Tagged: Nanotechnology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:50 am on October 9, 2015 Permalink | Reply
    Tags: , , Nanotechnology,   

    From phys.org: “Scientists pave way for diamonds to trace early cancers” 


    October 9, 2015
    No Writer Credit

    Nano-diamonds using an optical microscope. Credit: Ewa Rej, the University of Sydney

    Physicists from the University of Sydney have devised a way to use diamonds to identify cancerous tumours before they become life threatening.

    Their findings, published today in Nature Communications, reveal how a nanoscale, synthetic version of the precious gem can light up early-stage cancers in non-toxic, non-invasive Magnetic Resonance Imaging (MRI) scans.

    Targeting cancers with tailored chemicals is not new but scientists struggle to detect where these chemicals go since, short of a biopsy, there are few ways to see if a treatment has been taken-up by a cancer.

    Led by Professor David Reilly from the School of Physics, researchers from the University investigated how nanoscale diamonds could help identify cancers in their earliest stages.

    “We knew nano diamonds were of interest for delivering drugs during chemotherapy because they are largely non-toxic and non-reactive,” says Professor Reilly.

    “We thought we could build on these non-toxic properties realising that diamonds have magnetic characteristics enabling them to act as beacons in MRIs. We effectively turned a pharmaceutical problem into a physics problem.”

    Professor Reilly’s team turned its attention to hyperpolarising nano-diamonds, a process of aligning atoms inside a diamond so they create a signal detectable by an MRI scanner.

    “By attaching hyperpolarised diamonds to molecules targeting cancers the technique can allow tracking of the molecules’ movement in the body,” says Ewa Rej, the paper’s lead author.

    “This is a great example of how quantum physics research tackles real-world problems, in this case opening the way for us to image and target cancers long before they become life-threatening,” says Professor Reilly.

    The next stage of the team’s work involves working with medical researchers to test the new technology on animals. Also on the horizon is research using scorpion venom to target brain tumours with MRI scanning.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Phys.org in 100 Words

    Phys.org™ (formerly Physorg.com) is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004, Phys.org’s readership has grown steadily to include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 1:51 pm on October 7, 2015 Permalink | Reply
    Tags: Nanotechnology, ,   

    From LBL: “Newly Discovered ‘Design Rule’ Brings Nature-Inspired Nanostructures One Step Closer” 

    Berkeley Logo

    Berkeley Lab

    October 7, 2015
    Dan Krotz 510-486-4019

    Snakes on a plane: This atomic-resolution simulation of a two-dimensional peptoid nanosheet reveals a snake-like structure never seen before. The nanosheet’s layers include a water-repelling core (yellow), peptoid backbones (white), and charged sidechains (magenta and cyan). The right corner of the top layer of the nanosheet has been “removed” to show how the backbone’s alternating rotational states give the backbones a snake-like appearance (red and blue ribbons). Surrounding water molecules are red and white. (Credit: Ranjan Mannige, Berkeley Lab)

    Scientists aspire to build nanostructures that mimic the complexity and function of nature’s proteins, but are made of durable and synthetic materials. These microscopic widgets could be customized into incredibly sensitive chemical detectors or long-lasting catalysts, to name a few possible applications.

    But as with any craft that requires extreme precision, researchers must first learn how to finesse the materials they’ll use to build these structures. A discovery by scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), and reported Oct. 7 in the advance online publication of the journal Nature, is a big step in this direction.

    The scientists discovered a design rule that enables a recently created material to exist. The material is a peptoid nanosheet. It’s a flat structure only two molecules thick, and it’s composed of peptoids, which are synthetic polymers closely related to protein-forming peptides.

    The design rule controls the way in which polymers adjoin to form the backbones that run the length of nanosheets. Surprisingly, these molecules link together in a counter-rotating pattern not seen in nature. This pattern allows the backbones to remain linear and untwisted, a trait that makes peptoid nanosheets larger and flatter than any biological structure.

    The Berkeley Lab scientists say this never-before-seen design rule could be used to piece together complex nanosheet structures and other peptoid assemblies such as nanotubes and crystalline solids.

    What’s more, they discovered it by combining computer simulations with x-ray scattering and imaging methods to determine, for the first time, the atomic-resolution structure of peptoid nanosheets.

    “This research suggests new ways to design biomimetic structures,” says Steve Whitelam, a co-corresponding author of the Nature paper. “We can begin thinking about using design principles other than those nature offers.”

    Whitelam is a staff scientist in the Theory Facility at the Molecular Foundry, a DOE Office of Science user facility located at Berkeley Lab. He led the research with co-corresponding author Ranjan Mannige, a postdoctoral researcher at the Molecular Foundry; and Ron Zuckermann, who directs the Molecular Foundry’s Biological Nanostructures Facility. They used the high-performance computing resources of the National Energy Research Scientific Computing Center (NERSC), another DOE Office of Science user facility located at Berkeley Lab.

    Hopper at NERSC

    The Molecular Foundry scientists who helped discover a new nano design rule. From left, Ellen Robertson, Alessia Battigelli, Ron Zuckermann, Caroline Proulx, Stephen Whitelam, and Ranjan Mannige. (Credit: Roy Kaltschmidt, Berkeley Lab)

    Peptoid nanosheets were discovered by Zuckermann’s group five years ago. They found that under the right conditions, peptoids self assemble into two-dimensional assemblies that can grow hundreds of microns across. This “molecular paper” has become a hot prospect as a protein-mimicking platform for molecular design.

    To learn more about this potential building material, the scientists set out to learn its atom-resolution structure. This involved feedback between experiment and theory. Microscopy and scattering data gathered at the Molecular Foundry and the Advanced Light Source, also a DOE Office of Science user facility located at Berkeley Lab, were compared with molecular dynamics simulations conducted at NERSC.

    The research revealed several new things about peptoid nanosheets. Their molecular makeup varies throughout their structure, they can be formed only from peptoids of a certain minimum length, they contain water pockets, and they are potentially porous when it comes to water and ions.

    These insights are intriguing on their own, but when the scientists examined the structure of the nanosheets’ backbone, they were surprised to see a design rule not found in the field of protein structural biology.

    Here’s the difference: In nature, proteins are composed of beta sheets and alpha helices. These fundamental building blocks are themselves composed of backbones, and the polymers that make up these backbones are all joined together using the same rule. Each adjacent polymer rotates incrementally in the same direction, so that a twist runs along the backbone.

    This rule doesn’t apply to peptoid nanosheets. Along their backbones, adjacent monomer units rotate in opposite directions. These counter-rotations cancel each other out, resulting in a linear and untwisted backbone. This enables backbones to be tiled in two dimensions and extended into large sheets that are flatter than anything nature can produce.

    “It was a big surprise to find the design rule that makes peptoid nanosheets possible has eluded the field of biology until now,” says Mannige. “This rule could perhaps be used to build many more unrealized structures.”

    Adds Zuckermann, “We also expect there are other design principles waiting to be discovered, which could lead to even more biomimetic nanostructures.”

    download the mp4 video here.
    A simulation of a peptoid nanosheet, shown first from a top-down view with the peptoid backbones colored to highlight their snake-like structure. The view then rotates to the side, and finally transitions to an all-atom representation. (Credit: Ron Zuckermann and Ranjan Mannige, Berkeley Lab)

    Other Molecular Foundry scientists who contributed to this research are Thomas Haxton, Caroline Proulx, Ellen Robertson, and Alessia Battigelli.

    This research was conducted at the Molecular Foundry, a DOE Office of Science user facility located at Berkeley Lab. The work was supported by the Defense Threat Reduction Agency, with additional funding provided by the Natural Sciences and Engineering Research Council of Canada. Part of this research was carried out through a User Project at the Molecular Foundry led by New York University’s Glenn Butterfoss.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

  • richardmitnick 3:37 pm on September 17, 2015 Permalink | Reply
    Tags: , Nanotechnology, ,   

    From U Wash: “UW labs win $4.5 million NSF nanotechnology infrastructure grant” 

    U Washington

    University of Washington

    September 16, 2015
    Jennifer Langston

    The UW’s Washington Nanofabrication and Molecular Analysis Facilities house specialized equipment that will become part of a new national nanotechnology infrastructure network. University of Washington

    The University of Washington and Oregon State University have won a $4.5 million, five-year grant from the National Science Foundation to advance nanoscale science , engineering and technology research in the Pacific Northwest and support a new network of user sites across the country.

    The regional partnership was selected as one of 16 sites for a new National Nanotechnology Coordinated Infrastructure (NNCI) program. That network is designed to give researchers from academia, small and large companies and other institutions open access to university facilities with leading-edge fabrication and characterization tools.

    Anchored at the UW with additional facilities at OSU, the Pacific Northwest site — which will also leverage resources at Pacific Northwest National Laboratory, North Seattle College and the University of British Columbia — will provide critical workhorse tools, unique instruments and key educational support to academic and industrial users, particularly in the clean energy and biotechnology fields.

    At the UW, the funding will support the Washington Nanofabrication Facility and the Molecular Analysis Facility. The WNF makes chips with nanoscale-sized features and devices for UW researchers working on everything from better drug delivery to quantum information devices. The “fab lab” also serves outside companies — ranging from one-person startups to multinational corporations — that can’t affordably or reliably meet their fabrication needs at commercial foundries.

    Separately, the WNF will also undergo a $37 million renovation in Fluke Hall over the next year to expand its lab space and better serve those users.

    The Molecular Analysis Facility, which opened in 2012, occupies a custom-designed space in the Molecular Engineering & Sciences building that minimizes vibration and electromagnetic interference. It houses a range of microscopy, spectroscopy and surface analysis instrumentation that characterize materials at the nano and molecular scale for applications ranging from biotechnology to clean energy technology.

    The MAF employs a group of full-time staff scientists to help design, perform and troubleshoot experiments for users from the UW, other universities and industry.

    The new NNCI funding will help support staff salaries, enabling them to expand “unpaid” work such as student mentoring. Current mentoring programs teach skills that are in high demand — how to calibrate and operate tools used to develop cutting-edge electronics and technologies. The UW will also emphasize outreach to Native American students, one of the most underrepresented groups in science and tech fields.

    “Part of our core mission is doing workforce development,” said WNF associate director Michael Khbeis. “Most of the clients call me up and say ‘I can’t find anybody to do this kind of work who lives around here,’ so we really try to share what we know to incubate that next generation of highly-skilled employees.”

    The NNCI funding will also free up staff to develop new lab technologies and train on new instruments before they’re ready to serve clients, as well as allow time for basic research.

    “We do a lot of training and mentoring and development that we don’t bill clients for, so this funding will really take some of the burden off of the staff and help with these unpaid initiatives,” Khbeis said.

    The NSF grant will also fund new computational initiatives, allowing the labs to partner with data science experts across campus to more accurately model fabrication and nanoscale interactions.

    Nationwide, the NSF will provide a total of $81 million in NNCI grants over the next five years. The framework builds on the National Nanotechnology Infrastructure Network, which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

    “NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said NSF assistant director for engineering Pramod Khargonekar. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us — the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 3:13 pm on September 3, 2015 Permalink | Reply
    Tags: , , , Nanotechnology   

    From Caltech: “Making Nanowires from Protein and DNA” 

    Caltech Logo

    Jessica Stoller-Conrad

    Co-crystal structure of protein-DNA nanowires. The protein-DNA nanowire design is experimentally verified by X-ray crystallography.
    Credit: Yun (Kurt) Mou, Jiun-Yann Yu, Timothy M. Wannier, Chin-Lin Guo and Stephen L. Mayo/Caltech

    The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be used to deliver cancer drugs directly to tumor cells, and customized proteins could be designed to specifically attack a certain kind of virus. Although researchers have already made such structures out of DNA or protein alone, a Caltech team recently created—for the first time—a synthetic structure made of both protein and DNA. Combining the two molecule types into one biomaterial opens the door to numerous applications.

    A paper describing the so-called hybridized, or multiple component, materials appears in the September 2 issue of the journal Nature.

    There are many advantages to multiple component materials, says Yun (Kurt) Mou (PhD ’15), first author of the Nature study. “If your material is made up of several different kinds of components, it can have more functionality. For example, protein is very versatile; it can be used for many things, such as protein–protein interactions or as an enzyme to speed up a reaction. And DNA is easily programmed into nanostructures of a variety of sizes and shapes.”

    But how do you begin to create something like a protein–DNA nanowire—a material that no one has seen before?

    Mou and his colleagues in the laboratory of Stephen Mayo, Bren Professor of Biology and Chemistry and the William K. Bowes Jr. Leadership Chair of Caltech’s Division of Biology and Biological Engineering, began with a computer program to design the type of protein and DNA that would work best as part of their hybrid material. “Materials can be formed using just a trial-and-error method of combining things to see what results, but it’s better and more efficient if you can first predict what the structure is like and then design a protein to form that kind of material,” he says.

    The researchers entered the properties of the protein–DNA nanowire they wanted into a computer program developed in the lab; the program then generated a sequence of amino acids (protein building blocks) and nitrogenous bases (DNA building blocks) that would produce the desired material.

    However, successfully making a hybrid material is not as simple as just plugging some properties into a computer program, Mou says. Although the computer model provides a sequence, the researcher must thoroughly check the model to be sure that the sequence produced makes sense; if not, the researcher must provide the computer with information that can be used to correct the model. “So in the end, you choose the sequence that you and the computer both agree on. Then, you can physically mix the prescribed amino acids and DNA bases to form the nanowire.”

    The resulting sequence was an artificial version of a protein–DNA coupling that occurs in nature. In the initial stage of gene expression, called transcription, a sequence of DNA is first converted into RNA. To pull in the enzyme that actually transcribes the DNA into RNA, proteins called transcription factors must first bind certain regions of the DNA sequence called protein-binding domains.

    Using the computer program, the researchers engineered a sequence of DNA that contained many of these protein-binding domains at regular intervals. They then selected the transcription factor that naturally binds to this particular protein-binding site—the transcription factor called Engrailed from the fruit fly Drosophila. However, in nature, Engrailed only attaches itself to the protein-binding site on the DNA. To create a long nanowire made of a continuous strand of protein attached to a continuous strand of DNA, the researchers had to modify the transcription factor to include a site that would allow Engrailed also to bind to the next protein in line.

    “Essentially, it’s like giving this protein two hands instead of just one,” Mou explains. “The hand that holds the DNA is easy because it is provided by nature, but the other hand needs to be added there to hold onto another protein.”

    Another unique attribute of this new protein–DNA nanowire is that it employs coassembly—meaning that the material will not form until both the protein components and the DNA components have been added to the solution. Although materials previously could be made out of DNA with protein added later, the use of coassembly to make the hybrid material was a first. This attribute is important for the material’s future use in medicine or industry, Mou says, as the two sets of components can be provided separately and then combined to make the nanowire whenever and wherever it is needed.

    This finding builds on earlier work in the Mayo lab, which, in 1997, created one of the first artificial proteins, thus launching the field of computational protein design. The ability to create synthetic proteins allows researchers to develop proteins with new capabilities and functions, such as therapeutic proteins that target cancer. The creation of a coassembled protein–DNA nanowire is another milestone in this field.

    “Our earlier work focused primarily on designing soluble, protein-only systems. The work reported here represents a significant expansion of our activities into the realm of nanoscale mixed biomaterials,” Mayo says.

    Although the development of this new biomaterial is in the very early stages, the method, Mou says, has many promising applications that could change research and clinical practices in the future.

    “Our next step will be to explore the many potential applications of our new biomaterial,” Mou says. “It could be incorporated into methods to deliver drugs into cells—to create targeted therapies that only bind to a certain biomarker on a certain cell type, such as cancer cells. We could also expand the idea of protein–DNA nanowires to protein–RNA nanowires that could be used for gene therapy applications. And because this material is brand-new, there are probably many more applications that we haven’t even considered yet.”

    The work was published in a paper titled, Computational design of co-assembling protein-DNA nanowires.” In addition to Mou and Mayo, other Caltech coauthors include former graduate students Jiun-Yann Yu (PhD ’14) and Timothy M. Wannier (PhD ’15), as well as Chin-Lin Guo from Academia Sinica in Taiwan. The work was funded by the Defense Advanced Research Projects Agency Protein Design Processes Program, a National Security Science and Engineering Faculty Fellowship, and the Caltech Programmable Molecular Technology Initiative funded by the Gordon and Betty Moore Foundation.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”
    Caltech buildings

  • richardmitnick 2:52 pm on August 31, 2015 Permalink | Reply
    Tags: , Nanotechnology,   

    From Madison: “Sustainable Nanotechnology Center Lands New $20 Million Contract” 

    U Wisconsin

    University of Wisconsin

    Terry Devitt

    Two graduate students working with the Center for Sustainable Nanotechnology examine a vial in a chemistry laboratory

    The Center for Sustainable Nanotechnology, a multi-institutional research center based at the University of Wisconsin-Madison, has inked a new contract with the National Science Foundation (NSF) that will provide nearly $20 million in support over the next five years.

    Directed by UW-Madison chemistry Professor Robert Hamers, the center focuses on the molecular mechanisms by which nanoparticles interact with biological systems.

    Nanotechnology involves the use of materials at the smallest scale, including the manipulation of individual atoms and molecules. Products that use nanoscale materials range from beer bottles and car wax to solar cells and electric and hybrid car batteries. If you read your books on a Kindle, a semiconducting material manufactured at the nanoscale underpins the high-resolution screen.

    While there are already hundreds of products that use nanomaterials in various ways, much remains unknown about how these modern materials and the tiny particles they are composed of interact with the environment and living things.

    “The purpose of the center is to explore how we can make sure these nanotechnologies come to fruition with little or no environmental impact,” explains Hamers. “We’re looking at nanoparticles in emerging technologies.”

    In addition to UW-Madison, scientists from UW-Milwaukee, the University of Minnesota, the University of Illinois, Northwestern University and the Pacific Northwest National Laboratory have been involved in the center’s first phase of research. Joining the center for the next five-year phase are Tuskegee University, Johns Hopkins University, the University of Iowa, Augsburg College, Georgia Tech and the University of Maryland, Baltimore County.

    At UW-Madison, Hamers leads efforts in synthesis and molecular characterization of nanomaterials. Soil science Professor Joel Pedersen and chemistry Professor Qiang Cui lead groups exploring the biological and computational aspects of how nanomaterials affect life.

    Much remains to be learned about how nanoparticles affect the environment and the multitude of organisms — from bacteria to plants, animals and people — that may be exposed to them.

    “Some of the big questions we’re asking are: How is this going to impact bacteria and other organisms in the environment? What do these particles do? How do they interact with organisms?” says Hamers.

    For instance, bacteria, the vast majority of which are beneficial or benign organisms, tend to be “sticky” and nanoparticles might cling to the microorganisms and have unintended biological effects.

    “There are many different mechanisms by which these particles can do things,” Hamers adds. “The challenge is we don’t know what these nanoparticles do if they’re released into the environment.”

    To get at the challenge, Hamers and his UW-Madison colleagues are drilling down to investigate the molecular-level chemical and physical principles that dictate how nanoparticles interact with living things.

    Pedersen’s group, for example, is studying the complexities of how nanoparticles interact with cells and, in particular, their surface membranes.

    “To enter a cell, a nanoparticle has to interact with a membrane,” notes Pedersen. “The simplest thing that can happen is the particle sticks to the cell. But it might cause toxicity or make a hole in the membrane.”

    Pedersen’s group can make model cell membranes in the lab using the same lipids and proteins that are the building blocks of nature’s cells. By exposing the lab-made membranes to nanomaterials now used commercially, Pedersen and his colleagues can see how the membrane-particle interaction unfolds at the molecular level — the scale necessary to begin to understand the biological effects of the particles.

    Such studies, Hamers argues, promise a science-based understanding that can help ensure the technology leaves a minimal environmental footprint by identifying issues before they manifest themselves in the manufacturing, use or recycling of products that contain nanotechnology-inspired materials.

    To help fulfill that part of the mission, the center has established working relationships with several companies to conduct research on materials in the very early stages of development.

    “We’re taking a look-ahead view. We’re trying to get into the technological design cycle,” Hamers says. “The idea is to use scientific understanding to develop a predictive ability to guide technology and guide people who are designing and using these materials.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America’s great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 936 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

  • richardmitnick 10:47 am on August 15, 2015 Permalink | Reply
    Tags: , Nanotechnology,   

    From Rice U: “Nanotube fibers being tested as a way to restore electrical health to hearts” 

    Rice U bloc

    Rice University

    August 14, 2015
    Mike Williams

    Rice scientist Matteo Pasquali holds a spool of fiber made of pure carbon nanotubes. The fibers are being studied to bridge gaps in the conductivity in damaged heart tissues. Photo by Jeff Fitlow

    Rice University and Texas Heart Institute researchers are studying the use of soft, flexible fibers made of carbon nanotubes to restore electrical conductivity to damaged heart tissue.

    With support from the American Heart Association, these institutions will test the fibers’ ability to bridge electrical gaps in tissue caused by cardiac arrhythmias that affect more than 4 million Americans each year.

    A beating heart is controlled by electrical signals that prompt its tissues to contract and relax. Scars in heart tissue conduct little or no electricity. Soft, highly conductive fibers offer a way to work around those gaps.

    “They’re like extension cords,” said Mehdi Razavi, the director of electrophysiology clinical research at the Texas Heart Institute and the project’s lead investigator. “They allow us to pick up charge from one side of the scar and deliver it to the other side. Essentially, we’re short-circuiting the short circuit.”

    The nanotube fibers developed at Rice by the lab of chemist and chemical engineer Matteo Pasquali are about a quarter of the thickness of a human hair. But even an inch-long piece of the material contains millions of nanotubes, microscopic cylinders of pure carbon discovered in the early 1990s.

    Though the fibers were developed to replace the miles of cables in commercial airplanes to save weight, their potential for medical applications became quickly apparent, Pasquali said.

    “We didn’t design the fiber to be soft, but it turns out to be mechanically very similar to a suture,” he said. “And it has all the electrical function necessary for an application like this.”

    Because the fibers are soft, flexible and extremely tough, they are expected to be far more suitable for biological applications than the metal wires used to deliver power to devices like pacemakers. They have already shown potential for helping people with Parkinson’s disease who require brain implants to treat their neurological condition.

    Rice research scientist Flavia Vitale is developing nanotube fiber applications. She is part of a collaboration with Texas Heart Institute to use the fibers as conductive bridges for damaged heart tissue. Photo by Jeff Fitlow

    “People who progress to heart failure can have the formation of scar tissue over time,” said Mark McCauley, a cardiac electrophysiologist at the Texas Heart Institute. “There are a lot of different ways scarring can affect conduction in the heart. Recently we’ve been most interested in the development of scarring after heart attacks, but we believe this fiber may help us treat all kinds of cardiac arrhythmias and electrical-conduction issues.”

    “Metal wires themselves can cause tissue to scar,” said Flavia Vitale, a research scientist in Pasquali’s lab who is developing nanotube fiber applications. “If you think about inserting a needle into your skin, eventually your skin will react and completely isolate it, because it’s stiff. Scar will form around the needle.

    “But these fibers are unique,” she said. “They’re smaller and more flexible than a human hair and so strong that they can resist flexural fatigue due to the constant beating of the heart.”

    Vitale noted the fibers’ low impedance (its resistance to current) allows electricity to move from tissue to bridge and back with ease, far better than with metal wires.

    The researchers are testing the fibers’ biocompatibility but hope human trials are no more than a few years away.

    Razavi said a safe, effective way to conduct electricity through scarred heart tissue will revolutionize treatment. “Should these more extensive studies confirm our initial findings, a paradigm shift in treatment of sudden cardiac death will be within reach, as for the first time the underlying cause for these events may be corrected on a permanent basis,” he said.

    Pasquali said he is gratified to see a new way in which nanotechnology, for which Rice is renowned, can help save lives. “We’ve been excited from the beginning to learn about each other’s areas and come up with uses for the material,” he said of his friendship – and now collaboration – with Razavi. “We’re determined to find ways to treat rather than manage disease.”

    Pasquali is the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, chair of the Department of Chemistry and a professor of materials science and nanoengineering and of chemistry.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Rice U campus

    In his 1912 inaugural address, Rice University president Edgar Odell Lovett set forth an ambitious vision for a great research university in Houston, Texas; one dedicated to excellence across the range of human endeavor. With this bold beginning in mind, and with Rice’s centennial approaching, it is time to ask again what we aspire to in a dynamic and shrinking world in which education and the production of knowledge will play an even greater role. What shall our vision be for Rice as we prepare for its second century, and how ought we to advance over the next decade?

    This was the fundamental question posed in the Call to Conversation, a document released to the Rice community in summer 2005. The Call to Conversation asked us to reexamine many aspects of our enterprise, from our fundamental mission and aspirations to the manner in which we define and achieve excellence. It identified the pressures of a constantly changing and increasingly competitive landscape; it asked us to assess honestly Rice’s comparative strengths and weaknesses; and it called on us to define strategic priorities for the future, an effort that will be a focus of the next phase of this process.

  • richardmitnick 10:34 pm on August 12, 2015 Permalink | Reply
    Tags: , Nanotechnology,   

    From Science Times: “Medical Nanotechnology Breakthrought Will Change Mankind Forever” 

    Science Times

    Science Times

    Aug 12, 2015
    Darlene Tverdohleb

    (Photo : Reuters/Jonathan Ernst) U.S. President Barack Obama (R) speaks with Ruchi Pandya from San Jose, California, who was born congenital scoliosis, about her nanotechnology project to test biological samples.

    It has been speculated since long by futurists that nanotechnology will revolutionize virtually every field of our lives, medicine making no exception. Nanotechnology focuses on the engineering of materials and devices at a nanoscale, by using building blocks of atoms and molecules.

    Medical nanotechnology may be able to extend our lives in two ways. It can repair our bodies at the cellular level, reverse aging and providing a certain version of the fountain of youth, and it can help the medical community to eradicate life-threatening diseases such as stroke, heart attack, HIV or cancer.

    By curing life-threatening disease, nanotech can extend the average lifespan far beyond the remarkable achievements of the last century. For instance, the nanotechnology applications in healthcare are likely to minimize the number of deaths from conditions such as heart disease and cancer over the next decade or so. There are already many research programs in place working on these techniques.

    Curing cancer could finally become reality, thanks to medical nanotech. Targeted chemotherapy methods based on nanotech use nanoparticle to deliver chemotherapy drugs.

    A separate nanoparticle is used to guide the drug carrier directly to the cancer tumor. Gold nanorods can also be introduced in circulation through the bloodstream. Once they accumulate at the tumor site, they would concentrate the heat from an infrared light, heating up the tumor to a level where its cells die with minimal damage to the surrounding healthy cells.

    This heat could also be used in order to increase the level of a stress related protein present on the tumor’s surface. Then a drug carrying liposome nanoparticles can be attached to amino acids that bind to this protein. This way, the accumulation of the liposome chemotherapy drug is speeded up by the increased level of protein at the tumor.

    Magnetic nanoparticles attaching to cancer cells present in the bloodstream could also allow the removal of cancer cells before they establish new tumors.

    Individual research programs like those mentioned above are in place at various private companies and universities. Similar research programs are also sustained at the national level. One of them is a group formed at the U.S. National Cancer Institute, called the Alliance for Nanotechnology in Cancer. The NCI group is catalyzing efforts for targeted discovery and development in order to achieve the greatest advances in the near term and beyond. They are also planning to facilitate the process of handing off those advances for commercial development to the private sector. This alliance includes eight Centers of Cancer Nanotechnology Excellence as well as a Nanotechnology Characterization Lab.

    Similar research projects are in place for studying ways of fighting heart disease, another major killer in our time. Several efforts are going on in this area. For example, researchers at the University of Santa Barbara have designed a nanoparticle able to deliver drugs to the wall arteries plaque.

    Extending the average lifespan by repairing cells is another area of interest for medical nanotech. This is perhaps the most exciting application. Our bodies can be repaired at the cellular level by nanorobots. Such technologies are being under development already at various private companies and universities.

    For instance, nanorobots might repair our DNA in our cells when it get damaged by toxins in our bodies or radiation. The Nanomedicine Center for Nucleoprotein Machines is studying protein-based biological machines (nano-robots) able to repair damage in our bodies and assist in DNA replication.

    The Nanofactory Collorabation is an international group focused on developing the techniques for nanoscale precise manufacturing, The ability to work at this scale will allow manufacturing of unique materials and devices that will feature improved and novel properties.

    Recent breakthroughs in medical nanotechnology were announced by various research groups. Among them, it is worth to mention the first self-assembling molecule that open the gate for further manufacturing of state-of-the-art nanomedical devices.

    Medical nanotech is also behind the new non-drug therapy called hyperthermia, which comes with the advantage of being non-toxic and with no harmful side effects. A 3D printer at nano-scale is able to manufacture new cancer drugs just by drag-and-dropping DNA. And the list of examples may continue for long. All these revolutionary medical advances are possible thanks to the emerging field of nanotechnology. They will change our lives forever.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    About Us

    The Science Hub For The Internet…

    Sciencetimes.com prides itself in providing a complete informational and content package for science enthusiasts in the web who aim to remain updated and well-informed regarding a wide array of topics of their interest.

    We provide credible news & info., in-depth reference material about diverse subjects that matter to everyone. We are a source for original and timely science and research information as well as breaking news in the various fields we represent.

  • richardmitnick 10:27 am on August 4, 2015 Permalink | Reply
    Tags: , Nanotechnology,   

    From U Washington: “UW to invest $37 million in nanofabrication lab critical to researchers, start-ups” 

    U Washington

    University of Washington

    August 3, 2015
    Jennifer Langston

    UW students taking a microfabrication class get hands-on training in cleanroom laboratory techniques at the Washington Nanofabrication Facility.University of Washington

    For start-up companies looking to make chips with nanoscale features for sequencing DNA or wafers for industrial barcode printing, the equipment costs to fabricate those parts could easily devour every last dollar of seed funding.

    The same goes for grant-funded researchers designing quantum information devices or micro-scale sensors to measure cell movement— which is where the Washington Nanofabrication Facility comes in.

    The WNF makes things that aren’t practical, economical or possible to fabricate at commercial foundries — inconceivably tiny parts, chips made from unconventional materials that industrial factories won’t touch, devices that probe the boundaries of our universe. Part of the National Nanotechnology Infrastructure Network, the lab on the University of Washington campus is the largest publicly accessible nanofabrication facility north of Berkeley and west of Minneapolis.

    To serve growing demand for nanofabrication services, the UW Board of Regents has approved spending up to $37 million to renovate the facility, which is housed in Fluke Hall. The overhaul, scheduled to begin in November, will upgrade basic building systems and roughly double the amount of highly-specialized fabrication space that academics and entrepreneurs increasingly rely on to build innovative devices.

    The “fab lab” in Fluke Hall — currently used by 48 UW faculty members and 134 students — has supported $32 million in UW research grant funding this year. A third of its 223 users are with commercial companies, which range from multinational corporations to UW spinouts to minority-owned local start-ups. Regional demand for nanofabrication services is growing rapidly, with WNF revenues nearly tripling in the last four years.

    “The Washington Nanofabrication Facility is vital to my existence,” said Jevne Branden Micheau-Cunningham, who launched a new company called FLEXFORGE six months ago. He’s using WNF equipment and expertise to manufacture nanoscale electronics with applications in the automotive, aerospace and medical devices industries.

    “It allows entrepreneurs such as myself to flesh out ideas and bring products to life — the costs to get up and running on my own would have been prohibitive,” said Micheau-Cunningham. “Nanofabrication is also a pretty specific thing, and they’ve really looked over my shoulder throughout the process.”

    The WNF houses nearly 100 different pieces of equipment that perform everything from electron beam lithography and atomic layer deposition to plasma etching and wafer bonding. User fees paid by academic and non-university clients are invested back into the facility. Applications for the devices those tools enable range from tissue engineering and silicon photonics to semiconductor technologies and basic scientific research.

    The WNF houses equipment used in nanofabrication, from simple microscopes to this tool that deposits dielectric materials at low temperatures.SPTS Technologies

    “Fabrication is basically a repetitive sequence of steps where we add or subtract material to create the microsystems and devices that people ask for,” said WNF associate director Michael Khbeis. “A lot of companies don’t have fabrication experts, so we also do a lot of design assistance and handholding to take an idea or concept and engineer a process and turn it into a prototype.”

    The UW assumed ownership of the nonprofit nanofabrication facility in 2011, which was formerly run by the Washington Department of Commerce. Through private donations, grants, UW funding and corporate gifts, the lab has invested in excess of $8 million over the last four years to modernize tools and equipment.

    But the infrastructure in Fluke Hall, built in 1988, needs upgrades to meet basic safety and environmental standards and the highly specialized needs of nanofabrication users. The renovation, which will be done in three phases over 14 months to minimize downtime, will allow the lab to better control temperature, humidity and air quality inside the “clean room,” where unwelcome fluctuations can poison an entire production line.

    “One dust speck can damage a device if it’s in the wrong place, so this renovation will make a major difference,” said WNF director Karl Böhringer, a UW professor of electrical engineering and of bioengineering. “The other advantage will be having more space — usage and revenues have increased, and we are bursting at the seams.”

    These flexible microposts are used for rapid blood analysis by Stasys, a biomedical spin-off that developed their technology at the UW and received a microfabrication commercialization grant.University of Washington

    By helping fledgling companies realize prototypes and develop scalable production processes, the WNF plays an important role in the region’s innovation ecosystem. With funding from the Washington Research Foundation, the lab has awarded $140,000 in Microfabrication Commercialization Grants that help bridge the gap from academic or applied research to commercialization of micro-fabricated devices. So far, those grants have supported two UW spin-out companies.

    The nanofabrication lab also offers an undergraduate research program for students who spend up to three years learning how to calibrate and operate the highly sensitive and specialized equipment. This summer’s program will include 20 UW undergrads, up from three in 2011.

    The electronics industry workforce that spurred the development of personal computers and mobile devices is aging and retiring; nationwide there is a shortage of engineers entering the workforce to backfill essential positions and skillsets. By training students in real-world challenges, the WNF’s workforce development mission supports the future success of the U.S. tech industry.

    “When they leave here, they’re highly sought-after in the semiconductor and electronics and aerospace worlds,” Khbeis said. “Every one of our students has multiple offers, and those companies are extremely happy to get them.”

    For more information, contact Khbeis and Böhringer at wnf-info@coral.engr.washington.edu.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us — the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

  • richardmitnick 10:40 am on July 30, 2015 Permalink | Reply
    Tags: , , , , Nanotechnology   

    From MIT: “How to look for a few good catalysts” 

    MIT News

    July 30, 2015
    David L. Chandler

    New research shows non-wetting surfaces promote chemical reaction rates.

    Materials that have good wetting properties, as illustrated on the left, where droplets spread out flat, tend to have hydroxyl groups attached to the surface, which inhibits catalytic activity. Materials that repel water, as shown at right, where droplets form sharp, steep boundaries, are more conducive to catalytic activity, as shown by the reactions among small orange molecules. Illustration: Xiao Renshaw Wang

    Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

    Now researchers at MIT and other institutions have found that these two processes, which had been considered unrelated, are in fact closely linked. The discovery could make it easier to find new catalysts for particular applications, among other potential benefits.

    “What’s really exciting is that we’ve been able to connect atomic-level interactions of water and oxides on the surface to macroscopic measurements of wetting, whether a surface is hydrophobic or hydrophilic, and connect that directly with catalytic properties,” says Yang Shao-Horn, the W.M. Keck Professor of Energy at MIT and a senior author of a paper describing the findings in the Journal of Physical Chemistry C. The research focused on a class of oxides called perovskites that are of interest for applications such as gas sensing, water purification, batteries, and fuel cells.

    Since determining a surface’s wettability is “trivially easy,” says senior author Kripa Varanasi, an associate professor of mechanical engineering, that determination can now be used to predict a material’s suitability as a catalyst. Since researchers tend to specialize in either wettability or catalysis, this produces a framework for researchers in both fields to work together to advance understanding, says Varanasi, whose research focuses primarily on wettability; Shao-Horn is an expert on catalytic reactions.

    “We show how wetting and catalysis, which are both surface phenomena, are related,” Varanasi says, “and how electronic structure forms a link between both.”

    While both effects are important in a variety of industrial processes and have been the subject of much empirical research, “at the molecular level, we understand very little about what’s happening at the interface,” Shao-Horn says. “This is a step forward, providing a molecular-level understanding.”

    “It’s primarily an experimental technique” that made the new understanding possible, explains Kelsey Stoerzinger, an MIT graduate student and the paper’s lead author. While most attempts to study such surface science use instruments requiring a vacuum, this team used a device that could study the reactions in humid air, at room temperature, and with varying degrees of water vapor present. Experiments using this system, called ambient pressure X-ray photoelectron spectroscopy, revealed that the reactivity with water is key to the whole process, she says.

    The water molecules break apart to form hydroxyl groups — an atom of oxygen bound to an atom of hydrogen — bonded to the material’s surface. These reactive compounds, in turn, are responsible for increasing the wetting properties of the surface, while simultaneously inhibiting its ability to catalyze chemical reactions. Therefore, for applications requiring high catalytic activity, the team found, a key requirement is that the surface be hydrophobic, or non-wetting.

    “Ideally, this understanding helps us design new catalysts,” Stoerzinger says. If a given material “has a lower affinity for water, it has a higher affinity for catalytic activity.”

    Shao-Horn notes that this is an initial finding, and that “extension of these trends to broader classes of materials and ranges of hydroxyl affinity requires further investigation.” The team has already begun further exploration of these areas. This research, she says, “opens up the space of materials and surfaces we might think about” for both catalysis and wetting.

    The research team also included graduate student Wesley Hong, visiting scientist Livia Giordano, and postdocs Yueh-Lin Lee and Gisele Azimi at MIT; Ethan Crumlin and Hendrik Bluhm at Lawrence Berkeley National Laboratory; and Michael Biegalski at Oak Ridge National Laboratory. The work was supported by the National Science Foundation and the U.S. Department of Energy.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 4:04 pm on July 28, 2015 Permalink | Reply
    Tags: , , , , Nanotechnology,   

    From BNL: “New Computer Model Could Explain how Simple Molecules Took First Step Toward Life” 

    Brookhaven Lab

    July 28, 2015
    Alasdair Wilkins

    Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules

    Brookhaven researchers Sergei Maslov (left) and Alexi Tkachenko developed a theoretical model to explain molecular self-replication.

    Nearly four billion years ago, the earliest precursors of life on Earth emerged. First small, simple molecules, or monomers, banded together to form larger, more complex molecules, or polymers. Then those polymers developed a mechanism that allowed them to self-replicate and pass their structure on to future generations.

    We wouldn’t be here today if molecules had not made that fateful transition to self-replication. Yet despite the fact that biochemists have spent decades searching for the specific chemical process that can explain how simple molecules could make this leap, we still don’t really understand how it happened.

    Now Sergei Maslov, a computational biologist at the U.S. Department of Energy’s Brookhaven National Laboratory and adjunct professor at Stony Brook University, and Alexei Tkachenko, a scientist at Brookhaven’s Center for Functional Nanomaterials (CFN), have taken a different, more conceptual approach. They’ve developed a model that explains how monomers could very rapidly make the jump to more complex polymers. And what their model points to could have intriguing implications for CFN’s work in engineering artificial self-assembly at the nanoscale. Their work is published in the July 28, 2015 issue of The Journal of Chemical Physics.

    To understand their work, let’s consider the most famous organic polymer, and the carrier of life’s genetic code: DNA. This polymer is composed of long chains of specific monomers called nucleotides, of which the four kinds are adenine, thymine, guanine, and cytosine (A, T, G, C). In a DNA double helix, each specific nucleotide pairs with another: A with T, and G with C. Because of this complementary pairing, it would be possible to put a complete piece of DNA back together even if just one of the two strands was intact.

    While DNA has become the molecule of choice for encoding biological information, its close cousin RNA likely played this role at the dawn of life. This is known as the RNA world hypothesis, and it’s the scenario that Maslov and Tkachenko considered in their work.

    The single complete RNA strand is called a template strand, and the use of a template to piece together monomer fragments is what is known as template-assisted ligation. This concept is at the crux of their work. They asked whether that piecing together of complementary monomer chains into more complex polymers could occur not as the healing of a broken polymer, but rather as the formation of something new.

    “Suppose we don’t have any polymers at all, and we start with just monomers in a test tube,” explained Tkachenko. “Will that mixture ever find its way to make those polymers? The answer is rather remarkable: Yes, it will! You would think there is some chicken-and-egg problem—that, in order to make polymers, you already need polymers there to provide the template for their formation. Turns out that you don’t really.”

    Instilling memory

    A schematic drawing of template-assisted ligation, shown in this model to give rise to autocatalytic systems. No image credit.

    Maslov and Tkachenko’s model imagines some kind of regular cycle in which conditions change in a predictable fashion—say, the transition between night and day. Imagine a world in which complex polymers break apart during the day, then repair themselves at night. The presence of a template strand means that the polymer reassembles itself precisely as it was the night before. That self-replication process means the polymer can transmit information about itself from one generation to the next. That ability to pass information along is a fundamental property of life.

    “The way our system replicates from one day cycle to the next is that it preserves a memory of what was there,” said Maslov. “It’s relatively easy to make lots of long polymers, but they will have no memory. The template provides the memory. Right now, we are solving the problem of how to get long polymer chains capable of memory transmission from one unit to another to select a small subset of polymers out of an astronomically large number of solutions.”

    According to Maslov and Tkachenko’s model, a molecular system only needs a very tiny percentage of more complex molecules—even just dimers, or pairs of identical molecules joined together—to start merging into the longer chains that will eventually become self-replicating polymers. This neatly sidesteps one of the most vexing puzzles of the origins of life: Self-replicating chains likely need to be very specific sequences of at least 100 paired monomers, yet the odds of 100 such pairs randomly assembling themselves in just the right order is practically zero.

    “If conditions are right, there is what we call a first-order transition, where you go from this soup of completely dispersed monomers to this new solution where you have these long chains appearing,” said Tkachenko. “And we now have this mechanism for the emergence of these polymers that can potentially carry information and transmit it downstream. Once this threshold is passed, we expect monomers to be able to form polymers, taking us from the primordial soup to a primordial soufflé.”

    While the model’s concept of template-assisted ligation does describe how DNA—as well as RNA—repairs itself, Maslov and Tkachenko’s work doesn’t require that either of those was the specific polymer for the origin of life.

    “Our model could also describe a proto-RNA molecule. It could be something completely different,” Maslov said.

    Order from disorder

    The fact that Maslov and Tkachenko’s model doesn’t require the presence of a specific molecule speaks to their more theoretical approach.

    “It’s a different mentality from what a biochemist would do,” said Tkachenko. “A biochemist would be fixated on specific molecules. We, being ignorant physicists, tried to work our way from a general conceptual point of view, as there’s a fundamental problem.”

    That fundamental problem is the second law of thermodynamics, which states that systems tend toward increasing disorder and lack of organization. The formation of long polymer chains from monomers is the precise opposite of that.

    “How do you start with the regular laws of physics and get to these laws of biology which makes things run backward, which make things more complex, rather than less complex?” Tkachenko queried. “That’s exactly the jump that we want to understand.”

    Applications in nanoscience

    The work is an outgrowth of efforts at the Center for Functional Nanomaterials, a DOE Office of Science User Facility, to use DNA and other biomolecules to direct the self-assembly of nanoparticles into large, ordered arrays. While CFN doesn’t typically focus on these kinds of primordial biological questions, Maslov and Tkachenko’s modeling work could help CFN scientists engaged in cutting-edge nanoscience research to engineer even larger and more complex assemblies using nanostructured building blocks.

    “There is a huge interest in making engineered self-assembled structures, so we were essentially thinking about two problems at once,” said Tkachenko. “One is relevant to biologists, and second asks whether we can engineer a nanosystem that will do what our model does.”

    The next step will be to determine whether template-aided ligation can allow polymers to begin undergoing the evolutionary changes that characterize life as we know it. While this first round of research involved relatively modest computational resources, that next phase will require far more involved models and simulations.

    Maslov and Tkachenko’s work has solved the problem of how long polymer chains capable of information transmission from one generation to the next could emerge from the world of simple monomers. Now they are turning their attention to how such a system could naturally narrow itself down from exponentially many polymers to only a select few with desirable sequences.

    “What we needed to show here was that this template-based ligation does result in a set of polymer chains, starting just from monomers,” said Tkachenko. “So the next question we will be asking is whether, because of this template-based merger, we will be able to see specific sequences that will be more ‘fit’ than others. So this work sets the stage for the shift to the Darwinian phase.”

    This work was supported by the DOE Office of Science.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    BNL Campus

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 474 other followers

%d bloggers like this: