Tagged: MSU Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:13 pm on December 30, 2016 Permalink | Reply
    Tags: , Artemisinin, , MSU, Tuberculosis   

    From MSU: “Ancient Chinese malaria remedy fights TB” 

    Michigan State Bloc

    Michigan State University

    Dec. 19, 2016
    Robert Abramovitch
    Microbiology and Molecular Genetics office
    (517) 884-5416
    abramov5@msu.edu

    Sarina Gleason
    Media Communications office
    (517) 355-9742
    sarina.gleason@cabs.msu.edu

    1
    Robert Abramovitch/Michigan State University

    A centuries-old herbal medicine, discovered by Chinese scientists and used to effectively treat malaria, has been found to potentially aid in the treatment of tuberculosis and may slow the evolution of drug resistance.

    In a promising study led by Robert Abramovitch, a Michigan State University microbiologist and TB expert, the ancient remedy artemisinin stopped the ability of TB-causing bacteria, known as Mycobacterium tuberculosis, to become dormant. This stage of the disease often makes the use of antibiotics ineffective.

    The study is published in the journal Nature Chemical Biology.

    “When TB bacteria are dormant, they become highly tolerant to antibiotics,” Abramovitch said, an assistant professor in the College of Veterinary Medicine. “Blocking dormancy makes the TB bacteria more sensitive to these drugs and could shorten treatment times.”

    One-third of the world’s population is infected with TB and the disease killed 1.8 million people in 2015, according to the Centers for Disease Control and Prevention.

    Mycobacterium tuberculosis, or Mtb, needs oxygen to thrive in the body. The immune system starves this bacterium of oxygen to control the infection. Abramovitch and his team found that artemisinin attacks a molecule called heme, which is found in the Mtb oxygen sensor. By disrupting this sensor and essentially turning it off, the artemisinin stopped the disease’s ability to sense how much oxygen it was getting.

    “When the Mtb is starved of oxygen, it goes into a dormant state, which protects it from the stress of low-oxygen environments,” Abramovitch said. “If Mtb can’t sense low oxygen, then it can’t become dormant and will die.”

    Abramovitch indicated that dormant TB can remain inactive for decades in the body. But if the immune system weakens at some point, it can wake back up and spread. Whether it wakes up or stays ‘asleep’ though, he said TB can take up to six months to treat and is one of the main reasons the disease is so difficult to control.

    “Patients often don’t stick to the treatment regimen because of the length of time it takes to cure the disease,” he said. “Incomplete therapy plays an important role in the evolution and spread of multi-drug resistant TB strains.”

    He said the research could be key to shortening the course of therapy because it can clear out the dormant, hard-to-kill bacteria. This could lead to improving patient outcomes and slowing the evolution of drug-resistant TB.

    After screening 540,000 different compounds, Abramovitch also found five other possible chemical inhibitors that target the Mtb oxygen sensor in various ways and could be effective in treatment as well.

    “Two billion people worldwide are infected with Mtb,” Abramovitch said. “TB is a global problem that requires new tools to slow its spread and overcome drug resistance. This new method of targeting dormant bacteria is exciting because it shows us a new way to kill it. ”

    The National Institutes of Health, MSU AgBioResearch and the Bill and Melinda Gates Foundation funded the research. Other MSU researchers involved in the study include Huiqing Zheng, Christopher Colvin and Benjamin Johnson in the Department of Microbiology and Molecular Genetics, as well as collaborators from Sweet Briar College and the University of Michigan.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (MSU) is a public research university located in East Lansing, Michigan, United States. MSU was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    MSU pioneered the studies of packaging, hospitality business, plant biology, supply chain management, and telecommunication. U.S. News & World Report ranks several MSU graduate programs in the nation’s top 10, including industrial and organizational psychology, osteopathic medicine, and veterinary medicine, and identifies its graduate programs in elementary education, secondary education, and nuclear physics as the best in the country. MSU has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.

    Following the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, MSU is the seventh-largest university in the United States (in terms of enrollment), with over 49,000 students and 2,950 faculty members. There are approximately 532,000 living MSU alumni worldwide.

     
  • richardmitnick 4:34 pm on September 26, 2016 Permalink | Reply
    Tags: , , MSU, Neutron capture   

    From MSU: “Solving a heavy-duty mystery” 

    Michigan State Bloc

    Michigan State University

    Sept. 26, 2016
    Tom Oswald
    Sean Liddick

    To determine how the universe’s heavy elements – gold, silver and many others – came about, a team of international researchers is studying both the largest and smallest things known to us – stars and atoms.

    The team, led by scientists from Michigan State University, is providing critical data to computer models of what are known as stellar events – supernovas and neutron stars mergers, to be exact.

    By matching the computer models with real observations of these cataclysmic events, it could help answer one of astronomy’s most puzzling questions.

    A supernova is a star that, in its old age, collapses and then catastrophically explodes under its own weight; a neutron-star merger occurs when two of these small yet incredibly massive stars come together and spew out huge amounts of stellar debris.

    By conducting experiments in MSU’s National Superconducting Cyclotron Laboratory, the researchers were able to come a bit closer to determining what actually goes on during these stellar events, an important step in determining how heavy elements were formed.

    1
    A technician works on equipment at the National Superconducting Cyclotron Laboratory at Michigan State University.

    What the researchers were looking at, at the atomic-sized level, is something called neutron capture. This is when an atom latches onto a neutron, increasing its mass number and helping it attain “heavy” status.

    The heavy elements produced in these processes have atomic numbers greater than 26. The atomic number is the number of protons in the nucleus of an atom.

    “What we’re trying to do is infer, or re-create, the probability of neutron capture, because it’s almost impossible to measure directly,” said Sean Liddick, an MSU associate professor with appointments in chemistry and the NSCL. “We want to match the theoretical models to the stellar observations.”

    Using a telescope, the observational astronomers were able to determine the amount of heavy elements in that spectrum. “Then,” said Liddick, “what you would like to be able to do is compare that to a theoretical prediction for what happens during these explosive events.

    “What we’re doing is trying to remove some of the uncertainty and build a better theoretical model.”

    The research is published in the journal Physical Review Letters. Liddick said this research is a harbinger of the work that will be done at the Facility for Rare Isotope Beams, currently under construction at MSU.

    “We’re laying the groundwork that will be significantly extended by the broader reach provided by FRIB,” he said.

    MSU is establishing FRIB as a new scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science.

    Under construction on campus and operated by MSU, FRIB will enable scientists to make discoveries about the properties of rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security and industry.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (MSU) is a public research university located in East Lansing, Michigan, United States. MSU was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    MSU pioneered the studies of packaging, hospitality business, plant biology, supply chain management, and telecommunication. U.S. News & World Report ranks several MSU graduate programs in the nation’s top 10, including industrial and organizational psychology, osteopathic medicine, and veterinary medicine, and identifies its graduate programs in elementary education, secondary education, and nuclear physics as the best in the country. MSU has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.

    Following the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, MSU is the seventh-largest university in the United States (in terms of enrollment), with over 49,000 students and 2,950 faculty members. There are approximately 532,000 living MSU alumni worldwide.

     
  • richardmitnick 12:59 pm on September 12, 2016 Permalink | Reply
    Tags: , , , MSU   

    From MSU: “Alzheimer’s beginnings prove to be a sticky situation” 

    Michigan State Bloc

    Michigan State University

    Sept. 12, 2016
    Layne Cameron
    Lisa Lapidus

    1
    MSU’s Lisa Lapidus uses laser technology to reveal a common trait of Alzheimer’s disease – a sticky situation that could lead to new targets for medicinal treatments. Photo by G.L. Kohuth

    Laser technology has revealed a common trait of Alzheimer’s disease – a sticky situation that could lead to new targets for medicinal treatments.

    Alzheimer’s statistics are always staggering. The neurodegenerative disease affects an estimated 5 million Americans, one in three seniors dies with Alzheimer’s or a form of dementia, it claims more lives than breast and prostate cancers combined, and its incidence is rising.

    To help fight this deadly disease, Lisa Lapidus, Michigan State University professor of physics and astronomy, has found that peptides, or strings of amino acids, related to Alzheimer’s wiggle at dangerous speeds prior to clumping or forming the plaques commonly associated with Alzheimer’s.

    “Strings of 40 amino acids are the ones most-commonly found in healthy individuals, but strings of 42 are much more likely to clump,” said Lapidus, who published the results in the current issue of ChemPhysChem. “We found that the peptides’ wiggle speeds, the step before aggregation, was five times slower for the longer strings, which leaves plenty of time to stick together rather than wiggle out of the way.”

    This so-called “wiggle” precedes clumping, or aggregating, which is the first step of neurological disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease. Lapidus pioneered the use of lasers to study the speed of protein reconfiguration before aggregation.

    If reconfiguration is much faster or slower than the speed at which proteins bump into each other, aggregation is slow. If reconfiguration is the same speed, however, aggregation is fast. She calls the telltale wiggle that she discovered the “dangerous middle.”

    “The dangerous middle is the speed in which clumping happens fastest,” Lapidus said. “But we were able to identify some ways that we can bump that speed into a safer zone.”

    Lapidus and her team of MSU scientists, including Srabasti Acharya (now a biotechnology researcher in the San Francisico Bay area), Kinshuk Srivastava and Suresh Babu Nagarajan, found that increasing pH levels kept the amino acids wiggling at fast, safe speeds. Also, a naturally occurring molecule, curcumin (from the spice turmeric), kept the peptide out of the dangerous middle.

    While this is not a viable drug candidate because it does not easily cross the blood-brain barrier, the filter that controls what chemicals reach the brain, they do provide strong leads that could lead to medicinal breakthroughs.

    Along with new drug targets, Lapidus’ research provides a potential model of early detection. By the time patients show symptoms and go to a doctor, aggregation already has a stronghold in their brains. Policing amino acids for wiggling at dangerous speeds could tip off doctors long before the patient begins to suffer from the disease.

    This research was funded by the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (MSU) is a public research university located in East Lansing, Michigan, United States. MSU was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    MSU pioneered the studies of packaging, hospitality business, plant biology, supply chain management, and telecommunication. U.S. News & World Report ranks several MSU graduate programs in the nation’s top 10, including industrial and organizational psychology, osteopathic medicine, and veterinary medicine, and identifies its graduate programs in elementary education, secondary education, and nuclear physics as the best in the country. MSU has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.

    Following the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, MSU is the seventh-largest university in the United States (in terms of enrollment), with over 49,000 students and 2,950 faculty members. There are approximately 532,000 living MSU alumni worldwide.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: