophy (PhD) programs. The University of California-Riverside is the only UC campus to offer undergraduate degrees in creative writing and public policy and one of three UCs (along with The University of California-Berkeley and The University of California-Irvine) to offer an undergraduate degree in business administration. Through its Division of Biomedical Sciences, founded in 1974, The University of California-Riverside offers the Thomas Haider medical degree program in collaboration with The University of California-Los Angeles. The University of California-Riverside ‘s doctoral program in the emerging field of dance theory, founded in 1992, was the first program of its kind in the United States, and The University of California-Riverside ‘s minor in lesbian, gay and bisexual studies, established in 1996, was the first undergraduate program of its kind in the University of California system. A new BA program in bagpipes was inaugurated in 2007.

    Research and economic impact

    The University of California-Riverside operated under a $727 million budget in fiscal year 2014–15. The state government provided $214 million, student fees accounted for $224 million and $100 million came from contracts and grants. Private support and other sources accounted for the remaining $189 million. Overall, monies spent at The University of California-Riverside have an economic impact of nearly $1 billion in California. The University of California-Riverside research expenditure in FY 2018 totaled $167.8 million. Total research expenditures at The University of California-Riverside are significantly concentrated in agricultural science, accounting for 53% of total research expenditures spent by the university in 2002. Top research centers by expenditure, as measured in 2002, include the Agricultural Experiment Station; the Center for Environmental Research and Technology; the Center for Bibliographical Studies; the Air Pollution Research Center; and the Institute of Geophysics and Planetary Physics.

    Throughout The University of California-Riverside ‘s history, researchers have developed more than 40 new citrus varieties and invented new techniques to help the $960 million-a-year California citrus industry fight pests and diseases. In 1927, entomologists at the CES introduced two wasps from Australia as natural enemies of a major citrus pest, the citrophilus mealybug, saving growers in Orange County $1 million in annual losses. This event was pivotal in establishing biological control as a practical means of reducing pest populations. In 1963, plant physiologist Charles Coggins proved that application of gibberellic acid allows fruit to remain on citrus trees for extended periods. The ultimate result of his work, which continued through the 1980s, was the extension of the citrus-growing season in California from four to nine months. In 1980, The University of California-Riverside released the Oroblanco grapefruit, its first patented citrus variety. Since then, the citrus breeding program has released other varieties such as the Melogold grapefruit, the Gold Nugget mandarin (or tangerine), and others that have yet to be given trademark names.

    To assist entrepreneurs in developing new products, The University of California-Riverside is a primary partner in the Riverside Regional Technology Park, which includes the City of Riverside and the County of Riverside. It also administers six reserves of the University of California Natural Reserve System. UC-Riverside recently announced a partnership with China Agricultural University[中国农业大学](CN) to launch a new center in Beijing, which will study ways to respond to the country’s growing environmental issues. University of California-Riverside can also boast the birthplace of two-name reactions in organic chemistry, the Castro-Stephens coupling and the Midland Alpine Borane Reduction.

     
  • richardmitnick 10:11 am on September 2, 2022 Permalink | Reply
    Tags: "A simple way to significantly increase lifetimes of fuel cells and other devices", A fuel/electrolysis cell has three principal parts: two electrodes (a cathode and anode) separated by an electrolyte., , , , Extending the lifetime of solid oxide fuels cells helps deliver the low-cost high-efficiency hydrogen production and power generation needed for a clean energy future., , MIT researchers find that changing the pH of a system solves a decades-old problem., Nanotechnology, , This work is important because it could overcome [some] of the limitations that have prevented the widespread use of solid oxide fuel cells.   

    From The MIT Materials Research Laboratory : “A simple way to significantly increase lifetimes of fuel cells and other devices” 

    From The MIT Materials Research Laboratory

    At

    The Massachusetts Institute of Technology

    8.31.22
    Elizabeth A. Thomson

    MIT researchers find that changing the pH of a system solves a decades-old problem.

    1
    “Identifying the source of [a] problem and the means to work around it … is remarkable,” says MIT Professor Harry Tuller, of the discovery of a simple way to significantly increase the lifetimes of fuel cells and other devices. He is seen here with postdoc Han Gil Seo, one of the contributors to this new work. Photo: Hendrik Wulfmeier.

    In research that could jump-start work on a range of technologies including fuel cells, which are key to storing solar and wind energy, MIT researchers have found a relatively simple way to increase the lifetimes of these devices: changing the pH of the system.

    Fuel and electrolysis cells made of materials known as solid metal oxides are of interest for several reasons. For example, in the electrolysis mode, they are very efficient at converting electricity from a renewable source into a storable fuel like hydrogen or methane that can be used in the fuel cell mode to generate electricity when the sun isn’t shining or the wind isn’t blowing. They can also be made without using costly metals like platinum. However, their commercial viability has been hampered, in part, because they degrade over time. Metal atoms seeping from the interconnects used to construct banks of fuel/electrolysis cells slowly poison the devices.

    “What we’ve been able to demonstrate is that we can not only reverse that degradation, but actually enhance the performance above the initial value by controlling the acidity of the air-electrode interface,” says Harry L. Tuller, the R.P. Simmons Professor of Ceramics and Electronic Materials in MIT’s Department of Materials Science and Engineering (DMSE).

    The research, initially funded by the U.S. Department of Energy through the Office of Fossil Energy and Carbon Management’s (FECM) National Energy Technology Laboratory, should help the department meet its goal of significantly cutting the degradation rate of solid oxide fuel cells by 2035 to 2050.

    “Extending the lifetime of solid oxide fuels cells helps deliver the low-cost high-efficiency hydrogen production and power generation needed for a clean energy future,” says Robert Schrecengost, acting director of FECM’s Division of Hydrogen with Carbon Management. “The department applauds these advancements to mature and ultimately commercialize these technologies so that we can provide clean and reliable energy for the American people.”

    “I’ve been working in this area my whole professional life, and what I’ve seen until now is mostly incremental improvements,” says Tuller, who was recently named a 2022 Materials Research Society Fellow for his career-long work in solid-state chemistry and electrochemistry. “People are normally satisfied with seeing improvements by factors of tens-of-percent. So, actually seeing much larger improvements and, as importantly, identifying the source of the problem and the means to work around it, issues that we’ve been struggling with for all these decades, is remarkable.”

    Says James M. LeBeau, the John Chipman Associate Professor of Materials Science and Engineering at MIT, who was also involved in the research, “This work is important because it could overcome [some] of the limitations that have prevented the widespread use of solid oxide fuel cells. Additionally, the basic concept can be applied to many other materials used for applications in the energy-related field.”

    A report describing the work was reported Aug. 11, in Energy & Environmental Science [below]. Additional authors of the paper are Han Gil Seo, a DMSE postdoc; Anna Staerz, formerly a DMSE postdoc, now at Interuniversity Microelectronics Centre (IMEC) Belgium and soon to join the Colorado School of Mines faculty; Dennis S. Kim, a DMSE postdoc; Dino Klotz, a DMSE visiting scientist, now at Zurich Instruments; Michael Xu, a DMSE graduate student; and Clement Nicollet, formerly a DMSE postdoc, now at the Université de Nantes. Seo and Staerz contributed equally to the work.

    Changing the acidity

    A fuel/electrolysis cell has three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. In the electrolysis mode, electricity from, say, the wind, can be used to generate storable fuel like methane or hydrogen. On the other hand, in the reverse fuel cell reaction, that storable fuel can be used to create electricity when the wind isn’t blowing.

    A working fuel/electrolysis cell is composed of many individual cells that are stacked together and connected by steel metal interconnects that include the element chrome to keep the metal from oxidizing. But “it turns out that at the high temperatures that these cells run, some of that chrome evaporates and migrates to the interface between the cathode and the electrolyte, poisoning the oxygen incorporation reaction,” Tuller says. After a certain point, the efficiency of the cell has dropped to a point where it is not worth operating any longer.

    “So if you can extend the life of the fuel/electrolysis cell by slowing down this process, or ideally reversing it, you could go a long way towards making it practical,” Tuller says.

    The team showed that you can do both by controlling the acidity of the cathode surface. They also explained what is happening.

    To achieve their results, the team coated the fuel/electrolysis cell cathode with lithium oxide, a compound that changes the relative acidity of the surface from being acidic to being more basic. “After adding a small amount of lithium, we were able to recover the initial performance of a poisoned cell,” Tuller says. When the engineers added even more lithium, the performance improved far beyond the initial value. “We saw improvements of three to four orders of magnitude in the key oxygen reduction reaction rate and attribute the change to populating the surface of the electrode with electrons needed to drive the oxygen incorporation reaction.”

    The engineers went on to explain what is happening by observing the material at the nanoscale, or billionths of a meter, with state-of-the-art transmission electron microscopy and electron energy loss spectroscopy at MIT.nano. “We were interested in understanding the distribution of the different chemical additives [chromium and lithium oxide] on the surface,” says LeBeau.

    They found that the lithium oxide effectively dissolves the chromium to form a glassy material that no longer serves to degrade the cathode performance.

    Applications for sensors, catalysts, and more

    Many technologies like fuel cells are based on the ability of the oxide solids to rapidly breathe oxygen in and out of their crystalline structures, Tuller says. The MIT work essentially shows how to recover — and speed up — that ability by changing the surface acidity. As a result, the engineers are optimistic that the work could be applied to other technologies including, for example, sensors, catalysts, and oxygen permeation-based reactors.

    The team is also exploring the effect of acidity on systems poisoned by different elements, like silica.

    Concludes Tuller: “As is often the case in science, you stumble across something and notice an important trend that was not appreciated previously. Then you test that concept further, and you discover that it is really very fundamental.”

    In addition to the DOE, this work was also funded by the National Research Foundation of Korea, the MIT Department of Materials Science and Engineering via Tuller’s appointment as the R.P. Simmons Professor of Ceramics and Electronic Materials, and the U.S. Air Force Office of Scientific Research.

    Science paper:
    Energy & Environmental Science

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT Materials Research Laboratory

    Merger of the Materials Processing Center and the Center for Materials Science and Engineering melds a rich history of materials science and engineering breakthroughs.

    The Materials Research Laboratory at MIT starts from a foundation of fundamental scientific research, practical engineering applications, educational outreach and shared experimental facilities laid by its merger partners, the Materials Processing Center and the Center for Materials Science and Engineering.

    “We’re bringing them together and that will make communication both inside and outside MIT easier and will make it clearer especially to people outside MIT that for interdisciplinary research on materials, this is the place to learn about it,” says MRL Director Carl V. Thompson.

    The Materials Research Laboratory serves interdisciplinary groups of faculty researchers, spanning the spectrum of basic scientific discovery through engineering applications and entrepreneurship to ensure that research breakthroughs have impact on society. The center engages with approximately 150 faculty members and scientists from across the Schools of Science and Engineering who are conducting materials science research. MRL will work with MIT.nano to enhance the toolset available for groundbreaking research as well as collaborate with the MIT Innovation Initiative and The Engine.

    MRL will benefit from the long history of research breakthroughs under MPC and CMSE such as “perfect mirror” technology developed through CMSE in 1998 that led to a new kind of fiber optic surgery and a spinout company, OmniGuide Surgical, and the first germanium laser operating at room temperature, which is used for optical communications, in 2012 through MPC’s affiliated Microphotonics Center.

    The Materials Processing Center brings to the partnership its wide diversity of materials research, funded by industry, foundations and government agencies, while the Center for Materials Science and Engineering brings its seed projects in basic science and Interdisciplinary Research Groups, educational outreach and shared experimental facilities, funded under the National Science Foundation Materials Research Science and Engineering Center program [NSF-MRSEC]. Combined research funding was $21.5 million for the fiscal year ended June 30, 2017.

    MPC’s research volume more than doubled during the past nine years under Thompson’s leadership. “We do have a higher profile in the community both internal as well as external. We developed over the years a close collaboration with CMSE, including outreach. That will be greatly amplified through the merger,” he says. Thompson is the Stavros Salapatas Professor of Materials Science and Engineering at MIT.

    Tackling energy problems

    With industrial support, MPC and CMSE launched the Substrate Engineering Lab in 2004. MPC affiliates include the AIM Photonics Academy, the Center for Integrated Quantum Materials and the MIT Skoltech Center for Electrochemical Energy Storage. Other research includes Professor ‪Harry L. Tuller’s‬‬‬‬ Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) project, which aims to produce better oxide-based semiconductor materials for fuel cells, and ‬‬‬‬‬‬‬Senior Research Scientist Jurgen Michel’s Micro-Scale Optimized Solar-Cell Arrays with Integrated Concentration (MOSAIC) project, which aims to achieve overall efficiency of greater than 30 percent. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    The MPC kicked off the Singapore-MIT Alliance for Research and Technology Center’s program in Low Energy Electronic Systems [SMART-LEES] in January 2012, managing the MIT part of the budget. SMART-LEES, led by Eugene A. Fitzgerald, the Merton C. Flemings-SMA Professor of Materials Science and Engineering at MIT, was renewed for another five years in January 2017.

    Shared experimental facilities, including X-Ray diffraction, scanning and transmission electron microscopy, probe microscopy, and surface analytical capabilities, are used by more than 1,100 individuals each year. “The amount of investment that needs to be made to keep state-of-the-art shared facilities at a university like MIT is on the order of 1 to 2 million dollars per year in new investment and new tools. That kind of funding is very difficult to get. It certainly doesn’t come to us through just NSF funding,” says TDK Professor of Polymer Materials Science and Engineering Michael F. Rubner, who is retiring after 16 years as CMSE director. “MIT.nano, in concert with MRL, will be able to work together to look at new strategies for trying to maintain state-of-the-art equipment and to find funding sources and to figure out ways to not only get the equipment in, but to have highly trained professionals running that equipment.”

    Associate Professor of Materials Science and Engineering Geoffrey S.D. Beach succeeds Rubner as co-director of the MIT MRL and principal investigator for the NSF-MRSEC.

    Spinning out jobs

    NSF-MRSEC-funded research through CMSE has led to approximately 1,100 new jobs through spinouts such as American Superconductor [superconductivity], OmniGuide Surgical [optical fibers] and QD Vision [quantum dots], which Samsung acquired in 2016. Many of these innovations began with seed funding, CMSE’s earliest stage of support, and evolved through joint efforts with MPC, such as microphotonics research that began with a seed grant in 1993, followed by Interdisciplinary Research Group funding a year later. In 1997, MIT researchers published two key papers in Nature and Physical Review Letters, won a two-year, multi-university award through DARPA for Photonic Crystal Engineering, and formed the Microphotonics Center. Further research led to the spinout in 2002 of Luminus Devices, which specializes in solid-state lighting based on light emitting diodes [LEDs].

    “Our greatest legacy is bringing people together to produce fundamental new science, and then allowing those researchers to explore that new science in ways that may be beneficial to society, as well as to develop new technologies and launch companies,” Rubner says. He recalls that research in complex photonic crystal structures began with Francis Wright Davis Professor of Physics John D. Joannopoulos as leader. “They got funding through us, at first as seed funding and then IRG [interdisciplinary research group] funding, and over the years, they have continued to get funding from us because they evolved. They would seek a new direction, and one of the new directions they evolved into was this idea of making photonic fibers, so they went from photonic crystals to photonic fibers and that led to, for example, the launching of OmniGuide.” An outgrowth of basic CMSE research, the company’s founders included Professors Joannopolous, Yoel Fink, and Edwin L. [“Ned”] Thomas, who served as William and Stephanie Sick Dean of the George R. Brown School of Engineering at Rice University from 2011 to 2017.

    Under Fink’s leadership, that work evolved into Advanced Functional Fabrics of America [AFFOA], a public-private Manufacturing Innovation Institute devoted to creating and bringing to market revolutionary fibers and textiles. The institute, which is a separate nonprofit organization, is led by Fink, while MIT on-campus research is led by Lammot du Pont Professor of Chemical Engineering Gregory C. Rutledge.

    Susan D. Dalton, NSF-MRSEC Assistant Director, recalls the evolution of perfect mirror technology into life-saving new fiber optic surgery. “From an administrator’s point of view,” Dalton says, “it’s really exciting because day to day, things happen that you don’t know are going to happen. When you think about saving people’s lives, that’s amazing, and that’s just one example,” she says.

    Government, industry partners

    Through its Collegium and close partnership with the MIT‪ Industrial Liaison Program (‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ILP), MPC has a long history of government and industrial partnerships as well as individual faculty research projects. Merton C. Flemings, who is MPC’s founding director [1980-82], and a retired Toyota Professor of Materials Processing, recalls that the early focus was primarily on metallurgy, but ceramics work also was important. “It’s gone way beyond that, and it’s a delight to see what’s going on,” he notes.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    “From the time of initiation of the MPC, we had interdepartmental participation, and quite soon after its formation, we initiated an industrial collegium to share in research formulation and participate in research partnerships. I believe our collegium was the first to work collaboratively with the Industrial Liaison Program. It was also at a period in MIT history when working directly with the commercial sector was rare,” Flemings says.

    Founded in February 1980, the Materials Processing Center won early support from NASA, which was interested in processing materials in space. A question being asked then was: “What would it be like when you’re in zero gravity and you try and purify a metal or make anything out there? Dr. John R. Carruthers headed this zero gravity materials processing activity in NASA, and as he considered the problem, he realized we didn’t really have much of a science base of materials processing on earth, let alone in space. With that in mind, at Carruthers’ instigation, NASA provided a very generous continuing grant to MIT that was essential to us starting in those early years,” Flemings explains.

    Carruthers went on to become director of research with Intel and is now Distinguished Professor of Physics, at Portland [Oregon] State University. The two men – Flemings at MIT and Carruthers at the University of Toronto – had been familiar with each other’s work in the study of how metals solidify, before Carruthers joined NASA as director of its materials processing in space program in 1977. Both Flemings and Carruthers wanted to understand how the effects of gravitationally driven convection influenced the segregation processes during metals solidification.

    “In molten metal baths, as the metal solidifies into ingots, the solidification process is never uniform. And so the distribution of the components being solidified is very much affected by fluid flow or convection in the molten metal,” Carruthers explains. “We were both interested in what would happen if you could actually turn gravity down because most of the convective effects were influenced by density gradients in the metal due to thermal and compositional effects. So, we were quite interested in what would happen given that those density gradients existed, if you could actually turn the effects of gravity down.”

    “When the NASA program came around, they wanted to try to use the low gravity environment of space to actually fabricate materials,” Carruthers recalls. “After a couple of years at NASA, I was able to secure some block grant funding for the center. It subsequently, of course, has developed its own legs and outgrown any of the initial funding that we provided, which is really great to see, and it’s a tribute to the MIT way of doing research, of course, as well. I was really quite proud to be part of the early development of the center,” Carruthers says. “Many of the things we learned in those days are relevant to other areas. I’m finding a lot of knowledge and way of doing things is transferrable to the biomedical sciences, for example, so I’ve become quiet interested in helping to develop things like nanomonitors, you know, more materials science-oriented approaches for the biomedical sciences.”

    Expanding research portfolio

    From its beginnings in metals processing with NASA support, MPC evolved into a multi-faceted center with diverse sponsors of research in energy harvesting, conversion and storage; fuel cells; quantum materials and spintronics; materials integration for microsystems; photonic devices and systems; materials systems and sustainability; solid-state ionics; as well as metals processing, an old topic that is hot again.

    MRL-affiliated MIT condensed matter physicists include experimentalists Raymond C. Ashoori, Joseph G. Checkelsky, Nuh Gedik, and Pablo Jarillo-Herrero, who are exploring quantum materials for next-generation electronics, such as spintronics and valleytronics, new forms of nanoscale magnetism, and graphene-based optoelectronic devices. Riccardo Comin explores electronic phases in quantum materials. Theorists Liang Fu and Senthil Todadri envision new forms of random access memory, Majorana fermions for quantum computing, and unusual magnetic materials such as quantum spin liquids.

    In the realm of biophysics, Associate Professor Jeff Gore tests fundamental ideas of theoretical ecology and evolutionary dynamics through experimental studies of microbial communities. Class of 1922 Career Development Assistant Professor Ibrahim Cissé uses physical techniques that visualize weak and transient biological interactions to study emergent phenomena in live cells with single molecule sensitivity. On the theoretical front, Professor Thomas D. & Virginia W. Cabot Career Development Associate Professor of Physics Jeremy England focuses on structure, function, and evolution in the sub-cellular biophysical realm.

    Alan Taub, Professor of Materials Science and Engineering at the University of Michigan, has become a member of the new Materials Research Laboratory External Advisory Board. Taub previously served in senior materials science management roles with General Motors, Ford Motor Co. and General Electric and served as chairman of the Materials Processing Center Advisory Board from 2001-2006. He notes that under Director Lionel Kimerling [1993-2008], MPC embraced the new area of photonics. “That transition was really well done,” Taub says. The MRL-affiliated Microphotonics Center has produced collaborative roadmapping reports since 2007 to guide manufacturing research and address systems requirements for networks that fully exploit the power of photonics. Taub also is chief technical officer of LIFT Manufacturing Innovation Institute, in which MIT Assistant Professor of Materials Science and Engineering Elsa Olivetti and senior research scientist Randolph E. [Randy] Kirchain are engaged in cost modeling.

    From its founding, Taub notes, MPC engaged the faculty with industry. Advisory board members often sponsored research as well as offering advice. “So it was really the way to guide the general direction, you know, teach them that there are things industry needs. And remember, this was the era well before entrepreneurism. It really was the interface to the Fortune 500’s and guiding and transitioning the technology out of MIT. That’s why I think it survived changes in technology focus, because at its core, it was interfacing industry needs with the research capabilities at the Institute,” Taub says.

    Broadening participation

    Susan Rosevear, who is the Education Officer for the NSF-MRSEC, is responsible for an extensive array of programs, including the Summer Scholars program, which is primarily funded through NSF’s Research Experience for Undergraduates (REU) program. Each summer a dozen or so top undergraduates from across the country spend about two months at MIT as lab interns working with professors, postdocs and graduate students on cutting edge research.

    CMSE also conducts summer programs for community college students and teachers, middle and high school teachers, and participates in the Women’s Technology Program and Boston Area Girls’ STEM Collaborative. “Because diversity is also part of our mission, part of what our mission from NSF is, in all we do, we try to broaden participation in science and engineering,” Rosevear says.

    Teachers who participate in these programs often note how collaborative the research enterprise is at MIT, Rosevear notes. Several have replaced cookbook-style labs with open-ended projects that let students experience original research.

    Confidence to test ideas

    Merrimack [N.H.] High School chemistry teacher Sean Müller first participated in the Research Experience for Teachers program in 2000. “Through my experiences with the RET program, I have learned how to ‘run a research group’ consisting of my students. Without this experience, I would not have had the confidence to allow my students to research, develop, and test their original ideas. This has also allowed me to coach our school’s Science Olympiad team to six consecutive state titles, to mentor a set of students that developed a mini bio-diesel processor that they sold to Turner Biodiesel, and to mentor another set of students that took second place in Embedded Systems at I.S.E.F. [Intel International Science and Engineering Fair] last year for their ChemiCube chemical dispensing system,” Müller says.

    Müller says he is always looking for new ideas and researching older ideas to develop lab activities in his classroom. “One year my students made light emitting thin films. We have grown beautiful bismuth crystals in our test furnace, and currently I am working out how to make glow-in-the-dark zinc sulfide electroluminescent by doping it with copper so that we can make our own electroluminescent panels,” he says. “Next year we are going to try to make the clear see-through wood that was in the news earlier this year. I am also bringing in new materials that they have not seen before such as gallium-indium eutectic. These novel materials and activities generate a very high level of enthusiasm and interest in my students, and students that are excited, interested, and motivated learn more efficiently and more effectively.”

    Müller developed a relationship with Prof. Steve Leeb that has brought Müller back to MIT during past summers to present a brief background in polymer chemistry, supplemented by hands-on demonstrations and activities, for the Science Teacher Enrichment Program (STEP) and Women’s Technology program. “Last year I showed them how they could use their cell phone and a polarized film to see the different areas of crystallization in polymers when they are stressed,” Müller says. “I enjoy the presentation because it is more of a conversation with all of the teachers, myself included, asking questions about different activities and methods and discussing what has worked and what has not worked in the past.”

    Conducive environment

    Looking back on his nine years as MPC director, Thompson says, “The MPC served a broad community, but many people at MIT didn’t know about it because it was in the basement of Building 12. So one of the things that I wanted to do was raise the profile of MPC so people better understood what the MPC did in order to better serve the community.” MPC rolled out a new logo and developed a higher profile Web page, for example. “I think that was successful. I think many more people understand who we are and what we do and that enables us to do more,” Thompson says. In 2014 MPC moved to Building 24 as the old Building 12 was razed to make way for MIT.nano. The new MRL is consolidating its offices in Building 13.

    “Research breakthroughs by their very nature are hard to predict, but what we can do is we can create an environment that leads to research breakthroughs,” Thompson says. “The successful model in both MPC and CMSE is to bring together people interested in materials, but with different disciplinary backgrounds. We’ve done that separately, we’ll do it together, and the expectation is that we’ll do it even more effectively.”

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel