Tagged: Nanotechnology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:37 am on January 22, 2022 Permalink | Reply
    Tags: "Towards compact quantum computers thanks to topology", At SLS the PSI researchers used an investigation method called soft X-ray angle-resolved photoelectron spectroscopy – SX-ARPES for short., By now the future of computing is inconceivable without quantum computers., Indium antimonide has a particularly low electron density below its oxide layer. This would be advantageous for the formation of topological Majorana fermions in the planned nanowires., It is known that thin-film systems of certain semiconductors and superconductors could lead to exotic electron states that would act as such topological qubits., Majorana fermions are topological states. They could therefore act as information carriers-ergo as quantum bits in a quantum computer., Most types of qubits unfortunately lose their information quickly., Nanotechnology, Quantum bits-or qubits for short-form the basis of quantum computers., , Quasiparticles in semiconductor nanowires, Researchers at The Paul Scherrer Institute [Paul Scherrer Institut](CH)] have compared the electron distribution below the oxide layer of two semiconductors., Scientists at Paul Scherrer Institute want to help create a new kind of qubit that is immune to leakage of information., So-called topological quantum bits are a novel type that might prove to be superior., , The researchers hope to obtain such immunity with so-called topological quantum bits., The researchers investigated two different semiconductors and their natural oxide layer: on the one hand indium arsenide and on the other indium antimonide.   

    From The Paul Scherrer Institute [Paul Scherrer Institut](CH): “Towards compact quantum computers thanks to topology” 

    From The Paul Scherrer Institute [Paul Scherrer Institut](CH)

    20 January 2022
    Laura Hennemann

    Researchers at The Paul Scherrer Institute [Paul Scherrer Institut](CH) have compared the electron distribution below the oxide layer of two semiconductors. The investigation is part of an effort to develop particularly stable quantum bits –and thus, in turn, particularly efficient quantum computers. They have now published their latest research, which is supported in part by Microsoft, in the scientific journal Advanced Quantum Technologies.

    By now the future of computing is inconceivable without quantum computers. For the most part, these are still in the research phase. They hold the promise of speeding up certain calculations and simulations by orders of magnitude compared to classical computers.

    Quantum bits-or qubits for short-form the basis of quantum computers. So-called topological quantum bits are a novel type that might prove to be superior. To find out how these could be created, an international team of researchers has carried out measurements at the Swiss Light Source SLS at The Paul Scherrer Institute [Paul Scherrer Institut](CH).

    1
    Niels Schröter (left) and Vladimir Strocov at one of the experiment stations of the Swiss Light Source SLS at PSI. Here the researchers used soft X-ray angle-resolved photoelectron spectroscopy to measure the electron distribution below the oxide layer of indium arsenide as well as indium antimonide.
    Photo: Mahir Dzambegovic/Paul Scherrer Institute.

    More stable quantum bits

    3
    Gabriel Aeppli, head of the Photon Science Division at PSI, specialises in the study of quantum materials.
    Photo: Thomas Baumann.

    “Computer bits that follow the laws of quantum mechanics can be achieved in different ways,” explains Niels Schröter, one of the study’s authors. He was a researcher at PSI until April 2021, when he moved to The MPG Institute of Microstructure Physics [MPG für Mikrostrukturphysik] (DE). “Most types of qubits unfortunately lose their information quickly; you could say they are forgetful qubits.” There is a technical solution to this: Each qubit is backed up with a system of additional qubits that correct any errors that occur. But this means that the total number of qubits needed for an operational quantum computer quickly rises into the millions.

    “Microsoft’s approach, which we are now collaborating on, is quite different,” Schröter continues. “We want to help create a new kind of qubit that is immune to leakage of information. This would allow us to use just a few qubits to achieve a slim, functioning quantum computer.”

    The researchers hope to obtain such immunity with so-called topological quantum bits. These would be something completely new that no research group has yet been able to create.

    Topological materials became more widely known through the Nobel Prize in Physics in 2016. Topology is originally a field of mathematics that explores, among other things, how geometric objects behave when they are deformed. However, the mathematical language developed for this can also be applied to other physical properties of materials. Quantum bits in topological materials would then be topological qubits.

    Quasiparticles in semiconductor nanowires

    It is known that thin-film systems of certain semiconductors and superconductors could lead to exotic electron states that would act as such topological qubits. Specifically, ultra-thin, short wires made of a semiconductor material could be considered for this purpose. These have a diameter of only 100 nanometres and are 1,000 nanometres (i.e., 0.0001 centimetres) long. On their outer surface, in the longitudinal direction, the top half of the wires is coated with a thin layer of a superconductor. The rest of the wire is not coated so that a natural oxide layer forms there. Computer simulations for optimising these components predict that the crucial, quantum mechanical electron states are only located at the interface between the semiconductor and the superconductor and not between the semiconductor and its oxide layer.

    “The collective, asymmetric distribution of electrons generated in these nanowires can be physically described as so-called quasiparticles,” says Gabriel Aeppli, head of the Photon Science Division at PSI, who was also involved in the current study. “Now, if suitable semiconductor and superconductor materials are chosen, these electrons should give rise to special quasiparticles called Majorana fermions at the ends of the nanowires.”

    Majorana fermions are topological states. They could therefore act as information carriers, ergo as quantum bits in a quantum computer. “Over the course of the last decade, recipes to create Majorana fermions have already been studied and refined by research groups around the world,” Aeppli continues. “But to continue with this analogy: we still didn’t know which cooking pot would give us the best results for this recipe.”

    Indium antimonide has the advantage

    A central concern of the current research project was therefore the comparison of two “cooking pots”. The researchers investigated two different semiconductors and their natural oxide layer: on the one hand indium arsenide and on the other indium antimonide.

    At SLS the PSI researchers used an investigation method called soft X-ray angle-resolved photoelectron spectroscopy – SX-ARPES for short. A novel computer model developed by Noa Marom’s group at Carnegie Mellon University, USA, together with Vladimir Strocov from PSI, was used to interpret the complex experimental data. “The computer models used up to now led to an unmanageably large number of spurious results. With our new method, we can now look at all the results, automatically filter out the physically relevant ones, and properly interpret the experimental outcome,” explains Strocov.

    Through their combination of SX-ARPES experiments and computer models, the researchers have now been able to show that indium antimonide has a particularly low electron density below its oxide layer. This would be advantageous for the formation of topological Majorana fermions in the planned nanowires.

    “From the point of view of electron distribution under the oxide layer, indium antimonide is therefore better suited than indium arsenide to serve as a carrier material for topological quantum bits,” concludes Niels Schröter. However, he points out that in the search for the best materials for a topological quantum computer, other advantages and disadvantages must certainly be weighed against each other. “Our advanced spectroscopic methods will certainly be instrumental in the quest for the quantum computing materials,” says Strocov. “PSI is currently taking big steps to expand quantum research and engineering in Switzerland, and SLS is an essential part of that.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Paul Scherrer Institute [Paul Scherrer Institut] (CH) is the largest research institute for natural and engineering sciences within Switzerland. We perform world-class research in three main subject areas: Matter and Material; Energy and the Environment; and Human Health. By conducting fundamental and applied research, we work on long-term solutions for major challenges facing society, industry and science.

    The Paul Scherrer Institute (PSI) is a multi-disciplinary research institute for natural and engineering sciences in Switzerland. It is located in the Canton of Aargau in the municipalities Villigen and Würenlingen on either side of the River Aare, and covers an area over 35 hectares in size. Like ETH Zurich [Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) and EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH)], PSI belongs to the The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH). The PSI employs around 2100 people. It conducts basic and applied research in the fields of matter and materials, human health, and energy and the environment. About 37% of PSI’s research activities focus on material sciences, 24% on life sciences, 19% on general energy, 11% on nuclear energy and safety, and 9% on particle physics.

    PSI develops, builds and operates large and complex research facilities and makes them available to the national and international scientific communities. In 2017, for example, more than 2500 researchers from 60 different countries came to PSI to take advantage of the concentration of large-scale research facilities in the same location, which is unique worldwide. About 1900 experiments are conducted each year at the approximately 40 measuring stations in these facilities.

    In recent years, the institute has been one of the largest recipients of money from the Swiss lottery fund.

    Research and specialist areas

    Paul Scherrer Institute develops, builds and operates several accelerator facilities, e. g. a 590 MeV high-current cyclotron, which in normal operation supplies a beam current of about 2.2 mA. PSI also operates four large-scale research facilities: a synchrotron light source (SLS), which is particularly brilliant and stable, a spallation neutron source (SINQ), a muon source (SμS) and an X-ray free-electron laser (SwissFEL).

    Paul Sherrer Institute SwissFEL Coherent Light Source, Spallation Neutron Source (SINQ), Muon Source (SμS), X-ray free-electron laser (SwissFEL)

    This makes PSI currently (2020) the only institute in the world to provide the four most important probes for researching the structure and dynamics of condensed matter (neutrons, muons and synchrotron radiation) on a campus for the international user community. In addition, HIPA’s target facilities also produce pions that feed the muon source and the Ultracold Neutron source UCN produces very slow, ultracold neutrons. All these particle types are used for research in particle physics.

     
  • richardmitnick 4:37 pm on January 16, 2022 Permalink | Reply
    Tags: "Nanostructures get complex with electron equivalents", , Colloidal crystals are a family of self-assembled arrays made by nanoparticles with potential applications in photonics., , Crystals that can transform light may be engineered for everything from light sensors and lasers to communications and computing., , , , Nanoparticles have the potential to enable new materials with properties that can be carefully designed but one of the big challenges is making these materials self-assemble., Nanotechnology, , The symmetry-breaking method promises many more new structures., , This strategy for breaking symmetry rewrites the rules for material design and synthesis., Triple-double-gyroid-a new crystal structure discovered by the researchers at Northwestern University; The University of Michigan and Argonne National Laboratory. Never found in nature or synthesized   

    From The University of Michigan (US): “Nanostructures get complex with electron equivalents” 

    U Michigan bloc

    From The University of Michigan (US)

    January 13, 2022

    Contact:
    Kate McAlpine
    kmca@umich.edu

    1
    The structural illustration shows the triple-double-gyroid, a new crystal structure discovered by the researchers at Northwestern University (US), the University of Michigan (US) and Argonne National Laboratory (US). It has never been found in nature or synthesized before. The translucent balls in red, green and blue show the positions of large nanoparticles. Each color represents a double-gyroid structure. The dark grey balls and sticks show the locations of the smaller, electron-like particles in one of three types of sites in which those particles appear. The formation of this new crystal structure is a result of the way electron-like nanoparticles control the number of neighbors around the larger nanoparticles. Image credit: Sangmin Lee, Glotzer Group.

    Complex crystals that mimic metals—including a structure for which there is no natural equivalent—can be achieved with a new approach to guiding nanoparticle self-assembly.

    Rather than just nanoparticles that serve as “atom equivalents,” the crystals produced and interpreted by Northwestern University (US), University of Michigan and DOE’s Argonne National Laboratory(US) rely on even smaller particles that simulate electrons.

    “We’ve learned something fundamental about the system for making new materials,” said Northwestern’s Chad Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and a co-corresponding author of the paper in Nature Materials. “This strategy for breaking symmetry rewrites the rules for material design and synthesis.”

    Nanoparticles have the potential to enable new materials with properties that can be carefully designed, but one of the big challenges is making these materials self-assemble. Nanoparticles are too small and numerous to build brick by brick.

    Colloidal crystals are a family of self-assembled arrays made by nanoparticles, with potential applications in photonics. Crystals that can transform light may be engineered for everything from light sensors and lasers to communications and computing.

    “Using large and small nanoparticles, where the smaller ones move around like electrons in a crystal of metal atoms, is a whole new approach to building complex colloidal crystal structures,” said Sharon Glotzer, the Anthony C. Lembke Department Chair of Chemical Engineering at U-M and a co-corresponding author.

    Mirkin’s team created colloidal crystals by coating metal nanoparticles with DNA to make them stick to one another. The DNA strands are self-complementary, which means they bond to one another. By tuning parameters like the length of the DNA and how densely the nanoparticles are coated, the metal nanoparticles can be “programmed” to arrange themselves in specified ways. As a result, they are called programmable atom equivalents.

    However, the “atoms” in this crystal—spheres with an even coating of DNA—are the same in all directions, so they tend to build symmetric structures. To build less symmetric structures, they needed something to break the symmetry.

    “Building on Chad’s prior discovery of ‘electron equivalents’ with Northwestern’s Monica Olvera De La Cruz, we explored more complex structures where control over the number of neighbors around each particle produced further symmetry-breaking,” Glotzer said.

    Smaller metal spheres, with fewer DNA strands to make them less sticky, end up acting like electrons in an arrangement of larger nanoparticle “atoms.” They roved around the interior of the structure, stabilizing the lattice of large nanoparticles. Mirkin’s team varied the stickiness of the “electron” nanoparticles to get different structures, as well as changing the temperature and the ratio of nanoparticle “atoms” and “electrons.”

    They analyzed these structures aided by small-angle x-ray scattering studies carried out with Byeongdu Lee, a physicist at Argonne National Laboratory and a co-corresponding author. That data revealed three complex, low-symmetry structures. One, whose twisted tunnels are known as a triple double-gyroid structure, has no known natural equivalent.

    These new, low-symmetry colloidal crystals offer optical and catalytic properties that can’t be achieved with other crystals, and the symmetry-breaking method promises many more new structures. Glotzer’s team developed computer simulations to recreate the self-assembly results, helping to decipher the complicated patterns and revealing the mechanisms that enabled the nanoparticles to create them.

    “We’re in the midst of an unprecedented era for materials discovery,” Mirkin said. “This is another step forward in bringing new, unexplored materials out of the sketchbook and into applications that can harness their incredible properties.”

    The study was supported primarily by the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy and also by the Air Force Office of Scientific Research and the Sherman Fairchild Foundation.

    Mirkin is also a professor of chemical and biological engineering, biomedical engineering, and materials science and engineering at the McCormick School of Engineering; and a professor of medicine at the Feinberg School of Medicine. He also is the founding director of the International Institute for Nanotechnology. Glotzer is also the John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of material science and engineering, macromolecular science and engineering, and physics at U-M.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (US) is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities (US).

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities (US). With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation (US), Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences,[123] is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University (US) and Wayne State University (US), founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 5:44 pm on January 12, 2022 Permalink | Reply
    Tags: "Chemists use DNA to build the world’s tiniest antenna", , , , , , DNA-based fluorescent nanoantenna, Nanotechnology, ,   

    From The University of Montréal [Université de Montréal] (CA) : “Chemists use DNA to build the world’s tiniest antenna” 

    From The University of Montréal [Université de Montréal] (CA)

    01/10/2022
    Salle De Presse

    1
    Developed at Université de Montréal, the easy-to-use device promises to help scientists better understand natural and human-designed nanotechnologies – and identify new drugs.

    Researchers at Université de Montréal have created a nanoantenna to monitor the motions of proteins.

    Reported this week in Nature Methods, the device is a new method to monitor the structural change of proteins over time – and may go a long way to helping scientists better understand natural and human-designed nanotechnologies.

    “The results are so exciting that we are currently working on setting up a start-up company to commercialize and make this nanoantenna available to most researchers and the pharmaceutical industry,” said UdeM chemistry professor Alexis Vallée-Bélisle, the study’s senior author.

    Works like a two-way radio

    Over 40 years ago, researchers invented the first DNA synthesizer to create molecules that encode genetic information. “In recent years, chemists have realized that DNA can also be employed to build a variety of nanostructures and nanomachines,” said Vallée-Belisle, who also holds the Canada Research Chair in Bioengineering and Bionanotechnology.

    “Inspired by the ‘Lego-like’ properties of DNA, with building blocks that are typically 20,000 times smaller than a human hair, we have created a DNA-based fluorescent nanoantenna, that can help characterize the function of proteins,” he said.

    “Like a two-way radio that can both receive and transmit radio waves, the fluorescent nanoantenna receives light in one colour, or wavelength, and depending on the protein movement it senses, then transmits light back in another colour, which we can detect.”

    One of the main innovations of these nanoantennae is that the receiver part of the antenna is also employed to sense the molecular surface of the protein studied via molecular interaction.

    One of the main advantages of using DNA to engineer these nanoantennas is that DNA chemistry is relatively simple and programmable,” said Scott Harroun, an UdeM doctoral student in chemistry and the study’s first author.

    “The DNA-based nanoantennas can be synthesized with different lengths and flexibilities to optimize their function,””he said. “One can easily attach a fluorescent molecule to the DNA, and then attach this fluorescent nanoantenna to a biological nanomachine, such as an enzyme.

    “By carefully tuning the nanoantenna design, we have created five nanometer-long antenna that produces a distinct signal when the protein is performing its biological function.”

    Fluorescent nanoantennas open many exciting avenues in biochemistry and nanotechnology, the scientists believe.

    “For example, we were able to detect, in real time and for the first time, the function of the enzyme alkaline phosphatase with a variety of biological molecules and drugs,” said Harroun. “This enzyme has been implicated in many diseases, including various cancers and intestinal inflammation.”

    Added Dominic Lauzon, a co-author of the study doing his PhD in chemistry at UdeM: “In addition to helping us understand how natural nanomachines function or malfunction, consequently leading to disease, this new method can also help chemists identify promising new drugs as well as guide nanoengineers to develop improved nanomachines.”

    One main advance enabled by these nanoantennas is also their ease-of-use, the scientists said.

    “Perhaps what we are most excited by is the realization that many labs around the world, equipped with a conventional spectrofluorometer, could readily employ these nanoantennas to study their favourite protein, such as to identify new drugs or to develop new nanotechnologies,” said Vallée-Bélisle.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Université de Montréal is a French-language public research university in Montreal, Quebec, Canada. The university’s main campus is located on the northern slope of Mount Royal in the neighbourhoods of Outremont and Côte-des-Neiges. The institution comprises thirteen faculties, more than sixty departments and two affiliated schools: the Polytechnique Montréal (School of Engineering; formerly the École Polytechnique de Montréal) and HEC Montréal (School of Business). It offers more than 650 undergraduate programmes and graduate programmes, including 71 doctoral programmes.

    The university was founded as a satellite campus of the Université Laval in 1878. It became an independent institution after it was issued a papal charter in 1919 and a provincial charter in 1920. Université de Montréal moved from Montreal’s Quartier Latin to its present location at Mount Royal in 1942. It was made a secular institution with the passing of another provincial charter in 1967.

    The school is co-educational, and has 34,335 undergraduate and 11,925 post-graduate students (excluding affiliated schools). Alumni and former students reside across Canada and around the world, with notable alumni serving as government officials, academics, and business leaders.

    Research

    Université de Montréal is a member of the U15, a group that represents 15 Canadian research universities. The university includes 465 research units and departments. In 2018, Research Infosource ranked the university third in their list of top 50 research universities; with a sponsored research income (external sources of funding) of $536.238 million in 2017. In the same year, the university’s faculty averaged a sponsored research income of $271,000, while its graduates averaged a sponsored research income of $33,900.

    Université de Montréal research performance has been noted in several bibliometric university rankings, which uses citation analysis to evaluate the impact a university has on academic publications. In 2019, The Performance Ranking of Scientific Papers for World Universities ranked the university 104th in the world, and fifth in Canada. The University Ranking by Academic Performance 2018–19 rankings placed the university 99th in the world, and fifth in Canada.

    Since 2017, Université de Montréal has partnered with the McGill University (CA) on Mila (research institute), a community of professors, students, industrial partners and startups working in AI, with over 500 researchers making the institute the world’s largest academic research center in deep learning. The institute was originally founded in 1993 by Professor Yoshua Bengio.

     
  • richardmitnick 2:51 pm on January 11, 2022 Permalink | Reply
    Tags: "Catalyst surface analysed at atomic resolution", , Atomic Probe Tomography, , , , Nanotechnology, ,   

    From The Ruhr-Universität Bochum (DE): “Catalyst surface analysed at atomic resolution” 

    From The Ruhr-Universität Bochum (DE)

    1

    Members of the Bochum-based research team in the lab: Weikai Xiang, Chenglong Luan and Tong Li (from left to right) © Privat.

    Catalyst surfaces have rarely been imaged in such detail before. And yet, every single atom can play a decisive role in catalytic activity.

    A German-Chinese research team has visualised the three-dimensional structure of the surface of catalyst nanoparticles at atomic resolution. This structure plays a decisive role in the activity and stability of the particles. The detailed insights were achieved with a combination of atom probe tomography, spectroscopy and electron microscopy. Nanoparticle catalysts can be used, for example, in the production of hydrogen for the chemical industry. To optimise the performance of future catalysts, it is essential to understand how it is affected by the three-dimensional structure.

    Researchers from the Ruhr-Universität Bochum, The University of Duisburg-Essen [Universität Duisburg-Essen](DE) and The MPG Institute for Chemical Energy Conversion [Max-Planck-Institut für chemische Energieumwandlung](DE) cooperated on the project as part of the Collaborative Research Centre “Heterogeneous oxidation catalysis in the liquid phase”.

    At RUB, a team headed by Weikai Xiang and Professor Tong Li from Atomic-scale Characterisation worked together with the Chair of Electrochemistry and Nanoscale Materials and the Chair of Industrial Chemistry. Institutes in Shanghai, China, and Didcot, UK, were also involved. The team presents their findings in the journal Nature Communications, published online on 10 January 2022.

    Particles observed during the catalysis process

    The researchers studied two different types of nanoparticles made of cobalt iron oxide that were around ten nanometres. They analysed the particles during the catalysis of the so-called oxygen evolution reaction. This is a half reaction that occurs during water splitting for hydrogen production: hydrogen can be obtained by splitting water using electrical energy; hydrogen and oxygen are produced in the process. The bottleneck in the development of more efficient production processes is the partial reaction in which oxygen is formed, i.e. the oxygen evolution reaction. This reaction changes the catalyst surface that becomes inactive over time. The structural and compositional changes on the surface play a decisive role in the activity and stability of the electrocatalysts.

    For small nanoparticles with a size around ten nanometres, achieving detailed information about what happens on the catalyst surface during the reaction remains a challenge. Using atom probe tomography, the group successfully visualised the distribution of the different types of atoms in the cobalt iron oxide catalysts in three dimensions. By combining it with other methods, they showed how the structure and composition of the surface changed during the catalysis process – and how this change affected the catalytic performance.

    “Atom probe tomography has enormous potential to provide atomic insights into the compositional changes on the surface of catalyst nanoparticles during important catalytic reactions such as oxygen evolution reaction for hydrogen production or CO2 reduction,” concludes Tong Li.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Ruhr-Universität Bochum (DE) is a public university located in the southern hills of the central Ruhr area in Bochum. It was founded in 1962 as the first new public university in Germany after World War II. Instruction began in 1965.

    The Ruhr-University Bochum is one of the largest universities in Germany and part of the Deutsche Forschungsgemeinschaft, the most important German research funding organization.

    The RUB was very successful in the Excellence Initiative of the German Federal and State Governments (2007), a competition between Germany’s most prestigious universities. It was one of the few institutions left competing for the title of an “elite university”, but did not succeed in the last round of the competition. There are currently nine universities in Germany that hold this title.

    The University of Bochum was one of the first universities in Germany to introduce international bachelor’s and master’s degrees, which replaced the traditional German Diplom and Magister. Except for a few special cases (for example in Law) these degrees are offered by all faculties of the Ruhr-University. Currently, the university offers a total of 184 different study programs from all academic fields represented at the university.

     
  • richardmitnick 2:12 pm on January 11, 2022 Permalink | Reply
    Tags: "Physicists detect a hybrid particle held together by uniquely intense 'glue'", Antiferromagnets, , , , Nanotechnology, , , The discovery could offer a route to smaller and faster electronic devices.,   

    From The Massachusetts Institute of Technology (US) : “Physicists detect a hybrid particle held together by uniquely intense ‘glue'” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 10, 2022
    Jennifer Chu

    The discovery could offer a route to smaller and faster electronic devices.

    1
    MIT physicists have detected a hybrid particle in an unusual, two-dimensional magnetic material. The hybrid particle is a mashup of an electron and a phonon. Image: Christine Daniloff, MIT.

    In the particle world, sometimes two is better than one. Take, for instance, electron pairs. When two electrons are bound together, they can glide through a material without friction, giving the material special superconducting properties. Such paired electrons, or Cooper pairs, are a kind of hybrid particle — a composite of two particles that behaves as one, with properties that are greater than the sum of its parts.

    Now MIT physicists have detected another kind of hybrid particle in an unusual, two-dimensional magnetic material. They determined that the hybrid particle is a mashup of an electron and a phonon (a quasiparticle that is produced from a material’s vibrating atoms). When they measured the force between the electron and phonon, they found that the glue, or bond, was 10 times stronger than any other electron-phonon hybrid known to date.

    The particle’s exceptional bond suggests that its electron and phonon might be tuned in tandem; for instance, any change to the electron should affect the phonon, and vice versa. In principle, an electronic excitation, such as voltage or light, applied to the hybrid particle could stimulate the electron as it normally would, and also affect the phonon, which influences a material’s structural or magnetic properties. Such dual control could enable scientists to apply voltage or light to a material to tune not just its electrical properties but also its magnetism.

    The results are especially relevant, as the team identified the hybrid particle in nickel phosphorus trisulfide (NiPS3), a two-dimensional material that has attracted recent interest for its magnetic properties. If these properties could be manipulated, for instance through the newly detected hybrid particles, scientists believe the material could one day be useful as a new kind of magnetic semiconductor, which could be made into smaller, faster, and more energy-efficient electronics.

    “Imagine if we could stimulate an electron, and have magnetism respond,” says Nuh Gedik, professor of physics at MIT. “Then you could make devices very different from how they work today.”

    Gedik and his colleagues have published their results today in the journal Nature Communications. His co-authors include Emre Ergeçen, Batyr Ilyas, Dan Mao, Hoi Chun Po, Mehmet Burak Yilmaz, and Senthil Todadri at MIT, along with Junghyun Kim and Je-Geun Park of The Seoul National University [서울대학교](KR).

    Particle sheets

    The field of modern condensed matter physics is focused, in part, on the search for interactions in matter at the nanoscale. Such interactions, between a material’s atoms, electrons, and other subatomic particles, can lead to surprising outcomes, such as superconductivity and other exotic phenomena. Physicists look for these interactions by condensing chemicals onto surfaces to synthesize sheets of two-dimensional materials, which could be made as thin as one atomic layer.

    In 2018, a research group in Korea discovered some unexpected interactions in synthesized sheets of NiPS3, a two-dimensional material that becomes an antiferromagnet at very low temperatures of around 150 kelvins, or -123 degrees Celsius. The microstructure of an antiferromagnet resembles a honeycomb lattice of atoms whose spins are opposite to that of their neighbor. In contrast, a ferromagnetic material is made up of atoms with spins aligned in the same direction.

    In probing NiPS3, that group discovered that an exotic excitation became visible when the material is cooled below its antiferromagnetic transition, though the exact nature of the interactions responsible for this was unclear. Another group found signs of a hybrid particle, but its exact constituents and its relationship with this exotic excitation were also not clear.

    Gedik and his colleagues wondered if they might detect the hybrid particle, and tease out the two particles making up the whole, by catching their signature motions with a super-fast laser.

    Magnetically visible

    Normally, the motion of electrons and other subatomic particles are too fast to image, even with the world’s fastest camera. The challenge, Gedik says, is similar to taking a photo of a person running. The resulting image is blurry because the camera’s shutter, which lets in light to capture the image, is not fast enough, and the person is still running in the frame before the shutter can snap a clear picture.

    To get around this problem, the team used an ultrafast laser that emits light pulses lasting only 25 femtoseconds (one femtosecond is 1 millionth of 1 billionth of a second). They split the laser pulse into two separate pulses and aimed them at a sample of NiPS3. The two pulses were set with a slight delay from each other so that the first stimulated, or “kicked” the sample, while the second captured the sample’s response, with a time resolution of 25 femtoseconds. In this way, they were able to create ultrafast “movies” from which the interactions of different particles within the material could be deduced.

    In particular, they measured the precise amount of light reflected from the sample as a function of time between the two pulses. This reflection should change in a certain way if hybrid particles are present. This turned out to be the case when the sample was cooled below 150 kelvins, when the material becomes antiferromagnetic.

    “We found this hybrid particle was only visible below a certain temperature, when magnetism is turned on,” says Ergeçen.

    To identify the specific constituents of the particle, the team varied the color, or frequency, of the first laser and found that the hybrid particle was visible when the frequency of the reflected light was around a particular type of transition known to happen when an electron moves between two d-orbitals. They also looked at the spacing of the periodic pattern visible within the reflected light spectrum and found it matched the energy of a specific kind of phonon. This clarified that the hybrid particle consists of excitations of d-orbital electrons and this specific phonon.

    They did some further modeling based on their measurements and found the force binding the electron with the phonon is about 10 times stronger than what’s been estimated for other known electron-phonon hybrids.

    “One potential way of harnessing this hybrid particle is, it could allow you to couple to one of the components and indirectly tune the other,” Ilyas says. “That way, you could change the properties of a material, like the magnetic state of the system.”

    This research was supported, in part, by the U.S. Department of Energy and the Gordon and Betty Moore Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 12:16 pm on January 8, 2022 Permalink | Reply
    Tags: "Gold solution to catalysis grand challenge", A simple low-cost method of directly converting natural gas into useful chemicals and fuels using the precious metal gold as a key ingredient., , Gold is an extremely efficient and reliable catalyst that can be used effectively in many important industrial processes., Nanotechnology, Natural gas emits dangerous greenhouse gases into the atmosphere when burned., Researchers are devising novel ways of converting methane-which accounts for 70-90% of natural gas-into more useful products such as a fuels and chemicals., The Cardiff University [Prifysgol Caerdydd] (WLS), The direct conversion of methane into methanol and acetic acid using a gold catalyst., The novelty of the new method came in the production of acetic acid., The team reacted methane with oxygen in the presence of a catalyst made from gold and the zeolite ZSM-5.   

    From The Cardiff University [Prifysgol Caerdydd] (WLS) : “Gold solution to catalysis grand challenge” 

    From The Cardiff University [Prifysgol Caerdydd] (WLS)

    6 January 2022

    Professor Graham Hutchings, CBE FRS
    Regius Professor of Chemistry
    School of Chemistry
    hutch@cardiff.ac.uk
    +44 (0)29 2087 4059
    +44 (0)29 2087 4030

    1

    A simple low-cost method of directly converting natural gas into useful chemicals and fuels using the precious metal gold as a key ingredient, has been proposed by researchers at Cardiff University in collaboration with researchers at Lehigh University (US) and The National center of magnetic resonance spectroscopy in Wuhan China, An institute of Chinese Academy of Sciences, Beijing(CN)

    Whilst natural gas is one of the greenest fossil fuels, it still emits dangerous greenhouse gases into the atmosphere when burned.

    This has, in turn, led researchers to devise novel ways of converting methane-which accounts for 70-90% of natural gas-into more useful products such as a fuels and chemicals, in a simple, cost-effective and low-carbon manner.

    In a study published today in Nature Catalysis, the team led by researchers from the Cardiff Catalysis Institute has demonstrated, for the time, the direct conversion of methane into methanol and acetic acid using a gold catalyst.

    Up until now, this has only been achieved through indirect routes which include multiple steps that are highly energy consuming and very costly.

    To achieve the creation of methanol and acetic acid the team reacted methane with oxygen in the presence of a catalyst made from gold and the zeolite ZSM-5.

    By examining the catalyst using high-powered electron microscopy, it was revealed that the active catalyst did not contain gold atoms or clusters, but rather gold nanoparticles – extremely small particles between 3 to 15 nanometres in size that can exhibit significantly different physical and chemical properties to their larger material counterparts.

    The production of methanol using this catalyst was expected; however, the novelty of the new method came in the production of acetic acid.

    Acetic acid is a common industrial chemical with large quantities used to make products such as ink for textile printing, dyes, photographic chemicals, pesticides, pharmaceuticals, rubber and plastics.

    Methanol, meanwhile, is commonly used as a precursor to many other commodity chemicals, as well as a biofuel.

    Despite the well-known inertness of the precious metal gold, pioneering research by scientists at the Cardiff Catalysis Institute has demonstrated that it is, in fact, an extremely efficient and reliable catalyst that can be used effectively in many important industrial processes.

    Co-author of the study Professor Graham Hutchings, Regius Professor of Chemistry from the Cardiff Catalysis Institute, said: “The oxidation of methane, the main component of natural gas, to selectively form oxygenated chemical intermediates using molecular oxygen has been a long-standing grand challenge in catalysis.

    “We have successfully demonstrated this for the very first time in this study, providing an important first step towards the creation of important fuels and chemicals in a simple and cost-effective way.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Cardiff Unversity [Prifysgol Caerdydd] (WLS) is a public research university in Cardiff, Wales. Founded in 1883 as the University College of South Wales and Monmouthshire (University College Cardiff from 1972), it became a founding college of the University of Wales in 1893. It merged with the University of Wales Institute of Science and Technology (UWIST) in 1988 to form the University of Wales College, Cardiff (University of Wales, Cardiff from 1996). In 1997 it received its own degree-awarding powers, but held them in abeyance. The college adopted the public name Cardiff University in 1999; in 2005 this became its legal name, when it became an independent university and began awarding its own degrees.

    Cardiff University is the third oldest university in Wales and contains three colleges: Arts, Humanities and Social Sciences; Biomedical and Life Sciences; and Physical Sciences and Engineering. It is the only Welsh member of the Russell Group of research-intensive British universities. In 2018–2019, Cardiff had a turnover of £537.1 million, including £116.0 million in research grants and contracts. It has an undergraduate enrolment of 23,960 and a total enrolment of 33,190 (according to HESA data for 2018/19) making it one of the ten largest UK universities. The Cardiff University Students’ Union works to promote student interests in the university and further afield.

    Discussions on the founding of a university college in South Wales began in 1879, when a group of Welsh and English MPs urged the government to consider the poor provision of higher and intermediate education in Wales and “the best means of assisting any local effort which may be made for supplying such deficiency.”

    In October 1881, William Gladstone’s government appointed a departmental committee to conduct “an enquiry into the nature and extent of intermediate and higher education in Wales”, chaired by Lord Aberdare and consisting of Viscount Emlyn, Reverend Prebendary H. G. Robinson, Henry Richard, John Rhys and Lewis Morris. The Aberdare Report, as it came to be known, took evidence from a wide range of sources and over 250 witnesses and recommended a college each for North Wales and South Wales, the latter to be located in Glamorgan and the former to be the established University College of Wales in Aberystwyth (now Aberystwyth University). The committee cited the unique Welsh national identity and noted that many students in Wales could not afford to travel to University in England or Scotland. It advocated a national degree-awarding university for Wales, composed of regional colleges, which should be non-sectarian in nature and exclude the teaching of theology.

    After the recommendation was published, Cardiff Corporation sought to secure the location of the college in Cardiff, and on 12 December 1881 formed a University College Committee to aid the matter. There was competition to be the site between Swansea and Cardiff. On 12 March 1883, after arbitration, a decision was made in Cardiff’s favour. This was strengthened by the need to consider the interests of Monmouthshire, at that time not legally incorporated into Wales, and the greater sum received by Cardiff in support of the college, through a public appeal that raised £37,000 and a number of private donations, notably from the Lord Bute and Lord Windsor. In April Lord Aberdare was appointed as the College’s first president. The possible locations considered included Cardiff Arms Park, Cathedral Road, and Moria Terrace, Roath, before the site of the Old Royal Infirmary buildings on Newport Road was chosen.

    The University College of South Wales and Monmouthshire opened on 24 October 1883 with courses in Biology, Chemistry, English, French, German, Greek, History, Latin, Mathematics and Astronomy, Music, Welsh, Logic and Philosophy, and Physics. It was incorporated by Royal Charter the following year, this being the first in Wales to allow the enrollment of women, and specifically forbidding religious tests for entry. John Viriamu Jones was appointed as the University’s first Principal at the age of 27. As Cardiff was not an independent university and could not award its own degrees, it prepared its students for examinations of the University of London or for further study at Oxford or Cambridge.

    In 1888 the University College at Cardiff and that of North Wales (now Bangor University) proposed to the University College Wales at Aberystwyth joint action to gain a university charter for Wales, modelled on that of Victoria University, a confederation of new universities in Northern England. Such a charter was granted to the new University of Wales in 1893, allowing the colleges to award degrees as members. The Chancellor was set ex officio as the Prince of Wales, and the position of operational head would rotate among heads of the colleges.

    In 1885, Aberdare Hall opened as the first hall of residence, allowing women access to the university. This moved to its current site in 1895, but remains a single-sex hall. In 1904 came the appointment of the first female associate professor in the UK, Millicent Mackenzie, who in 1910 became the first female full professor at a fully chartered UK university.

    In 1901 Principal Jones persuaded Cardiff Corporation to give the college a five-acre site in Cathays Park (instead of selling it as they would have done otherwise). Soon after, in 1905, work on a new building commenced under the architect W. D. Caröe. Money ran short for the project, however. Although the side-wings were completed in the 1960s, the planned Great Hall has never been built. Caroe sought to combine the charm and elegance of his former (Trinity College, Cambridge) with the picturesque balance of many Oxford colleges. On 14 October 1909 the “New College” building in Cathays Park (now Main Building) was opened in a ceremony involving a procession from the “Old College” in Newport Road.

    In 1931, the School of Medicine, founded as part of the college in 1893 along with the Departments of Anatomy, Physiology, Pathology, Pharmacology, was split off to form the Welsh National School of Medicine, which was renamed in 1984 the University of Wales College of Medicine.

    In 1972, the institution was renamed University College Cardiff.

     
  • richardmitnick 11:00 am on January 8, 2022 Permalink | Reply
    Tags: "Light-Matter Interactions Simulated on the World's Fastest Supercomputer", , Fugaku Supercomputer at Riken, Light-matter interactions form the basis of many important technologies including lasers; light-emitting diodes (LEDs); and atomic clocks., Nanotechnology, , , , The researchers implemented the method in their in-house software SALMON (Scalable Ab initio Light-Matter simulator for Optics and Nanoscience).,   

    From The University of Tsukuba [筑波大学](JP): “Light-Matter Interactions Simulated on the World’s Fastest Supercomputer” 

    From The University of Tsukuba [筑波大学](JP)

    Jan 06, 2022

    Professor YABANA Kazuhiro
    Center for Computational Sciences
    University of Tsukuba

    1
    Researchers led by the University of Tsukuba present an improved way to model interactions between matter and light at the atomic scale.

    Light-matter interactions form the basis of many important technologies including lasers; light-emitting diodes (LEDs); and atomic clocks. However, usual computational approaches for modeling such interactions have limited usefulness and capability. Now, researchers from Japan have developed a technique that overcomes these limitations.

    In a study published this month in The International Journal of High Performance Computing Applications, a research team led by the University of Tsukuba describes a highly efficient method for simulating light-matter interactions at the atomic scale.

    What makes these interactions so difficult to simulate? One reason is that phenomena associated with the interactions encompass many areas of physics, involving both the propagation of light waves and the dynamics of electrons and ions in matter. Another reason is that such phenomena can cover a wide range of length and time scales.

    Given the multiphysics and multiscale nature of the problem, light-matter interactions are typically modeled using two separate computational methods. The first is electromagnetic analysis, whereby the electromagnetic fields of the light are studied; the second is a quantum-mechanical calculation of the optical properties of the matter. But these methods assume that the electromagnetic fields are weak and that there is a difference in the length scale.

    “Our approach provides a unified and improved way to simulate light-matter interactions,” says senior author of the study Professor Kazuhiro Yabana. “We achieve this feat by simultaneously solving three key physics equations: the Maxwell equation for the electromagnetic fields, the time-dependent Kohn-Sham equation for the electrons, and the Newton equation for the ions.”

    The researchers implemented the method in their in-house software SALMON (Scalable Ab initio Light-Matter simulator for Optics and Nanoscience), and they thoroughly optimized the simulation computer code to maximize its performance. They then tested the code by modeling light-matter interactions in a thin film of amorphous silicon dioxide, composed of more than 10,000 atoms. This simulation was carried out using almost 28,000 nodes of the fastest supercomputer in the world, Fugaku, at The RIKEN Center for Computational Science (JP).

    Fugaku is a claimed exascale supercomputer (while only at petascale for mainstream benchmark), at The RIKEN Center for Computational Science in Kobe, Japan. It started development in 2014 as the successor to the K computer, and is officially scheduled to start operating in 2021. Fugaku made its debut in 2020, and became the fastest supercomputer in the world in the June 2020 TOP500 list, the first ever supercomputer that achieved 1 exaFLOPS. As of April 2021, Fugaku is currently the fastest supercomputer in the world.

    “We found that our code is extremely efficient, achieving the goal of one second per time step of the calculation that is needed for practical applications,” says Professor Yabana. “The performance is close to its maximum possible value, set by the bandwidth of the computer memory, and the code has the desirable property of excellent weak scalability.”

    Although the team simulated light-matter interactions in a thin film in this work, their approach could be used to explore many phenomena in nanoscale optics and photonics.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Tsukuba [筑波大学](JP) located in Tsukuba, Ibaraki, is one of top 9 Designated National University and selected as a Top Type university of Top Global University Project by the Japanese government.

    The university’s academic strength is in STEMM fields (Science, Technology, Engineering, Mathematics, Medicine), physical education, and related interdisciplinary fields. It is by taking located in Tsukuba Science City which has more than 300 research institutions. The university has had three Nobel laureates (two in Physics and one in Chemistry, see also “History”), and about 70 athletes, their students and alumni, have participated in the Olympic Games.

    It has established interdisciplinary Ph.D. programs in Human Biology and Empowerment Informatics, and the International Institute for Integrative Sleep Medicine, which were created through the Ministry of Education, Culture, Sports, Science and Technology’s competitive funding projects.

    Its Graduate School of Life and Environmental Sciences is represented on the national Coordinating Committee for Earthquake Prediction.

    Research performance

    Tsukuba is one of the leading research institutions in Japan. According to Thomson Reuters, Tsukuba is the 10th best research institutions among all the universities and non-educational research institutions in Japan.

    Weekly Diamond [ja] reported that Tsukuba has the 27th highest research standard in Japan in research fundings per researchers in COE Program. In the same article, it’s ranked 11th in the quality of education by GP (in Japanese) funds per student.

    It has a good research standard in Economics, as Research Papers in Economics ranked Tsukuba as the eighth best Economics research university in January 2011.

    Undergraduate schools and colleges

    School of Humanities and Culture, with separate colleges for the humanities, for comparative culture and for Japanese language and culture.
    School of Social and International Studies, including colleges for social sciences and for international studies.
    School of Human Sciences, with separate colleges for education, for psychology and for disability sciences.
    School of Life and Environmental Sciences, incorporating colleges for biological sciences, for agro-biological resources and for geoscience.
    School of Science and Engineering, with colleges for mathematics, physics, chemistry, engineering sciences and engineering systems, as well as for policy and planning sciences.
    School of Informatics, incorporating separate colleges for information sciences; for media arts, science and technology; and for knowledge and library sciences.
    School of Medicine and Medical Sciences, including schools of medicine, nursing nd medical sciences.
    School of Health and Physical Education.
    School of Art and Design.

    Graduate schools and programs

    Master’s Program in Education
    School Leadership and Professional Development
    Secondary Education
    Graduate School of Humanities and Social Sciences
    Doctoral Program in Philosophy
    Doctoral Program in History and Anthropology
    Doctoral Program in Literature and Linguistics
    Master’s Program in Modern Languages and Cultures
    Doctoral Program in Modern Languages and Cultures
    Master’s Program in International Public Policy
    Doctoral Program in International Public Policy
    Master’s Program in Economics
    Doctoral Program in Economics
    Master’s Program in Law
    Doctoral Program in Law
    Master’s Program in International Area Studies
    Doctoral Program in International and Advanced Japanese Studies
    Graduate School of Business Sciences (programs for working individuals)
    Master’s Program in Systems Management
    Master’s Program in Advanced Studies of Business Law
    Doctoral Program in Systems Management and Business Law
    Law School Program
    MBA Program in International Business
    Graduate School of Pure and Applied Sciences
    Master’s Program in Mathematics
    Doctoral Program in Mathematics
    Master’s Program in Physics
    Doctoral Program in Physics
    Master’s Program in Chemistry
    Doctoral Program in Chemistry
    Doctoral Program in Nano-Science and Nano-Technology
    Master’s Program in Applied Physics
    Doctoral Program in Applied Physics
    Master’s Program in Materials Science
    Doctoral Program in Materials Science
    Doctoral Program in Materials Sciences and Technology
    Graduate School of Systems and Information Engineering
    Master’s Program in Policy and Planning Sciences
    Master’s Program in Service Engineering
    Doctoral Program in Policy and Planning Sciences
    Master’s Program in Risk Engineering
    Doctoral Program in Risk Engineering
    Master’s Program in Computer Science
    Doctoral Program in Computer Science
    Master’s Program in Intelligent Interaction Technologies
    Doctoral Program in Intelligent Interaction Technologies
    Master’s Program in Engineering Mechanics and Energy
    Doctoral Program in Engineering Mechanics and Energy
    Master’s Program in Social Systems Engineering
    Master’s Program in Business Administration and Public Policy
    Doctoral Program in Social Systems and Management
    Graduate School of Life and Environmental Sciences
    Doctoral Program in Integrative Environment and Biomass Sciences
    Master’s Program in Geosciences
    Doctoral Program in Geoenvironmental Sciences
    Doctoral Program in Earth Evolution Sciences
    Master’s Program in Biological Sciences
    Doctoral Program in Biological Sciences
    Master’s Program in Agro-bioresources Science and Technology
    Doctoral Program in Appropriate Technology and Sciences for Sustainable Development
    Doctoral Program in Biosphere Resource Science and Technology
    Doctoral Program in Life Sciences and Bioengineering
    Doctoral Program in Bioindustrial Sciences
    Master’s Program in Environmental Sciences
    Doctoral Program in Sustainable Environmental Studies
    Doctoral Program in Advanced Agricultural Technology and Sciences
    Graduate School of Comprehensive Human Sciences
    Master’s Program in Medical Sciences (Tokyo Campus (evening programs for working adults))
    Master’s Program in Sports and Health Promotion
    Master’s Program in Education Sciences
    Doctoral Program in Education
    Doctoral Program in School Education
    Master’s Program in Psychology
    Doctoral Program in Psychology
    Master’s Program in Disability Sciences
    Doctoral Program in Disability Sciences
    Master’s Program in Lifespan Development (Tokyo Campus (evening programs for working adults))
    Doctoral Program in Lifespan Developmental Sciences (Tokyo Campus (evening programs for working adults))
    Master’s Program in Kansei, Behavioral and Brain Sciences
    Doctoral Program in Kansei, Behavioral and Brain Sciences
    Master’s Program in Nursing Sciences
    Doctoral Program in Nursing Sciences
    Master’s Program in Health and Sport Sciences
    Doctoral Program in Physical Education, Health and Sport Sciences
    Master’s Program in Art and Design
    Doctoral Program in Art and Design
    Master’s Program in World Heritage Studies
    Doctoral Program in World Cultural Heritage Studies
    Doctoral Program in Human Care Science
    Doctoral Program in Sports Medicine
    Doctoral Program in Coaching Science
    Doctoral Program in Biomedical Sciences
    Doctoral Program in Clinical Sciences
    Graduate School of Library, Information and Media Studies
    Master’s Program in Library, Information and Media Studies
    Doctoral Program in Library, Information and Media Studies
    School of Integrative and Global Majors (SIGMA)
    Ph.D. Program in Human Biology
    Ph.D. Program in Empowerment Informatics
    Master’s Program in Life Science Innovation
    Doctoral Program in Life Science Innovation

    Research centers

    Center for Computational Sciences
    Shimoda Marine Research Center
    Gene Research Center
    Plasma Research Center
    University’s inter-department education research institutes (Research)
    Life Science Center of Tsukuba Advanced Research Alliance (Life Science Center of TARA)
    International Institute for Integrative Sleep Medicine (WPI-IIIS)
    Agricultural and Forestry Research Center
    Terrestrial Environment Research Center
    Laboratory Animal Resource Center
    Sugadaira Montane Research Center
    Research Center for University Studies
    Proton Medical Research Center
    Tsukuba Industrial Liaison and Cooperative Research Center
    Center for Research on International Cooperation in Educational Development
    Research Center for Knowledge Communities
    Tsukuba Research Center for Interdisciplinary Materials Science
    Special Needs Education Research Center
    The Alliance for Research on North Africa
    Academic Computing and Communications Center
    Research Facility Center for Science and Technology
    Radioisotope Center
    Tsukuba Critical Path Research and Education Integrated Leading Center
    Center for Cybernics Research
    University’s inter-department education research institutes (student support)
    Foreign Language Center
    Sport and Physical Education Center
    International Student Center
    Admission Center
    University Health Center

     
  • richardmitnick 4:26 pm on January 6, 2022 Permalink | Reply
    Tags: "Refining data into knowledge and turning knowledge into action", , , , Bioengineering: Unraveling the 3D genomic code, , , Computer and information science: Navigating information pollution, Disease-associated STR tracts exhibit tremendous diversity in sequence; length and localization in the genome., Electrical and systems engineering: Controlling the spread of epidemics, Faculty from all six departments in Penn Engineering are at the forefront of developing innovative data science solutions primarily relying on machine learning., Genome folding is an exciting problem for engineers to study because it is a problem of big data., Materials science and engineering: Understanding why catalysts degrade, Mechanical engineering and applied mechanics: Developing digital twins, More data is being produced across diverse fields within science; engineering and medicine than ever before. Our ability to collect; store and manipulate it grows by the day., Nanotechnology, Nearly all disease-associated STRs are located at boundaries demarcating 3D chromatin domains., One powerful technique in data science’s armamentarium is machine learning-a type of artificial intelligence., Penn Engineering researchers are using data science to answer fundamental questions that challenge the globe—from genetics to materials design., Penn Engineering’s formal data science efforts include the establishment of the Warren Center for Network & Data Sciences., Penn Today (US), Scattered throughout the genomes of healthy people are tens of thousands of repetitive DNA sequences called short tandem repeats (STRs)., The genetic code is made up of three billion base pairs., , The Penn School of Engineering and Applied Science(US), The unstable expansion of STR's is at the root of dozens of inherited disorders.   

    From Penn Today (US) and The Penn School of Engineering and Applied Science (US): “Refining data into knowledge and turning knowledge into action” 

    From Penn Today (US)

    and

    2
    The Penn School of Engineering and Applied Science(US)

    at

    U Penn bloc

    The University of Pennsylvania

    January 5, 2022
    Janelle Weaver

    2
    No one type of medical imaging can capture every relevant piece of information about a patient at once. Digital twins, or multiscale, physics-based simulations of biological systems, would allow clinicians to accurately infer more vital statistics from fewer data points.

    1
    Heatmaps are used by researchers in the lab of Jennifer Phillips-Cremins to visualize which physically distant genes are brought into contact when the genome is in its folded state.

    Penn Engineering researchers are using data science to answer fundamental questions that challenge the globe—from genetics to materials design.

    More data is being produced across diverse fields within science, engineering, and medicine than ever before, and our ability to collect, store, and manipulate it grows by the day. With scientists of all stripes reaping the raw materials of the digital age, there is an increasing focus on developing better strategies and techniques for refining this data into knowledge, and that knowledge into action.

    Enter data science, where researchers try to sift through and combine this information to understand relevant phenomena, build or augment models, and make predictions.

    One powerful technique in data science’s armamentarium is machine learning, a type of artificial intelligence that enables computers to automatically generate insights from data without being explicitly programmed as to which correlations they should attempt to draw.

    Advances in computational power; storage and sharing have enabled machine learning to be more easily and widely applied, but new tools for collecting reams of data from massive, messy, and complex systems—from electron microscopes to smart watches—are what have allowed it to turn entire fields on their heads.

    “This is where data science comes in,” says Susan Davidson, Weiss Professor in Computer and Information Science (CIS) at Penn’s School of Engineering and Applied Science. “In contrast to fields where we have well-defined models, like in physics, where we have Newton’s laws and the theory of relativity, the goal of data science is to make predictions where we don’t have good models: a data-first approach using machine learning rather than using simulation.”

    Penn Engineering’s formal data science efforts include the establishment of the Warren Center for Network & Data Sciences, which brings together researchers from across Penn with the goal of fostering research and innovation in interconnected social, economic and technological systems. Other research communities, including Penn Research in Machine Learning and the student-run Penn Data Science Group, bridge the gap between schools, as well as between industry and academia. Programmatic opportunities for Penn students include a Data Science minor for undergraduates, and a Master of Science in Engineering in Data Science, which is directed by Davidson and jointly administered by CIS and Electrical and Systems Engineering.

    Penn academic programs and researchers on the leading edge of the data science field will soon have a new place to call home: Amy Gutmann Hall. The 116,000-square-foot, six-floor building, located on the northeast corner of 34th and Chestnut Streets near Lauder College House, will centralize resources for researchers and scholars across Penn’s 12 schools and numerous academic centers while making the tools of data analysis more accessible to the entire Penn community.

    Faculty from all six departments in Penn Engineering are at the forefront of developing innovative data science solutions primarily relying on machine learning, to tackle a wide range of challenges. Researchers show how they use data science in their work to answer fundamental questions in topics as diverse as genetics, “information pollution,” medical imaging, nanoscale microscopy, materials design, and the spread of infectious diseases.

    Bioengineering: Unraveling the 3D genomic code

    Scattered throughout the genomes of healthy people are tens of thousands of repetitive DNA sequences called short tandem repeats (STRs). But the unstable expansion of these repetitions is at the root of dozens of inherited disorders, including Fragile X syndrome, Huntington’s disease, and ALS. Why these STRs are susceptible to this disease-causing expansion, whereas most remain relatively stable, remains a major conundrum.

    Complicating this effort is the fact that disease-associated STR tracts exhibit tremendous diversity in sequence; length and localization in the genome. Moreover, that localization has a three-dimensional element because of how the genome is folded within the nucleus. Mammalian genomes are organized into a hierarchy of structures called topologically associated domains (TADs). Each one spans millions of nucleotides and contains smaller subTADs, which are separated by linker regions called boundaries.

    “The genetic code is made up of three billion base pairs. Stretched out end to end, it is 6 feet 5 inches long, and must be subsequently folded into a nucleus that is roughly the size of a head of a pin,” says Jennifer Phillips-Cremins, associate professor and dean’s faculty fellow in Bioengineering. “Genome folding is an exciting problem for engineers to study because it is a problem of big data. We not only need to look for patterns along the axis of three billion base pairs of letters, but also along the axis of how the letters are folded into higher-order structures.”

    To address this challenge, Phillips-Cremins and her team recently developed a new mathematical approach called 3DNetMod to accurately detect these chromatin domains in 3D maps of the genome in collaboration with the lab of Dani Bassett, J. Peter Skirkanich Professor in Bioengineering.

    “In our group, we use an integrated, interdisciplinary approach relying on cutting-edge computational and molecular technologies to uncover biologically meaningful patterns in large data sets,” Phillips-Cremins says. “Our approach has enabled us to find patterns in data that classic biology training might overlook.”

    In a recent study, Phillips-Cremins and her team used 3DNetMod to identify tens of thousands of subTADs in human brain tissue. They found that nearly all disease-associated STRs are located at boundaries demarcating 3D chromatin domains. Additional analyses of cells and brain tissue from patients with Fragile X syndrome revealed severe boundary disruption at a specific disease-associated STR.

    “To our knowledge, these findings represent the first report of a possible link between STR instability and the mammalian genome’s 3D folding patterns,” Phillips-Cremins says. “The knowledge gained may shed new light into how genome structure governs function across development and during the onset and progression of disease. Ultimately, this information could be used to create molecular tools to engineer the 3D genome to control repeat instability.”

    Chemical and biomolecular engineering: Predicting where cracks will form

    Unlike crystals, disordered solids are made up of particles that are not arranged in a regular way. Despite their name, disordered solids have many desirable properties: Their strength, stiffness, smooth surfaces, and corrosion resistance make them suitable for a variety of applications, ranging from semiconductor manufacturing to eyeglass lenses.

    But their widespread use is limited because they can be very brittle and prone to catastrophic failure. In many cases, the failure process starts with small rearrangements of the material’s component atoms or particles. But without an ordered template to compare to, the structural fingerprints of these rearrangements are subtle.

    “In contrast to crystalline solids, which are often very tough and ductile—they can be bent a lot without breaking, like a metal spoon—we don’t understand how and why nearly all disordered solids are so brittle,” says Rob Riggleman, associate professor in Chemical and Biomolecular Engineering. “In particular, identifying those particles that are more likely to rearrange prior to deforming the material has been a challenge.”

    To address this gap in knowledge, Riggleman and his team use machine learning methods developed by collaborators at Penn along with molecular modeling, which allow them to examine in an unbiased fashion a broad array of structural features, identifying those that may contribute to material failure.

    “We find machine learning and data science approaches valuable when our intuition fails us. If we can generate enough data, we can let the algorithms filter and inform us on which aspects of the data are important,” Riggleman says. “Our approach is unique because it lets us take a tremendously challenging problem, such as determining in a random-looking, disordered solid, which sections of the material are more likely to fail, and systematically approach the problem in a way that allows physical insight.”

    Recently, this approach revealed that softness, quantified on a microscopic structural level, strongly predicts particle rearrangements in disordered solids. Based on this finding, the researchers conducted additional experiments and simulations on a range of disordered materials that were strained to failure. Surprisingly, they found that the initial distribution of soft particles in nanoscale materials did not predict where cracks would form. Instead, small surface defects dictated where the sample would fail. These results suggest that focusing on manufacturing processes that lead to smooth surfaces, as opposed to hard interiors, will yield stronger nanoscale materials.

    Moving forward, Riggleman and his team plan to use this information to design new materials that are tougher and less prone to breaking. One potential application is to find greener alternatives to concrete that still have the structural properties that have made it ubiquitous. “The synthesis of concrete releases a large amount of CO2,” Riggleman says. “With the global need for housing growing so quickly, construction materials that release less CO2 could have a big impact on decreasing overall carbon emissions.”

    Computer and information science: Navigating information pollution

    One unfortunate consequence of the information revolution has been information contamination. These days, it can be difficult to establish what is really known, thanks to the emergence of social networks and news aggregators, combined with ill-informed posts, deliberate efforts to create and spread sensationalized information, and strongly polarized environments. “Information pollution,” or the contamination of the information supply with irrelevant, redundant, unsolicited, incorrect, and otherwise low-value information, is a problem with far-reaching implications.

    “In an era where generating content and publishing it is so easy, we are bombarded with information and are exposed to all kinds of claims, some of which do not always rank high on the truth scale,” says Dan Roth, Eduardo D. Glandt Distinguished Professor in Computer and Information Science. “Perhaps the most evident negative effect is the propagation of false information in social networks, leading to destabilization and loss of public trust in the news media. This goes far beyond politics. Information pollution exists in the medical domain, education, science, public policy, and many other areas.”

    According to Roth, the practice of fact-checking won’t suffice to eliminate biases. Understanding most nontrivial claims or controversial issues requires insights from various perspectives. At the heart of this task is the challenge of equipping computers with natural language understanding, a branch of artificial intelligence that deals with machine comprehension of language. “Rather than considering a claim as being true or false, one needs to view a claim from a diverse yet comprehensive set of perspectives,” Roth says.

    “Our framework develops machine learning and natural language understanding tools that identify a spectrum of perspectives relative to a claim, each with evidence supporting it.”

    Along with identifying perspectives and evidence for them, Roth’s group is working on a family of probabilistic models that jointly estimate the trustworthiness of sources and the credibility of claims they assert. They consider two scenarios: one in which information sources directly assert claims, and a more realistic and challenging one in which claims are inferred from documents written by sources.

    The goals are to identify sources of perspectives and evidence and characterize their level of expertise and trustworthiness based on past record and consistency with other held perspectives. They also aim to understand where the claim may come from and how it has evolved.

    “Our research will bring public awareness to the availability of solutions to information pollution,” Roth says. “At a lower level, our technical approach would help identify the spectrum of perspectives that could exist around topics of public interest, identify relevant expertise, and thus improve public access to diverse and trustworthy information.”

    Electrical and systems engineering: Controlling the spread of epidemics

    The emergence of COVID-19, along with recent epidemics such as the H1N1 influenza, the Ebola outbreak, and the Zika crisis, underscore that the threat of infectious diseases to human populations is very real.

    “Accurate prediction and cost-effective containment of epidemics in human and animal populations are fundamental problems in mathematical epidemiology,” says Victor Preciado, associate professor and graduate chair of Electrical and Systems Engineering. “In order to achieve these goals, it is indispensable to develop effective mathematical models describing the spread of disease in human and animal contact networks.”

    Even though epidemic models have existed for centuries, they need to be continuously refined to keep up with the variables of a more densely interconnected world. Toward this goal, engineers like Preciado have recently started tackling the problem using innovative mathematical and computational approaches to model and control complex networks.

    Using these approaches, Preciado and his team have computed the cost-optimal distribution of resources such as vaccines and treatments throughout the nodes in a network to achieve the highest level of containment. These models can account for varying budgets, differences in individual susceptibility to infection, and different levels of available resources to achieve more realistic results. The researchers illustrated their approach by designing an optimal protection strategy for a real air transportation network faced with a hypothetical worldwide pandemic.

    Moving forward, Preciado and his team hope to develop an integrated framework for modeling, prediction, and control of epidemic outbreaks using finite resources and unreliable data. Although public health agencies collect and report relevant field data, that data can be incomplete and coarse-grained. In addition, these agencies are faced with the challenge of deciding how to allocate costly, scarce resources to efficiently contain the spread of infectious diseases.

    “Public health agencies can greatly benefit from information technologies to filter and analyze field data in order to make reliable predictions about the future spread of a disease,” Preciado says. “But in order to implement practical disease-management tools, it is necessary to first develop mathematical models that can replicate salient geo-temporal features of disease transmission.”

    Ultimately, Preciado’s goal is to develop open-source infection management software, freely available to the research community, to assist health agencies in the design of practical disease-containment strategies.

    “This could greatly improve our ability to efficiently detect and appropriately react to future epidemic outbreaks that require a rapid response,” Preciado says. “In addition, modeling spreading processes in networks could shed light on a wide range of scenarios, including the adoption of an idea or rumor through a social network like Twitter, the consumption of a new product in a marketplace, the risk of receiving a computer virus, the dynamics of brain activity, and cascading failures in the electrical grid.”

    Materials science and engineering: Understanding why catalysts degrade

    The presence of a metal catalyst is often necessary for certain chemical reactions to take place, but those metals can be rare and expensive. Shrinking these metals down to nanoparticles increases their ratio of surface area to volume, reducing the overall amount of metal required to catalyze the reaction.

    However, metal nanoparticles are unstable. A process called “coarsening” causes them to spontaneously grow by bonding with other metal atoms in their environment. Though the exact mechanism by which coarsening occurs is unknown, the loss of nanoparticles’ surface area advantage has clear consequences, such as the irreversible degradation in the performance of several important systems, including automotive catalytic converters and solid oxide fuel cells.

    “This process is bad, as it decreases the efficiency of the catalysts overall, adding significant cost and leading to efficiency losses,” says Eric Stach, professor in Materials Science and Engineering and director of the Laboratory for Research on the Structure of Matter (LRSM). “By gathering streams of rich data, we can now track individual events, and from this, learn the basic physics of the process and thereby create strategies to prevent this process from occurring.”

    The Stach lab uses in situ and operando microscopy techniques, meaning it collects data from materials in their native environments and as they function. Advances in electron microscopy techniques have increasingly shed light on how materials react under the conditions in which they are designed to perform; in situ electron microscopy experiments can produce hundreds of high-resolution images per second.

    “It is possible for us to gather up to four terabytes in just 15 minutes of work. This is the result of new capabilities for detecting electrons more efficiently,” Stach explains. “But this is so much data that we cannot process it by hand. We have been increasingly utilizing data science tools developed by others in more directly related fields to automate our analysis of these images.”

    In particular, Stach and his team have applied neural network models to transmission electron microscopy images of metal nanoparticles. The use of neural networks allows for the learning of complex features that are difficult to represent manually and interpret intuitively. Using this approach, the researchers can efficiently measure and track particles frame to frame, gaining insight into fundamental processes governing coarsening in industrial catalysts at the atomic scale.

    The next step for the researchers will be to compare the high-resolution image analyses to computational models, thereby shedding light on the underlying physical mechanisms. In the end, understanding the processes by which these metallic particles coarsen into larger structures may lead to the development of new materials for electronic devices, solar energy and batteries.

    “The development of new materials drives nearly all of modern technology,” Stach says. “Materials characterization such as what we are doing is critical to understanding how different ways of making new materials lead to properties that we desire.”

    Mechanical engineering and applied mechanics: Developing digital twins

    sing powerful magnets and software, a 4D flow MRI can provide a detailed and dynamic look at a patient’s vascular anatomy and blood flow. Yet this high-tech device is no match for a $20 sphygmometer when it comes to measuring one of the most critical variables for heart disease and stroke: blood pressure. Although digital models could be used to predict blood pressure from these high-tech scans, they still have not made their way into clinical practice, primarily due to their high computational cost and noisy data.

    To address this problem, Paris Perdikaris, assistant professor in Mechanical Engineering and Applied Mechanics, and his collaborators recently developed a machine learning framework that could enable these sorts of predictions to be made in an instant.

    By capturing the underlying physics at play in the circulatory system, for example, a relatively small number of biometric data points collected from a patient could be extrapolated out into a wealth of other vital statistics. This more comprehensive simulation of a patient, nicknamed a “digital twin,” would give a multidimensional view of their biology and allow clinicians and researchers to virtually test treatment strategies.

    “Integrating machine learning and multiscale modeling through the creation of virtual replicas of ourselves can have a significant impact in the biological, biomedical, and behavioral sciences,” Perdikaris says. “Our efforts on digital twins aspire to advance healthcare by delivering faster, safer, personalized and more efficient diagnostics and treatment procedures to patients.”

    Perdikaris’s team recently published a study showing how this framework, known as “Physics-Informed Deep Operator Networks” can be used to find the relationship between the inputs and outputs of complex systems defined by a certain class of mathematical equations.

    Other machine learning systems can discover these relationships, but only through brute force. They might require data from tens of thousands of patients to be properly calibrated, and then would still require significant computational time to calculate the desired outputs from a new patient’s input.

    Physics-Informed Deep Operator Networks can tackle this problem in a more fundamental way: One designed to predict blood pressure from blood velocity measured at a specific point in the circulatory system, for example, would essentially learn the underlying laws of physics that govern that relationship. Armed with that knowledge and other relevant variables for a given patient, the system can quickly calculate the desired value based on those fundamental principles.

    Moving forward, Perdikaris and his team plan to apply their computational tools to develop digital twins for the human heart, and for blood circulation in placental arteries to elucidate the origins of hypertensive disorders in pregnant women. “Creating digital twins can provide new insights into disease mechanisms, help identify new targets and treatment strategies, and inform decision-making for the benefit of human health,” Perdikaris says.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania (US) is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania (US) is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences(US); 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University(US) and Columbia(US) Universities. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University(US), William & Mary(US), Yale Unversity(US), and The College of New Jersey(US)—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health(US).

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University(US) and Cornell University(US) (Harvard University(US) did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University(US)) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:42 pm on January 2, 2022 Permalink | Reply
    Tags: "Kerstin Perez is searching the cosmos for signs of dark matter", , , , Nanotechnology, , ,   

    From The Massachusetts Institute of Technology (US) : “Kerstin Perez is searching the cosmos for signs of dark matter” 

    MIT News

    From The Massachusetts Institute of Technology (US)

    January 2, 2022
    Jennifer Chu

    “There need to be more building blocks than the ones we know about,” says the particle physicist.

    1
    “We measure so much about the universe, but we also know we’re completely missing huge chunks of what the universe is made of,” Kerstin Perez says. Credit: Adam Glanzman.

    Kerstin Perez is searching for imprints of dark matter. The invisible substance embodies 84 percent of the matter in the universe and is thought to be a powerful cosmic glue, keeping whole galaxies from spinning apart. And yet, the particles themselves leave barely a trace on ordinary matter, thwarting all efforts at detection thus far.

    Perez, a particle physicist at MIT, is hoping that a high-altitude balloon experiment, to be launched into the Antarctic stratosphere in late 2022, will catch indirect signs of dark matter, in the particles that it leaves behind. Such a find would significantly illuminate dark matter’s elusive nature.

    The experiment, which Perez co-leads, is the General AntiParticle Spectrometer, or GAPS, a NASA-funded mission that aims to detect products of dark matter annihilation.

    1
    GAPS (General AntiParticle Spectrometer) is an Antarctic balloon mission that will search for low-energy (< 0.25 GeV/n) cosmic-ray antinuclei in the austral summer of 2021. https://gaps1.astro.ucla.edu/gaps/

    When two dark matter particles collide, it’s thought that the energy of this interaction can be converted into other particles, including antideuterons — particles that then ride through the galaxy as cosmic rays which can penetrate Earth’s stratosphere. If antideuterons exist, they should come from all parts of the sky, and Perez and her colleagues are hoping GAPS will be at just the right altitude and sensitivity to detect them.

    “If we can convince ourselves that’s really what we’re seeing, that could help point us in the direction of what dark matter is,” says Perez, who was awarded tenure this year in MIT’s Department of Physics.

    In addition to GAPS, Perez’ work centers on developing methods to look for dark matter and other exotic particles in supernova and other astrophysical phenomena captured by ground and space telescopes.

    “We measure so much about the universe, but we also know we’re completely missing huge chunks of what the universe is made of,” she says. “There need to be more building blocks than the ones we know about. And I’ve chosen different experimental methods to go after them.”

    Building up

    Born and raised in West Philadelphia, Perez was a self-described “indoor kid,” mostly into arts and crafts, drawing and design, and building.

    “I had two glue guns, and I remember I got into building dollhouses, not because I cared about dolls so much, but because it was a thing you could buy and build,” she recalls.

    Her plans to pursue fine arts took a turn in her junior year, when she sat in on her first physics class. Material that was challenging for her classmates came more naturally to Perez, and she signed up the next year for both physics and calculus, taught by the same teacher with infectious wonder.

    “One day he did a derivation that took up two-thirds of the board, and he stood back and said, ‘Isn’t that so beautiful? I can’t erase it.’ And he drew a frame around it and worked for the rest of the class in that tiny third of the board,” Perez recalls. “It was that kind of enthusiasm that came across to me.”

    So buoyed, she set off after high school for Columbia University (US), where she pursued a major in physics. Wanting experience in research, she volunteered in a nanotechnology lab, imaging carbon nanotubes.

    “That was my turning point,” Perez recalls. “All my background in building, creating, and wanting to design things came together in this physics context. From then on, I was sold on experimental physics research.”

    She also happened to take a modern physics course taught by MIT’s Janet Conrad, who was then a professor at Columbia. The class introduced students to particle physics and the experiments underway to detect dark matter and other exotic particles. The detector generating the most buzz was CERN’s Large Hadron Collider in Geneva.

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN].

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire (CH) map.

    CERN LHC tunnel and tube.

    SixTRack CERN LHC particles.

    The LHC was to be the largest particle accelerator in the world, and was expected imminently to come online.

    After graduating from Columbia, Perez flew west to The California Institute of Technology (US), where she had the opportunity to go to CERN as part of her graduate work. That experience was invaluable, as she helped to calibrate one of the LHC’s pixel detectors, which is designed to measure ordinary, well-known particles.

    “That experience taught me, when you first turn on your instrument, you have to make sure you can measure the things you know are there, really well, before you can claim you’re looking at anything new,” Perez says.

    Front of the class

    After finishing up her work at CERN, she began to turn over a new idea. While the LHC was designed to artificially smash particles together to look for dark matter, smaller projects were going after the same particles in space, their natural environment.

    “All the evidence we have of dark matter comes from astrophysical observations, so it makes sense to look out there for clues,” Perez says. “I wanted the opportunity to, from scratch, fundamentally design and build an experiment that could tell us something about dark matter.”

    With this idea, she returned to Columbia, where she joined the core team that was working to get the balloon experiment GAPS off the ground. As a postdoc, she developed a cost-effective method to fabricate the experiment’s more than 1,000 silicon detectors, and has since continued to lead the experiment’s silicon detector program. Then in 2015, she accepted a faculty position at Haverford College (US), close to her hometown.

    “I was there for one-and-a-half years, and absolutely loved it,” Perez says.

    While at Haverford, she dove into not only her physics research, but also teaching. The college offered a program for faculty to help improve their lectures, with each professor meeting weekly with an undergraduate who was trained to observe and give feedback on their teaching style. Perez was paired with a female student of color, who one day shared with her a less than welcoming experience she had experienced in an introductory course, that ultimately discouraged her from declaring a computer science major.

    Listening to the student, Perez, who has often been the only woman of color in advanced physics classes, labs, experimental teams, and faculty rosters, recognized a kinship, and a calling. From that point on, in addition to her physics work, she began to explore a new direction of research: belonging.

    She reached out to social psychologists to understand issues of diversity and inclusion, and the systemic factors contributing to underrepresentation in physics, computer science, and other STEM disciplines. She also collaborated with educational researchers to develop classroom practices to encourage belonging among students, with the motivation of retaining underrepresented students.

    In 2016, she accepted an offer to join the MIT physics faculty, and brought with her the work on inclusive teaching that she began at Haverford. At MIT, she has balanced her research in particle physics with teaching and with building a more inclusive classroom.

    “It’s easy for instructors to think, ‘I have to completely revamp my syllabus and flip my classroom, but I have so much research, and teaching is a small part of my job that frankly is not rewarded a lot of the time,’” Perez says. “But if you look at the research, it doesn’t take a lot. It’s the small things we do, as teachers who are at the front of the classroom, that have a big impact.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 7:11 pm on December 26, 2021 Permalink | Reply
    Tags: "Helium bath splash", Another possible reason could be that the first droplets evaporate at the surface forming a layer of gas that slows down subsequent droplets and in this way protects them from evaporation., , Ion Physics, Nanodroplets can very effectively be doped with atoms and molecules., Nanotechnology, Only further investigations will show if one of these explanations is correct or if there are other reasons., , , , There is some evidence that the helium loses its superfluid property before impact and then behaves like a liquid., Using a supersonic nozzle tiny superfluid helium nanodroplets can be produced with temperatures of less than one degree Kelvin., Using helium nanodroplets to study ions with methods of mass spectrometry, When the ions are packed in a helium nanodroplet they remain protected and can be measured in the mass spectrometer.   

    From The University of Innsbruck [Leopold-Franzens-Universität Innsbruck](AT): “Helium bath splash” 

    From The University of Innsbruck [Leopold-Franzens-Universität Innsbruck](AT)

    27.12.2021

    While working with helium nanodroplets, scientists at the Department of Ion Physics and Applied Physics led by Fabio Zappa and Paul Scheier have come across a surprising phenomenon: When the ultracold droplets hit a hard surface, they behave like drops of water. Ions with which they were previously doped thus remain protected on impact and are not neutralized.

    1
    Ions packed in a helium nanodroplet remain protected on impact. (Credit: Uni Innsbruck)

    At the Department of Ion Physics and Applied Physics, Paul Scheier’s research group has been using helium nanodroplets to study ions with methods of mass spectrometry for around 15 years. Using a supersonic nozzle tiny superfluid helium nanodroplets can be produced with temperatures of less than one degree Kelvin. They can very effectively be doped with atoms and molecules. In the case of ionized droplets, the particles of interest are attached to the charges, which are then measured in the mass spectrometer. During their experiments, the scientists have now stumbled upon an interesting phenomenon that has fundamentally changed their work. “For us, this was a gamechanger,” says Fabio Zappa from the nano-bio-physics team. “Everything at our lab is now done with this newly discovered method.” The researchers have now published the results of their studies in Physical Review Letters.

    A surprising phenomenon

    When charged particles are fired at a metal plate, the particles are normally neutralized by the many free electrons on the metal surface. They can then no longer be measured in the mass spectrometer. But when the ions are packed in a helium nanodroplet, they remain protected on impact and fly off in all directions with a few weakly bound helium atoms. “The ions are apparently protected by the helium,” Zappa says. He doesn’t yet fully understand the underlying mechanism. “But there is some evidence that the helium loses its superfluid property before impact and then behaves like a liquid, splashing away from the surface and only then partially evaporates.” Another possible reason could be that the first droplets evaporate at the surface forming a layer of gas that slows down subsequent droplets and, in this way protects them from evaporation. Only further investigations will show if one of these explanations is correct or if there are other reasons. The fact that this method also works with negative ions, which are normally very fragile, indicates to the scientists a strong effect of the previously unknown phenomenon.

    Nanotechnology benefits

    With this discovery, Paul Scheier’s team not only improved their own measurement method, but also gained important insights for other research groups that, for example, deal with the deposition of nanoparticles on surfaces. “Metal nanoparticles are a great example of this,” Scheier recounts. “In many modern technologies, metal nanoparticles are found that have very specific properties.” The fact that the generation of such nanofilms can often be very inefficient could also be related to the phenomenon now discovered in Innsbruck.

    The work was financially supported, among others, by the Austrian Science Fund FWF and the province of Tyrol within the framework of a K-Regio project.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Innsbruck [Leopold-Franzens-Universität Innsbruck ](AT) is currently the largest education facility in the Austrian Bundesland of Tirol, the third largest in Austria behind University of Vienna [Universität Wien] (AT) and the University of Graz [Karl-Franzens-Universität Graz] (AT) and according to The Times Higher Education Supplement World Ranking 2010 Austria’s leading university. Significant contributions have been made in many branches, most of all in the physics department. Further, regarding the number of Web of Science-listed publications, it occupies the third rank worldwide in the area of mountain research. In the Handelsblatt Ranking 2015, the business administration faculty ranks among the 15 best business administration faculties in German-speaking countries.

    History

    In 1562, a Jesuit grammar school was established in Innsbruck by Peter Canisius, today called “Akademisches Gymnasium Innsbruck”. It was financed by the salt mines in Hall in Tirol, and was refounded as a university in 1669 by Leopold I with four faculties. In 1782 this was reduced to a mere lyceum (as were all other universities in the Austrian Empire, apart from Prague, Vienna and Lviv), but it was reestablished as the University of Innsbruck in 1826 by Emperor Franz I. The university is therefore named after both of its founding fathers with the official title “Leopold-Franzens-Universität Innsbruck” (Universitas Leopoldino-Franciscea).

    In 2005, copies of letters written by the emperors Frederick II and Conrad IV were found in the university’s library. They arrived in Innsbruck in the 18th century, having left the charterhouse Allerengelberg in Schnals due to its abolishment.

    The faculties

    The new plan of organisation (having become effective on October 1, 2004) installed the following 16 faculties to replace the previously existing six faculties:

    Faculty of Architecture,
    Faculty of Biology,
    Faculty of Catholic Theology,
    Faculty of Chemistry and Pharmacy,
    Faculty of Economics and Statistics,
    Faculty of Education,
    Faculty of Technical Sciences (formerly Faculty of Engineering Science and before that Faculty of Civil Engineering),
    Faculty of Geography and Atmospheric Sciences,
    Faculty of Humanities 1 (Philosophy and History),
    Faculty of Humanities 2 (Language and Literature),
    Faculty of Law,
    Faculty of Mathematics, Computer Science and Physics,
    Faculty of Psychology and Sports science,
    School of Political Sciences and Sociology,
    School of Management,
    School of Education (teacher training).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: