From The Department of Mechanical Engineering In The College of Engineering At The University of Washington : “A tiny break into toughness”
From The Department of Mechanical Engineering
In
At
5.22.23
A beetle shell might look like solid armor to us but it’s actually composed of tiny fibers woven together in complex structures. These nanofibers that comprise many natural materials from shell to skin to cartilage are surprisingly tough and are able to handle force without fracturing.
UW researchers tested the twisted nanostructures they created by applying very small loads with nanometer precision (shown here) and visualizing when cracks began to form. From the obtained data, the researchers measured the growth of cracks and thus calculated a material toughness. UWash.
Inspired by natural nanostructured materials, the Meza Research Group recently investigated how these tiny structures make materials resistant to breaking. The team’s research sheds light on how methods like reducing fiber size and increasing fiber twist can improve durability.
Using additively manufactured polymer nanofibers as a building block, the lab, led by ME Assistant Professor Lucas Meza, creates nanostructured materials that are about 400 nanometers wide, similar to the smallest features found in natural materials. In their most recent work, they used these polymer nanofibers to create twisted “Bouligand” structures, a common twisted-fiber motif found in arthropod shells. The final test samples they made were about 80 micrometers wide – similar to the width of a piece of paper.
“The novelty of our work is in the scale at which we can study toughness. We expect tiny, lightweight materials to be less tough than denser materials,” Meza says. “Instead, we see nanostructured materials can be 50% lighter while maintaining their toughness.”
The Meza group recently published a paper about the lab’s findings in the journal Small [below]. Zainab Patel, a Ph.D. student in materials science and engineering, led the study, and ME Ph.D. student Kush Dwivedi also contributed to the research.
To make their materials the researchers used “two-photon lithography” an additive manufacturing technique that shines a laser into a photosensitive polymer to cure it. By tracing the laser around in space, they can create tiny beams with fibers that are either joined together or separate. They designed samples with layers of these nanofibers that have different twists and spacings, creating the desired spiraling Bouligand pattern found in nature.
To test these materials, the researchers placed a “nanoindenter”, an instrument that measures the mechanical properties of tiny materials, inside a scanning electron microscope to both apply very small loads with nanometer precision and to visualize when cracks began to form. From the obtained load displacement data, the researchers can measure the growth of cracks and thus calculate a material toughness.
The researchers discovered two methods for toughening the materials: isolating the fibers and twisting the fibers. They found isolated nanofibers had greater ductility, or ability to stretch further before breaking, meaning they could absorb more energy to prevent cracks from growing. Twisting the nanofibers at different angles creates different soft and stiff regions between the layers. Because of this Bouligand-style architecture, cracks then get “stuck” between the soft and stiff layers and have more difficulty progressing, making the material tougher.
These discoveries have implications for the printing of more resilient additively manufactured materials, and for objects created using nanomaterials, such as composites and electronics. For example, nanofibers could be used to make tougher clothing, or incorporated into carbon fiber composites to make them more resistant to fracture and delamination, or layer separation.
“Nanomaterials are all around us, whether it’s in the beetles we see outside our window or the transistors that make up our computer chips,” Meza says. “By understanding how fracture happens at the smallest length scales, we can develop new ways to make tougher, more resilient materials at any scale.”
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Mechanical engineering is one of the broadest and oldest of the engineering disciplines and therefore provides some of the strongest interdisciplinary opportunities in the engineering profession. Power utilization (and power generation) is often used to describe the focus of mechanical engineering. Within this focus are such diverse topics as thermodynamics, heat transfer, fluid mechanics, machine design, mechanics of materials, manufacturing, stress analysis, system dynamics, numerical modeling, vibrations, turbomachinery, combustion, heating, ventilating, and air conditioning. Degrees in mechanical engineering open doors to careers not only in the engineering profession but also in business, law, medicine, finance, and other non-technical professions.
About The University of Washington College of Engineering
Mission, Facts, and Stats
Our mission is to develop outstanding engineers and ideas that change the world.
Faculty:
275 faculty (25.2% women)
Achievements:
128 NSF Young Investigator/Early Career Awards since 1984
32 Sloan Foundation Research Awards
2 MacArthur Foundation Fellows (2007 and 2011)
A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.
Engineering innovation
Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of The University of Washington startups in FY18 came from the College of Engineering.
Commitment to diversity and access
The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.
Research and commercialization
The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.
The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
So, what defines us —the students, faculty and community members at The University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.
The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, The University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, The University of Washington’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, The University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The University of Washington offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.
The University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, The University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.
The University of Washington has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.
In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.
In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.
John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. The University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.
19th century relocation
By the time Washington state entered the Union in 1889, both Seattle and The University of Washington had grown substantially. The University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by The University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, The University of Washington relocated to the new campus by moving into the newly built Denny Hall. The University of Washington Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.
The sole-surviving remnants of The University of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of The University of Washington’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.
20th century expansion
Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with The University of Washington ‘s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.
Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for The University of Washington. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.
After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to The University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.
In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during The University of Washington’s Long Journey Home ceremonial event that was held in May 2008.
From 1958 to 1973, The University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. The University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became The University of Washington Police Department.
Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in The University of Washington. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying The University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.
21st century
In 1990, The University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.
In 2012, The University of Washington began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to The University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.
The University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among The University of Washington students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.
The Academic Ranking of World Universities has consistently ranked The University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, The University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.
U.S. News & World Report ranked The University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with The University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.
In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked The University of Washington 12th globally and 5th in the U.S.
In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings The University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.
Reply