Tagged: MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:33 pm on October 8, 2021 Permalink | Reply
    Tags: "The strange afterglow of a gamma-ray burst", , Gamma-ray bursts (GRBs) are bright X-ray and gamma-ray flashes observed in the sky emitted by distant extragalactic sources., GRBs are associated with the creation or merging of neutron stars or black holes., H.E.S.S. Collaboration, MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE), ,   

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE): “The strange afterglow of a gamma-ray burst” 

    From MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE)

    June 04, 2021 [Why now? Where has this been?]

    Dr. Gertrud Hönes
    MPG Institut für Kernphysik, Heidelberg
    +49 6221 516-572
    info@mpi-hd.mpg.de

    Edna L. Ruiz Velasco
    +49 6221 516-137
    Edna.ruiz@mpi-hd.mpg.de

    Prof. Dr. Felix Aharonian
    +49 6221 516-485
    Felix.Aharonian@mpi-hd.mpg.de

    Prof. Dr. Jim Hinton
    +49 6221 516-140
    jim.hinton@mpi-hd.mpg.de

    Researchers from the H.E.S.S. Collaboration succeeded to derive the intrinsic spectrum of the very-high-energy gamma-ray afterglow emission of a relatively nearby gamma-ray burst. Surprisingly, the gamma-ray spectrum resembles that of the much lower-energy X-rays, while the fading emission from both bands was observed to march in parallel over three nights. These remarkable findings challenge the current emission scenarios.

    H.E.S.S. Čerenkov Telescope Array, located on the Cranz family farm, Göllschau, in Namibia, near the Gamsberg searches for cosmic rays, altitude, 1,800 m (5,900 ft).

    1

    Flash in space: An artist’s view of a gamma-ray burst. © DESY Electron Synchrotron[ Deütsches Elektronen-Synchrotron](DE), Science Communication Lab.

    Gamma-ray bursts (GRBs) are bright X-ray and gamma-ray flashes observed in the sky emitted by distant extragalactic sources. They are associated with the creation or merging of neutron stars or black holes; processes which result in an explosive outburst of material moving incredibly close to the speed of light. The initial flashes, which last a few seconds, are followed by a long-lived afterglow phase that can be detectable for several days in X-rays, and often weeks or even months in the optical and radio bands. It was this afterglow emission that first confirmed the extragalactic origin of GRBs. The X-ray afterglow radiation is produced by accelerated electrons interacting and losing energy within the blast wave magnetic field. This energy is radiated in the form of synchrotron photons.

    GRB afterglows are considered to be an excellent cosmic laboratory for studying acceleration of particles in the cosmos, due to the apparent simplicity of the underlying physics. This is in contrast with the prompt phase which is extremely complex. Many aspects of the afterglow emission are well known in X-rays, but the very-high-energy (VHE, >100 GeV) emission – six orders of magnitude more energetic than X-rays – has been a missing piece of the multi-wavelength puzzle.

    In the VHE regime, making a detection is particularly challenging since the distant Universe is not fully transparent to VHE gamma rays due to their absorption in the background light that permeates the Universe. In recent years, major steps have been made toward the understanding of GRBs at VHEs with two detections, the first observed 10 hours after the afterglow onset and the second within the first hour of the afterglow. Both were observable for no more than two hours and happened at moderate cosmological distances, limiting the highest energy in the spectrum that could be probed. The process responsible for the most energetic emission, however, remained inconclusive.

    2
    Fading burst: The H.E.S.S. sky maps of GRB190829A show the fading afterglow emission over the three observa-tion nights (panels A, B, C). © H.E.S.S. Collaboration.

    Now, the international team of researchers operating the H.E.S.S. (High Energy Stereoscopic System) array of atmospheric Čerenkov telescopes, reported the detection of a third GRB – at a redshift of only z = 0.0785, a mere 1 billion light-years away. “A gamma-ray burst occurring in our cosmic backyard like this one, is a very rare thing, and a fantastic opportunity to understand what is going on at the highest energies” – mentioned Jim Hinton, director at MPG Institut für Kernphysik (DE).

    On 29 August 2019, the Fermi Gamma-Ray Burst Monitor and the Swift Burst Alert Telescope detected and localised GRB 190829A.

    National Aeronautics and Space Administration(US) Fermi Large Area Telescope

    National Aeronautics and Space Administration(US)/Fermi Gamma Ray Space Telescope.

    National Aeronautics and Space Administration(US) Neil Gehrels Swift Observatory.

    Subsequently, ground-based observatories including H.E.S.S. turned to look at this position to monitor the evolution of this burst over a very wide range of wavelengths. Observations with H.E.S.S. started 4 hours after the burst, when the source became visible to its telescopes. Edna Ruiz Velasco, a PhD student from MPIK, was one of the lead investigators in the work: “We have been able to cover the GRB afterglow from 4 to 56 hours after the initial explosion and measure its emission very accurately”. Dmitry Khangulyan, a H.E.S.S. member from Rikkyo University [立教大学](JP), and an MPIK alumnus, added: “This new result provides two new and unique observational insights about GRB afterglows.”

    The accurate determination of the spectrum over more than an order of magnitude in energy, from 0.18 to 3.3 TeV, and covering an extended temporal range of several days, was made possible by a combination of good instrumental sensitivity and the fortuitous proximity of the GRB. Such accurate measurements over a broad energy range have allowed the intrinsic VHE spectrum to be reliably probed for the first time. As Carlo Romoli, a post-doctoral researcher at MPIK noted, “these new results have revealed curious similarities between the X-ray and VHE gamma-ray emission”.

    Such a strong connection, however, is unexpected in standard GRB theory, which predicts a separate origin for the VHE component. In this theory, synchrotron emission up to VHE gamma rays is not possible, since a maximum energy is placed on the electrons. The observations by H.E.S.S., however, can be explained if electrons are accelerated beyond this limit. “The far-reaching implication of this possibility highlights the need for further studies of VHE GRB afterglow emission”, mentioned Felix Aharonian, external scientific member of MPIK and at Dublin Institute for Advanced Studies [Institiúid Ard-Léinn Bhaile Átha Cliath](IE).

    As highlighted by Andrew Taylor from DESY-Zeuthen (and another MPIK alumnus), “the community is getting more and more excited about the prospects for the next generation of observatories. After decades of searching, we are finally getting closer to understanding the processes that govern this extremely energetic phenomena”. Looking to the future, the prospects for the detection of GRBs by future instruments look promising. Certainly, the abundance of GRB afterglow detections over the last few years indicates that regular detections in the VHE band will become rather common. However, a high bar has now been set by this H.E.S.S. result, which has highlighted the scientific importance of the detection at VHE of local GRBs, particularly at late times in the afterglow.

    Science paper:
    Science

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Nuclear Physics [MPG Institut für Kernphysik](DE) is a research institute in Heidelberg, Germany.

    The institute is one of the 80 institutes of the Max-Planck-Gesellschaft (Max Planck Society), an independent, non-profit research organization. The MPG Institute for Nuclear Physics was founded in 1958 under the leadership of Wolfgang Gentner. Its precursor was the Institute for Physics at the MPI for Medical Research.

    Today, the institute’s research areas are: crossroads of particle physics and astrophysics (astroparticle physics) and many-body dynamics of atoms and molecules (quantum dynamics).

    The research field of Astroparticle Physics combines questions related to macrocosm and microcosm. Unconventional methods of observation for gamma rays and neutrinos open new windows to the universe. What lies behind “dark matter” and “dark energy” is theoretically investigated.

    The research field of Quantum Dynamics is represented by the divisions of Klaus Blaum, Christoph Keitel and Thomas Pfeifer. Using reaction microscopes, simple chemical reactions can be “filmed”. Storage rings and traps allow precision experiments almost under space conditions. The interaction of intense laser light with matter is investigated using quantum-theoretical methods.

    Further research fields are cosmic dust, atmospheric physics as well as fullerenes and other carbon molecules.

    Scientists at the MPIK collaborate with other research groups in Europe and all over the world and are involved in numerous international collaborations, partly in a leading role. Particularly close connections to some large-scale facilities like GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtzzentrum für Schwerionenforschung] (DE), DESY Electron Synchrotron[ Deütsches Elektronen-Synchrotron](DE), European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN], TRIUMF-Canadian national particle accelerator center (CA), and INFN-LNGS – Gran Sasso National Laboratory (IT) exist. The institute has about 390 employees, as well as many diploma students and scientific guests.

    In the local region, the Institute cooperates closely with The Ruprecht Karl University of Heidelberg, [Ruprecht-Karls-Universität Heidelberg] (DE), where the directors and further members of the Institute are teaching. Three International Max Planck Research Schools (IMPRS) and a graduate school serve to foster young scientists.

    The institute operates a cryogenic ion storage ring (CSR) dedicated to the study of molecular ions under interstellar space conditions. Several Penning ion traps are used to measure fundamental constants of nature, such as the atomic mass of the electron and of nuclei. A facility containing several electron beam ion traps (EBIT) that produce and store highly charged ions is dedicated to fundamental atomic structure as well as astrophysical investigations. Large cameras for gamma-ray telescopes (H.E.S.S. – The High Energy Stereoscopic System (NM), CTA Consortium – Čerenkov Telescope Array), Dark Matter (Gran Sasso XENON1T Dark Matter Search (IT), DARWIN – Dark Matter WIMP Search With Liquid Xenon The University of Zürich [Universität Zürich ](CH)), and neutrino detectors are developed and tested on-site.

    MPG Institute for the Advancement of Science [MPG zur Förderung der Wissenschaften e. V](DE) is Germany’s most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. The more than 15,000 publications each year in internationally renowned scientific journals are proof of the outstanding research work conducted at MPG Institutes – and many of those articles are among the most-cited publications in the relevant field.

    What is the basis of this success? The scientific attractiveness of the MPG Society is based on its understanding of research: MPG institutes are built up solely around the world’s leading researchers. They themselves define their research subjects and are given the best working conditions, as well as free reign in selecting their staff. This is the core of the Harnack principle, which dates back to Adolph von Harnack, the first president of the Kaiser Wilhelm Society, which was established in 1911. This principle has been successfully applied for nearly one hundred years. The MPG Society continues the tradition of its predecessor institution with this structural principle of the person-centered research organization.

    The currently 83 MPG Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. MPG Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the MPG Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University (US), Massachusetts Institute of Technology (US),
    Stanford University (US)and the National Institutes of Health (US)). In terms of total research volume (unweighted by citations or impact), the MPG Society is only outranked by the Chinese Academy of Sciences [中国科学院] (CN), the Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the MPG Society after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and the DOE’s Argonne National Laboratory (US).

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of MPG Research Groups (MPRG) and International MPG Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the MPG Society.

    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.

    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPG institute has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools
    Together with the Association of Universities and other Education Institutions in Germany, the MPG Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    Cologne Graduate School of Ageing Research, Cologne
    International Max Planck Research School for Intelligent Systems, at the MPG Institute for Intelligent Systems (DE) located in Tübingen and Stuttgart
    International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPG for Astronomy
    International Max Planck Research School for Astrophysics, Garching at the MPG Institute for Astrophysics
    International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    International Max Planck Research School for Computer Science, Saarbrücken
    International Max Planck Research School for Earth System Modeling, Hamburg
    International Max Planck Research School for Elementary Particle Physics, Munich, at the MPG Institute for Physics
    International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the MPG Institute for Terrestrial Microbiology
    International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    International Max Planck Research School “From Molecules to Organisms”, Tübingen at the MPG Institute for Developmental Biology
    International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPG Institute for Gravitational Physics
    International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the MPG Institute for Heart and Lung Research
    International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    International Max Planck Research School for Language Sciences, Nijmegen
    International Max Planck Research School for Neurosciences, Göttingen
    International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    International Max Planck Research School for Marine Microbiology (MarMic), joint program of the MPG Institute for Marine Microbiology in Bremen, the University of Bremen [Universität Bremen](DE), the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen [Jacobs Universität Bremen] (DE)
    International Max Planck Research School for Maritime Affairs, Hamburg
    International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    International Max Planck Research School for Molecular Biology, Göttingen
    International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster (DE) and the MPG Institute for Molecular Biomedicine (DE)
    International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    International Max Planck Research School for Organismal Biology, at the University of Konstanz [Universität Konstanz] (DE) and the MPG Institute for Ornithology (DE)
    International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion (DE)
    International Max Planck Research School for Science and Technology of Nano-Systems, Halle at MPG Institute of Microstructure Physics (DE)
    International Max Planck Research School for Solar System Science at the University of Göttingen – Georg-August-Universität Göttingen (DE) hosted by MPG Institute for Solar System Research [Max-Planck-Institut für Sonnensystemforschung] (DE)
    International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPG Institute for Radio Astronomy [MPG Institut für Radioastronomie] (DE) (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at MPG Institute for Iron Research [MPG Institut für Eisenforschung] (DE)
    International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

     
  • richardmitnick 9:04 pm on February 11, 2021 Permalink | Reply
    Tags: "BASE opens up new possibilities in the search for cold dark matter", Axion physics, Axions or axion-like particles are candidates for cold dark matter., BASE opens up possibilities for other Penning trap experiments to participate in the search for dark matter., , For the first time the BASE experiment at CERN has turned the tools developed to detect single antiprotons to the search for dark matter., , High-precision Penning trap physics, MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE), New limits set on the mass of axion-like particles., Penning trap-a combination of electric and strong magnetic fields., The Baryon Antibaryon Symmetry Experiment (BASE) at CERN’s Antimatter Factory, The physicists at BASE can isolate individual antiprotons and move them to a separate part of the trap.   

    From GSI Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren GmbH] (DE) and MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] (DE): “BASE opens up new possibilities in the search for cold dark matter” 


    MPG Institute for Nuclear Physics [MPG Institut für Kernphysik] DE

    and

    From GSI Helmholtz Association of German Research Centres [Helmholtz-Gemeinschaft Deutscher Forschungszentren GmbH] (DE)

    11.02.2021

    Contacts

    Dr. Stefan Ulmer (RIKEN/CERN)
    Phone: +41 75411-9072
    Email: stefan.ulmer@cern.ch

    Prof. Dr. Klaus Blaum (MPIK)
    Phone: +49 6221 516-859
    Email: klaus.blaum@mpi-hd.mpg.de

    BASE: Baryon Antibaryon Symmetry Experiment

    2
    CERN Top view of the BASE experiment.

    The Baryon Antibaryon Symmetry Experiment (BASE) at CERN’s Antimatter Factory has set new limits on the mass of axion-like particles – hypothetical particles that are candidates for dark matter – and constrained how easily they can turn into photons, the particles of light.

    CERN ALPHA Antimatter Factory.

    This is especially significant as BASE was not designed for such studies. The experiment’s new result, published by Physical Review Letters, describes this pioneering method and opens up new experimental possibilities in the search for cold dark matter. GSI is involved in BASE, among other things, by manufacturing some components of the experimental setup.

    “BASE has extremely sensitive tuned circuit detection systems to study the properties of single trapped antiprotons. We realized that these detectors can also be used to search for signals of other particles. In this recently published work we used one of our detectors as an antenna to search for a new type of axion-like particles,” explains Jack Devlin, a CERN research fellow working on the experiment.

    Axions or axion-like particles are candidates for cold dark matter. From astrophysical observations, we believe that around 26.8 percent of the matter-energy content of the Universe is made up of dark matter and only about 5 percent of ordinary – visible – matter; the remainder is the mysterious dark energy.

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes
    Alex Mittelmann, Coldcreation.

    These unknown particles feel the force of gravity, but they barely respond to the other fundamental forces, if they experience these at all. The best accepted theory of fundamental forces and particles, called the Standard Model of particle physics, does not contain any particles which have the right properties to be cold dark matter.

    Standard Model of Particle Physics (LATHAM BOYLE AND MARDUS OF WIKIMEDIA COMMONS).

    However, since the Standard Model leaves many questions unanswered, physicists have proposed theories that go beyond, some of which explain the nature of dark matter. Among such theories are those that suggest the existence of axions or axion-like particles. These theories need to be tested and there are many experiments set up around the world to look for these particles. For the first time, the BASE experiment at CERN has turned the tools developed to detect single antiprotons to the search for dark matter.

    Compared to the large detectors installed in the LHC, BASE is a much smaller experiment. It is connected to CERN’s Antiproton Decelerator, which supplies the experiment with antiprotons.

    CERN Antiproton Decelerator.

    BASE captures and suspends these particles in a Penning trap, a combination of electric and strong magnetic fields. To avoid collisions with ordinary matter, the trap is operated at 5 Kelvin (~−268 °C) where exceedingly low pressures, similar to those in deep space are reached (10−18 mbar). In this extremely well-isolated environment, clouds of trapped antiprotons can exist for years at a time. By carefully adjusting the electric fields, the physicists at BASE can isolate individual antiprotons and move them to a separate part of the trap. In this region, very sensitive superconducting resonant detectors can pick up the tiny electrical currents generated by single antiprotons as they move around the trap.

    In the now published work, the BASE team looked for unexpected electrical signals in their sensitive antiproton detectors. At the heart of each detector is a small, approximately 4cm diameter, donut-shaped coil, which looks similar to the inductors you might find in many ordinary electronics. However, the BASE detectors are superconducting and have almost no electrical resistance, and all the surrounding components are carefully chosen so that they do not cause electrical losses. This makes the BASE detectors extremely sensitive to any small electrical fields. Physicists used the antiproton as a quantum sensor to precisely calibrate the background noise on their detector. They then began to search for unusual signals, however faint, that could hint at those induced by axion-like particles and their possible interactions with photons. Nothing was found at the frequencies that were recorded, which means that BASE succeeded in setting new limits for the mass of axion-like particles and in investigating their possible interactions with photons.

    With this study, BASE opens up possibilities for other Penning trap experiments to participate in the search for dark matter. Since BASE was not built to look for these signals, several changes could be made to improve the probability of finding an axion-like particle in the future. “With this new technique, we’ve combined two previously unrelated branches of experimental physics: axion physics and high-precision Penning trap physics. Our laboratory experiment is complementary to astrophysics experiments and especially very sensitive in the low axion mass range. With a purpose-built instrument we would be able to increase the bandwidth and sensitivity to broaden the landscape of axion searches using Penning trap techniques,” says Stefan Ulmer, spokesperson for the BASE experiment collaboration.

    The BASE collaboration consists of scientists from RIKEN Fundamental Symmetries Laboratory (JP), the European Center for Nuclear Research (CERN)(CH), the Max Planck Institute for Nuclear Physics (MPIK) (DE), the Johannes Gutenberg University Mainz (JGU)(DE), the Helmholtz Institute Mainz (HIM)(DE), the University of Tokyo (JP), the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (DE), the Leibniz University Hannover (DE), and the Physikalisch-Technische Bundesanstalt (PTB) (DE). The research was performed as part of the work of the Max Planck-RIKEN-PTB Center for Time, Constants and Fundamental Symmetries, an international group established to develop high-precision measurements to better understand the physics of our Universe. (CP)

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institut für Kernphysik (DE) (“MPG for Nuclear Physics” or MPIK for short) is a research institute in Heidelberg, Germany.

    The institute is one of the 80 institutes of the Max-Planck-Gesellschaft (Max Planck Society), an independent, non-profit research organization. The Max Planck Institute for Nuclear Physics was founded in 1958 under the leadership of Wolfgang Gentner. Its precursor was the Institute for Physics at the MPI for Medical Research.

    The Max Planck Society is Germany’s most successful research organization. Since its establishment in 1948, no fewer than 18 Nobel laureates have emerged from the ranks of its scientists, putting it on a par with the best and most prestigious research institutions worldwide. The more than 15,000 publications each year in internationally renowned scientific journals are proof of the outstanding research work conducted at Max Planck Institutes – and many of those articles are among the most-cited publications in the relevant field.

    What is the basis of this success? The scientific attractiveness of the Max Planck Society is based on its understanding of research: Max Planck Institutes are built up solely around the world’s leading researchers. They themselves define their research subjects and are given the best working conditions, as well as free reign in selecting their staff. This is the core of the Harnack principle, which dates back to Adolph von Harnack, the first president of the Kaiser Wilhelm Society, which was established in 1911. This principle has been successfully applied for nearly one hundred years. The Max Planck Society continues the tradition of its predecessor institution with this structural principle of the person-centered research organization.

    The currently 83 Max Planck Institutes and facilities conduct basic research in the service of the general public in the natural sciences, life sciences, social sciences, and the humanities. Max Planck Institutes focus on research fields that are particularly innovative, or that are especially demanding in terms of funding or time requirements. And their research spectrum is continually evolving: new institutes are established to find answers to seminal, forward-looking scientific questions, while others are closed when, for example, their research field has been widely established at universities. This continuous renewal preserves the scope the Max Planck Society needs to react quickly to pioneering scientific developments.

    Helmholtz Zentrum München (DE) by numbers.

    The Helmholtz Association of German Research Centres [[Helmholtz-Gemeinschaft Deutscher Forschungszentren GmbH] (DE) is the largest scientific organization in Germany. It is a union of 18 scientific-technical and biological-medical research centers. The official mission of the Association is “solving the grand challenges of science, society and industry”. Scientists at Helmholtz therefore focus research on complex systems which affect human life and the environment. The namesake of the association is the German physiologist and physicist Hermann von Helmholtz.
    The annual budget of the Helmholtz Association amounts to €4.56 billion, of which about 72% is raised from public funds. The remaining 28% of the budget is acquired by the 19 individual Helmholtz Centres in the form of contract funding. The public funds are provided by the federal government (90%) and the rest by the States of Germany (10%).
    The Helmholtz Association was ranked #8 in 2015 and #7 in 2017 by the Nature Index, which measures the largest contributors to papers published in 82 leading journals.

    The laboratory performs basic and applied research in physics and related natural science disciplines. Main fields of study include plasma physics, atomic physics, nuclear structure and reactions research, biophysics and medical research. The lab is a member of the Helmholtz Association of German Research Centres.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: