Tagged: Nanotechnology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:12 am on June 2, 2023 Permalink | Reply
    Tags: "A tiny break into toughness", "Nanoindenter": an instrument that measures the mechanical properties of tiny materials, A beetle shell might look like solid armor to us but it’s actually composed of tiny fibers woven together in complex structures., , , Nanotechnology, , , , To make their materials the researchers used "two-photon lithography" an additive manufacturing technique that shines a laser into a photosensitive polymer to cure it., Twisting the nanofibers at different angles creates different soft and stiff regions between the layers.   

    From The Department of Mechanical Engineering In The College of Engineering At The University of Washington : “A tiny break into toughness” 

    From The Department of Mechanical Engineering

    In

    The College of Engineering

    At

    The University of Washington

    5.22.23

    A beetle shell might look like solid armor to us but it’s actually composed of tiny fibers woven together in complex structures. These nanofibers that comprise many natural materials from shell to skin to cartilage are surprisingly tough and are able to handle force without fracturing.

    1
    UW researchers tested the twisted nanostructures they created by applying very small loads with nanometer precision (shown here) and visualizing when cracks began to form. From the obtained data, the researchers measured the growth of cracks and thus calculated a material toughness. UWash.

    Inspired by natural nanostructured materials, the Meza Research Group recently investigated how these tiny structures make materials resistant to breaking. The team’s research sheds light on how methods like reducing fiber size and increasing fiber twist can improve durability.

    Using additively manufactured polymer nanofibers as a building block, the lab, led by ME Assistant Professor Lucas Meza, creates nanostructured materials that are about 400 nanometers wide, similar to the smallest features found in natural materials. In their most recent work, they used these polymer nanofibers to create twisted “Bouligand” structures, a common twisted-fiber motif found in arthropod shells. The final test samples they made were about 80 micrometers wide – similar to the width of a piece of paper.

    “The novelty of our work is in the scale at which we can study toughness. We expect tiny, lightweight materials to be less tough than denser materials,” Meza says. “Instead, we see nanostructured materials can be 50% lighter while maintaining their toughness.”

    The Meza group recently published a paper about the lab’s findings in the journal Small [below]. Zainab Patel, a Ph.D. student in materials science and engineering, led the study, and ME Ph.D. student Kush Dwivedi also contributed to the research.

    To make their materials the researchers used “two-photon lithography” an additive manufacturing technique that shines a laser into a photosensitive polymer to cure it. By tracing the laser around in space, they can create tiny beams with fibers that are either joined together or separate. They designed samples with layers of these nanofibers that have different twists and spacings, creating the desired spiraling Bouligand pattern found in nature.

    To test these materials, the researchers placed a “nanoindenter”, an instrument that measures the mechanical properties of tiny materials, inside a scanning electron microscope to both apply very small loads with nanometer precision and to visualize when cracks began to form. From the obtained load displacement data, the researchers can measure the growth of cracks and thus calculate a material toughness.

    The researchers discovered two methods for toughening the materials: isolating the fibers and twisting the fibers. They found isolated nanofibers had greater ductility, or ability to stretch further before breaking, meaning they could absorb more energy to prevent cracks from growing. Twisting the nanofibers at different angles creates different soft and stiff regions between the layers. Because of this Bouligand-style architecture, cracks then get “stuck” between the soft and stiff layers and have more difficulty progressing, making the material tougher.

    These discoveries have implications for the printing of more resilient additively manufactured materials, and for objects created using nanomaterials, such as composites and electronics. For example, nanofibers could be used to make tougher clothing, or incorporated into carbon fiber composites to make them more resistant to fracture and delamination, or layer separation.

    “Nanomaterials are all around us, whether it’s in the beetles we see outside our window or the transistors that make up our computer chips,” Meza says. “By understanding how fracture happens at the smallest length scales, we can develop new ways to make tougher, more resilient materials at any scale.”

    Small

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mechanical engineering is one of the broadest and oldest of the engineering disciplines and therefore provides some of the strongest interdisciplinary opportunities in the engineering profession. Power utilization (and power generation) is often used to describe the focus of mechanical engineering. Within this focus are such diverse topics as thermodynamics, heat transfer, fluid mechanics, machine design, mechanics of materials, manufacturing, stress analysis, system dynamics, numerical modeling, vibrations, turbomachinery, combustion, heating, ventilating, and air conditioning. Degrees in mechanical engineering open doors to careers not only in the engineering profession but also in business, law, medicine, finance, and other non-technical professions.

    About The University of Washington College of Engineering

    Mission, Facts, and Stats

    Our mission is to develop outstanding engineers and ideas that change the world.

    Faculty:
    275 faculty (25.2% women)
    Achievements:

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of The University of Washington startups in FY18 came from the College of Engineering.

    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.

    Research and commercialization

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So, what defines us —the students, faculty and community members at The University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, The University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, The University of Washington’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, The University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The University of Washington offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    The University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, The University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The University of Washington has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. The University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and The University of Washington had grown substantially. The University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by The University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, The University of Washington relocated to the new campus by moving into the newly built Denny Hall. The University of Washington Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of The University of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of The University of Washington’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with The University of Washington ‘s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for The University of Washington. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to The University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during The University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, The University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. The University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became The University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in The University of Washington. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying The University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, The University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, The University of Washington began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to The University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    The University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences(US), 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among The University of Washington students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities has consistently ranked The University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, The University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked The University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with The University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked The University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings The University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 1:07 pm on May 29, 2023 Permalink | Reply
    Tags: "Engineers at The University of Massachusetts-Amherst Harvest Abundant Clean Energy from Thin Air 24/7, , “Generic Air-gen effect”: nearly any material can be engineered with nanopores to harvest cost effective scalable interruption-free electricity. The secret? Nanopores., “Mean free path”: the distance a single molecule of a substance travels before it bumps into another single molecule of the same substance., , , , Nanopores smaller than 100 nm, Nanotechnology, Since humidity is ever-present the harvester would run 24/7 rain or shine at night whether or not the wind blows., , What scientists have done is to create a human-built small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”   

    From The University of Massachusetts-Amherst : “Engineers Harvest Abundant Clean Energy from Thin Air 24/7 

    U Mass Amherst

    From The University of Massachusetts-Amherst

    5.23.23
    Daegan Miller
    drmiller@umass.edu

    1
    Researchers describe the “Generic Air-gen effect”: nearly any material can be engineered with nanopores to harvest, cost effective, scalable, interruption-free electricity. The secret to making electricity from thin air? Nanopores. Credit: Derek Lovley/Ella Maru Studio.

    A team of engineers at the University of Massachusetts-Amherst has recently shown that nearly any material can be turned into a device that continuously harvests electricity from humidity in the air. The secret lies in being able to pepper the material with nanopores less than 100 nanometers in diameter. The research appeared in the journal Advanced Materials [below].

    “This is very exciting,” says Xiaomeng Liu, a graduate student in electrical and computer engineering in The University of Massachusetts-Amherst’s College of Engineering and the paper’s lead author. “We are opening up a wide door for harvesting clean electricity from thin air.”

    “The air contains an enormous amount of electricity,” says Jun Yao, assistant professor of electrical and computer engineering in the College of Engineering at The University of Massachusetts-Amherst, and the paper’s senior author. “Think of a cloud, which is nothing more than a mass of water droplets. Each of those droplets contains a charge, and when conditions are right, the cloud can produce a lightning bolt—but we don’t know how to reliably capture electricity from lightning. What we’ve done is to create a human-built, small-scale cloud that produces electricity for us predictably and continuously so that we can harvest it.”

    The heart of the man-made cloud depends on what Yao and his colleagues call the “Generic Air-gen effect,” and it builds on work that Yao and co-author Derek Lovley, Distinguished Professor of Microbiology at The University of Massachusetts-Amherst, had previously completed in 2020 [link below] showing that electricity could be continuously harvested from the air using a specialized material made of protein nanowires grown from the bacterium Geobacter sulfurreducens.

    “What we realized after making the Geobacter discovery,” says Yao, “is that the ability to generate electricity from the air—what we then called the ‘Air-gen effect’—turns out to be generic: literally any kind of material can harvest electricity from air, as long as it has a certain property.”

    That property? “It needs to have holes smaller than 100 nanometers (nm), or less than a thousandth of the width of a human hair.”

    2
    Jun Yao, assistant professor of electrical and computer engineering.

    This is because of a parameter known as the “mean free path,” the distance a single molecule of a substance, in this case water in the air, travels before it bumps into another single molecule of the same substance. When water molecules are suspended in the air, their mean free path is about 100 nm.

    Yao and his colleagues realized that they could design an electricity harvester based around this number. This harvester would be made from a thin layer of material filled with nanopores smaller than 100 nm that would let water molecules pass from the upper to the lower part of the material. But because each pore is so small, the water molecules would easily bump into the pore’s edge as they pass through the thin layer. This means that the upper part of the layer would be bombarded with many more charge-carrying water molecules than the lower part, creating a charge imbalance, like that in a cloud, as the upper part increased its charge relative to the lower part. This would effectually create a battery—one that runs as long as there is any humidity in the air.

    “The idea is simple,” says Yao, “but it’s never been discovered before, and it opens all kinds of possibilities.” The harvester could be designed from literally all kinds of material, offering broad choices for cost-effective and environment-adaptable fabrications. “You could image harvesters made of one kind of material for rainforest environments, and another for more arid regions.”

    And since humidity is ever-present, the harvester would run 24/7, rain or shine, at night and whether or not the wind blows, which solves one of the major problems of technologies like wind or solar, which only work under certain conditions.

    Finally, because air humidity diffuses in three-dimensional space and the thickness of the Air-gen device is only a fraction of the width of a human hair, many thousands of them can be stacked on top of each other, efficiently scaling up the amount of energy without increasing the footprint of the device. Such an Air-gen device would be capable of delivering kilowatt-level power for general electrical utility usage.

    “Imagine a future world in which clean electricity is available anywhere you go,” says Yao. “The generic Air-gen effect means that this future world can become a reality.”

    This research was supported by the National Science Foundation, Sony Group, Link Foundation, and the Institute for Applied Life Sciences (IALS) at The University of Massachusetts-Amherst, which combines deep and interdisciplinary expertise from 29 departments on the UMass Amherst campus to translate fundamental research into innovations that benefit human health and well-being.

    Related:
    New Green Technology from UMass Amherst Generates Electricity ‘Out of Thin Air’ 2020

    Advanced Materials
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Mass Amherst campus

    The University of Massachusetts-Amherst, the Commonwealth’s flagship campus, is a nationally ranked public research university offering a full range of undergraduate, graduate and professional degrees.

    As the flagship campus of America’s education state University of Massachusetts-Amherst is the leader of the public higher education system of the Commonwealth, making a profound, transformative impact to the common good. Founded in 1863, we are the largest public research university in New England, distinguished by the excellence and breadth of our academic, research and community outreach programs. We rank 29th among the nation’s top public universities, moving up 11 spots in the past two years in the U.S. News & World Report’s annual college guide.

    The University of Massachusetts-Amherst is a public land-grant research university in Amherst, Massachusetts. Founded in 1863 as an agricultural college, it is the flagship and the largest campus in the University of Massachusetts system, as well as the first established. It is also a member of the Five College Consortium, along with four other colleges in the Pioneer Valley: Amherst College , Smith College, Mount Holyoke College, and Hampshire College.

    The University of Massachusetts-Amherst has an annual enrollment of more than 30,000 students, along with approximately 1,300 faculty members. It is the third largest university in Massachusetts, behind Boston University and Harvard University. The university offers academic degrees in 109 undergraduate, 77 master’s and 48 doctoral programs. Programs are coordinated in nine schools and colleges. The University of Massachusetts Amherst is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, the university spent $211 million on research and development in 2018.

    The university’s 21 varsity athletic teams compete in NCAA Division I and are collectively known as the Minutemen and Minutewomen. The university is a member of the Atlantic 10 Conference, while playing ice hockey in Hockey East and football as an FBS Independent.

    Past and present students and faculty include 4 Nobel Prize laureates, a National Humanities Medal winner, numerous Fulbright, Goldwater, Churchill, Truman, and Gates Scholars, Olympic Gold Medalists, a United States Poet Laureate, as well as several Pulitzer Prize recipients and Grammy, Emmy, and Academy Award winners.
    The university was founded in 1863 under the provisions of the Federal Morrill Land-Grant Colleges Act to provide instruction to Massachusetts citizens in “agricultural, mechanical, and military arts.” Accordingly, the university was initially named the Massachusetts Agricultural College, popularly referred to as “Mass Aggie” or “M.A.C.” In 1867, the college had yet to admit any students, been through two Presidents, and had still not completed any college buildings. In that year, William S. Clark was appointed President of the college and Professor of Botany. He quickly appointed a faculty, completed the construction plan, and, in the fall of 1867, admitted the first class of approximately 50 students. Clark became the first president to serve long term after the schools opening and is often regarded the primary founding father of the college. Of the school’s founding figures, there are a traditional “founding four”- Clark, Levi Stockbridge, Charles Goessmann, and Henry Goodell, described as “the botanist, the farmer, the chemist, [and] the man of letters.”

    The original buildings consisted of Old South College (a dormitory located on the site of the present South College), North College (a second dormitory once located just south of today’s Machmer Hall), the Chemistry Laboratory, also known as College Hall (once located on the present site of Machmer Hall), the Boarding House (a small dining hall located just north of the present Campus Parking Garage), the Botanic Museum (located on the north side of the intersection of Stockbridge Road and Chancellor’s Hill Drive) and the Durfee Plant House (located on the site of the new Durfee Conservatory).

    Although enrollment was slow during the 1870s, the fledgling college built momentum under the leadership of President Henry Hill Goodell. In the 1880s, Goodell implemented an expansion plan, adding the College Drill Hall in 1883 (the first gymnasium), the Old Chapel Library in 1885 (one of the oldest extant buildings on campus and an important symbol of the University), and the East and West Experiment Stations in 1886 and 1890. The Campus Pond, now the central focus of the University Campus, was created in 1893 by damming a small brook. The early 20th century saw great expansion in terms of enrollment and the scope of the curriculum. The first female student was admitted in 1875 on a part-time basis and the first full-time female student was admitted in 1892. In 1903, Draper Hall was constructed for the dual purpose of a dining hall and female housing. The first female students graduated with the class of 1905. The first dedicated female dormitory, the Abigail Adams House (on the site of today’s Lederle Tower) was built in 1920.

    By the start of the 20th century, the college was thriving and quickly expanded its curriculum to include the liberal arts. The Education curriculum was established in 1907. In recognition of the higher enrollment and broader curriculum, the college was renamed Massachusetts State College in 1931.

    Following World War II, the G.I. Bill, facilitating financial aid for veterans, led to an explosion of applicants. The college population soared and Presidents Hugh Potter Baker and Ralph Van Meter labored to push through major construction projects in the 1940s and 1950s, particularly with regard to dormitories (now Northeast and Central Residential Areas). Accordingly, the name of the college was changed in 1947 to the University of Massachusetts.

    By the 1970s, the University continued to grow and gave rise to a shuttle bus service on campus as well as many other architectural additions; this included the Murray D. Lincoln Campus Center complete with a hotel, office space, fine dining restaurant, campus store, and passageway to the parking garage, the W. E. B. Du Bois Library, and the Fine Arts Center.

    Over the course of the next two decades, the John W. Lederle Graduate Research Center and the Conte National Polymer Research Center were built and UMass Amherst emerged as a major research facility. The Robsham Memorial Center for Visitors welcomed thousands of guests to campus after its dedication in 1989. For athletic and other large events, the Mullins Center was opened in 1993, hosting capacity crowds as the Minutemen basketball team ranked at number one for many weeks in the mid-1990s, and reached the Final Four in 1996.

    UMass Amherst entered the 21st century with 19,061 students enrolled. In 2003, for the first time, the Massachusetts State Legislature legally designated University of Massachusetts-Amherst as a Research University and the “flagship campus of the UMass system. The university was named a top producer of Fulbright Award winners in the 2008–2009 academic year. Additionally, in 2010, it was named one of the “Top Colleges and Universities Contributing to Teach For America’s 2010 Teaching Corps.”

    Five College Consortium

    University of Massachusetts-Amherst is part of the Five Colleges Consortium, which allows its students to attend classes, borrow books, work with professors, etc., at four other Pioneer Valley institutions: Amherst College , Smith College, Mount Holyoke College, and Hampshire College.

    All five colleges are located within 10 miles of Amherst center, and are accessible by public bus. The five share an astronomy department and some other undergraduate and graduate departments.

    University of Massachusetts-Amherst holds the license for WFCR, the National Public Radio affiliate for Western Massachusetts. In 2014, the station moved its main operations to the Fuller Building on Main Street in Springfield, but retained some offices in Hampshire House on the University of Massachusetts-Amherst campus.

    Research

    University of Massachusetts-Amherst research activities totaled more than $200 million in fiscal year 2014. In 2016 the faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Researchers at the university made several high-profile achievements in recent years. In a bi-national collaboration, National Institute of Astrophysics, Optics and Electronics and the University of Massachusetts-Amherst came together and built Large Millimeter Telescope. It was inaugurated in Mexico in 2006 (on top of Sierra Negra).

    A team of scientists at UMass led by Vincent Rotello has developed a molecular nose that can detect and identify various proteins. The research appeared in the May 2007 issue of Nature Nanotechnology, and the team is currently focusing on sensors, which will detect malformed proteins made by cancer cells.

    Also, UMass Amherst scientists Richard Farris, Todd Emrick and Bryan Coughlin led a research team that developed a synthetic polymer that does not burn. This polymer is a building block of plastic, and the new flame-retardant plastic will not need to have flame-retarding chemicals added to their composition. These chemicals have recently been found in many different areas from homes and offices to fish, and there are environmental and health concerns regarding the additives. The newly developed polymers would not require addition of the potentially hazardous chemicals.

    List of research centers at the University of Massachusetts Amherst
    College of Natural Sciences

    Apiary Laboratory (entomology, microbiology)
    Genomic Resource Laboratory (molecular biology)
    Massachusetts Center for Renewable Energy Science and Technology
    Amherst Center for Fundamental Interactions (http://www.physics.umass.edu/acfi/)
    Center for Applied Mathematics and Mathematical Computation
    Center for Geometry, Analysis, Numerics, and Graphics (www.gang.umass.edu)
    Pediatric Physical Activity Laboratory (PPAL)

    College of Engineering (CoE)
    Electrical and Computer Engineering (ECE) labs

    Antennas and Propagation Laboratory
    Architecture and Real-Time Systems Laboratory
    Center for Advanced Sensor and Communication Antennas (CASCA)
    Complex Systems Modeling and Control Laboratory
    Emerging Nanoelectronics Laboratory
    Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA)
    Feedback Control Systems Lab
    High-Dimensional Signal Processing Lab
    Information Systems Laboratory
    Integrated Nanobiotechnology Lab
    Laboratory for Millimeter Wavelength Devices and Applications
    Microwave Remote Sensing Laboratory (MIRSL)
    Multimedia Networks Laboratory
    Multimedia Networks and Internet Laboratory
    Nanodevices and Integrated Systems Laboratory
    Nanoelectronics Theory and Simulation Laboratory
    Nanoscale Computing Fabrics & Cognitive Architectures Lab
    Network Systems Laboratory
    Photonics Laboratory
    Reconfigurable Computing Laboratory
    Sustainable Computing Lab
    VLSI CAD Laboratory
    VLSI Circuits and Systems Laboratory
    Wireless Systems Laboratory
    Yield and Reliability of VLSI Circuits

    Mechanical and Industrial Engineering (MIE) Labs

    Arbella Insurance Human Performance Laboratory (Engineering Laboratory Building)
    Center for Energy Efficiency and Renewable Energy
    Multi-Phase Flow Simulation Laboratory
    Soil Mechanics Laboratories (located at Marston Hall and ELAB-II)
    Wind Energy Center (formerly the Renewable Energy Research Laboratory)

    College of Information & Computer Sciences (CICS)

    Autonomous Learning Laboratory
    Center for Intelligent Information Retrieval
    Center for e-Design
    Knowledge Discovery Laboratory
    Laboratory For Perceptual Robotics
    Resource-Bounded Reasoning Laboratory

    Other

    Center for Economic Development
    Center for Education Policy
    Labor Relations and Research Center
    National Center for Digital Governance
    Political Economy Research Institute
    Scientific Reasoning Research Institute
    The Environmental Institute
    Virtual Center for Supernetworks

     
  • richardmitnick 10:54 am on May 26, 2023 Permalink | Reply
    Tags: "Epitaxial strain": effectively stretching the metals at the atomic level, "Stretching metals allows researchers to create materials for quantum and electronic and spintronic applications", , “Stubborn” metals oxides such as those based on ruthenium or iridium play a crucial role in numerous applications in quantum information sciences and electronics., Breakthrough that makes it easier to create high-quality metal oxide thin films out of “stubborn” metals that have historically been difficult to synthesize in an atomically precise manner., , , Nanotechnology, , The new method has the potential to generate atomically-precise oxides of any hard-to-oxidize metal., , This research has immense potential for controlling oxidation-reduction pathways in various applications including catalysis and chemical reactions occurring in batteries or fuel cells., This research paves the way for scientists to develop better materials for various next-generation applications including quantum computing; microelectronics; sensors and energy catalysis.   

    From The College of Science and Engineering At The University of Minnesota-Twin Cities : “Stretching metals allows researchers to create materials for quantum and electronic and spintronic applications” 

    2

    From The College of Science and Engineering

    At

    u-minnesota-bloc

    The University of Minnesota-Twin Cities

    5.22.23
    University Public Relations
    (612) 624-5551
    unews@umn.edu

    Savannah Erdman
    University Public Relations
    612-624-5551
    erdma158@umn.edu

    1
    Professor Bharat Jalan and Ph.D. candidate Sreejith Nair. Credit: University of Minnesota.

    A University of Minnesota-led team has developed a first-of-its-kind, breakthrough method that makes it easier to create high-quality metal oxide thin films out of “stubborn” metals that have historically been difficult to synthesize in an atomically precise manner. This research paves the way for scientists to develop better materials for various next-generation applications including quantum computing, microelectronics, sensors and energy catalysis.

    The researchers’ paper is published in Nature Nanotechnology [below].

    “This breakthrough represents a significant advancement with far-reaching implications in a broad range of fields,” said Bharat Jalan, senior author on the paper and a professor in the College of Science and Engineering. “Not only does it provide a means to achieve atomically-precise synthesis of quantum materials, but it also holds immense potential for controlling oxidation-reduction pathways in various applications including catalysis and chemical reactions occurring in batteries or fuel cells.”

    “Stubborn” metals oxides, such as those based on ruthenium or iridium, play a crucial role in numerous applications in quantum information sciences and electronics. However, converting them into thin films has been a challenge for researchers due to the inherent difficulties in oxidizing metals using high-vacuum processes.

    While attempting to synthesize metal oxides using conventional molecular beam epitaxy, a low-energy technique that generates single layers of material in an ultra-high vacuum chamber, the researchers stumbled upon a groundbreaking revelation. They found that incorporating a concept called “epitaxial strain”—effectively stretching the metals at the atomic level—significantly simplifies the oxidation process of these stubborn metals.

    “The current synthesis approaches have limits, and we need to find new ways to push those limits further so that we can make better quality materials,” said Sreejith Nair, first author of the paper and a Ph.D. student in the College of Science and Engineering. “Our new method of stretching the material at the atomic scale is one way to improve the performance of the current technology.”

    Although the research team used iridium and ruthenium as examples, their method has the potential to generate atomically-precise oxides of any hard-to-oxidize metal.

    The researchers worked with collaborators at Auburn University, the University of Delaware, the DOE’s Brookhaven National Laboratory, the DOE’s Argonne National Laboratory and fellow University of Minnesota Professor Andre Mkhoyan’s lab to verify their method.

    “When we looked at these metal oxide films closely using very powerful electron microscopes, we captured the arrangements of the atoms and determined their types,” Mkhoyan explained. “Sure enough, they were nicely and periodically arranged as they should be in these crystalline films.”

    This research was funded primarily by the United States Department of Energy (DOE), the Air Force Office of Scientific Research (AFOSR), and the University of Minnesota’s Materials Research Science and Engineering Center (MRSEC).

    Nature Nanotechnology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    2

    The College of Science and Engineering (CSE) is one of the colleges of the University of Minnesota in Minneapolis, Minnesota. On July 1, 2010, the college was officially renamed from the Institute of Technology (IT). It was created in 1935 by bringing together the University’s programs in engineering, mining, architecture, and chemistry. Today, CSE contains 12 departments and 24 research centers that focus on engineering, the physical sciences, and mathematics.

    Departments

    Aerospace Engineering and Mechanics
    Biomedical Engineering
    Chemical Engineering and Materials Science
    Chemistry
    Civil, Environmental, and GeoEngineering
    Computer Science and Engineering
    Earth Sciences (formerly called Geology and Geophysics)
    Electrical and Computer Engineering
    Industrial and Systems Engineering
    Mathematics
    Mechanical Engineering
    Physics and Astronomy
    Additionally, CSE pairs with other departments at the University to offer degree-granting programs in:
    Bioproducts and Biosystems Engineering, with CFANS (formerly two departments: Biosystems and Agricultural Engineering, and Bio-based Products)
    Statistics
    And two other CSE units grant advanced degrees:
    Technological Leadership Institute (formerly Center for the Development of Technological Leadership)
    History of Science and Technology

    Research centers

    BioTechnology Institute
    Characterization Facility
    Charles Babbage Institute – CBI website
    Digital Technology Center
    William I. Fine Theoretical Physics Institute
    Industrial Partnership for Research in Interfacial and Materials Engineering
    Institute for Mathematics and its Applications
    Minnesota Nano Center
    NSF Engineering Research Center for Compact and Efficient Fluid Power
    NSF Materials Research Science and Engineering Center
    NSF Multi-Axial Subassemblage Testing (MAST) System
    NSF National Center for Earth-surface Dynamics (NCED)
    The Polar Geospatial Center
    Center for Transportation Studies
    University of Minnesota Supercomputing Institute
    GroupLens Center for Social and Human-Centered Computing

    Educational centers

    History of Science and Technology
    School of Mathematics Center for (K-12) Educational Programs
    Technological Leadership Institute
    UNITE Distributed Learning

    u-minnesota-campus-twin-cities

    The University of Minnesota Twin Cities is a public research university in Minneapolis and Saint Paul, MN. The Twin Cities campus comprises locations in Minneapolis and St. Paul approximately 3 miles (4.8 km) apart, and the St. Paul location is in neighboring Falcon Heights. The Twin Cities campus is the oldest and largest in The University of Minnesota (US) system and has the sixth-largest main campus student body in the United States, with 51,327 students in 2019-20. It is the flagship institution of the University of Minnesota System, and is organized into 19 colleges, schools, and other major academic units.

    The Minnesota Territorial Legislature drafted a charter for The University of Minnesota as a territorial university in 1851, seven years before Minnesota became a state. Today, the university is classified among “R1: Doctoral Universities – Very high research activity”. The University of Minnesota is a member of The Association of American Universities (US) and is ranked 17th in research activity, with $954 million in research and development expenditures in the fiscal year 2018. In 2001, the University of Minnesota was included in a list of Public Ivy universities, which includes publicly funded universities thought to provide a quality of education comparable to that of the Ivy League.

    University of Minnesota faculty, alumni, and researchers have won 26 Nobel Prizes and three Pulitzer Prizes. Among its alumni, the university counts 25 Rhodes Scholars, seven Marshall Scholars, 20 Truman Scholars, and 127 Fulbright recipients. The University of Minnesota also has Guggenheim Fellowship, Carnegie Fellowship, and MacArthur Fellowship holders, as well as past and present graduates and faculty belonging to The American Academy of Arts and Sciences , The National Academy of Sciences, The National Academy of Medicine, and The National Academy of Engineering. Notable University of Minnesota alumni include two vice presidents of the United States, Hubert Humphrey and Walter Mondale, and Bob Dylan, who received the 2016 Nobel Prize in Literature.

    The Minnesota Golden Gophers compete in 21 intercollegiate sports in the NCAA Division I Big Ten Conference and have won 29 national championships. As of 2021, Minnesota’s current and former students have won a total of 76 Olympic medals.

    The University of Minnesota was founded in Minneapolis in 1851 as a college preparatory school, seven years prior to Minnesota’s statehood. It struggled in its early years and relied on donations to stay open from donors including South Carolina Governor William Aiken Jr.

    In 1867, the university received land grant status through the Morrill Act of 1862.

    An 1876 donation from flour miller John S. Pillsbury is generally credited with saving the school. Since then, Pillsbury has become known as “The Father of the University.” Pillsbury Hall is named in his honor.

    Academics

    The university is organized into 19 colleges, schools, and other major academic units:

    Center for Allied Health Programs
    College of Biological Sciences
    College of Continuing and Professional Studies
    School of Dentistry
    College of Design
    College of Education and Human Development
    College of Food, Agricultural and Natural Resource Sciences
    Graduate School
    Law School
    College of Liberal Arts
    Carlson School of Management
    Medical School
    School of Nursing
    College of Pharmacy
    Hubert H. Humphrey School of Public Affairs
    School of Public Health
    College of Science and Engineering
    College of Veterinary Medicine

    Institutes and centers

    Six university-wide interdisciplinary centers and institutes work across collegiate lines:

    Center for Cognitive Sciences
    Consortium on Law and Values in Health, Environment, and the Life Sciences
    Institute for Advanced Study, University of Minnesota
    Institute for Translational Neuroscience
    Institute on the Environment
    Minnesota Population Center

    In 2021, the University of Minnesota was ranked as 40th best university in the world by The Academic Ranking of World Universities (ARWU), which assesses academic and research performance. The same 2021 ranking by subject placed The University of Minnesota’s ecology program as 2nd best in the world, its management program as 10th best, its biotechnology program as 11th best, mechanical engineering and medical technology programs as 14th best, law and psychology programs as 19th best, and veterinary sciences program as 20th best. The Center for World University Rankings (CWUR) for 2021-22 ranked Minnesota 46th in the world and 26th in the United States. The 2021 Nature Index, which assesses the institutions that dominate high quality research output, ranked Minnesota 53rd in the world based on research publication data from 2020. U.S. News and World Report ranked Minnesota as the 47th best global university for 2021. The 2022 Times Higher Education World University Rankings placed Minnesota 86th worldwide, based primarily on teaching, research, knowledge transfer and international outlook.

    In 2021, The University of Minnesota was ranked as the 24th best university in the United States by The Academic Ranking of World Universities, and 20th in the United States in Washington Monthly’s 2021 National University Rankings. The University of Minnesota’s undergraduate program was ranked 68th among national universities by U.S. News and World Report for 2022, and 26th in the nation among public colleges and universities. The same publication ranked The University of Minnesota’s graduate Carlson School of Management as 28th in the nation among business schools, and 6th in the nation for its information systems graduate program. Other graduate schools ranked highly by U.S. News and World Report for 2022 include The University of Minnesota Law School at 22nd, The University of Minnesota Medical School, which was 4th for family medicine and 5th for primary care, The University of Minnesota College of Pharmacy, which ranked 3rd, The Hubert H. Humphrey School of Public Affairs, which ranked 9th, The University of Minnesota College of Education and Human Development, which ranked 10th for education psychology and special education, and The University of Minnesota School of Public Health, which ranked 10th.

    In 2019, The Center for Measuring University Performance ranked The University of Minnesota 16th in the nation in terms of total research, 29th in endowment assets, 22nd in annual giving, 28th in the number of National Academies of Sciences, Engineering and Medicine memberships, 18th in its number of faculty awards, and 14th in its number of National Merit Scholars. Minnesota is listed as a “Public Ivy” in 2001 Greenes’ Guides The Public Ivies: America’s Flagship Public Universities.

    Media

    Print

    The Minnesota Daily has been published twice a week during the normal school season since the fall semester 2016. It is printed weekly during the summer. The Daily is operated by an autonomous organization run entirely by students. It was first published on May 1, 1900. Besides everyday news coverage, the paper has also published special issues, such as the Grapevine Awards, Ski-U-Mah, the Bar & Beer Guide, Sex-U-Mah, and others.

    A long-defunct but fondly remembered humor magazine, Ski-U-Mah, was published from about 1930 to 1950. It launched the career of novelist and scriptwriter Max Shulman.

    A relative newcomer to the university’s print media community is The Wake Student Magazine, a weekly that covers UMN-related stories and provides a forum for student expression. It was founded in November 2001 in an effort to diversify campus media and achieved student group status in February 2002. Students from many disciplines do all of the reporting, writing, editing, illustration, photography, layout, and business management for the publication. The magazine was founded by James DeLong and Chris Ruen. The Wake was named the nation’s best campus publication (2006) by The Independent Press Association.

    Additionally, The Wake publishes Liminal, a literary journal begun in 2005. Liminal was created in the absence of an undergraduate literary journal and continues to bring poetry and prose to the university community.

    The Wake has faced a number of challenges during its existence, due in part to the reliance on student fees funding. In April 2004, after the Student Services Fees Committee had initially declined to fund it, the needed $60,000 in funding was restored, allowing the magazine to continue publishing. It faced further challenges in 2005, when its request for additional funding to publish weekly was denied and then partially restored.

    In 2005 conservatives on campus began formulating a new monthly magazine named The Minnesota Republic. The first issue was released in February 2006, and funding by student service fees started in September 2006.

    Radio

    The campus radio station, KUOM “Radio K,” broadcasts an eclectic variety of independent music during the day on 770 kHz AM. Its 5,000-watt signal has a range of 80 miles (130 km), but shuts down at dusk because of Federal Communications Commission regulations. In 2003, the station added a low-power (8-watt) signal on 106.5 MHz FM overnight and on weekends. In 2005, a 10-watt translator began broadcasting from Falcon Heights on 100.7 FM at all times. Radio K also streams its content at http://www.radiok.org. With roots in experimental transmissions that began before World War I, the station received the first AM broadcast license in the state on January 13, 1922, and began broadcasting as WLB, changing to the KUOM call sign about two decades later. The station had an educational format until 1993, when it merged with a smaller campus-only music station to become what is now known as Radio K. A small group of full-time employees are joined by over 20 part-time student employees who oversee the station. Most of the on-air talent consists of student volunteers.

    Television

    Some television programs made on campus have been broadcast on local PBS station KTCI channel 17. Several episodes of Great Conversations have been made since 2002, featuring one-on-one discussions between University faculty and experts brought in from around the world. Tech Talk was a show meant to help people who feel intimidated by modern technology, including cellular phones and computers.

     
  • richardmitnick 7:07 am on May 25, 2023 Permalink | Reply
    Tags: "Cell Rover"- a flat antenna that could monitor processes inside cells., "Deblina Sarkar is building microscopic machines to enter our brains", , , , Deblina Sarkar makes little machines for which she has big dreams. The machines are so little that they can humbly inhabit living cells., Deblina Sarkar wants to develop miniature machines that may one day help treat Alzheimer’s disease and Parkinson’s disease and other neurological afflictions., , Nanoelectronics, Nanotechnology, Sarkar envisions using Cell Rover to spot misfolded proteins in the brain that may be early signs of Alzheimer’s disease., , , , Ultratiny electronic devices some smaller than a mote of dust   

    From The Media Lab At The Massachusetts Institute of Technology Via “Science News” : “Deblina Sarkar is building microscopic machines to enter our brains” 

    From The Media Lab

    At

    The Massachusetts Institute of Technology

    Via

    “Science News”

    5.23.23
    Nikk Ogasa

    1
    Deblina Sarkar wants to develop miniature machines that may one day help treat Alzheimer’s disease, Parkinson’s disease and other neurological afflictions. Credit: Jimmy Day, MIT Media Lab.

    Deblina Sarkar makes little machines, for which she has big dreams. The machines are so little, in fact, that they can humbly inhabit living cells. And her dreams are so big, they may one day save your mind.

    Sarkar is a nanotechnologist and assistant professor at MIT. She develops ultratiny electronic devices, some smaller than a mote of dust, that she hopes will one day enter the brain. She’s also a fan of Kung Fu movies and likes to dance her own twist on bharata natya, a classical Indian dance form. Occasionally she goes hiking with her graduate students, once taking them as far as Yellowstone. Building camaraderie is vital, Sarkar says. But “I’m probably working day and night on my research,” she confesses. “There is an urgent problem at hand.”

    That problem is Alzheimer’s disease, Parkinson’s disease and other neurological afflictions that assault the minds of millions of people worldwide. Sarkar’s solution: Employ minute machines to detect and reverse these disorders.

    “She was always interested in applying … electronics to biological systems,” says collaborator and bioengineering researcher Samir Mitragotri of Harvard University, who has known Sarkar for about a decade and was on her thesis committee. She envisions using her tools to “transform how people are conducting biology,” he says, “bridging the worlds.”

    A focus on nanoelectronics

    Born in Kolkata, India, Sarkar credits both of her parents as early inspirations. Her boldness as a researcher comes from her mother, who as a young woman defied social norms in her village by working to fund her own education and speaking out against the dowry system. Meanwhile, Sarkar’s father sparked her fascination for engineering.

    At the age of 15, he abandoned his dreams of becoming an engineer to find other jobs; he needed to support his parents and the rest of his family after his father, an Indian freedom fighter, was shot in the leg and could no longer work. Still, Sarkar recalls her father finding time for his passion, fashioning devices to make home life more convenient. These included an electricity-free washing machine and vehicles that could freight hefty loads down local byroads to their house.

    “That got me very, very interested in science and technology,” Sarkar says. “Engineering specifically.”

    After earning a bachelor’s degree in electrical engineering from the Indian Institute of Technology Dhanbad, Sarkar moved to California to study nanoelectronics at the University of California-Santa Barbara. There, she tested new ways to create nanodevices that could reduce the amount of power consumed by computers and other everyday electronics.

    One standout device Sarkar developed during her graduate work was a transistor that reduced the amount of power lost as heat by 90 percent compared with some of today’s most common silicon transistors (SN: 3/18/22). For the breakthrough, UC Santa Barbara awarded Sarkar’s Ph.D. dissertation the Lancaster Award for its impact in advancing math, physical sciences and engineering.

    When tech meets the body

    Along the way, Sarkar became fascinated with the brain, which she calls “the lowest energy computer.” A project imaging amyloid-beta plaques as a postdoc at MIT opened the door to fusing her dual interests, and she stayed on as an assistant professor to found the Nano-Cybernetic Biotrek group. Her group develops nanodevices that can interface with living cells, and “neuromorphic” computing devices, which have architectures inspired by the human brain and nervous system.

    So far, the group’s most innovative device may be the “Cell Rover”, a flat antenna that could monitor processes inside cells. For a study reported in 2022, Sarkar and her colleagues used magnetic fields to finesse a Cell Rover, roughly the size of a tardigrade, into a mature frog egg cell. The team demonstrated that when stimulated by a magnetic field created by an alternating current, molecules in the nanodevice vibrated at frequencies safe for living cells. Using a wire coil receiver, the researchers were able to detect how those vibrations affected the device’s own magnetic field, thus showing it could communicate with the outside world. Cell Rovers could be outfitted with films that latch onto and detect select proteins or other biomolecules.

    Sarkar envisions using the device to spot misfolded proteins in the brain that may be early signs of Alzheimer’s disease. Today, memory loss is the only way to know a living person has Alzheimer’s, but by then, the damage is irreversible, Sarkar says. Cell Rovers could also be paired with nanodevices that harvest energy from and electrically stimulate cells, opening the door for new types of brain electrodes and subcellular pacemakers. Or fleets of remotely controlled devices could replace invasive surgeries — detecting a small tumor growing in the brain, for example, and maybe even killing it.

    2
    When left undisturbed, the magnetic molecules in the Cell Rover are randomly oriented (top). But when subjected to a magnetic field produced by an alternating current, they will repeatedly flip around and reorient themselves (bottom). Those movements strain the device and cause it to vibrate in ways the researchers can detect. Credit: B. Joy et al/Nature Communications 2022.

    Nature Communications [below]

    Sarkar is essentially establishing a new field of science, at the intersection of nanoelectronics and biology, Mitragotri says. “There are many opportunities for the future.”

    One day, Sarkar hopes to insert nanodevices between human neurons to boost the computing speed of the fleshy processor already in our skulls. Our brains are remarkable, she says, but “we could be better than what we are.”

    Nature Communications 2022

    Fig. 1: Schematic representation and operating principle of the “Cell Rover”.
    3
    a) Schematic diagram showing the wireless operation of a Cell Rover from inside a cell (Xenopus oocyte). The zoomed in view shows the Cell Rover and its equivalent circuit representation as a parallel RLC resonator. b) Schematic diagram illustrating the principle of magnetostriction. The red and blue faces indicate north and south poles of the magnetic domains in the material respectively. The randomly oriented magnetic domains align in the direction of an applied magnetic field which in turn causes a strain in the material.

    Fig. 2: Characterization of Cell Rovers in air and water.
    4

    a) Schematic diagram showing the wireless detection of a Cell Rover using a receiving (Rx) coil consisting of two identical but oppositely wound solenoids connected to a lock-in amplifier. The transmission (Tx) coil generates the AC excitation magnetic field and a permanent magnet is used to produce the required DC bias magnetic field. b) Comparison between measured and FEA simulated wirelessly detected voltage amplitude from a Cell Rover in air as a function of frequency of excitation magnetic field. The signal amplitude is maximum (Vmax) at the resonance frequency (4.532 MHz). The calculation for the quality factor (Q) from the Full Width at Half Maximum (FWHM) is also shown. c) FEA simulation of the distribution of strain in the Cell Rover at the resonance frequency (4.532 MHz). d) FEA simulation showing the magnetic flux density distribution in the Rx coil containing the Cell Rover at the resonance frequency (4.532 MHz). A zoomed in view of the mid-plane of the resonator is also shown. e) Impedance vs Frequency of the Cell Rover in air measured using a Vector Network Analyzer (VNA) and the corresponding equivalent circuit model fit which gives a mechanical quality factor (Q) of 497.0 and a magnetomechanical coupling coefficient (k^2) of 1.12%. The calculated values for motional inductance (Lm), motional capacitance (Cm), and motional resistance (Rm) are also shown. Comparison of measured f) voltage amplitude and g) phase of the Cell Rover in air and water as a function of frequency of excitation magnetic field. h) Impedance vs Frequency of the Cell Rover in water measured using a VNA and the corresponding equivalent circuit model fit which gives a resonance frequency of 4.452 MHz, quality factor of 80.0 and magnetomechanical coupling coefficient (k^2) of 1.12%. All measurements shown are for a Cell Rover of dimension 500 μm × 200 μm × 28 μm at optimum bias magnetic field of 125 Oe.

    More instructive images are available in the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Media Lab is a research laboratory at the Massachusetts Institute of Technology, growing out of MIT’s Architecture Machine Group in the School of Architecture. Its research does not restrict to fixed academic disciplines, but draws from technology, media, science, art, and design. As of 2014, Media Lab’s research groups include neurobiology, biologically inspired fabrication, socially engaging robots, emotive computing,bionics, and hyperinstruments.

    The Media Lab was founded in 1985 by Nicholas Negroponte and former MIT President Jerome Wiesner, and is housed in the Wiesner Building (designed by I. M. Pei), also known as Building E15. The Lab has been written about in the popular press since 1988, when Stewart Brand published The Media Lab: Inventing the Future at M.I.T., and its work was a regular feature of technology journals in the 1990s. In 2009, it expanded into a second building.

    The Media Lab came under scrutiny in 2019 due to its acceptance of donations from convicted child sex offender Jeffrey Epstein. This led to the resignation of its director, Joi Ito, and the launch of an “immediate, thorough and independent” investigation into the “extremely serious” and “deeply disturbing allegations about the engagement between individuals at the Media Lab and Jeffrey Epstein” by the president of MIT.

    Some recurring themes of work at the Media Lab include human adaptability, human computer interaction, education and communication, artistic creation and visualization, and designing technology for the developing world. Other research focus includes machines with common sense, sociable robots, prosthetics, sensor networks, musical devices, city design, and public health. Research programs all include iterative development of prototypes which are tested and displayed for visitors.

    Each of these areas of research may incorporate others. Interaction design research includes designing intelligent objects and environments. Educational research has also included integrating more computation into learning activities – including software for learning, programmable toys, and artistic or musical instruments. Examples include Lego Mindstorms, the PicoCricket, and One Laptop per Child.

    Research groups

    As of 2020, the MIT Media Lab has the following research groups:

    Affective Computing: “advancing wellbeing by using new ways to communicate, understand, and respond to emotion”
    Biomechatronics: “enhancing human physical capability.”
    Camera Culture: “making the invisible visible – inside our bodies, around us, and beyond – for health, work, and connection”
    City Science: “looking beyond smart cities”
    Conformable Decoders: “converting the patterns of nature and the human body into beneficial signals and energy”
    Fluid Interfaces: “designing wearable systems for cognitive enhancement”
    Future Sketches: “exploring the essence of code as a creative medium”
    Human Dynamics: “exploring how social networks can influence our lives in business, health, governance, and technology adoption and diffusions”
    Lifelong Kindergarten: “engaging people in creative learning experiences”
    Mediated Matter: “designing for, with, and by nature”
    Molecular Machines: “engineering at the limits of complexity with molecular-scale parts”
    Nano-Cybernetic Biotrek: “inventing disruptive technologies for nanoelectronic computation and creating new paradigms for life-machine symbiosis”
    Opera of the Future: “extending expression, learning, and health through innovations in musical composition, performance, and participation”
    Personal Robots: “building socially engaging robots and interactive technologies to help people live healthier lives, connect with others, and learn better”
    Poetic Justice: “exploring new forms of social justice through art”
    Responsive Environments: “augmenting and mediating human experience, interaction, and perception with sensor networks”
    Sculpting Evolution: “exploring evolutionary and ecological engineering”
    Signal Kinetics: “extending human and computer abilities in sensing, communication, and actuation through signals and networks”
    Social Machines: “promoting deeper learning and understanding in human networks”
    Space Enabled: “advancing justice in Earth’s complex systems using designs enabled by space”
    Tangible Media: “seamlessly coupling the worlds of bits and atoms by giving dynamic physical form to digital information and computation”
    Viral Communications: “creating scalable technologies that evolve with user inventiveness”

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 8:56 am on May 18, 2023 Permalink | Reply
    Tags: "HR-AFM": high-resolution non-contact atomic force microscopy, "Seeing Electron Orbital Signatures", , , , By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules., By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we might learn how to design and engineer new materials with specific properties., , , , Despite Fe and Co being adjacent atoms on the periodic table which implies similarity the corresponding force spectra and their measured images show reproducible experimental differences., , , Nanotechnology, , , , Scientists using supercomputers and atomic resolution microscopes have imaged the signatures of electron orbitals which are defined by mathematical equations of quantum mechanics., , Supercomputing simulations on TACC's Stampede2 system spot electronic differences in adjacent transition-metal atoms.,   

    From The Texas Advanced Computing Center: “Seeing Electron Orbital Signatures” 

    From The Texas Advanced Computing Center

    At

    The University of Texas-Austin

    5.15.23
    Jorge Salazar

    Supercomputing simulations on TACC’s Stampede2 system [below] spot electronic differences in adjacent transition-metal atoms.

    1
    Supercomputer simulations and atomic resolution microscopes were used to directly observe the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co). This new knowledge can help make advancements in fields such as materials science, nanotechnology, and catalysis. Credit: Chen, P., Fan, D., Selloni, A. et al.

    No one will ever be able to see a purely mathematical construct such as a perfect sphere. But now, scientists using supercomputer simulations and atomic resolution microscopes have imaged the signatures of electron orbitals, which are defined by mathematical equations of quantum mechanics and predict where an atom’s electron is most likely to be.

    Scientists at UT Austin, Princeton University, and ExxonMobil have directly observed the signatures of electron orbitals in two different transition-metal atoms, iron (Fe) and cobalt (Co) present in metal-phthalocyanines. Those signatures are apparent in the forces measured by atomic force microscopes, which often reflect the underlying orbitals and can be so interpreted.

    Their study was published in March 2023 as an Editors’ Highlight in the journal Nature Communications [below].

    3
    (a) Low-magnification STM image of FePc and CoPc molecules using a CO tip. Schematic side (b) and top (c) views of the relaxed FePc molecule adsorbed on a Cu(111) substrate. Blue: Fe, yellow: C, pink: N, white: H, dark purple: Cu. Credit: Chen, P., Fan, D., Selloni, A. et al.

    “Our collaborators at Princeton University found that despite Fe and Co being adjacent atoms on the periodic table, which implies similarity, the corresponding force spectra and their measured images show reproducible experimental differences,” said study co-author James R. Chelikowsky, the W.A. “Tex” Moncrief, Jr. Chair of Computational Materials and professor in the Departments of Physics, Chemical Engineering, and Chemistry in the College of Natural Sciences at UT Austin. Chelikowsky also serves as the director of the Center for Computational Materials at the Oden Institute for Computational Engineering and Sciences.

    Without a theoretical analysis, the Princeton scientists could not determine the source of the differences they spotted using high-resolution non-contact atomic force microscopy (HR-AFM) and spectroscopy that measured molecular-scale forces on the order of piconewtons (pN), one-trillionth of a Newton.

    “When we first observed the experimental images, our initial reaction was to marvel at how experiment could capture such subtle differences. These are very small forces,” Chelikowsky added.

    “By directly observing the signatures of electron orbitals using techniques such as atomic force microscopy we can gain a better understanding of the behavior of individual atoms and molecules, and potentially even how to design and engineer new materials with specific properties. This is especially important in fields such as materials science, nanotechnology, and catalysis,” Chelikowsky said.

    The required electronic structure calculations are based on density functional theory (DFT), which starts from basic quantum mechanical equations and serves as a practical approach for predicting the behavior of materials.

    “Our main contribution is that we validated through our real-space DFT calculations that the observed experimental differences primarily stem from the different electronic configurations in 3d electrons of Fe and Co near the Fermi level, the highest energy state an electron can occupy in the atom,” said study co-first author Dingxin Fan, a former graduate student working with Chelikowsky. Fan is now a postdoctoral research associate at the Princeton Materials Institute.

    4
    Dingxin Fan (L) of Princeton University; James R. Chelikowsky (R) of UT Austin.

    The DFT calculations included the copper substrate for the Fe and Co atoms, adding a few hundred atoms to the mix and calling for intense computation, for which they were awarded an allocation on the Stampede2 supercomputer at the Texas Advanced Computing Center (TACC), funded by the National Science Foundation.

    “In terms of our model, at a certain height, we moved the carbon monoxide tip of the AFM over the sample and computed the quantum forces at every single grid point in real space,” Fan said. “This entails hundreds of different computations. The built-in software packages on TACC’s Stampede2 helped us to perform data analysis much more easily. For example, the Visual Molecular Dynamics software expedites an analysis of our computational results.”

    “Stampede2 has provided excellent computational power and storage capacity to support various research projects we have,” Chelikowsky added.

    By demonstrating that the electron orbital signatures are indeed observable using AFM, the scientists assert that this new knowledge can extend the applicability of AFM into different areas.

    5
    AFM images of FePc and CoPc on a Cu(111) surface (a) Experimental constant-height AFM frequency-shift images. (b) Glow-edges filtered experimental AFM image (based on a). (c) Simulated AFM images. (d) Estimated width (in pm) of the central part of the spin-polarized DFT calculations. Credit: Chen, P., Fan, D., Selloni, A. et al.

    What’s more, their study, used an inert molecular probe tip to approach another molecule and accurately measured the interactions between the two molecules. This allowed the science team to study specific surface chemical reactions.

    For example, suppose that a catalyst can accelerate a certain chemical reaction, but it is unknown which molecular site is responsible for the catalysis. In this case, an AFM tip prepared with the reactant molecule can be used to measure the interactions at different sites, ultimately determining the chemically active site or sites.

    Moreover, since the orbital level information can be obtained, scientists can gain a much deeper understanding of what will happen when a chemical reaction occurs. As a result, other scientists could design more efficient catalysts based on this information.

    Said Chelikowsky: “Supercomputers, in many ways, allow us to control how atoms interact without having to go into the lab. Such work can guide the discovery of new materials without a laborious ‘trial and error’ procedure.”

    Nature Communications

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Texas Advanced Computing Center at The University of Texas-Austin is an advanced computing research center that provides comprehensive advanced computing resources and support services to researchers in Texas and across the USA. The mission of TACC is to enable discoveries that advance science and society through the application of advanced computing technologies. Specializing in high performance computing, scientific visualization, data analysis & storage systems, software, research & development and portal interfaces, TACC deploys and operates advanced computational infrastructure to enable computational research activities of faculty, staff, and students of UT Austin. TACC also provides consulting, technical documentation, and training to support researchers who use these resources. TACC staff members conduct research and development in applications and algorithms, computing systems design/architecture, and programming tools and environments.

    Founded in 2001, TACC is one of the centers of computational excellence in the United States. Through the National Science Foundation Extreme Science and Engineering Discovery Environment project, TACC’s resources and services are made available to the national academic research community. TACC is located on The University of Texas-Austin’s J. J. Pickle Research Campus.

    TACC collaborators include researchers in other University of Texas-Austin departments and centers, at Texas universities in the High Performance Computing Across Texas Consortium, and at other U.S. universities and government laboratories.

    TACC Maverick HP NVIDIA supercomputer

    TACC Lonestar Cray XC40 supercomputer

    Dell Poweredge U Texas Austin Stampede Supercomputer. Texas Advanced Computer Center 9.6 PF

    TACC HPE Apollo 8000 Hikari supercomputer

    TACC Ranch long-term mass data storage system

    TACC DELL EMC Stampede2 supercomputer


    Stampede2 Arrives!

    TACC Frontera Dell EMC supercomputer fastest at any university

    University Texas at Austin

    U Texas Austin campus

    The University of Texas-Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.

    Establishment

    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into The Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas at Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    On January 19, 2011, the university announced the creation of a 24-hour television network in partnership with ESPN, dubbed the Longhorn Network. ESPN agreed to pay a $300 million guaranteed rights fee over 20 years to the university and to IMG College, the school’s multimedia rights partner. The network covers the university’s intercollegiate athletics, music, cultural arts, and academics programs. The channel first aired in September 2011.

     
  • richardmitnick 8:17 am on May 9, 2023 Permalink | Reply
    Tags: "EPFL discovery brings us closer to next-generation electronics", "Excitons": quasiparticles that may one day transport data and replace the electrons in electronic devices., , , Electronic devices consume vast amounts of energy in transporting and storing information and losing some of that energy as they go., Excitons are made up of an electron (which has a negative charge) and a hole (which has a positive charge)., Nanotechnology, The engineers’ method involves applying an electric field to a two-dimensional (2D) semiconducting material., , Under ideal conditions excitons can reach a superfluid state meaning they can travel without energy or resistance and therefore without any power loss., With excitons which can either replace or work with electrons it is light rather than electricity that carries data and runs calculations.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “EPFL discovery brings us closer to next-generation electronics” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.9.23
    Clara Marc

    1
    A. Herzog (2023)

    EPFL engineers have found a way to control the interactions between “excitons” – quasiparticles that may one day transport data and replace the electrons in electronic devices. The engineers’ method involves applying an electric field to a two-dimensional (2D) semiconducting material.

    Electronic devices have become an essential feature of just about all aspects of modern society. Yet, due in part to the growing use of the internet, they’re bumping up against their limits in terms of processing speed and miniaturization. What’s more, they consume vast amounts of energy in transporting and storing information, losing some of that energy as they go. Engineers – including those at EPFL – have been working for years to overcome these obstacles, such as by studying excitons and their behavior in 2D materials.

    Excitons are made up of an electron (which has a negative charge) and a hole (which has a positive charge). They hold the key to the next generation of electronic devices – ones that are smaller and faster and result in much less power loss. With excitons, which can either replace or work with electrons, it is light rather than electricity that carries data and runs calculations. “Light is already used in fiber optics,” says Fedele Tagarelli, a PhD student at EPFL’s Laboratory of Nanoscale Electronics and Structures (LANES), headed by Prof. Andras Kis. “Although light is widely used to transport information, light-based computing systems have been hindered by materials limitations and scalability issues.”

    Edoardo Lopriore, another PhD student at LANES, explains: “Excitons, unlike electrons, could cause much less heating when moving through a material and work very well with light. But to leverage their full potential, we need to be able to understand and control how they’re generated and interact with each other, along with their speed and life span. All this is still in the research stage.” Under ideal conditions, excitons can reach a superfluid state, meaning they can travel without energy or resistance – and therefore without any power loss.

    Repulsive force

    Engineers at LANES, together with colleagues at the University of Marburg in Germany and the National Institute for Materials Science in Japan, have looked specifically at one key property of excitons: the repulsive force between them. They developed a testing system comprised of several layers of different materials. The top and bottom layers are made of metal, while the middle section consists of an insulating material and layers of a semiconducting 2D material – in this case, tungsten diselenide (WSe2) – stacked on top of each other and bound together by Van der Waals forces. 2D materials have the unique feature of being extremely thin – just a single layer of atoms. “They have completely different properties from 3D materials and let us explore new physics phenomena,” says Tagarelli.

    The engineers applied an electric field to their device and found they could control the excitons’ repulsive interactions. “As far as we know, this is the first time such control has been demonstrated, or at least in such a simple way,” says Tagarelli. “We’ve discovered a new method for controlling interactions between hybrid excitons, which can provide a unique opportunity for studies in condensed matter physics.” In a previous study [Nature (below)], LANES engineers succeeded in controlling the life span and movements of excitons.

    For the engineers’ method to work, the excitons shouldn’t be directly subjected to an electric current but rather be able to “sense” an electric field – hence the outer metal layers and inner insulating layer to protect the semiconducting 2D material. The engineers’ experiments were run at the extremely low temperature of 4 Kelvin.

    “This discovery further expands our toolkit for controlling excitons so that they can one day be used to process data in a more environmentally responsible way,” says Kis. The engineers’ findings appear in Nature Photonics [below].

    3
    Left to right: PhD students Fedele Tagarelli and Edoardo Lopriore, with Prof. Andras Kis. 2023 EPFL/ A.Herzog – CC-BY-SA 4.0© 2023 EPFL

    Nature 2018
    Nature Photonics
    See the above science paper for instructive material with images.
    Fig. 1: Electrically tunable interlayer dipolar ensembles in a van der Waals homobilayer.

    a) Schematic band structure of a natural WSe2 homobilayer that hosts different dominant intervalley transitions depending on Ez (Supplementary Note 2). With a positive Ez, the main favourable transition shifts from KΛ to KΛ′, with increasing interlayer mixing and sizeable out-of-plane dipole moments. b) A double-gated fully hBN-encapsulated natural homobilayer WSe2 device with graphical representations of intralayer (left), hybrid (centre) and purely interlayer (right) exciton species. VT and VB indicate the applied top and bottom gate voltages, respectively, and GND indicates ground. c) Atomic force microscopy image of device A, with a large clean area (>80 μm^2) that exhibits uniform height (greyscale bar) and excitonic properties (Supplementary Note 1). The WSe2 homobilayer edge is highlighted by a white solid line. d) PL spectra acquired for different electric fields in device A, featuring the emission from hIX phonon replicas. The labels indicate dominant exciton transitions. e) PL spectra as a function of the applied vertical electric field. Low (|Ez|  0.2 nm) are related to high-field regions dominated by KΛ′ and K′Λ transitions, which are characterized by high interlayer mixing (Supplementary Note 2) .

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 1:10 pm on May 1, 2023 Permalink | Reply
    Tags: "Looking for very small things researchers see the light", , , Extremely powerful and cheap microscopes could be the result of new research that’s figured out a simple way to intensify light., Failures to see nanoscale faults in computer chips can cost billions of dollars., Most molecules and all atoms are much smaller than 400 nanometres., Nanotechnology, , , Violet light waves have the shortest length for visible light with a wavelength of around 400 nanometres (nm).   

    From The Australian National University (AU) Via “COSMOS (AU)” : “Looking for very small things researchers see the light” 

    ANU Australian National University Bloc

    From The Australian National University (AU)

    Via

    Cosmos Magazine bloc

    “COSMOS (AU)”

    4.30.23
    Ellen Phiddian

    1
    The researchers have made a single nanoparticle that can convert low-frequency red light into extreme-ultraviolet light, which has a very high frequency. Credit: Dr Anastasiia Zalogina/ANU.

    Extremely powerful, cheap, microscopes could be the result of new research that’s figured out a simple way to intensify light.

    At the moment, to see small things like proteins or transistors in computer chips, you need an electron microscope, or even more expensive and inconvenient technology.

    This hampers a lot of nanoscale science, particularly in medical research and computer chip manufacturing. Failures to see nanoscale faults in computer chips can cost billions of dollars.

    But research published in Science Advances [below], by an international team of researchers, has landed on a method that could lead the way to much more simple magnification.

    2
    Fig. 1. Subwavelength resonator for a HHG.
    (A) Schematics: The light of a frequency ω is incident on a resonator that is placed on a substrate, which excites high harmonics. (B) Scanning electron microscope images of the fabricated resonator. (C) Dependence of the resonator’s modes on geometrical parameters and wavelength. Avoided crossing of two modes leads to the enhancement of the quality (Q) factor (indicated with the color scheme). (D) Extinction of the incident light at around the resonant wavelength and resonator’s diameter.

    “If we look under a microscope, we can see pretty small objects, but not infinitely small,” says senior author Dr Sergey Kruk, a researcher at the Australian National University (ANU)’s Nonlinear Physics Centre.

    “The limit is wavelengths of light. There is an equation which can work out exactly the smallest size you can see in any particular microscope, but loosely speaking, you can see objects as small as half of the wavelength of light.”

    Violet light waves have the shortest length for visible light, with a wavelength of around 400 nanometres (nm). This is also called high frequency visible light: the higher the frequency, the shorter the wavelength.

    This means that it’s difficult to see anything smaller than 200nm: most molecules, and all atoms, are much smaller than that.

    One avenue to work around this is to use non-visible light, with smaller wavelengths.

    “If you use extreme ultraviolet light, 100 nanometres in wavelength, you might be able to see something that is about 50 nanometres large,” says Kruk.

    But getting light with wavelengths this short isn’t easy.

    “There are no natural sources of extreme ultraviolet light, and artificial sources are rare and extremely bulky and extremely expensive,” says Kruk.

    “For example, synchrotrons can generate extreme ultraviolet light. But these machines can be anywhere from the size of a room to the size of a building or the size of a small town. Free electron lasers can generate extreme ultraviolet light, but again, these are very large and very expensive setups.

    “So the only pathway that, in my understanding, we know today to get sources of extreme ultraviolet light at the tabletop or shoebox size, is a process called high harmonic generation. And that’s what we tried to pursue.”

    The researchers are not yet at extreme ultraviolet light, but they have shown that they can turn lower frequency sources of light into higher frequencies.

    “We started with a conventional light source, a laser – in our case infrared [light],” says Kruk.

    “We shine short bursts of light pulses from the laser onto a single nanoparticle. And the nanoparticle generates multiples of a frequency of that laser. It generates twice the frequency, three times the frequency, four times the frequency, et cetera. In our case up to seven times the frequency was detected.”

    What this looked like in reality was invisible, low-frequency infrared light becoming visible blue light.

    3
    One of the nanoparticles the researchers have developed, seen through an electron microscope. Credit: Dr Sergey Kruk/ANU

    “We think that if we apply the same principles to a setup where we start from a red light, and we multiply the frequency by a factor of seven, that should bring us to extreme ultraviolet,” says Kruk.

    “It’s a commercial laser, which can be fairly compact and fairly affordable. And then it is engineered from a nanoparticle which is a novelty of our research. Our team designed and fabricated those particles ourselves.”

    There’s no physical reason they have to stop at seven multiplications either – that was just the highest number they could detect with the equipment they were using.

    Next, the team is going to have a run at getting to extreme ultraviolet light, as well as seeing if they can demonstrate its use practically.

    “We in particular interact with the School of Medical Research at ANU. So we will try to engage with biology and medical researchers to see something useful using those light sources,” says Kruk.

    This would take around three years to achieve, Kruk believes, or about the size of a research grant or PhD project.

    Science Advances

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ANU Campus

    The Australian National University (AU) is a world-leading university in Australia’s capital city, Canberra. Our location points to our unique history, ties to the Australian Government and special standing as a resource for the Australian people.

    Our focus on research as an asset, and an approach to education, ensures our graduates are in demand the world-over for their abilities to understand, and apply vision and creativity to addressing complex contemporary challenges.

    Australian National University (AU) is regarded as one of the world’s leading research universities, and is ranked as the number one university in Australia and the Southern Hemisphere by the 2021 QS World University Rankings. It is ranked 31st in the world by the 2021 QS World University Rankings, and 59th in the world (third in Australia) by the 2021 Times Higher Education.

    In the 2020 Times Higher Education Global Employability University Ranking, an annual ranking of university graduates’ employability, Australian National University (AU) was ranked 15th in the world (first in Australia). According to the 2020 QS World University by Subject, the university was also ranked among the top 10 in the world for Anthropology, Earth and Marine Sciences, Geography, Geology, Philosophy, Politics, and Sociology.

    Established in 1946, ANU is the only university to have been created by the Parliament of Australia. It traces its origins to Canberra University College, which was established in 1929 and was integrated into Australian National University (AU) in 1960. Australian National University (AU) enrolls 10,052 undergraduate and 10,840 postgraduate students and employs 3,753 staff. The university’s endowment stood at A$1.8 billion as of 2018.

    Australian National University (AU) counts six Nobel laureates and 49 Rhodes scholars among its faculty and alumni. The university has educated two prime ministers, 30 current Australian ambassadors and more than a dozen current heads of government departments of Australia. The latest releases of ANU’s scholarly publications are held through ANU Press online.

     
  • richardmitnick 7:32 am on April 28, 2023 Permalink | Reply
    Tags: "Unlocking the power of photosynthesis for clean energy production", , A carbon-free alternative to fossil fuels, , Artificial photosynthesis is a process of converting an abundant feedstock and sunlight into a chemical fuel., , , , , , , Clean-burning hydrogen fuel, , Developing an efficient system that employs artificial photosynthesis and utilizes semiconductor nanocrystals for light absorbers and catalysts., During natural photosynthesis plants absorb sunlight which they use to power chemical reactions to convert carbon dioxide and water into glucose and oxygen., Hydrogen fuel also has a high energy density which means it contains a lot of energy per unit of weight., Hydrogen is the most abundant element in the universe and can be produced from a variety of sources including water and natural gas and biomass., Hydrogen technology, Leveraging bacteria and nanomaterials to mimic photosynthesis and produce clean-burning hydrogen fuel, Nanotechnology, , Researchers at the University of Rochester are embarking on a project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst., Scientists need a source of electrons that is almost free or the system becomes too expensive., , There is virtually no pure hydrogen on Earth. It is almost always bound to other elements such as carbon or oxygen and in compounds like hydrocarbons and water., Using bacteria as an electron source for a nanocrystal catalyst, When bacteria grow under anaerobic conditions-conditions without oxygen-they respire cellular substances as fuel releasing electrons in the process., When hydrogen is burned the only byproduct is water vapor.   

    From The University of Rochester: “Unlocking the power of photosynthesis for clean energy production” 

    From The University of Rochester

    4.27.23
    Lindsey Valich
    lvalich@ur.rochester.edu

    1
    From left, Rochester scientists Anne S. Meyer, Todd Krauss, Kara Bren, and Andrew White are teaming up on a groundbreaking project to develop a system that uses bacteria and nanomaterials to mimic photosynthesis and produce environmentally friendly, clean-burning hydrogen fuel. (University of Rochester photos / J. Adam Fenster)

    A new grant will allow Rochester researchers to leverage bacteria and nanomaterials to mimic photosynthesis and produce clean-burning hydrogen fuel.

    As the world faces an increasing demand for clean and sustainable energy sources, scientists are turning to the power of photosynthesis for inspiration. With the goal of developing new, environmentally friendly techniques to produce clean-burning hydrogen fuel, a team of researchers at the University of Rochester is embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst.

    By leveraging the unique properties of both microorganisms and nanomaterials, the project has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.

    The Rochester team, led by Kara Bren, the Richard S. Eisenberg Professor in Chemistry, along with Todd Krauss, a professor of chemistry; Anne S. Meyer, an associate professor of biology; and Andrew White, an associate professor of chemical engineering, received a nearly $2 million, three-year grant from the US Department of Energy (DOE) to create their “living bio-nano system” to produce solar hydrogen.

    “Hydrogen is definitely a fuel of high interest for the DOE right now,” Bren says. “If we can figure out a way to efficiently extract hydrogen from water, this could lead to an incredible amount of growth in clean energy.”

    Why is hydrogen a promising fuel source?

    Hydrogen is “an ideal fuel,” Bren says, “because it’s environmentally-friendly and a carbon-free alternative to fossil fuels.”

    Hydrogen is the most abundant element in the universe and can be produced from a variety of sources, including water, natural gas, and biomass.

    Unlike fossil fuels, which produce greenhouse gases and other pollutants, when hydrogen is burned, the only byproduct is water vapor. Hydrogen fuel also has a high energy density, which means it contains a lot of energy per unit of weight. It can be used in a variety of applications, including fuel cells, and can be made on both small and large scales, making it feasible for everything from home use to industrial manufacturing.

    Why is hydrogen fuel difficult to produce?

    Despite hydrogen’s abundance, there is virtually no pure hydrogen on Earth; it is almost always bound to other elements, such as carbon or oxygen, in compounds like hydrocarbons and water. To use hydrogen as a fuel source, it must be extracted from these compounds.

    Scientists have historically extracted hydrogen either from fossil fuels, or, more recently, from water. To achieve the latter, there is a major push to employ artificial photosynthesis.

    During natural photosynthesis, plants absorb sunlight, which they use to power chemical reactions to convert carbon dioxide and water into glucose and oxygen. In essence, light energy is converted into chemical energy that fuels the organism.

    Similarly, artificial photosynthesis is a process of converting an abundant feedstock and sunlight into a chemical fuel, such as producing hydrogen gas from water. Systems that mimic photosynthesis require three components: a light absorber, a catalyst to make the fuel, and a source of electrons. These systems are typically submerged in water, and a light source provides energy to the light absorber. The energy allows the catalyst to combine the provided electrons together with protons from the surrounding water to produce hydrogen gas.

    Most of the current systems, however, rely on fossil fuels during the production process or don’t have an efficient way to transfer electrons.

    “The way hydrogen fuel is produced now effectively makes it a fossil fuel,” Bren says. “We want to get hydrogen from water in a light-driven reaction so we have a truly clean fuel—and do so in a way that we don’t use fossil fuels in the process.”

    What makes the Rochester system unique?

    Krauss’s group and Bren’s group have been working for about a decade to develop an efficient system that employs artificial photosynthesis and utilizes semiconductor nanocrystals for light absorbers and catalysts. Semiconductor nanocrystals are tiny crystals made of semiconducting materials. Due to their small size—they are composed of only a few hundred to a few thousand atoms—they have unique properties, which can be easily tuned. Krauss’s lab has made major advances in developing efficient quantum dots, one type of semiconductor nanocrystal.

    “Our role in the project is centered on making the nanoparticles that absorb light, and then conducting measurements of the rates of charge transfer in the system,” Krauss says. “This will help us figure out how to eventually scale the system and also make it more efficient.”

    Another challenge the researchers faced was figuring out a source of electrons and efficiently transferring the electrons from the electron donor to the nanocrystal. Other systems have used ascorbic acid, commonly known as vitamin C, to deliver electrons back to the system. While vitamin C might seem inexpensive, “you need a source of electrons that is almost free or the system becomes too expensive,” Krauss says.

    In a paper published in PNAS [below], Krauss and Bren demonstrate an unlikely electron donor: bacteria. They found that Shewanella oneidensis, bacteria first gathered from Lake Oneida in upstate New York, offers an effectively free, yet efficient, way to provide electrons to their system.

    While other labs have combined nanostructures and bacteria, “all of those efforts are taking electrons from the nanocrystals and putting them into the bacteria, then using the bacterial machinery to prepare fuels,” Bren says. “As far as we know, ours is the first case to go the opposite way and use the bacteria as an electron source to a nanocrystal catalyst.”

    What makes bacteria an efficient electron donor?

    When bacteria grow under anaerobic conditions—conditions without oxygen—they respire cellular substances as fuel, releasing electrons in the process. Shewanella oneidensis can take electrons generated by its own internal metabolism and donate them to the external catalyst.

    “This technique is really promising because it can produce hydrogen energy efficiently while relying only upon sustainable sources for electrons and energy,” says Meyer, whose lab has previously worked with Shewanella oneidensis to produce materials with unique properties. In this project, her lab is designing and creating new strains of Shewanella that will have enhanced abilities to transfer electrons. They will apply their pioneering 3D printing techniques to print living material that can incorporate quantum dots.

    “By combining our engineered Shewanella bacteria together with the photocatalyst developed by the Bren and Krauss labs, we will be able to create physically robust, long-lived materials that will make the hydrogen production reaction faster and more efficient,” Meyer says.

    Because the system is so complex, White’s lab will use machine learning and artificial intelligence techniques to determine which factors and variables could be changed to optimize the system; for instance, predicting which 3D-printed geometries will be the most likely to produce hydrogen more efficiently.

    Pursuing both basic and applied science

    While the ultimate goal is to develop a better system for producing hydrogen fuel, Bren is also committed to understanding the basic science behind the project.

    “For example,” she says, “how can we most effectively get the electrons from the bacteria to the quantum dots? How do nanomaterials and microorganisms work together?”

    Bren envisions that, in the future, individual homes could potentially have vats and underground tanks to harness the power of the sun and produce and store small batches of hydrogen, allowing people to power their homes and cars with inexpensive, clean-burning fuel. Bren notes there are currently trains, buses, and cars powered by hydrogen fuel cells but almost all the hydrogen that is available to power these systems comes from fossil fuels.

    “The technology’s out there,” she says, “but until the hydrogen’s coming from water in a light-driven reaction—without using fossil fuels—it isn’t really helping the environment.”

    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Rochester campus

    The University of Rochester is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation , The University of Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The University of Rochester is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to Optics and awards approximately half of all Optics degrees nationwide and is widely regarded as the premier Optics program in the nation and among the best in the world.

    The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic Organic Chemistry, including the first lab-based synthesis of morphine. The Rossell Hope Robbins Library serves as The University of Rochester’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy supported national laboratory.

    The University of Rochester Laboratory for Laser Energetics.

    The University of Rochester’s Eastman School of Music ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history The University of Rochester alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University.

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for The University of Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that The University of Rochester have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.”

    For the next 10 years The University of Rochester expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of The University of Rochester upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternity houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at The University of Rochester as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II The University of Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, The University of Rochester was invited to join the Association of American Universities as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering, business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to The University of Rochester after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such The University of Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 The University of Rochester’s financial position ranked third, near Harvard University’s endowment and the University of Texas System’s Permanent University Fund . Due to a decline in the value of large investments and a lack of portfolio diversity The University of Rochester ‘s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response The University of Rochester commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “The University of Rochester” was retained.

    Renaissance Plan
    In 1995 The University of Rochester president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The University of Rochester that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in Chemical Engineering; comparative literature; linguistics; and Mathematics, the last of which was met by national outcry. The plan was largely scrapped and Mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, The University of Rochester announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 The University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    The University of Rochester is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very High Research Activity”.

    The University of Rochester had a research expenditure of $370 million in 2018.

    In 2008 The University of Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018.

    Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center.

    Recently The University of Rochester has also engaged in a series of new initiatives to expand its programs in Biomedical Engineering and Optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus.

    Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. The University of Rochester also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by The University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. The University of Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 9:06 pm on April 26, 2023 Permalink | Reply
    Tags: , "Off-menu materials science", , , , , , , , , Nanotechnology, ,   

    From The School of Engineering At The Massachusetts Institute of Technology: “Off-menu materials science” 

    From The School of Engineering

    At

    The Massachusetts Institute of Technology

    4.26.23
    Daniel de Wolff | MIT Industrial Liaison Program

    1
    Robert Macfarlane’s work has implications for climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure. Photo: David Sella/MIT Corporate Relations

    A formerly self-described dyed-in-the-wool chemist who has gradually transitioned to research that sits at the interface of science and engineering, Associate Professor Robert Macfarlane and his Macfarlane Lab at MIT explore the chemical sciences that impact materials development and real-world applications. Considering his chosen line of research, he says, “I want to understand things from the level of a chemist, using the intuition of bonding and chemical interactions I gained from my chemistry education, and translate that molecular-level understanding into control over material structure across all length scales from micro- to macroscopic.” His work has implications for areas of impact including climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure.

    According to Macfarlane, one of the great limitations of industrial and applied research is a shortsighted view that equates “material design” with “material selection.” In other words, there is already a well-defined catalog of materials to consider when designing devices or architectures. Macfarlane’s hypothesis: Current devices and applications are stymied by the materials available. So, while many of his colleagues are focused on designing specific applications using just the materials that currently exist, Macfarlane and his lab prioritize making the materials that enable future development of those applications. He’s expanding the catalogue of materials from which both academics and industry can choose, building a new tool set to build better versions of the next solar cells, batteries, drug delivery vehicles, etc.

    “One of the driving principles of our work,” he says, “is designing smart materials that can spontaneously organize into more complex, higher-order structures upon introduction of a pre-programmed stimulus.” Broadly speaking, he applies these principles to developing novel ways to assemble nanoparticles that are scalable and compositionally versatile. His materials may look like, behave like, and can be processed like plastics, but they are partially (or in some cases predominantly) composed of metals, ceramics, or semiconductors.


    Robert J. Macfarlane – Understanding the Material Applications of Chemistry.

    His work with one of these new building blocks, self-assembling nanocomposite tectons (NCTs), put the Macfarlane lab on the map. He points out that while nanoparticle self-assembly is a decades-old concept, the field has persistently struggled to develop scalable, cost-effective methods to implement the innovation. At best, most researchers in the field making scalable materials this way can develop 2D films (i.e., a material that coats a full square centimeter area, but is only a few micrometers thick). Nobody had succeeded in building large structures that were macroscopic in all three dimensions until Macfarlane and his lab stepped in. Their innovation uses more scalable, cost-effective components like synthetic polymers as nanoparticle coatings to drive the particle assembly process. The resulting materials derive their properties from the original nanoparticle, but “sprinkling on these decorative objects,” as Macfarlane explains it, allows the particles to spontaneously organize themselves. The key advances enabled by the polymer coatings they use include greater scalability, but also greater composition versatility and better processability — meaning they can not only make the materials, but also shape them into physical forms that are critical for industrial use.

    Rather than reinventing the wheel for every potential device application or material, Macfarlane tunes his NCTs, imbuing them with particular properties — optical, electrical, or mechanical — enabling faster turnaround between envisioning or designing a new structure and beginning the process of fabricating it. As for potential applications, Macfarlane says, “The modular nature of NCTs provides multiple design handles to alter the composition, size, and thermodynamics of assembly to introduce new geometric arrangements and properties of the resulting material. As a result, these structures have potential application in the areas of plasmonics and photonics, heterogeneous catalysis, and energy storage.”

    More recently, the Macfarlane group has begun exploring cross-linkable nanoparticles. Otherwise referred to as “the XNP concept,” it has gained significant traction with industry. These XNPs similarly consist of nanoparticles coated with polymers, but with a key addition — the polymers can be chemically cross-linked after they are molded into the appropriate physical form. This cross-linking switches the XNP building blocks from being soft and malleable (i.e., a toothpaste or “Silly Putty”-like consistency) to being rigid, like a traditional plastic. While such materials are commonplace in polymer development, the Macfarlane lab’s XNPs are able to make such materials while still remaining as much as 85 percent-by-weight (wt%) nanoparticle content. For comparison, similar materials typically have about 1-10 wt% nanoparticle.

    This new XNP-enabled composition space enables combinations of properties that are otherwise nearly impossible to access. The work borrows similar ideas from NCTs in that XNPs are also nanoparticles coated in polymers, but applies to a wider range of materials and pushes the bar for scalability even higher as the specific polymers used are even easier to synthesize. Applications for this material might include protective coating for a battery or a micro electronic device that enables rapid heat dissipation to prevent device burnout. Other potential future applications include low dielectric materials required for 5G and 6G communications, scratch-resistant anti-reflection coatings for lenses and mirrors, or porous materials for gas separation and storage.

    “There are a host of different things that we are thinking about in the optical, mechanical, chemical, and thermal spaces,” says Macfarlane. “The XNP concept has become an enabling technology for all sorts of different applications. And we’ve been talking with multiple industry partners, each of which has their own specific niche. One of the advantages is that the XNP approach enables a plug-and-play concept where we can change out the polymer, change out the particle, or change out the physical form of the object being made, but the XNP concept remains the same.”

    Speaking of industry collaboration, Macfarlane notes a recent collaboration with a large adhesives company. “We were able to take some very simple constructs that we had been working with, and by sprinkling in a tiny amount of them to these adhesives, we kept the stickiness of the tape intact and increased the cohesive strength by factor of three. This is a very immediate, obvious real-world impact from something that we might not have even thought of if we hadn’t been talking with industry.”

    Going forward, Macfarlane says he and his lab intend to develop new materials with an eye toward scalability, sustainability, and versatility — using the templates that they have already developed and expanding them into the most impactful areas of application. “At the Macfarlane Lab, we don’t build one-off materials or one-off devices,” he says. “We build platforms that allow a multitude of people to make a variety of applications, devices, and technologies. Industry doesn’t always consider the limitations of the current materials-design catalogue. In my lab at MIT, we’re working to provide off-menu options to solve your real-world challenges.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT School of Engineering is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts. The School of Engineering has eight academic departments and two interdisciplinary institutes. The School grants SB, MEng, SM, engineer’s degrees, and PhD or ScD degrees. The school is the largest at MIT as measured by undergraduate and graduate enrollments and faculty members.

    Departments and initiatives:

    Departments:

    Aeronautics and Astronautics (Course 16)
    Biological Engineering (Course 20)
    Chemical Engineering (Course 10)
    Civil and Environmental Engineering (Course 1)
    Electrical Engineering and Computer Science (Course 6, joint department with MIT Schwarzman College of Computing)
    Materials Science and Engineering (Course 3)
    Mechanical Engineering (Course 2)
    Nuclear Science and Engineering (Course 22)

    Institutes:

    Institute for Medical Engineering and Science
    Health Sciences and Technology program (joint MIT-Harvard, “HST” in the course catalog)

    (Departments and degree programs are commonly referred to by course catalog numbers on campus.)

    Laboratories and research centers

    Abdul Latif Jameel Water and Food Systems Lab
    Center for Advanced Nuclear Energy Systems
    Center for Computational Engineering
    Center for Materials Science and Engineering
    Center for Ocean Engineering
    Center for Transportation and Logistics
    Industrial Performance Center
    Institute for Soldier Nanotechnologies
    Koch Institute for Integrative Cancer Research
    Laboratory for Information and Decision Systems
    Laboratory for Manufacturing and Productivity
    Materials Processing Center
    Microsystems Technology Laboratories
    MIT Lincoln Laboratory Beaver Works Center
    Novartis-MIT Center for Continuous Manufacturing
    Ocean Engineering Design Laboratory
    Research Laboratory of Electronics
    SMART Center
    Sociotechnical Systems Research Center
    Tata Center for Technology and Design

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    4

    The Computer Science and Artificial Intelligence Laboratory (CSAIL)

    The Kavli Institute For Astrophysics and Space Research

    MIT’s Institute for Medical Engineering and Science is a research institute at the Massachusetts Institute of Technology

    The MIT Laboratory for Nuclear Science

    The MIT Media Lab

    The MIT Sloan School of Management

    Spectrum

    MIT.nano

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 4:35 pm on April 18, 2023 Permalink | Reply
    Tags: "Molding of nanowires spurs unanticipated phases", , , , , , Nanotechnology, , Single-crystalline nanowires, Thermomechanical nanomolding   

    From The College of Engineering At Cornell University Via “The Chronicle”: “Molding of nanowires spurs unanticipated phases” 

    2

    From The College of Engineering

    At

    Cornell University

    Via

    “The Chronicle”

    4.17.23
    David Nutt | The Chronicle
    dn234@cornell.edu

    Sometimes to make big breakthroughs, you have to start very small.

    One way that scientists can get the most out of certain quantum materials is by fabricating nanoscale structures that generate new properties at the material’s surfaces and edges. Cornell researchers used the relatively straightforward process of thermomechanical nanomolding to create single-crystalline nanowires that can enable metastable phases that would otherwise be difficult to achieve with conventional methods.

    “We’re really interested in this synthesis method of nanomolding because it allows us to make many different kinds of materials into nanoscale quickly and easily, yet with some of the control that other nanomaterial synthesis methods lack, particularly control over the morphology and the size,” said Judy Cha, Ph.D. ’09, professor of materials science and engineering in Cornell Engineering, who led the project.

    1
    A scanning electron microscope image offers a top-down view of a single-crystalline nanowire of Mo4P3 created by thermomechanical nanomolding.
    Provided.

    The team’s paper is published April 12 in Matter [below]. The paper’s lead author is postdoctoral researcher Mehrdad Kiani.

    Graphical abstract
    2

    In thermomechanical nanomolding, a material is consolidated into a bulk feedstock, put into a porous mold and pressed at high temperatures for several hours. The resulting structure is then separated from the feedstock – in this case, by ultrasound vibrations, a process known as sonication – and deposited on a silicon wafer or other surface.

    The benefit of this process is that nanoscale amounts of solid materials can be molded at temperatures well below their melting point, representing easy processing conditions. This enables a wide range of materials to be leveraged for untapped exotic properties, similar to the way that graphene has revolutionized conduction in electronics.

    Cha’s team has been experimenting with molybdenum monophosphide (MoP), which is a topological compound.

    “Topological metals are predicted to have decreasing resistance as you go to smaller sizes, and MoP is not only topological but also has a really high carrier density (electrons per volume), which should further help bring the resistance down,” Kiani said.

    Cha and her team have previously shown [APL Materials (below)] that nanomolding of topological nanowires could accelerate the discovery of new electrical properties for applications such as quantum computing, microelectronics and clean-energy catalysts. These nanowires would be particularly well-suited for being interconnects between the billions of transistors in integrated circuits.

    Earlier this year, the group demonstrated [Advanced Materials (below)] that MoP nanowires had such low resistivity, they outperform copper interconnects.

    “That was a surprising discovery,” Cha said. “But the challenge was, we needed to continue to make MoP smaller and smaller, and the methods that we’ve been using just weren’t getting us there. So, then along came a nanomolding method, and we saw it as a way to make even smaller MoP nanowires to continue to check whether the resistivity is going to be still much lower than copper.”

    Instead, they found the nanowire molding process converted a crystal structure of MoP into a different composition: Mo4P3.

    “That was not something we expected. And even more surprising was that this phase Mo4P3 is not a stable phase that you normally get,” Cha said. “Now we realize that this molding method can potentially get us metastable phases.”

    The metastable Mo4P3’s resistivity was about 75% higher than MoP’s, so MoP still remains the most promising candidate for interconnects.

    “This really broadens our exploration space for new materials. And who knows what the possibilities may be?” Cha said. “When graphene was first discovered, it was not at all clear that we could use it in a golf ball, for example, to think about a mundane application. For now, we want to find the next example of Mo4P3, another metastable phase that we can arrest and then make it into nanowires.”

    Co-authors include doctoral student Quynh Sam; postdoctoral researchers Gangtae Jin and James Hart; former postdoctoral researcher Hyeuk Jin Han; research associate Betül Pamuk; and J.R. Stauff of Yale University.

    The research was supported by the National Science Foundation, Semiconductor Research Corporation and the Gordon and Betty Moore Foundation.

    The researchers made use of the Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell Center for Materials Research and Cornell NanoScale Science and Technology Facility, all of which are supported by the NSF.

    Matter
    APL Materials 2022
    See the above science paper for instructive material with images.
    Advanced Materials

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Cornell University College of Engineering is a division of Cornell University that was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. It is one of four private undergraduate colleges at Cornell that are not statutory colleges.

    It currently grants bachelors, masters, and doctoral degrees in a variety of engineering and applied science fields, and is the third largest undergraduate college at Cornell by student enrollment. The college offers over 450 engineering courses, and has an annual research budget exceeding US$112 million.

    The College of Engineering was founded in 1870 as the Sibley College of Mechanical Engineering and Mechanic Arts. The program was housed in Sibley Hall on what has since become the Arts Quad, both of which are named for Hiram Sibley, the original benefactor whose contributions were used to establish the program. The college took its current name in 1919 when the Sibley College merged with the College of Civil Engineering. It was housed in Sibley, Lincoln, Franklin, Rand, and Morse Halls. In the 1950s the college moved to the southern end of Cornell’s campus.

    The college is known for a number of firsts. In 1889, the college took over electrical engineering from the Department of Physics, establishing the first department in the United States in this field. The college awarded the nation’s first doctorates in both electrical engineering and industrial engineering. The Department of Computer Science, established in 1965 jointly under the College of Engineering and the College of Arts and Sciences, is also one of the oldest in the country.

    For many years, the college offered a five-year undergraduate degree program. However, in the 1960s, the course was shortened to four years for a B.S. degree with an optional fifth year leading to a masters of engineering degree. From the 1950s to the 1970s, Cornell offered a Master of Nuclear Engineering program, with graduates gaining employment in the nuclear industry. However, after the 1979 accident at Three Mile Island, employment opportunities in that field dimmed and the program was dropped. Cornell continued to operate its on-campus nuclear reactor as a research facility following the close of the program. For most of Cornell’s history, Geology was taught in the College of Arts and Sciences. However, in the 1970s, the department was shifted to the engineering college and Snee Hall was built to house the program. After World War II, the Graduate School of Aerospace Engineering was founded as a separate academic unit, but later merged into the engineering college.

    Cornell Engineering is home to many teams that compete in student design competitions and other engineering competitions. Presently, there are teams that compete in the Baja SAE, Automotive X-Prize (see Cornell 100+ MPG Team), UNP Satellite Program, DARPA Grand Challenge, AUVSI Unmanned Aerial Systems and Underwater Vehicle Competition, Formula SAE, RoboCup, Solar Decathlon, Genetically Engineered Machines, and others.

    Cornell’s College of Engineering is currently ranked 12th nationally by U.S. News and World Report, making it ranked 1st among engineering schools/programs in the Ivy League. The engineering physics program at Cornell was ranked as being No. 1 by U.S. News and World Report in 2008. Cornell’s operations research and industrial engineering program ranked fourth in nation, along with the master’s program in financial engineering. Cornell’s computer science program ranks among the top five in the world, and it ranks fourth in the quality of graduate education.

    The college is a leader in nanotechnology. In a survey done by a nanotechnology magazine Cornell University was ranked as being the best at nanotechnology commercialization, 2nd best in terms of nanotechnology facilities, the 4th best at nanotechnology research and the 10th best at nanotechnology industrial outreach.

    Departments and schools

    With about 3,000 undergraduates and 1,300 graduate students, the college is the third-largest undergraduate college at Cornell by student enrollment. It is divided into twelve departments and schools:

    School of Applied and Engineering Physics
    Department of Biological and Environmental Engineering
    Meinig School of Biomedical Engineering
    Smith School of Chemical and Biomolecular Engineering
    School of Civil & Environmental Engineering
    Department of Computer Science
    Department of Earth & Atmospheric Sciences
    School of Electrical and Computer Engineering
    Department of Materials Science and Engineering
    Sibley School of Mechanical and Aerospace Engineering
    School of Operations Research and Information Engineering
    Department of Theoretical and Applied Mechanics
    Department of Systems Engineering

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and Jacobs Technion-Cornell Institute in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land-grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through the SUNY – The State University of New York system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.

    History

    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.

    Research

    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States.

    Cornell is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration’s JPL-Caltech and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico until 2011, when they transferred the operations to SRI International, the Universities Space Research Association and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico].

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory, which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider(JP) and plan to participate in its construction and operation. The International Linear Collider(JP), to be completed in the late 2010s, will complement the CERN Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex (UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: