Tagged: Nanotechnology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:35 am on June 29, 2022 Permalink | Reply
    Tags: "John Fortner:: 'Fishing' for Toxic Contaminants using Superparamagnetic Nanoparticles", "PFAS": perfluoroalkyl contaminants which are fluorinated carbon structures found in numerous consumer products., "Superparamagnetic nanoparticles": Nanoparticles specially coated with sorbents., , “Buckyballs”: buckminsterfullerene (termed fullerenes) - a new carbon allotrope, , Bioremediation, , Improving public health through environmental-based pathways, It was clear that there were opportunities to apply ‘nano’ to critical environmental problems in sensing and treatment (pollution remediation)…to help make folks' lives healthier., John Fortner: associate professor of Chemical Engineering and Environmental Engineering, , , Nanotechnology, Nanotechnology - nanomaterial research - nanoscience - nanoparticles - nanostructures, Once a water source is contaminated it can be costly and difficult to remediate.,   

    From The Yale School of Engineering and Applied Science: “John Fortner:: ‘Fishing’ for Toxic Contaminants using Superparamagnetic Nanoparticles” 

    Yale SEAS

    From The Yale School of Engineering and Applied Science

    at

    Yale University

    06/21/2022

    1
    Clean water

    Once a water source is contaminated it can be costly and difficult to remediate. Natural remedies can take hundreds of years and still may not successfully remove all the dangerous contaminants. When it comes to global public health issues such as this, the need for new and safe solutions is urgent. John Fortner is designing solutions from scratch to do just that.

    Fortner, associate professor of chemical and environmental engineering, leads one of the few labs in the U.S. investigating the intersection between materials science and environmental engineering. There, materials synthesized directly in the lab, whether magnetic nanoparticles, graphene-based composites, or hyperthermic catalysts, are carefully engineered to treat contaminants in water sources.

    Fortner has always been drawn towards improving public health through environmental-based pathways. He initially considered a career in medicine when he first discovered the field of environmental engineering.

    “I took a bioremediation course and I became fascinated with engineering biological systems to break down contaminants in situ,” Fortner said.

    At the time, traditional environmental engineering research focused on using microbes – biological organisms on the microscopic scale – to degrade contaminants within industrial wastewater streams. After taking courses that bridged his biological focus with applied engineering systems, Fortner found his ‘fit’ and soon switched to environmental engineering.

    Though ubiquitous today, nanomaterial research is a relatively new field. In the late 20th century, the development of advanced imaging technologies enabled scientists to study nanomaterials for the first time. In 1989, 15 years after the term “nanoscience” was coined, the first nanotechnology company began to commercialize nanostructures. By 2001, when Fortner entered graduate school, nanomaterials had been industrialized in computer science and biomedical engineering.

    Compared to their larger counterparts, nanomaterials have advantages, such as tunability and/or unique reactivity, stemming from their incredibly small sizes and novel properties. As Fortner puts it, “nanomaterials have the potential to do what traditional materials simply can’t.”

    In 1985, chemists at Rice discovered a new carbon allotrope – buckminsterfullerene (termed fullerenes or “buckyballs”) – leading them to a 1996 Nobel Prize in Chemistry and sparking a nanotechnology boom at Rice and beyond. Through this, the Center for Biological and Environmental Nanotechnology, an NSF-funded research center, was founded at Rice when Fortner started his graduate studies. There, he worked with collaborators to understand the behavior of nanomaterials in the environment, with his Ph.D. thesis focused on fullerenes in natural systems. At the time, very little was known about the matter that led to several exciting findings underpinning the emerging field of environmental nanotechnology.

    “At the time, there was so much to explore,” Fortner said. “Beyond understanding fundamental nanomaterial behavior in the environment, it was clear that there were fantastic opportunities to apply ‘nano’ to critical environmental problems in sensing and treatment (pollution remediation)…to help make folks’ lives healthier through a better, cleaner environment.”

    Soon after graduation, Fortner joined the faculty at Washington University in St. Louis where he studied the fundamental mechanisms involved with nanostructure synthesis and reactivity. He was particularly interested in understanding how nanoparticles degrade contaminants differently than traditional systems and if nanoparticles have applications beyond the water industry.

    During his time at Washington University, he was a Fellow within the International Center for Energy, Environment, and Sustainability, where he collaborated with other researchers to develop nanotechnologies for a range of applications including new water treatment membranes and sensing technologies.

    “It was a wonderful place to start an independent research career,” Fortner said. “I developed amazing collaborations there, which pushed me even more to the fundamental side of chemistry and material science.”

    Fortner joined the faculty of Yale’s Department of Chemical and Environmental Engineering in 2019. In the Fortner Lab, almost everything is created from scratch: researchers design and synthesize nanoparticles, multi-component composites, and associated functional coatings to address water-related environmental issues.

    One of his most recent collaborations centers around perfluoroalkyl contaminants (PFAS), which are fluorinated carbon structures found in numerous consumer products ranging from fast food wrappers to Teflon pans to firefighting foams. Because these products were engineered to be unreactive to most chemicals or high temperatures, PFAS contaminants cannot be treated using conventional biological treatment processes. To address these ‘forever chemicals,’ Fortner’s lab, working with Kurt Pennell from Brown University and Natalie Capiro from Auburn University, has engineered superparamagnetic nanoparticles, which are specially coated with sorbents. They discovered that when these engineered nanoparticles are dispersed in a polluted source, contaminants are attracted to specified functional groups on the molecule. The particles, along with the contaminants, can then be collected using a magnet field and the concentrated PFAS can be removed. This strategy allows for very large volumes of media to be managed in a targeted and energy-efficient manner.

    “It’s amazing,” Fortner said. “We can sorb a significant amount of PFAS onto one particle and simply use a magnet to remove it. It’s a nice way to go ‘fishing’ to remove PFAS, or other contaminants, from a polluted water source.”

    Compared with other research laboratories around Yale, the Fortner Lab is a small but mighty force. Currently six Ph.D. students are mentored by Fortner, in addition to two postdoctoral researchers. The small size of the group allows for him to work individually with the students, enabling them to take real ownership of research projects. Susanna Maisto, a first-year Environmental Engineering Ph.D. student, describes the research group as “supportive, welcoming, and collaborative.”

    “Dr. Fortner has a great mentorship style; always providing any support you need, but never overstepping.” Maisto said. “He checks in often to make sure that we are thriving in and out of the lab.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 4:40 pm on June 21, 2022 Permalink | Reply
    Tags: "The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection", 3D print coral-inspired microscale structures, , , , , Nanotechnology, ,   

    From The University of California-San Diego and Scripps Institution of Oceanography : “The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    Liezel Labios
    858-246-1124
    llabios@ucsd.edu

    Robert Monroe
    858-534-3624
    scrippsnews@ucsd.edu

    Images by Daniel Wangpraseurt.

    A team of researchers involving the University of California San Diego has received a $25 million award from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to build artificial coral reefs to protect coastal areas in Hawai’i against flooding, erosion and storm damage.

    The artificial reefs will be designed to work with local ecology to create a living, growing and self-healing system. The reefs will provide a natural defense that can keep pace with sea-level rise over time and slow down waves, dissipating their energy before they reach land. A big benefit of artificial reefs is that they can be rapidly deployed to provide immediate protection while promoting the growth of reef-supporting organisms. Natural reefs take decades to mature, but the artificial versions can reach full functionality in a matter of months to years.

    The project is an academic-industry partnership led by the University of Hawai’i, with other partners including UC San Diego, Florida Atlantic University and Makai Ocean Engineering.

    1
    Coral larvae crawling over a bioactive coating to look for a settlement habitat. Such a bioactive material can be rapidly fabricated via 3D printing.

    The UC San Diego team is working on two methods for attracting both corals and beneficial reef fish to the artificial structures. First, researchers at the UC San Diego Department of NanoEngineering will 3D print biomaterials that will be coated onto the artificial reefs. The biomaterials will be designed with special microstructures to enhance coral recruitment, the process in which tiny drifting coral larvae attach and establish themselves on a reef. The microstructures also aim to inhibit algal and bacterial fouling on the artificial reefs.

    Scientists at UC San Diego’s Scripps Institution of Oceanography will also test “acoustic enrichment,” a process where sounds from other healthy reef environments are broadcast to attract both algae-eating fish and coral larvae to the structures. Scripps Oceanography scientists will also conduct passive acoustic monitoring of the reef structure to help monitor what and how many organisms settle on the structure over time.

    Daniel Wangpraseurt, an assistant project scientist at the UC San Diego Jacobs School of Engineering, will lead the effort with co-investigators Shaochen Chen, professor and chair of nanoengineering at the UC San Diego Jacobs School of Engineering, and Aaron Thode, a research scientist at Scripps Oceanography. The UC San Diego effort will be funded with $4 million of the DARPA award.

    “This is an exciting opportunity for radical innovation, with the potential to be a game changer for the engineering of artificial coral reefs,” said Wangpraseurt. “Our team will develop new biomaterials that will kick-start the living reef by applying state-of-the-art medical tissue engineering approaches.”

    2
    3D printed skeletal microarchitecture that can be used as inspiration for new reef-like materials.

    To create the biomaterials, the UC San Diego team will use a rapid, 3D bioprinting technology developed in Chen’s lab. The technology can reproduce detailed microscale structures in mere seconds, mimicking the complex designs and functions of living tissues. Wangpraseurt and Chen have collaborated in recent years to 3D print coral-inspired microscale structures that are capable of growing dense populations of microscopic algae. The new DARPA-funded project takes their work to the next level, expanding their efforts to help create hybrid biological and engineered reef-mimicking structures for coastal defenses suited to a changing environment.

    “We are now scaling up our rapid bioprinting platform, which will be critical to manufacture biomaterials for large scale coral reef engineering,” said Chen.

    Thode, who recently participated in another recent DARPA-funded project on coral reef acoustics, will be adapting underwater sound playback technology initially developed to attract sperm whales away from fishing vessels to prevent the 70-foot animals from taking fish from their haul.

    “In addition to developing methods to encourage rapid ecosystem development on artificial reefs, I’m hoping in the future this research could also help accelerate efforts to recover degraded or dying natural reefs,” said Thode.

    3D printed corals provide more fertile ground for algae growth
    3
    Left: Close-up of coral reef microstructures consisting of a coral skeleton (white) and coral tissue (orange-yellow). Right: SEM image of 3D printed coral skeleton. Images courtesy of Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 1:44 pm on June 21, 2022 Permalink | Reply
    Tags: "Quantum sensor can detect electromagnetic signals of any frequency", , MIT researchers have developed a method to enable quantum sensors to detect any arbitrary frequency with no loss of their ability to measure nanometer-scale features., Nanotechnology, , Quantum sensors which detect the most minute variations in magnetic or electrical fields have enabled precision measurements in materials science and fundamental physics., , The new system the team devised which they call a quantum mixer injects a second frequency into the detector using a beam of microwaves., The team used a specific device based on an array of nitrogen-vacancy centers in diamond and successfully demonstrated detection of a signal with a frequency of 150 megahertz.   

    From The MIT Lincoln Laboratory : “Quantum sensor can detect electromagnetic signals of any frequency” 

    From The MIT Lincoln Laboratory

    At

    The Massachusetts Institute of Technology

    June 21, 2022
    David L. Chandler

    MIT engineers expand the capabilities of these ultrasensitive nanoscale detectors, with potential uses for quantum computing and biological sensing.

    1
    MIT researchers have developed a method to enable quantum sensors to detect any arbitrary frequency with no loss of their ability to measure nanometer-scale features. Quantum sensors detect the most minute variations in magnetic or electrical fields, but until now they have only been capable of detecting a few specific frequencies, limiting their usefulness. Pci Credit: Guoqing Wang.

    Quantum sensors which detect the most minute variations in magnetic or electrical fields have enabled precision measurements in materials science and fundamental physics. But these sensors have only been capable of detecting a few specific frequencies of these fields, limiting their usefulness. Now, researchers at MIT have developed a method to enable such sensors to detect any arbitrary frequency, with no loss of their ability to measure nanometer-scale features.

    The new method, for which the team has already applied for patent protection, is described in the journal Physical Review X, in a paper by graduate student Guoqing Wang, professor of nuclear science and engineering and of physics Paola Cappellaro, and four others at MIT and Lincoln Laboratory.

    Quantum sensors can take many forms; they’re essentially systems in which some particles are in such a delicately balanced state that they are affected by even tiny variations in the fields they are exposed to. These can take the form of neutral atoms, trapped ions, and solid-state spins, and research using such sensors has grown rapidly. For example, physicists use them to investigate exotic states of matter, including so-called time crystals and topological phases, while other researchers use them to characterize practical devices such as experimental quantum memory or computation devices. But many other phenomena of interest span a much broader frequency range than today’s quantum sensors can detect.

    The new system the team devised which they call a quantum mixer injects a second frequency into the detector using a beam of microwaves. This converts the frequency of the field being studied into a different frequency — the difference between the original frequency and that of the added signal — which is tuned to the specific frequency that the detector is most sensitive to. This simple process enables the detector to home in on any desired frequency at all, with no loss in the nanoscale spatial resolution of the sensor.

    In their experiments, the team used a specific device based on an array of nitrogen-vacancy centers in diamond-a widely used quantum sensing system-and successfully demonstrated detection of a signal with a frequency of 150 megahertz-using a qubit detector with frequency of 2.2 gigahertz — a detection that would be impossible without the quantum multiplexer. They then did detailed analyses of the process by deriving a theoretical framework, based on Floquet theory, and testing the numerical predictions of that theory in a series of experiments.

    While their tests used this specific system, Wang says, “the same principle can be also applied to any kind of sensors or quantum devices.” The system would be self-contained, with the detector and the source of the second frequency all packaged in a single device.

    Wang says that this system could be used, for example, to characterize in detail the performance of a microwave antenna. “It can characterize the distribution of the field [generated by the antenna] with nanoscale resolution, so it’s very promising in that direction,” he says.

    There are other ways of altering the frequency sensitivity of some quantum sensors, but these require the use of large devices and strong magnetic fields that blur out the fine details and make it impossible to achieve the very high resolution that the new system offers. In such systems today, Wang says, “you need to use a strong magnetic field to tune the sensor, but that magnetic field can potentially break the quantum material properties, which can influence the phenomena that you want to measure.”

    The system may open up new applications in biomedical fields, according to Cappellaro, because it can make accessible a range of frequencies of electrical or magnetic activity at the level of a single cell. It would be very difficult to get useful resolution of such signals using current quantum sensing systems, she says. It may be possible using this system to detect output signals from a single neuron in response to some stimulus, for example, which typically include a great deal of noise, making such signals hard to isolate.

    The system could also be used to characterize in detail the behavior of exotic materials such as 2D materials that are being intensely studied for their electromagnetic, optical, and physical properties.

    In ongoing work, the team is exploring the possibility of finding ways to expand the system to be able to probe a range of frequencies at once, rather than the present system’s single frequency targeting. They will also be continuing to define the system’s capabilities using more powerful quantum sensing devices at Lincoln Laboratory, where some members of the research team are based.

    The team included Yi-Xiang Liu at MIT and Jennifer Schloss, Scott Alsid and Danielle Braje at Lincoln Laboratory. The work was supported by the Defense Advanced Research Projects Agency (DARPA) and Q-Diamond.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT Lincoln Laboratory, located in Lexington, Massachusetts, is a United States Department of Defense federally funded research and development center chartered to apply advanced technology to problems of national security. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. Its core competencies are in sensors, integrated sensing, signal processing for information extraction, decision-making support, and communications. These efforts are aligned within ten mission areas. The laboratory also maintains several field sites around the world.

    The laboratory transfers much of its advanced technology to government agencies, industry, and academia, and has launched more than 100 start-ups.

    At the urging of the United States Air Force, the Lincoln Laboratory was created in 1951 at the Massachusetts Institute of Technology as part of an effort to improve the U.S. air defense system. Primary advocates for the creation of the laboratory were two veterans of the World War II-era MIT Radiation Laboratory, physicist and electrical engineer Ivan A. Getting and physicist Louis Ridenour.

    The laboratory’s inception was prompted by the Air Defense Systems Engineering Committee’s 1950 report that concluded the United States was unprepared for the threat of an air attack. Because of MIT’s management of the Radiation Laboratory during World War II, the experience of some of its staff on the Air Defense Systems Engineering Committee, and its proven competence in advanced electronics, the Air Force suggested that MIT could provide the research needed to develop an air defense that could detect, identify, and ultimately intercept air threats.

    James R. Killian, the president of MIT, was not eager for MIT to become involved in air defense. He asked the United States Air Force if MIT could first conduct a study to evaluate the need for a new laboratory and to determine its scope. Killian’s proposal was approved, and a study named Project Charles (for the Charles River that flows past MIT) was carried out between February and August 1951. The final Project Charles report stated that the United States needed an improved air defense system and unequivocally supported the formation of a laboratory at MIT dedicated to air defense problems.

    This new undertaking was initially called Project Lincoln and the site chosen for the new laboratory was on the Laurence G. Hanscom Field (now Hanscom Air Force Base), where the Massachusetts towns of Bedford, Lexington and Lincoln meet. A Project Bedford (on antisubmarine warfare) and a Project Lexington (on nuclear propulsion of aircraft) were already in use, so Major General Putt, who was in charge of drafting the charter for the new laboratory, decided to name the project for the town of Lincoln.

    Since MIT Lincoln Laboratory’s establishment, the scope of the problems has broadened from the initial emphasis on air defense to include programs in space surveillance, missile defense, surface surveillance and object identification, communications, cyber security, homeland protection, high-performance computing, air traffic control, and intelligence, surveillance, and reconnaissance (ISR). The core competencies of the laboratory are in sensors, information extraction (signal processing and embedded computing), communications, integrated sensing, and decision support, all supported by a strong advanced electronic technology activity.

    Lincoln Laboratory conducts research and development pertinent to national security on behalf of the military services, the Office of the Secretary of Defense, and other government agencies. Projects focus on the development and prototyping of new technologies and capabilities. Program activities extend from fundamental investigations, through simulation and analysis, to design and field testing of prototype systems. Emphasis is placed on transitioning technology to industry.

    The work of Lincoln Laboratory revolves around a comprehensive set of mission areas:

    Space Control
    Air, Missile, and Maritime Defense Technology
    Communication Systems
    Cyber Security and Information Sciences
    Intelligence, Surveillance, and Reconnaissance Systems and Technology
    Advanced Technology
    Tactical Systems
    Homeland Protection
    Air Traffic Control
    Engineering
    Biotechnology

    Lincoln Laboratory also undertakes work for non-DoD agencies such as programs in space lasercom and space science as well as environmental monitoring for NASA and the National Oceanic and Atmospheric Administration.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 4:00 pm on June 20, 2022 Permalink | Reply
    Tags: "Excitons": Quasiparticles that can transport energy while remaining electrically neutral., "LAST": Laser-assisted synthesis technique, "Physicists Shine Light on Solid Way To Extend Excitons’ Life", "TMDs": Two-dimensional transition metal dichalcogenides, , , Excitons in LAST-produced TMDs lasted up to 100 times longer than those in other TMD materials., it creates a negatively charged electron paired with a positive hole to maintain neutral charge. This pair is the exciton., , Nanotechnology, , , , , Semiconductors are a class of crystalline solids whose electrical conductivity is between that of a conductor and an insulator., Strain-controlling in atomically thin monolayer of TMDs is an important tool to tailor their optoelectronic properties., The indirect excitons can be both electronically controlled and converted into photons opening a path to the development of new optoelectronic devices., The indirect excitons exist due to the abnormal amount of strain between the monolayer TMD material and the substrate on which it grows., The pair still have a Coulomb interaction between them., , Ultrafast Spectroscopy, When a semiconductor absorbs a photon   

    From The University of Texas-Dallas : “Physicists Shine Light on Solid Way To Extend Excitons’ Life” 

    From The University of Texas-Dallas

    June 17, 2022
    Stephen Fontenot,
    UT Dallas,
    972-883-4405
    stephen.fontenot@utdallas.edu,

    1
    Dr. Anton Malko’s Optics and Ultrafast Spectroscopy Laboratory focuses on the science and engineering of excitonic processes in various novel nanomaterials and hybrid structures. Malko and fellow researchers tested ultrathin semiconductors made with a method called laser-assisted synthesis technique in a recent study.

    Optics researchers at The University of Texas at Dallas have shown for the first time that a new method for manufacturing ultrathin semiconductors yields material in which excitons survive up to 100 times longer than in materials created with previous methods.

    The findings show that excitons, quasiparticles that transport energy, last long enough for a broad range of potential applications, including as bits in quantum computing devices.

    Dr. Anton Malko, professor of physics in the School of Natural Sciences and Mathematics, is corresponding author of a paper published online March 30 in Advanced Materials that describes tests on ultrathin semiconductors made with a recently developed method called laser-assisted synthesis technique (LAST). The findings show novel quantum physics at work.

    Semiconductors are a class of crystalline solids whose electrical conductivity is between that of a conductor and an insulator. This conductivity can be externally controlled, either by doping or electrical gating, making them key elements for the diodes and transistors that underpin all modern electronic technology.

    Two-dimensional transition metal dichalcogenides (TMDs) are a novel type of ultrathin semiconductor consisting of a transition metal and a chalcogen element arranged in one atomic layer. While TMDs have been explored for a decade or so, the 2D form that Malko examined has advantages in scalability and optoelectronic properties.

    “LAST is a very pure method. You take pure molybdenum or tungsten, and pure selenium or sulfur, and evaporate them under intense laser light,” Malko said. “Those atoms are distributed onto a substrate and make the two-dimensional TMD layer less than 1 nanometer thick.”

    A material’s optical properties are partially determined by the behavior of excitons, which are quasiparticles that can transport energy while remaining electrically neutral.

    “When a semiconductor absorbs a photon, it creates in the semiconductor a negatively charged electron paired with a positive hole, to maintain neutral charge. This pair is the exciton. The two parts are not completely free from each other — they still have a Coulomb interaction between them,” Malko said.

    Malko and his team were surprised to discover that excitons in LAST-produced TMDs lasted up to 100 times longer than those in other TMD materials.

    “We quickly found that, optically speaking, these 2D samples behave totally differently from any we’ve seen in 10 years working with TMDs,” he said. “When we started to look deeper at it, we realized it’s not a fluke; it’s repeatable and dependent on growth conditions.”

    These longer lifetimes, Malko believes, are caused by indirect excitons, which are optically inactive.

    “These excitons are used as a kind of reservoir to slowly feed the optically active excitons,” he said.

    Lead study author Dr. Navendu Mondal, a former UT Dallas postdoctoral researcher who is now a Marie Skłodowska-Curie Individual Fellow at Imperial College London, said he believes the indirect excitons exist due to the abnormal amount of strain between the monolayer TMD material and the substrate on which it grows.

    “Strain-controlling in atomically thin monolayer of TMDs is an important tool to tailor their optoelectronic properties,” Mondal said. “Their electronic band-structure is highly sensitive to structural deformations. Under enough strain, band-gap modifications cause formation of various indirect ‘dark’ excitons that are optically inactive. Through this finding, we reveal how the presence of these hidden dark excitons influences those excitons created directly by photons.”

    Malko said the built-in strain in 2D TMDs is comparable to what would be induced by pressing on the material with externally placed micro- or nanosize pillars, although it is not a viable technological option for such thin layers.

    “That strain is crucial for creating these optically inactive, indirect excitons,” he said. “If you remove the substrate, the strain is released, and this wonderful optical response is gone.”

    Malko said the indirect excitons can be both electronically controlled and converted into photons opening a path to the development of new optoelectronic devices.

    “This increased lifespan has very interesting potential applications,” he said. “When an exciton has a lifespan of only about 100 picoseconds or less, there is no time to use it. But in this material, we can create a reservoir of inactive excitons that live much longer — a few nanoseconds instead of hundreds of picoseconds. You can do a lot with this.”

    Malko said the results of the research are an important proof-of-concept for future quantum-scale devices.

    “It’s the first time we know of that anyone has made this fundamental observation of such long-living excitations in TMD materials — long enough to be usable as a quantum bit — just like an electron in a transistor or even just for light harvesting in a solar cell,” he said. “Nothing in the literature can explain these superlong exciton lifetimes, but we now understand why they have these characteristics.”

    The researchers next will try to manipulate excitons with an electric field, which is a key step toward creating quantum-level logic elements.

    “Classical semiconductors have already been miniaturized down to the doorstep before quantum effects change the game entirely,” Malko said. “If you can apply gate voltage and show that 2D TMD materials will work for future electronic devices, it’s a huge step. The atomic monolayer in 2D TMD material is 10 times smaller than the size limit with silicon. But can you create logic elements at that size? That’s what we need to find out.”

    Other key contributors to this research are Dr. Yuri Gartstein, associate professor of physics at UT Dallas who did computational modeling that explained the reservoir behavior and coupling between different exciton species; and Dr. Masoud Mahjouri-Samani and graduate student Nurul Azam from Auburn University, who developed and used the LAST method to create the semiconductor material.

    Funding for the research came from the U.S. Department of Energy, Basic Energy Sciences program (BES award #DE-SC0010697).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Texas at Dallas is a Carnegie R1 classification (Doctoral Universities – Highest research activity) institution, located in a suburban setting 20 miles north of downtown Dallas. The University enrolls more than 27,600 students — 18,380 undergraduate and 9,250 graduate —and offers a broad array of bachelor’s, master’s, and doctoral degree programs.

    Established by Eugene McDermott, J. Erik Jonsson and Cecil Green, the founders of Texas Instruments, UT Dallas is a young institution driven by the entrepreneurial spirit of its founders and their commitment to academic excellence. In 1969, the public research institution joined The University of Texas System and became The University of Texas at Dallas.

    A high-energy, nimble, innovative institution, UT Dallas offers top-ranked science, engineering and business programs and has gained prominence for a breadth of educational paths from audiology to arts and technology. UT Dallas’ faculty includes a Nobel laureate, six members of the National Academies and more than 560 tenured and tenure-track professors.

     
  • richardmitnick 3:18 pm on June 20, 2022 Permalink | Reply
    Tags: "Nanoparticles that control flow of light like road signs direct traffic", , , Nanotechnology, New light-based devices that could lead to faster and cheaper and more reliable Internet., , , Producing two very different images by manipulating the direction in which light travels.,   

    From The Australian National University (AU) via “phys.org” : “Nanoparticles that control flow of light like road signs direct traffic” 

    ANU Australian National University Bloc

    From The Australian National University (AU)

    via

    “phys.org”

    June 20, 2022

    1
    An illustration of the ANU tiny slides. Credit: Ella Maru Studio.

    Physicists at The Australian National University (ANU) have developed tiny translucent slides capable of producing two very different images by manipulating the direction in which light travels through them.

    As light passes through the slide, an image of Australia can be seen, but when you flip the slide and look again, an image of the Sydney Opera House is visible. The pair of images created is just one example of an untapped number of possibilities.

    The ability to produce two distinctly different images is possible thanks to the ANU scientists’ ability to control the direction in which light can and can’t travel at the nanoscale. The development could pave the way for new light-based devices that could lead to faster, cheaper and more reliable Internet. It could also serve as the foundation for many of the technologies of tomorrow.

    Developed in collaboration with colleagues from China, Germany and Singapore, the new technology uses nanoparticles, so small that about 12,000 of them can fit within a cross-section of a human hair. These tiny particles are arranged into unique patterns on the slides.

    “The particles control the flow of light like road signs control traffic on a busy road by manipulating the direction in which light can, or can’t, travel,” project leader Dr. Sergey Kruk said.

    “Some particles allow light to flow from left to right only, others from right to left or the pathway might be blocked in either direction.”

    Dr. Lei Wang, from Southeast University in China says that “while the purpose of these images is mainly artistic, they demonstrate the potential for this new technology.”

    “In real-world applications these nanoparticles can be assembled into complex systems that would control the flow of light in a useful manner—such as in next-generation communications infrastructure.”

    According to Dr. Kruk, the ability to control the flow of light at the nanoscale ensures light “goes where it’s supposed to go and doesn’t go where it’s not supposed to.”

    “We exchange enormous amounts of information with the help of light. When you make a video call, say, from Australia to Europe, your voice and image get converted into short pulses of light that travel thousands of kilometers through an optical fiber over the continents and oceans,” Dr. Kruk, from the ANU Nonlinear Physics Centre, said.

    “Unfortunately, when we use current light-based technologies to exchange information a lot of parasitic effects might occur. Light might get scattered or reflected, which compromises your communication.”

    “By ensuring light flows exactly where it needs to flow, we would resolve many issues with current technologies.”

    According to Dr. Kruk, the development of many technologies of tomorrow will rely heavily on our ability to control light at a tiny scale.

    “A wide deployment of tiny components that can control the flow of light could potentially bring technological and social changes similar to transformations brought about in the past by the development of tiny components that control the flow of electricity, which are known as diodes and transistors,” he said.

    “Control over the flow of electricity at the nanoscale is what ultimately brought us modern computers and smartphones. It is therefore exciting to envision the potential of our emerging technology for controlling flow of light.”

    The research is published in Nature Photonics.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ANU Campus

    The Australian National University (AU) is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

    Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

    Australian National University (AU) is regarded as one of the world’s leading research universities, and is ranked as the number one university in Australia and the Southern Hemisphere by the 2021 QS World University Rankings. It is ranked 31st in the world by the 2021 QS World University Rankings, and 59th in the world (third in Australia) by the 2021 Times Higher Education.

    In the 2020 Times Higher Education Global Employability University Ranking, an annual ranking of university graduates’ employability, Australian National University (AU) was ranked 15th in the world (first in Australia). According to the 2020 QS World University by Subject, the university was also ranked among the top 10 in the world for Anthropology, Earth and Marine Sciences, Geography, Geology, Philosophy, Politics, and Sociology.

    Established in 1946, ANU is the only university to have been created by the Parliament of Australia. It traces its origins to Canberra University College, which was established in 1929 and was integrated into Australian National University (AU) in 1960. Australian National University (AU) enrols 10,052 undergraduate and 10,840 postgraduate students and employs 3,753 staff. The university’s endowment stood at A$1.8 billion as of 2018.

    Australian National University (AU) counts six Nobel laureates and 49 Rhodes scholars among its faculty and alumni. The university has educated two prime ministers, 30 current Australian ambassadors and more than a dozen current heads of government departments of Australia. The latest releases of ANU’s scholarly publications are held through ANU Press online.

     
  • richardmitnick 8:36 pm on June 16, 2022 Permalink | Reply
    Tags: "HAD": Hybridized-active-dielectric, , "World's first ultra-fast photonic computing processor using polarization", , Artificial Intelligence and Machine Learning, Nanotechnology, , , Researchers at the University of Oxford have developed a method using the polarization of light to maximize information storage density and computing performance using nanowires.   

    From The University of Oxford (UK) via “phys.org” : “World’s first ultra-fast photonic computing processor using polarization” 

    U Oxford bloc

    From The University of Oxford (UK)

    via

    “phys.org”

    June 15, 2022

    1
    Credit: June Sang Lee, University of Oxford

    In a paper published today in Science Advances, researchers at the University of Oxford have developed a method using the polarization of light to maximize information storage density and computing performance using nanowires.

    Light has an exploitable property—different wavelengths of light do not interact with each other—a characteristic used by fiberoptics to carry parallel streams of data. Similarly, different polarizations of light do not interact with each other either. Each polarization can be used as an independent information channel, enabling more information to be stored in multiple channels, hugely enhancing information density.

    First author and DPhil student June Sang Lee, Department of Materials, University of Oxford said: “We all know that the advantage of photonics over electronics is that light is faster and more functional over large bandwidths. So, our aim was to fully harness such advantages of photonics combining with tunable material to realize faster and denser information processing.”


    World’s first ultra-fast photonic computing processor using polarization.
    Polarization as an independent channel. Credit: June Sang Lee, Department of Materials, University of Oxford.

    In collaboration with Professor C. David Wright, University of Exeter, the research team developed a HAD (hybridized-active-dielectric) nanowire, using a hybrid glassy material which shows switchable material properties upon the illumination of optical pulses. Each nanowire shows selective responses to a specific polarization direction, so information can be simultaneously processed using multiple polarizations in different directions.

    Using this concept, researchers have developed the first photonic computing processor to utilize polarizations of light.

    Photonic computing is carried out through multiple polarization channels, leading to an enhancement in computing density by several orders compared to that of conventional electronic chips. The computing speeds are faster because these nanowires are modulated by nanosecond optical pulses.

    2
    Hybrid nanowires that can selectively switch the devices depending on polarization. Credit: June Sang Lee, Department of Materials, University of Oxford.

    Since the invention of the first integrated circuit in 1958, packing more transistors into a given size of an electronic chip has been the go-to means of maximizing computing density—the so-called “Moore’s Law.” However, with Artificial Intelligence and Machine Learning requiring specialized hardware that is beginning to push the boundaries of established computing, the dominant question in this area of electronic engineering has been “How do we pack more functionalities into a single transistor?”

    For over a decade, researchers in Professor Harish Bhaskaran’s lab in the Department of Materials, University of Oxford have been looking into using light as a means to compute.

    3
    Hybridized-active-dielectric (HAD) nanowire is polarization-selectively switched and parallel photonic computing is realized. Credit: June Sang Lee, Department of Materials, University of Oxford.

    Professor Bhaskaran, who led the work, said: “This is just the beginning of what we would like to see in future, which is the exploitation of all degrees of freedoms that light offers, including polarization to dramatically parallelize information processing. Definitely early-stage work, but super exciting ideas that combine electronics, non-linear materials and computing. Lots of exciting prospects to work on which is always a great place to be in.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Oxford campus

    The University of Oxford

    1
    Universitas Oxoniensis

    The University of Oxford [a.k.a. The Chancellor, Masters and Scholars of the University of Oxford] is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the world’s second-oldest university in continuous operation. It grew rapidly from 1167 when Henry II banned English students from attending the University of Paris [Université de Paris](FR). After disputes between students and Oxford townsfolk in 1209, some academics fled north-east to Cambridge where they established what became the University of Cambridge (UK). The two English ancient universities share many common features and are jointly referred to as Oxbridge.

    The university is made up of thirty-nine semi-autonomous constituent colleges, six permanent private halls, and a range of academic departments which are organised into four divisions. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. It does not have a main campus, and its buildings and facilities are scattered throughout the city centre. Undergraduate teaching at Oxford consists of lectures, small-group tutorials at the colleges and halls, seminars, laboratory work and occasionally further tutorials provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Oxford operates the world’s oldest university museum, as well as the largest university press in the world and the largest academic library system nationwide. In the fiscal year ending 31 July 2019, the university had a total income of £2.45 billion, of which £624.8 million was from research grants and contracts.

    Oxford has educated a wide range of notable alumni, including 28 prime ministers of the United Kingdom and many heads of state and government around the world. As of October 2020, 72 Nobel Prize laureates, 3 Fields Medalists, and 6 Turing Award winners have studied, worked, or held visiting fellowships at the University of Oxford, while its alumni have won 160 Olympic medals. Oxford is the home of numerous scholarships, including the Rhodes Scholarship, one of the oldest international graduate scholarship programmes.

    The University of Oxford’s foundation date is unknown. It is known that teaching at Oxford existed in some form as early as 1096, but it is unclear when a university came into being.

    It grew quickly from 1167 when English students returned from The University of Paris-Sorbonne [Université de Paris-Sorbonne](FR). The historian Gerald of Wales lectured to such scholars in 1188, and the first known foreign scholar, Emo of Friesland, arrived in 1190. The head of the university had the title of chancellor from at least 1201, and the masters were recognised as a universitas or corporation in 1231. The university was granted a royal charter in 1248 during the reign of King Henry III.

    The students associated together on the basis of geographical origins, into two ‘nations’, representing the North (northerners or Boreales, who included the English people from north of the River Trent and the Scots) and the South (southerners or Australes, who included English people from south of the Trent, the Irish and the Welsh). In later centuries, geographical origins continued to influence many students’ affiliations when membership of a college or hall became customary in Oxford. In addition, members of many religious orders, including Dominicans, Franciscans, Carmelites and Augustinians, settled in Oxford in the mid-13th century, gained influence and maintained houses or halls for students. At about the same time, private benefactors established colleges as self-contained scholarly communities. Among the earliest such founders were William of Durham, who in 1249 endowed University College, and John Balliol, father of a future King of Scots; Balliol College bears his name. Another founder, Walter de Merton, a Lord Chancellor of England and afterwards Bishop of Rochester, devised a series of regulations for college life. Merton College thereby became the model for such establishments at Oxford, as well as at the University of Cambridge. Thereafter, an increasing number of students lived in colleges rather than in halls and religious houses.

    In 1333–1334, an attempt by some dissatisfied Oxford scholars to found a new university at Stamford, Lincolnshire, was blocked by the universities of Oxford and Cambridge petitioning King Edward III. Thereafter, until the 1820s, no new universities were allowed to be founded in England, even in London; thus, Oxford and Cambridge had a duopoly, which was unusual in large western European countries.

    The new learning of the Renaissance greatly influenced Oxford from the late 15th century onwards. Among university scholars of the period were William Grocyn, who contributed to the revival of Greek language studies, and John Colet, the noted biblical scholar.

    With the English Reformation and the breaking of communion with the Roman Catholic Church, recusant scholars from Oxford fled to continental Europe, settling especially at he University of Douai. The method of teaching at Oxford was transformed from the medieval scholastic method to Renaissance education, although institutions associated with the university suffered losses of land and revenues. As a centre of learning and scholarship, Oxford’s reputation declined in the Age of Enlightenment; enrollments fell and teaching was neglected.

    In 1636, William Laud, the chancellor and Archbishop of Canterbury, codified the university’s statutes. These, to a large extent, remained its governing regulations until the mid-19th century. Laud was also responsible for the granting of a charter securing privileges for The University Press, and he made significant contributions to the Bodleian Library, the main library of the university. From the beginnings of the Church of England as the established church until 1866, membership of the church was a requirement to receive the BA degree from the university and “dissenters” were only permitted to receive the MA in 1871.

    The university was a centre of the Royalist party during the English Civil War (1642–1649), while the town favoured the opposing Parliamentarian cause. From the mid-18th century onwards, however, the university took little part in political conflicts.

    Wadham College, founded in 1610, was the undergraduate college of Sir Christopher Wren. Wren was part of a brilliant group of experimental scientists at Oxford in the 1650s, the Oxford Philosophical Club, which included Robert Boyle and Robert Hooke. This group held regular meetings at Wadham under the guidance of the college’s Warden, John Wilkins, and the group formed the nucleus that went on to found the Royal Society.

    Before reforms in the early 19th century, the curriculum at Oxford was notoriously narrow and impractical. Sir Spencer Walpole, a historian of contemporary Britain and a senior government official, had not attended any university. He said, “Few medical men, few solicitors, few persons intended for commerce or trade, ever dreamed of passing through a university career.” He quoted the Oxford University Commissioners in 1852 stating: “The education imparted at Oxford was not such as to conduce to the advancement in life of many persons, except those intended for the ministry.” Nevertheless, Walpole argued:

    “Among the many deficiencies attending a university education there was, however, one good thing about it, and that was the education which the undergraduates gave themselves. It was impossible to collect some thousand or twelve hundred of the best young men in England, to give them the opportunity of making acquaintance with one another, and full liberty to live their lives in their own way, without evolving in the best among them, some admirable qualities of loyalty, independence, and self-control. If the average undergraduate carried from University little or no learning, which was of any service to him, he carried from it a knowledge of men and respect for his fellows and himself, a reverence for the past, a code of honour for the present, which could not but be serviceable. He had enjoyed opportunities… of intercourse with men, some of whom were certain to rise to the highest places in the Senate, in the Church, or at the Bar. He might have mixed with them in his sports, in his studies, and perhaps in his debating society; and any associations which he had this formed had been useful to him at the time, and might be a source of satisfaction to him in after life.”

    Out of the students who matriculated in 1840, 65% were sons of professionals (34% were Anglican ministers). After graduation, 87% became professionals (59% as Anglican clergy). Out of the students who matriculated in 1870, 59% were sons of professionals (25% were Anglican ministers). After graduation, 87% became professionals (42% as Anglican clergy).

    M. C. Curthoys and H. S. Jones argue that the rise of organised sport was one of the most remarkable and distinctive features of the history of the universities of Oxford and Cambridge in the late 19th and early 20th centuries. It was carried over from the athleticism prevalent at the public schools such as Eton, Winchester, Shrewsbury, and Harrow.

    All students, regardless of their chosen area of study, were required to spend (at least) their first year preparing for a first-year examination that was heavily focused on classical languages. Science students found this particularly burdensome and supported a separate science degree with Greek language study removed from their required courses. This concept of a Bachelor of Science had been adopted at other European universities (The University of London (UK) had implemented it in 1860) but an 1880 proposal at Oxford to replace the classical requirement with a modern language (like German or French) was unsuccessful. After considerable internal wrangling over the structure of the arts curriculum, in 1886 the “natural science preliminary” was recognized as a qualifying part of the first year examination.[43]

    At the start of 1914, the university housed about 3,000 undergraduates and about 100 postgraduate students. During the First World War, many undergraduates and fellows joined the armed forces. By 1918 virtually all fellows were in uniform, and the student population in residence was reduced to 12 per cent of the pre-war total. The University Roll of Service records that, in total, 14,792 members of the university served in the war, with 2,716 (18.36%) killed. Not all the members of the university who served in the Great War were on the Allied side; there is a remarkable memorial to members of New College who served in the German armed forces, bearing the inscription, ‘In memory of the men of this college who coming from a foreign land entered into the inheritance of this place and returning fought and died for their country in the war 1914–1918’. During the war years the university buildings became hospitals, cadet schools and military training camps.

    Reforms

    Two parliamentary commissions in 1852 issued recommendations for Oxford and Cambridge. Archibald Campbell Tait, former headmaster of Rugby School, was a key member of the Oxford Commission; he wanted Oxford to follow the German and Scottish model in which the professorship was paramount. The commission’s report envisioned a centralised university run predominantly by professors and faculties, with a much stronger emphasis on research. The professional staff should be strengthened and better paid. For students, restrictions on entry should be dropped, and more opportunities given to poorer families. It called for an enlargement of the curriculum, with honours to be awarded in many new fields. Undergraduate scholarships should be open to all Britons. Graduate fellowships should be opened up to all members of the university. It recommended that fellows be released from an obligation for ordination. Students were to be allowed to save money by boarding in the city, instead of in a college.

    The system of separate honour schools for different subjects began in 1802, with Mathematics and Literae Humaniores. Schools of “Natural Sciences” and “Law, and Modern History” were added in 1853. By 1872, the last of these had split into “Jurisprudence” and “Modern History”. Theology became the sixth honour school. In addition to these B.A. Honours degrees, the postgraduate Bachelor of Civil Law (B.C.L.) was, and still is, offered.

    The mid-19th century saw the impact of the Oxford Movement (1833–1845), led among others by the future Cardinal John Henry Newman. The influence of the reformed model of German universities reached Oxford via key scholars such as Edward Bouverie Pusey, Benjamin Jowett and Max Müller.

    Administrative reforms during the 19th century included the replacement of oral examinations with written entrance tests, greater tolerance for religious dissent, and the establishment of four women’s colleges. Privy Council decisions in the 20th century (e.g. the abolition of compulsory daily worship, dissociation of the Regius Professorship of Hebrew from clerical status, diversion of colleges’ theological bequests to other purposes) loosened the link with traditional belief and practice. Furthermore, although the university’s emphasis had historically been on classical knowledge, its curriculum expanded during the 19th century to include scientific and medical studies. Knowledge of Ancient Greek was required for admission until 1920, and Latin until 1960.

    The University of Oxford began to award doctorates for research in the first third of the 20th century. The first Oxford D.Phil. in mathematics was awarded in 1921.

    The mid-20th century saw many distinguished continental scholars, displaced by Nazism and communism, relocating to Oxford.

    The list of distinguished scholars at the University of Oxford is long and includes many who have made major contributions to politics, the sciences, medicine, and literature. As of October 2020, 72 Nobel laureates and more than 50 world leaders have been affiliated with the University of Oxford.

    To be a member of the university, all students, and most academic staff, must also be a member of a college or hall. There are thirty-nine colleges of the University of Oxford (including Reuben College, planned to admit students in 2021) and six permanent private halls (PPHs), each controlling its membership and with its own internal structure and activities. Not all colleges offer all courses, but they generally cover a broad range of subjects.

    The colleges are:

    All-Souls College
    Balliol College
    Brasenose College
    Christ Church College
    Corpus-Christi College
    Exeter College
    Green-Templeton College
    Harris-Manchester College
    Hertford College
    Jesus College
    Keble College
    Kellogg College
    Lady-Margaret-Hall
    Linacre College
    Lincoln College
    Magdalen College
    Mansfield College
    Merton College
    New College
    Nuffield College
    Oriel College
    Pembroke College
    Queens College
    Reuben College
    St-Anne’s College
    St-Antony’s College
    St-Catherines College
    St-Cross College
    St-Edmund-Hall College
    St-Hilda’s College
    St-Hughs College
    St-John’s College
    St-Peters College
    Somerville College
    Trinity College
    University College
    Wadham College
    Wolfson College
    Worcester College

    The permanent private halls were founded by different Christian denominations. One difference between a college and a PPH is that whereas colleges are governed by the fellows of the college, the governance of a PPH resides, at least in part, with the corresponding Christian denomination. The six current PPHs are:

    Blackfriars
    Campion Hall
    Regent’s Park College
    St Benet’s Hall
    St-Stephen’s Hall
    Wycliffe Hall

    The PPHs and colleges join as the Conference of Colleges, which represents the common concerns of the several colleges of the university, to discuss matters of shared interest and to act collectively when necessary, such as in dealings with the central university. The Conference of Colleges was established as a recommendation of the Franks Commission in 1965.

    Teaching members of the colleges (i.e. fellows and tutors) are collectively and familiarly known as dons, although the term is rarely used by the university itself. In addition to residential and dining facilities, the colleges provide social, cultural, and recreational activities for their members. Colleges have responsibility for admitting undergraduates and organising their tuition; for graduates, this responsibility falls upon the departments. There is no common title for the heads of colleges: the titles used include Warden, Provost, Principal, President, Rector, Master and Dean.

    Oxford is regularly ranked within the top 5 universities in the world and is currently ranked first in the world in the Times Higher Education World University Rankings, as well as the Forbes’s World University Rankings. It held the number one position in The Times Good University Guide for eleven consecutive years, and the medical school has also maintained first place in the “Clinical, Pre-Clinical & Health” table of The Times Higher Education World University Rankings for the past seven consecutive years. In 2021, it ranked sixth among the universities around the world by SCImago Institutions Rankings. The Times Higher Education has also recognised Oxford as one of the world’s “six super brands” on its World Reputation Rankings, along with The University of California-Berkeley, The University of Cambridge (UK), Harvard University, The Massachusetts Institute of Technology, and Stanford University. The university is fifth worldwide on the US News ranking. Its Saïd Business School came 13th in the world in The Financial Times Global MBA Ranking.

    Oxford was ranked ninth in the world in 2015 by The Nature Index, which measures the largest contributors to papers published in 82 leading journals. It is ranked fifth best university worldwide and first in Britain for forming CEOs according to The Professional Ranking World Universities, and first in the UK for the quality of its graduates as chosen by the recruiters of the UK’s major companies.

    In the 2018 Complete University Guide, all 38 subjects offered by Oxford rank within the top 10 nationally meaning Oxford was one of only two multi-faculty universities (along with Cambridge) in the UK to have 100% of their subjects in the top 10. Computer Science, Medicine, Philosophy, Politics and Psychology were ranked first in the UK by the guide.

    According to The QS World University Rankings by Subject, the University of Oxford also ranks as number one in the world for four Humanities disciplines: English Language and Literature, Modern Languages, Geography, and History. It also ranks second globally for Anthropology, Archaeology, Law, Medicine, Politics & International Studies, and Psychology.

     
  • richardmitnick 7:27 pm on June 13, 2022 Permalink | Reply
    Tags: "Exploring New Materials Through Collaboration", Advanced microscopy, , , De Yoreo approaches science through a collaborative perspective., De Yoreo has worked with like-minded materials science researchers across Washington State., Developing new and increasingly complicated materials requires combining existing materials., , Interfaces-the place where two different materials meet, Jim De Yoreo, Many of these collaborations occur through university partnerships-particularly at the University of Washington., , Nanotechnology, Natural mineral and biological systems,   

    From The DOE’s Pacific Northwest National Laboratory: “Exploring New Materials Through Collaboration” 

    From The DOE’s Pacific Northwest National Laboratory

    June 13, 2022
    Beth Mundy

    Jim De Yoreo’s career full of insights about materials will continue at the Energy Sciences Center.

    Scientists who study materials can be divided into three categories. “You have people who make things, people who make things do things, and people who try to understand why things do what they do,” said Jim De Yoreo, a Battelle fellow at Pacific Northwest National Laboratory (PNNL). He places himself into the third category.

    Through advanced microscopy techniques, De Yoreo has spent his career trying to understand and predict the behavior of materials. In 2022, he was elected to the National Academy of Engineering, citing his “advances in materials synthesis from nucleation to large-scale crystal growth.” De Yoreo’s work spans materials science, geochemistry, and biophysics, often focusing on natural mineral and biological systems.

    De Yoreo is particularly interested in interfaces, the place where two different materials meet. “Developing new and increasingly complicated materials requires combining existing materials,” said De Yoreo. “To effectively combine materials, we have to understand what happens at the interface.”

    De Yoreo’s research team has watched tiny crystals grow and attach together in real time, solving outstanding questions about crystal formation. The team also determined the patterns that proteins form on a mineral surface, laying the groundwork for new strategies for synthesizing semiconductor and metallic nanoparticle circuits for photovoltaic or energy storage applications.

    Some of De Yoreo’s most significant contributions occurred through his penchant for forging deep connections and collaborations. Since joining PNNL in 2012, he has worked with like-minded materials science researchers across Washington State.

    De Yoreo approaches science through a collaborative perspective [see the blog masthead about science and collaboration]. “I know that my own view is limited,” said De Yoreo. “So if I work with people who have different skills, we can start to really understand materials.”

    Many of these collaborations occur through university partnerships-particularly at the University of Washington. De Yoreo has embraced leadership roles at the Northwest Institute for Materials Physics, Chemistry, and Technology and the Center for the Science of Synthesis Across Scales, which bring together researchers from PNNL and UW.

    “I think Jim has set the stage for another decade of really fruitful materials science collaborations between UW and PNNL,” said Jim Pfaendtner, PNNL joint appointee, professor, and chair of the UW Department of Chemical Engineering. “His efforts have built bridges that didn’t exist before and led to new efforts, like CSSAS.”

    Pfaendtner isn’t the only one who noticed. The Department of Energy named De Yoreo a Distinguished Scientist Fellow in 2020, specifically citing his “leadership in National Laboratory-University partnerships.”

    Mentoring for collaboration

    1
    A transmission electron microscopy image of an assembly of nanomaterials. (Image by Madison Monahan | University of Washington)

    Through joint faculty appointments in the UW Chemistry and Materials Science and Engineering departments, De Yoreo co-mentors students like Madison Monahan. Monahan, a recent PhD graduate, helped start a collaboration among De Yoreo, PNNL materials scientist and UW joint appointee Chun-Long Chen, and UW Chemistry Professor Brandi Cossairt. Monahan’s work focuses on controlling the assembly of complex nanoscale materials.

    The different material components are like toy bricks. When assembled in a precise order, a stack of different pieces can become a car or a house. While standard toy bricks require direct human assembly, it isn’t strictly necessary at the nanoscale. It’s as if putting a set of bricks into a box and shaking it the right way produces a completed model house without extra effort.

    This is similar to what happens with assemblies at the nanoscale. However, creating a specific assembly isn’t as simple as adding all the components to a random box. Different conditions, including the overall temperature or type of materials, can change the final structure of the assembly. The goal of Monahan’s project, which is funded by CSSAS, is to understand design principles and key interactions between different building blocks. This will allow researchers to create predictable, functional materials, where final structure controls overall behavior, from a wide range of starting materials.

    The collaboration centers on combining carbon-based (organic) and non-carbon-based (inorganic) materials.

    “We want to try to fit these two different worlds together and find a place where they have complementary chemistry,” said Monahan.

    The Chen group designed peptide-like molecules, called peptoids, to serve as the organic component. Monahan created inorganic nanocrystals and used microscopy to study the forming of organic-inorganic assemblies and their final structures.

    The team explored whether starting assembly with either the organic or the inorganic components produced different results.

    The team found that order of operations matters. When the organic base gets assembled first, it controls the overall structure. When starting with the nanocrystals, the results become less clear. It turns out the size and composition of the nanocrystal also matter. With smaller nanocrystals, the organic structure and nanocrystal both affect the final material. When the nanocrystal is larger, it primarily determines the final structure.

    This work, recently published in ACS Nano, required expertise in developing biologically inspired molecules, synthesizing inorganic materials, and using advanced imaging techniques. It involved bringing together different perspectives to create and understand these complex material assemblies.

    “Jim has opened my eyes to these different ways to study nanomaterials,” said Cossairt. “There are things we’d just never consider being viable for our inorganic systems. He really is the dream collaborator.”

    Developing the next generation of scientific leaders

    Students who work with De Yoreo have ready access to advanced microscopes and other instruments at the new Energy Sciences Center (ESC). It’s more than the instruments, though. The ESC was designed as a collaborative environment for accelerated scientific discovery and features a combination of research laboratories, flexible-use open spaces, conference rooms, and offices.

    “Everyone in Jim’s group has such different backgrounds,” said Monahan. “It means that you constantly get great ideas and have access to so much knowledge. I get to hear from experienced physicists and materials scientists at PNNL as well as the chemists I work with at UW.”

    Monahan is just one of De Yoreo’s UW student mentees. While some stay based at UW for their full graduate career, others spend from months to years on the PNNL campus.

    “I always wanted to mentor graduate students jointly,” said De Yoreo. “Working with another mentor makes sure my students have a full lab experience no matter where they are. I also think if they can learn both synthesis and measurement, it makes their work more successful.”

    Jim’s collaborators echo that sentiment. “There’s no way a student advised just by me would have been able to develop such deep microscopy skills,” said Cossairt. “The joint approach gives a student the best of both worlds.”

    An adventurous approach to life and science

    Collaborators note that they never know what the background of De Yoreo’s video calls will be as he often features photos of previous travels that range from savannah wildlife to snowy slopes. These backgrounds often come with an anecdote about the corresponding trip.

    Once, he took instruments to explore a cave in Mexico where a unique set of crystals naturally formed. A sense of adventure permeates his personal and professional life. “You never know where he’s calling you from,” said Monahan.

    “Jim has an adventurous approach to life, and you can see it in his science,” said Monahan, describing her mentor. “He has these wildly ambitious ideas, but he’s practical enough to know they might not happen now. But he’s going to break it down to where in 10 years, he’ll be able to do it.”

    Others echo this sentiment. “Jim has a boundless intellectual energy and the ability to deeply think about numerous problems simultaneously,” said Pfaendtner. “It’s incredible.”

    Pfaendtner collaborates with De Yoreo on multiple projects. “My group does computational modeling and he does experimental characterization,” said Pfaendtner. “Our work fits nicely together.”

    Previously, a collaborative effort [Journal of the American Chemical Society] that included De Yoreo and Pfaendtner’s research groups explored how solid-binding peptides attach to a mineral surface. These biological molecules can potentially direct the formation of complex mineral-biological hybrid systems. The team used a combined approach of protein engineering, microscopy, computations, and surface bonding experiments to understand what controls peptide binding. They found that binding ability is substantially determined by a small section of the peptide structure. Using this core structure, researchers can create and identify new peptides to assemble materials.

    “Every time I meet with Jim, he has new ideas about whatever we’re working on,” said Pfaendtner. “I leave most of my conversations with him feeling energized.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Pacific Northwest National Laboratory is one of the United States Department of Energy National Laboratories, managed by the Department of Energy’s Office of Science. The main campus of the laboratory is in Richland, Washington.

    PNNL scientists conduct basic and applied research and development to strengthen U.S. scientific foundations for fundamental research and innovation; prevent and counter acts of terrorism through applied research in information analysis, cyber security, and the nonproliferation of weapons of mass destruction; increase the U.S. energy capacity and reduce dependence on imported oil; and reduce the effects of human activity on the environment. PNNL has been operated by Battelle Memorial Institute since 1965.

     
  • richardmitnick 12:45 pm on June 7, 2022 Permalink | Reply
    Tags: "Sharp X-ray images despite imperfect lenses", A much higher image quality and sharpness than ever before can be achieved using an algorithm that compensates for the deficits of the lenses., , By using both lenses and algorithms together the scientists approach now combines the best of both worlds., German Electron Synchrotron (DESY), It was only through the combination of lenses and numerical image reconstruction that scientists could achieve the high image quality., Nanotechnology, , Research team at Göttingen University develops new method for X-ray microscopy., The scientists used a lens consisting of finely structured layers of a few atomic layers deposited from concentric rings on a thin wire., , X-ray microscopy enables scientists to study the three-dimensional structure of materials; organisms or tissues without cutting and damaging the sample., , X-rays make it possible to explore inside human bodies or peer inside objects.   

    From The University of Göttingen [Georg-August-Universität Göttingen] (DE): “Sharp X-ray images despite imperfect lenses” 

    From The University of Göttingen [Georg-August-Universität Göttingen] (DE)

    6.1.22

    Professor Tim Salditt
    University of Göttingen
    Faculty for Physics – Institute for X-ray Physics
    Friedrich-Hund-Platz 1, 37077 Göttingen
    +49 (0)551 39-25556
    tsaldit@gwdg.de

    Dr Jakob Soltau
    University of Göttingen
    Faculty for Physics – Institute for X-ray Physics
    Friedrich-Hund-Platz 1, 37077 Göttingen
    +49 (0)551 39-25556
    jakob.soltau@uni-goettingen.de

    Dr Markus Osterhoff
    University of Göttingen
    Faculty for Physics – Institute for X-ray Physics
    Friedrich-Hund-Platz 1, 37077 Göttingen
    +49 (0)551 39-25556
    mosterh1@gwdg.de

    Research team at Göttingen University develops new method for X-ray microscopy.

    1
    The scientists used a lens consisting of precisely arranged concentric layers to image two semiconductor nanowires. This lens, with a diameter of less than one fiftieth of a millimetre, was then adjusted between the object to be imaged and an X-ray camera in the extremely bright and and focussed X-ray beam at the German Electron Synchrotron (DESY). Incorporating precise measurements about the imperfections of the lens into their algorithms enabled them to decode the information and construct a sharp image. Precisely arranged concentric layers to image two semiconductor nanowires. Photo: Markus Osterhoff.

    X-rays make it possible to explore inside human bodies or peer inside objects. The technology used to illuminate the detail in microscopically small structures is the same as that used in familiar situations – such as medical imaging at a clinic or luggage control at the airport. X-ray microscopy enables scientists to study the three-dimensional structure of materials, organisms or tissues without cutting and damaging the sample. Unfortunately, the performance of X-ray microscopy is limited by the difficulties in producing the perfect lens. A team from the Institute for X-ray Physics at the University of Göttingen has now shown that, despite the manufacturing limitations of lenses, a much higher image quality and sharpness than ever before can be achieved using a special experimental arrangement and numerical image reconstruction downstream: an algorithm compensates for the deficits of the lenses. The results were published in the journal Physical Review Letters.

    The scientists used a lens consisting of finely structured layers of a few atomic layers deposited from concentric rings on a thin wire. The lens, with a diameter of less than one fiftieth of a millimetre, was then adjusted between the object to be imaged and an X-ray camera in the extremely bright and focussed X-ray beam at the German Electron Synchrotron (DESY) in Hamburg. On the camera, the researchers received three different types of signal that together provided complete information about the structure of the unknown object, even if the objects absorbed little or no X-ray radiation. All that remained was to find a suitable algorithm to decode the information and reconstruct it into a sharp image. For this solution to work, it was crucial to precisely measure the lens itself, which was far from perfect, and to completely dispense with the assumption that it could be ideal. In their first application, the researchers investigated semiconductor nanowires, which are of particular interest as new materials for photovoltaics for instance.

    “It was only through the combination of lenses and numerical image reconstruction that we could achieve the high image quality,” explains first author Dr Jakob Soltau. “This is how we compensate for the fact that it is impossible to produce X-ray lenses with the required fine structure and quality,” adds Dr Markus Osterhoff. “Due to these difficulties, many researchers had already turned away from using X-ray microscopy with lenses and instead have tried to replace the lenses completely with algorithms. However, by using both lenses and algorithms together, our approach now combines the best of both worlds,” concludes Professor Tim Salditt. A particular advantage of the new method is that the object does not have to be scanned, meaning very fast microscopic processes in materials can also be “filmed” in motion. Such experiments are planned as the next step at DESY and at the European X-ray laser XFEL in Hamburg.

    You will find a step-by-step three minute explainer video which shows what the researchers did here: https://youtu.be/dX9dX5R_qpw

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The University of Göttingen [Georg-August-Universität Göttingen] (DE) , is a public research university in the city of Göttingen, Germany. Founded in 1734 by George II, King of Great Britain and Elector of Hanover, and starting classes in 1737, the Georgia Augusta was conceived to promote the ideals of the Enlightenment. It is the oldest university in the state of Lower Saxony and the largest in student enrollment, which stands at around 31,600.

    Home to many noted figures, it represents one of Germany’s historic and traditional institutions. As of October 2020, 44 Nobel Prize winners have been affiliated with the University of Göttingen as alumni, faculty members or researchers.

    The University of Göttingen was previously supported by the German Universities Excellence Initiative, holds memberships to the U15 Group of major German research universities and to the Coimbra Group of major European research universities. Furthermore, the university maintains strong connections with major research institutes based in Göttingen, such as those of the Max Planck Society (DE) and the Leibniz Association [Leibniz-Gemeinschaft or Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz] (DE). With approximately 9 million media units, the Göttingen State and University Library ranks among the largest libraries in Germany.

    Partner institutions

    Within the Göttingen Campus the university is organizationally and personally interlinked with the following independent and semi-independent institutions:

    Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute)
    Max Planck Institute for Experimental Medicine
    Max Planck Institute for Dynamics and Self-Organization, formerly Max Planck Institute for Flow Research
    Max Planck Institute for the Study of Religious and Ethnic Diversity, formerly Max Planck Institute for History
    Max Planck Institute for Solar System Research, formerly Max Planck Institute for Aeronomy
    German Primate Center – Leibniz Institute for Primate Research
    German Aerospace Center

     
  • richardmitnick 6:43 am on June 2, 2022 Permalink | Reply
    Tags: "Engineers develop nanoparticles that cross the blood-brain barrier", , , , , , Nanotechnology, Tested using a new brain tissue model the particles may be able to deliver chemotherapy drugs for glioblastoma., The blood vessels surrounding the brain are much more restrictive than other blood vessels in the body to keep out potentially harmful molecules.,   

    From The Massachusetts Institute of Technology: “Engineers develop nanoparticles that cross the blood-brain barrier” 

    From The Massachusetts Institute of Technology

    June 1, 2022
    Anne Trafton

    Tested using a new brain tissue model the particles may be able to deliver chemotherapy drugs for glioblastoma.

    1
    MIT researchers have created a tissue model that allows them model drug delivery to brain tumors. Tumor cells (green) are surrounded by endothelial cells (purple). Image: Cynthia Hajal and Roger D. Kamm (MIT), edited by Chris Straehla.

    There are currently few good treatment options for glioblastoma, an aggressive type of brain cancer with a high fatality rate. One reason that the disease is so difficult to treat is that most chemotherapy drugs can’t penetrate the blood vessels that surround the brain.

    A team of MIT researchers is now developing drug-carrying nanoparticles that appear to get into the brain more efficiently than drugs given on their own. Using a human tissue model they designed, which accurately replicates the blood-brain barrier, the researchers showed that the particles could get into tumors and kill glioblastoma cells.

    Many potential glioblastoma treatments have shown success in animal models but then ended up failing in clinical trials. This suggests that a better kind of modeling is needed, says Joelle Straehla, the Charles W. and Jennifer C. Johnson Clinical Investigator at MIT’s Koch Institute for Integrative Cancer Research, an instructor at Harvard Medical School, and a pediatric oncologist at Dana-Farber Cancer Institute.

    “We are hoping that by testing these nanoparticles in a much more realistic model, we can cut out a lot of the time and energy that’s wasted trying things in the clinic that don’t work,” she says. “Unfortunately, for this type of brain tumor, there have been hundreds of trials that have had negative results.”

    Straehla and Cynthia Hajal SM ’18, PhD ’21, a postdoc at Dana-Farber, are the lead authors of the study, which appears this week in the PNAS. Paula Hammond, an MIT Institute Professor, head of the Department of Chemical Engineering, and a member of the Koch Institute; and Roger Kamm, the Cecil and Ida Green Distinguished Professor of Biological and Mechanical Engineering, are the senior authors of the paper.

    Modeling the blood-brain barrier

    Several years ago, Kamm’s lab began working on a microfluidic model of the brain and the blood vessels that make up the blood-brain barrier.

    Because the brain is such a vital organ, the blood vessels surrounding the brain are much more restrictive than other blood vessels in the body to keep out potentially harmful molecules.

    To mimic that structure in a tissue model, the researchers grew patient-derived glioblastoma cells in a microfluidic device. Then, they used human endothelial cells to grow blood vessels in tiny tubes surrounding the sphere of tumor cells. The model also includes pericytes and astrocytes, two cell types that are involved in transporting molecules across the blood-brain barrier.

    While Hajal was working on this model as a graduate student in Kamm’s lab, she got connected with Straehla, then a postdoc in Hammond’s lab, who was interested in finding new ways to model nanoparticle drug delivery to the brain. Getting drugs across the blood-brain barrier is critical for improving treatment for glioblastoma, which is usually treated with a combination of surgery, radiation, and the oral chemotherapy temozolomide. The five-year survival rate for the disease is less than 10 percent.

    Hammond’s lab pioneered a technique called layer-by-layer assembly, which they can use to create surface-functionalized nanoparticles that carry drugs in their core. The particles that the researchers developed for this study are coated with a peptide called AP2, which has been shown in previous work to help nanoparticles get through the blood brain barrier. However, without accurate models, it was difficult to study how the peptides helped with transport across blood vessels and into tumor cells.

    When the researchers delivered these nanoparticles to tissue models of both glioblastoma and healthy brain tissue, they found that the particles coated with the AP2 peptide were much better at penetrating the vessels surrounding the tumors. They also showed that the transport occurred due to binding a receptor called LRP1, which is more abundant near tumors than in normal brain vessels.

    The researchers then filled the particles with cisplatin, a commonly used chemotherapy drug. When these particles were coated with the targeting peptide, they were able to effectively kill glioblastoma tumor cells in the tissue model. However, particles that didn’t have the peptides ended up damaging the healthy blood vessels instead of targeting the tumors.

    “We saw increased cell death in tumors that were treated with the peptide-coated nanoparticle compared to the bare nanoparticles or free drug. Those coated particles showed more specificity of killing the tumor, versus killing everything in a nonspecific way,” Hajal says.

    More effective particles

    The researchers then tried delivering the nanoparticles to mice, using a specialized surgical microscope to track the nanoparticles moving through the brain. They found that the particles’ ability to cross the blood-brain barrier was very similar to what they had seen in their human tissue model.

    They also showed that coated nanoparticles carrying cisplatin could slow down tumor growth in mice, but the effect wasn’t as strong as what they saw in the tissue model. This might be because the tumors were in a more advanced stage, the researchers say. They now hope to test other drugs, carried by a variety of nanoparticles, to see which might have the greatest effect. They also plan to use their approach to model other types of brain tumors.

    “This is a model that we could use to design more effective nanoparticles,” Straehla says. “We’ve only tested one type of brain tumor, but we really want to expand and test this with a lot of others, especially rare tumors that are difficult to study because there may not be as many samples available.”

    The researchers described the method they used to create the brain tissue model in a recent Nature Protocols paper, so that other labs can also use it.

    The research was funded, in part, by a Cooperative Agreement Award from the National Cancer Institute, a Horizon Award from the Department of Defense Peer Reviewed Cancer Research Program, a Cancer Research UK Brain Tumour Award, a Ludwig Center for Molecular Oncology Graduate Fellowship, the Rally Foundation for Childhood Cancer Research/The Truth 365, the Helen Gurley Brown Presidential Initiative, and the Koch Institute Support (core) Grant from the National Cancer Institute.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 7:33 am on May 31, 2022 Permalink | Reply
    Tags: "MIT engineers boost signals from fluorescent sensors", "WIFF": wavelength-induced frequency filtering which uses three lasers to create a laser beam with an oscillating wavelength., , , Cell sciences, , , In future work the engineers hope to use a tunable laser to create the signal and improve the technique even further., , Nanotechnology, Scientists use many different kinds of fluorescent sensors including quantum dots; carbon nanotubes and fluorescent proteins to label molecules inside cells., , The MIT team came up with a way to modulate the frequency of the fluorescent light emitted by the sensor so that it can be more easily distinguished from the tissue autofluorescence., The researchers were able to enhance the sensors’ signal-to-noise ratio more than 50-fold., Tissue itself also emits some fluorescent light called “autofluorescence” which drowns out the signal coming from the sensor.   

    From The Massachusetts Institute of Technology: “MIT engineers boost signals from fluorescent sensors” 

    From The Massachusetts Institute of Technology

    May 30, 2022
    Anne Trafton

    1
    MIT engineers found a way to dramatically improve the signal emitted by fluorescing nanosenors. The researchers showed they could implant sensors as deep as 5.5 centimeters in tissue and still get a strong signal. Image: Courtesy of the researchers and edited by MIT News.

    Fluorescent sensors, which can be used to label and image a wide variety of molecules, offer a unique glimpse inside living cells. However, they typically can only be used in cells grown in a lab dish or in tissues close to the surface of the body, because their signal is lost when they are implanted too deeply.

    MIT engineers have now come up with a way to overcome that limitation. Using a novel photonic technique they developed for exciting any fluorescent sensor, they were able to dramatically improve the fluorescent signal. With this approach, the researchers showed they could implant sensors as deep as 5.5 centimeters in tissue and still get a strong signal.

    This kind of technology could enable fluorescent sensors to be used to track specific molecules inside the brain or other tissues deep within the body, for medical diagnosis or monitoring drug effects, the researchers say.

    “If you have a fluorescent sensor that can probe biochemical information in cell culture, or in thin tissue layers, this technology allows you to translate all of those fluorescent dyes and probes into thick tissue,” says Volodymyr Koman, an MIT research scientist and one of the lead authors of the new study.

    Naveed Bakh SM ’15, PhD ’20 is also a lead author of the paper, which appears today in Nature Nanotechnology. Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT, is the senior author of the study.

    Enhanced fluorescence

    Scientists use many different kinds of fluorescent sensors, including quantum dots, carbon nanotubes, and fluorescent proteins, to label molecules inside cells. These sensors’ fluorescence can be seen by shining laser light on them. However, this doesn’t work in thick, dense tissue, or deep within tissue, because tissue itself also emits some fluorescent light. This light, called autofluorescence, drowns out the signal coming from the sensor.

    “All tissues autofluoresce, and this becomes a limiting factor,” Koman says. “As the signal from the sensor becomes weaker and weaker, it becomes overtaken by the tissue autofluorescence.”

    To overcome this limitation, the MIT team came up with a way to modulate the frequency of the fluorescent light emitted by the sensor so that it can be more easily distinguished from the tissue autofluorescence. Their technique, which they call wavelength-induced frequency filtering (WIFF) uses three lasers to create a laser beam with an oscillating wavelength.

    When this oscillating beam is shined on the sensor, it causes the fluorescence emitted by the sensor to double its frequency. This allows the fluorescent signal to be easily picked out from the background autofluorescence. Using this system, the researchers were able to enhance the sensors’ signal-to-noise ratio more than 50-fold.

    One possible application for this kind of sensing is to monitor the effectiveness of chemotherapy drugs. To demonstrate this potential, the researchers focused on glioblastoma, an aggressive type of brain cancer. Patients with this type of cancer usually undergo surgery to remove as much of the tumor as possible, then receive the chemotherapy drug temozolomide (TMZ) to try to eliminate any remaining cancer cells.

    This drug can have serious side effects, and it doesn’t work for all patients, so it would be helpful to have a way to easily monitor whether it’s working or not, Strano says.

    “We are working on technology to make small sensors that could be implanted near the tumor itself, which can give an indication of how much drug is arriving at the tumor and whether it’s being metabolized. You could place a sensor near the tumor and verify from outside the body the efficacy of the drug in the actual tumor environment,” he says.

    When temozolomide enters the body, it gets broken down into smaller compounds, including one known as AIC. The MIT team designed a sensor that could detect AIC, and showed that they could implant it as deep as 5.5 centimeters within an animal brain. They were able to read the signal from the sensor even through the animal’s skull.

    Such sensors could also be designed to detect molecular signatures of tumor cell death, such as reaction oxygen species.

    “Any wavelength”

    In addition to detecting TMZ activity, the researchers demonstrated that they could use WIFF to enhance the signal from a variety of other sensors, including carbon-nanotube-based sensors that Strano’s lab has previously developed to detect hydrogen peroxide, riboflavin, and ascorbic acid.

    “The technique works at any wavelength, and it can be used for any fluorescent sensor,” Strano says. “Because you have so much more signal now, you can implant a sensor at depths into tissue that were not possible before.”

    For this study, the researchers used three lasers together to create the oscillating laser beam, but in future work, they hope to use a tunable laser to create the signal and improve the technique even further. This should become more feasible as the price of tunable lasers decreases and they become faster, the researchers say.

    To help make fluorescent sensors easier to use in human patients, the researchers are working on sensors that are biologically resorbable, so they would not need to be surgically removed.

    The research was funded by the Koch Institute for Integrative Cancer Research and Dana-Farber/Harvard Cancer Center Bridge Project. Additional funding was provided by the Swiss National Science Foundation, the Japan Society for the Promotion of Science, the King Abdullah University of Science and Technology, the Zuckerman STEM Leadership Program, the Israeli Science Foundation, and the Arnold and Mabel Beckman Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: