Tagged: Nanocrystals Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:30 am on January 11, 2018 Permalink | Reply
    Tags: , , , Extremely bright and fast light emission, Nanocrystals, ,   

    From ETH: “Extremely bright and fast light emission” 

    ETH Zürich bloc

    ETH Zürich

    Fabio Bergamin

    A type of quantum dot that has been intensively studied in recent years can reproduce light in every colour and is very bright. An international research team that includes scientists from ETH Zürich has now discovered why this is the case. The quantum dots could someday be used in light-emitting diodes.

    A caesium lead bromide nanocrystal under the electron microscope (crystal width: 14 nanometres). Individual atoms are visible as points. (Photograph: ETH Zürich / Empa / Maksym Kovalenko)

    An international team of researchers from ETH Zürich, IBM Research Zürich, Empa and four American research institutions have found the explanation for why a class of nanocrystals that has been intensively studied in recent years shines in such incredibly bright colours. The nanocrystals contain caesium lead halide compounds that are arranged in a perovskite lattice structure.

    Three years ago, Maksym Kovalenko, a professor at ETH Zürich and Empa, succeeded in creating nanocrystals – or quantum dots, as they are also known – from this semiconductor material. “These tiny crystals have proved to be extremely bright and fast emitting light sources, brighter and faster than any other type of quantum dot studied so far,” says Kovalenko. By varying the composition of the chemical elements and the size of the nanoparticles, he also succeeded in producing a variety of nanocrystals that light up in the colours of the whole visible spectrum. These quantum dots are thus also being treated as components for future light-emitting diodes and displays.

    In a study published in the most recent edition of the scientific journal Nature, the international research team examined these nanocrystals individually and in great detail. The scientists were able to confirm that the nanocrystals emit light extremely quickly. Previously-studied quantum dots typically emit light around 20 nanoseconds after being excited when at room temperature, which is already very quick. “However, caesium lead halide quantum dots emit light at room temperature after just one nanosecond,” explains Michael Becker, first author of the study. He is a doctoral student at ETH Zürich and is carrying out his doctoral project at IBM Research.

    A sample with several green glowing perovskite quantum dots excited by a blue laser. (Photograph: IBM Research / Thilo Stöferle)

    Electron-hole pair in an excited energy state

    Understanding why caesium lead halide quantum dots are not only fast but also very bright entails diving into the world of individual atoms, light particles (photons) and electrons. “You can use a photon to excite semiconductor nanocrystals so that an electron leaves its original place in the crystal lattice, leaving behind a hole,” explains David Norris, Professor of Materials Engineering at ETH Zürich. The result is an electron-hole pair in an excited energy state. If the electron-hole pair reverts to its energy ground state, light is emitted.

    Under certain conditions, different excited energy states are possible; in many materials, the most likely of these states is called a dark one. “In such a dark state, the electron hole pair cannot revert to its energy ground state immediately and therefore the light emission is suppressed and occurs delayed. This limits the brightness”, says Rainer Mahrt, a scientist at IBM Research.

    No dark state

    The researchers were able to show that the caesium lead halide quantum dots differ from other quantum dots: their most likely excited energy state is not a dark state. Excited electron-hole pairs are much more likely to find themselves in a state in which they can emit light immediately. “This is the reason that they shine so brightly,” says Norris.

    The researchers came to this conclusion using their new experimental data and with the help of theoretical work led by Alexander Efros, a theoretical physicist at the Naval Research Laboratory in Washington. He is a pioneer in quantum dot research and, 35 years ago, was among the first scientists to explain how traditional semiconductor quantum dots function.

    Great news for data transmission

    As the examined caesium lead halide quantum dots are not only bright but also inexpensive to produce they could be applied in television displays, with efforts being undertaken by several companies, in Switzerland and world-wide. “Also, as these quantum dots can rapidly emit photons, they are of particular interest for use in optical communication within data centres and supercomputers, where fast, small and efficient components are central,” says Mahrt. Another future application could be the optical simulation of quantum systems which is of great importance to fundamental research and materials science.

    ETH professor Norris is also interested in using the new knowledge for the development of new materials. “As we now understand why these quantum dots are so bright, we can also think about engineering other materials with similar or even better properties,” he says.

    Science team:
    Becker MA, Vaxenburg R, Nedelcu G, Sercel PC, Shabaev A, Mehl MJ, Michopoulos JG, Lambrakos SG, Bernstein N, Lyons JL, Stöferle T, Mahrt RF, Kovalenko MV, Norris DJ, Rainò G, Efros AL.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    ETH Zürich campus
    ETH Zürich is one of the leading international universities for technology and the natural sciences. It is well known for its excellent education, ground-breaking fundamental research and for implementing its results directly into practice.

    Founded in 1855, ETH Zürich today has more than 18,500 students from over 110 countries, including 4,000 doctoral students. To researchers, it offers an inspiring working environment, to students, a comprehensive education.

    Twenty-one Nobel Laureates have studied, taught or conducted research at ETH Zürich, underlining the excellent reputation of the university.

  • richardmitnick 11:03 am on July 31, 2017 Permalink | Reply
    Tags: , Nanocrystals, , , , , Superlattices,   

    From SLAC: “Scientists Watch ‘Artificial Atoms’ Assemble into Perfect Lattices with Many Uses” 

    SLAC Lab

    July 31, 2017
    Written by Glennda Chui

    Press Office Contact:
    Andrew Gordon
    (650) 926-2282

    An illustration shows nanocrystals assembling into an ordered ‘superlattice’ – a process that a SLAC/Stanford team was able to observe in real time with X-rays from the Stanford Synchrotron Radiation Lightsource (SSRL). They discovered that this assembly takes just a few seconds when carried out in hot solutions. The results open the door for rapid self-assembly of nanocrystal building blocks into complex structures with applications in optoelectronics, solar cells, catalysis and magnetic materials. (Greg Stewart/SLAC National Accelerator Laboratory.)


    Some of the world’s tiniest crystals are known as “artificial atoms” because they can organize themselves into structures that look like molecules, including “superlattices” that are potential building blocks for novel materials.

    Now scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have made the first observation of these nanocrystals rapidly forming superlattices while they are themselves still growing. What they learn will help scientists fine-tune the assembly process and adapt it to make new types of materials for things like magnetic storage, solar cells, optoelectronics and catalysts that speed chemical reactions.

    The key to making it work was the serendipitous discovery that superlattices can form superfast – in seconds rather than the usual hours or days – during the routine synthesis of nanocrystals. The scientists used a powerful beam of X-rays at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) to observe the growth of nanocrystals and the rapid formation of superlattices in real time.

    A paper describing the research, which was done in collaboration with scientists at the DOE’s Argonne National Laboratory, was published today in Nature.

    A lab in the Stanford Chemical Engineering Department where nanocrystals are grown. Experiments at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) were able to observe the simultaneous growth of nanocrystals and superlattices for the first time. (Dawn Harmer/SLAC National Accelerator Laboratory.)

    “The idea is to see if we can get an independent understanding of how these superlattices grow so we can make them more uniform and control their properties,” said Chris Tassone, a staff scientist at SSRL who led the study with Matteo Cargnello, assistant professor of chemical engineering at Stanford.

    Tiny Crystals with Outsized Properties

    Scientists have been making nanocrystals in the lab since the 1980s. Because of their tiny size –they’re billionths of a meter wide and contain just 100 to 10,000 atoms apiece — they are governed by the laws of quantum mechanics, and this gives them interesting properties that can be changed by varying their size, shape and composition. For instance, spherical nanocrystals known as quantum dots, which are made of semiconducting materials, glow in colors that depend on their size; they are used in biological imaging and most recently in high-definition TV displays.

    In the early 1990s, researchers started using nanocrystals to build superlattices, which have the ordered structure of regular crystals, but with small particles in place of individual atoms. These, too, are expected to have unusual properties that are more than the sum of their parts.

    But until now, superlattices have been grown slowly at low temperatures, sometimes in a matter of days.

    That changed in February 2016, when Stanford postdoctoral researcher Liheng Wu serendipitously discovered that the process can occur much faster than scientists had thought.

    The experimental set-up at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) where scientists used an X-ray beam to observe superlattices forming during the synthesis of nanocrystals for the first time. The vessel where the reactions took place is at bottom center, wrapped in gold heating tape that boosted the temperature inside to more than 230 degrees Celsius. (Liheng Wu/Stanford University.)

    ‘Something Weird Is Happening’

    He was trying to make nanocrystals of palladium – a silvery metal that’s used to promote chemical reactions in catalytic converters and many industrial processes – by heating a solution containing palladium atoms to more than 230 degrees Celsius. The goal was to understand how these tiny particles form, so their size and other properties could be more easily adjusted.

    The team added small windows to a reaction chamber about the size of a tangerine so they could shine an SSRL X-ray beam through it and watch what was happening in real time.

    “It’s kind of like cooking,” Cargnello explained. “The reaction chamber is like a pan. We add a solvent, which is like the frying oil; the main ingredients for the nanocrystals, such as palladium; and condiments, which in this case are surfactant compounds that tune the reaction conditions so you can control the size and composition of the particles. Once you add everything to the pan, you heat it up and fry your stuff.”

    Wu and Stanford graduate student Joshua Willis expected to see the characteristic pattern made by X-rays scattering off the tiny particles. They saw a completely different pattern instead.

    “So something weird is happening,” they texted their adviser.

    The something weird was that the palladium nanocrystals were assembling into superlattices.

    Members of the nanocrystal research team, from left: Assistant Professor Jian Qin, postdoctoral researcher Liheng Wu and Assistant Professor Matteo Cargnello, all of Stanford; SLAC staff scientist Chris Tassone; and Stanford graduate student Joshua Willis. (Dawn Harmer/SLAC National Accelerator Laboratory)

    A Balance of Forces

    At this point, “The challenge was to understand what brings the particles together and attracts them to each other but not too strongly, so they have room to wiggle around and settle into an ordered position,” said Jian Qin, an assistant professor of chemical engineering at Stanford who performed theoretical calculations to better understand the self-assembly process.

    Once the nanocrystals form, what seems to be happening is that they acquire a sort of hairy coating of surfactant molecules. The nanocrystals glom together, attracted by weak forces between their cores, and then a finely tuned balance of attractive and repulsive forces between the dangling surfactant molecules holds them in just the right configuration for the superlattice to grow.

    To the scientists’ surprise, the individual nanocrystals then kept on growing, along with the superlattices, until all the chemical ingredients in the solution were used up, and this unexpected added growth made the material swell. The researchers said they think this occurs in a wide range of nanocrystal systems, but had never been seen because there was no way to observe it in real time before the team’s experiments at SSRL.

    “Once we understood this system, we realized this process may be more general than we initially thought,” Wu said. “We have demonstrated that it’s not only limited to metals, but it can also be extended to semiconducting materials and very likely to a much larger set of materials.”

    The team has been doing follow-up experiments to find out more about how the superlattices grow and how they can tweak the size, composition and properties of the finished product.

    Ian Salmon McKay, a graduate student in chemical engineering at Stanford, and Benjamin T. Diroll, a postdoctoral researcher at Argonne National Laboratory’s Center for Nanoscale Materials (CNM), also contributed to the work.

    SSRL and CNM are DOE Office of Science User Facilities. The research was funded by the DOE Office of Science and by a Laboratory Directed Research and Development grant from SLAC.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: