Tagged: Moon Studies Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:39 am on October 23, 2019 Permalink | Reply
    Tags: "New era of locally-sourced resources in space", , Moon Studies, Prospecting the Moon   

    From European Space Agency: “New era of locally-sourced resources in space” 

    ESA Space For Europe Banner

    From European Space Agency

    22/10/2019

    1

    This month space experts from all over the world convened in Luxembourg for the first Space Resources Week to discuss how best to explore our Solar System sustainably and limit costly transport of resources from Earth. For example, can we produce water and oxygen on the Moon?

    Highlights of the conference included research that has extracted water from lunar soil returned to Earth with the Apollo astronauts. Hannah Sargeant of the Open University in the United Kingdom presented her work on heating the oxygen in lunar soil to 1000°C with hydrogen to create water.


    Prospecting the Moon

    Having proven this is possible on Earth, development has started on an instrument to be part of ESA’s Prospect drill that will fly on Luna-27 mission to the Moon. If robots or astronauts could mine for water on the Moon, it could be used to create fuel and oxygen for rockets and life-support.

    2
    Oxygen and metal from lunar regolith. On the left side of this before and after image is a pile of simulated lunar soil, or regolith; on the right is the same pile after essentially all the oxygen has been extracted from it, leaving a mixture of metal alloys. Both the oxygen and metal could be used in future by settlers on the Moon.

    Using a method called molten salt electrolysis, lunar soil can be turned into a mixture of metal alloys while extracting oxygen. This is another example studied by Beth Lomax’s PhD work at the University of Glasgow. Both the oxygen and metal could be used in future by settlers on the Moon.

    The first days of the convention included a professional course with space engineers, scientists, lawyers and economists followed by a space mining summit on the legal, business and technical challenges of resource use.

    Next steps

    On the last two days of Space Resource Week ESA organised a workshop together with the Luxembourg Space Agency to plan the steps Europe will take in the next five years. Over 350 participants from a broad range of disciplines including academia, industry, mining and energy companies attended, as well as politicians, entrepreneurs, investors and economists.

    “All events were fully-booked, showing an overwhelming interest in the topic,” says Bernhard Hufenbach, lead of ESA’s human and robotic exploration strategy.

    “This week is the kick-off for the next era of space exploration, we will not launch everything we need from Earth, but use elements we find on planets and the moons we explore.”

    ESA exploration strategist James Carpenter and Mathias Link from the Luxembourg Space Agency announced that Space Resources Week would return next year.

    On Friday the Luxembourg Deputy Prime Minister Etienne Schneider and ESA Director General Jan Wörner committed to strengthening collaboration in the field of space resources research and innovation, including the announcement of the Luxembourg Space Resources Innovation Centre that will focus on extraction, processing and manufacturing of space resources.

    Luxembourg aims to expand this Space Resources Research Centre towards a larger Space Resources Innovation Center with a European and even international scope. In this matter, ESA and Luxembourg will further investigate a close cooperation which will advance their common goals.

    Over the last two years, ESA has made significant progress in this field, developing a strategy for space resources and implementing ground-based research, technology and mission definition activities that is part of its Space19+ proposal to member states.

    James concludes, “this is just the beginning, humankind is returning to the Moon and we are setting the international collaboration required to do this sustainably and in partnership. We are an inter-disciplinary community of space resource personnel and will convene again next year to review the progress made towards some key breakthroughs, making Europe a leader in this field.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:57 am on October 21, 2019 Permalink | Reply
    Tags: , Ice on lunar south pole, Moon Studies   

    From Brown University: “Study suggests ice on lunar south pole may have more than one source” 

    Brown University
    From Brown University

    October 10, 2019
    Kevin Stacey
    kevin_stacey@brown.edu
    401-863-3766

    New research sheds light on the ages of ice deposits reported in the area of the Moon’s south pole — information that could help identify the sources of the deposits and help in planning future human exploration.

    1
    Shackleton Crater, the floor of which is permanently shadowed from the sun, appears to be home to deposits of water ice. A new study sheds light on how old these and other deposits on the Moon’s south pole might be. Credit: NASA/GSFC/Arizona State University

    The discovery of ice deposits in craters scattered across the Moon’s south pole has helped to renew interest in exploring the lunar surface, but no one is sure exactly when or how that ice got there. A new study published in the journal Icarus suggests that while a majority of those deposits are likely billions of years old, some may be much more recent.

    Ariel Deutsch, a graduate student in Brown University’s Department of Earth, Environmental and Planetary Sciences and the study’s lead author, says that constraining the ages of the deposits is important both for basic science and for future lunar explorers who might make use of that ice for fuel and other purposes.

    “The ages of these deposits can potentially tell us something about the origin of the ice, which helps us understand the sources and distribution of water in the inner solar system,” Deutsch said. “For exploration purposes, we need to understand the lateral and vertical distributions of these deposits to figure out how best to access them. These distributions evolve with time, so having an idea of the age is important.”

    For the study, Deutsch worked with Jim Head, a professor at Brown, and Gregory Neumann from the NASA Goddard Space Flight Center. Using data from NASA’s Lunar Reconnaissance Orbiter, which has been orbiting the Moon since 2009, the researchers looked at the ages of the large craters in which evidence for south pole ice deposits was found.

    NASA/Lunar Reconnaissance Orbiter

    To date the craters, researchers count the number of smaller craters that have accrued inside the larger ones. Scientists have an approximate idea of the pace of impacts over time, so counting craters can help establish the ages of terrains.

    The majority of the reported ice deposits are found within large craters formed about 3.1 billion years or longer ago, the study found. Since the ice can’t be any older than the crater, that puts an upper bound on the age of the ice. Just because the crater is old doesn’t mean that the ice within it is also that old too, the researchers say, but in this case there’s reason to believe the ice is indeed old. The deposits have a patchy distribution across crater floors, which suggests that the ice has been battered by micrometeorite impacts and other debris over a long period of time.

    If those reported ice deposits are indeed ancient, that could have significant implications in terms of exploration and potential resource utilization, the researchers say.

    “There have been models of bombardment through time showing that ice starts to concentrate with depth,” Deutsch said. “So if you have a surface layer that’s old, you’d expect more underneath.”

    While the majority of ice was in the ancient craters, the researchers also found evidence for ice in smaller craters that, judging by their sharp, well-defined features, appear to be quite fresh. That suggests that some of the deposits on the south pole got there relatively recently.

    “That was a surprise,” Deutsch said. “There hadn’t really been any observations of ice in younger cold traps before.”

    If there are indeed deposits of different ages, the researchers say, that suggests they may also have different sources. Older ice could have been sourced from water-bearing comets and asteroids impacting the surface, or through volcanic activity that drew water from deep within the Moon. But there aren’t many big water-bearing impactors around in recent times, and volcanism is thought to have ceased on the Moon over a billion years ago. So more recent ice deposits would require different sources — perhaps bombardment from pea-sized micrometeorites or implantation by solar wind.

    The best way to find out for sure, the researchers say, is to send spacecraft there to get some samples. And that appears to be on the horizon. NASA’s Artemis program aims to put humans on the Moon by 2024, and plans to fly numerous precursor missions with robotic spacecraft in the meantime. Head, a study co-author and Deutsch’s Ph.D. advisor, says studies like this one will help to shape those future missions.

    “When we think about sending humans back to the Moon for long-term exploration, we need to know what resources are there that we can count on, and we currently don’t know,” Head said. “Studies like this one help us make predictions about where we need to go to answer those questions.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Brown

    Brown U Robinson Hall
    Located in historic Providence, Rhode Island and founded in 1764, Brownis the seventh-oldest college in the United States. Brown is an independent, coeducational Ivy League institution comprising undergraduate and graduate programs, plus the Alpert Medical School, School of Public Health, School of Engineering, and the School of Professional Studies.

    With its talented and motivated student body and accomplished faculty, Brown is a leading research university that maintains a particular commitment to exceptional undergraduate instruction.

    Brown’s vibrant, diverse community consists of 6,000 undergraduates, 2,000 graduate students, 400 medical school students, more than 5,000 summer, visiting and online students, and nearly 700 faculty members. Brown students come from all 50 states and more than 100 countries.

    Undergraduates pursue bachelor’s degrees in more than 70 concentrations, ranging from Egyptology to cognitive neuroscience. Anything’s possible at Brown—the university’s commitment to undergraduate freedom means students must take responsibility as architects of their courses of study.

     
  • richardmitnick 12:17 pm on June 20, 2019 Permalink | Reply
    Tags: , , , , , Lunar Trailblazer, Moon Studies   

    From Caltech: “NASA Selects Caltech-Led Lunar Mission as a Finalist” 

    Caltech Logo

    From Caltech

    June 20, 2019

    NASA has selected a Caltech-led mission to send a small satellite to quantify and study water on the Moon. The project is one of three finalists selected from more than a dozen proposals for small satellite missions – at least one of which is expected to move to final selection and flight.

    1
    Lunar Trailblazer follows up on a key discovery by NASA’s Moon Mineralogy Mapper (M3) on the Indian Chandrayaan-1 mission: small amounts of water and hydroxyl (in blue and violet) across the surface of the moon, especially near the poles. Credit: ISRO/NASA/JPL-Caltech/Brown Univ./USGS

    3
    Left side of the Moon Mineralogy Mapper that was located on the Chandrayaan-1 lunar orbiter.

    3
    Chandrayaan-1

    The Lunar Trailblazer would follow up on one of the most surprising discoveries of the late 2000s: the detection of water on the Moon’s surface, long thought impossible because of its exposure to the vacuum of space. Trailblazer would map the tiny amounts of water and of hydroxyl (a compound of hydrogen and oxygen) on the sunlit side of the Moon, determining whether they change with time. Trailblazer would also peer into shadowed craters to map ice deposits, glimpses of which were observed on prior missions.

    The mission proposal is led by Bethany Ehlmann, professor of planetary science at Caltech and research scientist at JPL, which Caltech manages for NASA. “Our team is excited to move forward to map water on the Moon. The water cycle of airless bodies is one of the solar system’s most surprising occurrences and is important for the support of future human lunar exploration,” Ehlmann says.

    The relatively tiny Trailblazer satellite, which would measure just 5 meters in length with its solar panels fully deployed, would spend a year orbiting the Moon at a height of 100 kilometers, scanning it with two key instruments: a shortwave imaging spectrometer built by JPL and a multispectral thermal imager built by the University of Oxford.

    The spectrometer would image the surface in multiple wavelengths in the infrared, searching for the signature of water—either in the form of ice or bound to minerals. Meanwhile, the thermal imager would map the temperature, physical properties, and composition of regions where the spectrometer detects water.

    The end result would be a high-resolution map—at 100 meters per pixel—that charts the form, abundance, and distribution of water while also collecting information about the environments where that water exists. The mission’s leaders hope that such information could not only fill in the gaps of our understanding of the Moon but also chart a course for future human exploration.

    The mission was proposed as part of NASA’s Small Innovative Missions for Planetary Exploration (SIMPLEx) Program for low-budget missions that are capable of major planetary surveys. “We’re eager to lead the way in science and discovery using this new small-satellite NASA mission class. The opportunities are huge,” Ehlmann says.

    The mission will now receive funding for up to one year followed by a NASA preliminary design review. At that time, NASA will determine when and if it will be selected for a flight. The satellite could launch within two to four years, Ehlmann says. Caltech would be responsible for managing the project and for the scientific leadership, with support from JPL. Ball Aerospace in Boulder, Colorado, would build the spacecraft.

    Once launched, the spacecraft would be operated by teams from Caltech and neighboring Pasadena City College. The teams would include students who will be supported by experienced Caltech and JPL personnel. The project’s science team includes researchers from Caltech, JPL, the UK Space Agency, the University of Oxford, Pasadena City College, Johns Hopkins University Applied Physics Laboratory, Brown University, and Northern Arizona University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

    Caltech campus

     
  • richardmitnick 10:51 am on January 9, 2019 Permalink | Reply
    Tags: , , , China’s Chang’e-4 lander, , Moon Studies,   

    From smithsonian.com: “Best Photos From China’s Far Side Moon Landing” 

    smithsonian
    From smithsonian.com

    January 7, 2019
    Jason Daley
    All photos from China National Space Admimmistration

    3
    Yutu-2 rover leaves the Chang’e-4 lander

    1
    Yutu-2 sets off.

    2
    First images

    4
    Close shot of Yutu-2 rover specialized wheel.

    China’s Chang’e-4 lander reached the Von Kármán crater near the moon’s South Pole on Wednesday, marking the first time a human craft has visited the lunar far side.

    The first upclose images of the far side’s surface came in shortly after via a satellite called “Queqiao,” report Steven Lee Myers and Zoe Mou at The New York Times.

    Queqiao Relay Satellite China

    The Guardian reports that, about 12 hours after the landing, a small rover named Yutu-2, or Jade Rabbit-2, left the Chang’e-4 spacecraft and began exploring the crater, which is part of the South Pole-Aitken basin, one of the largest known impact structures in our solar system.

    Chang’e-4 weighs about four metric tons and carries eight instruments on board, including an infrared spectrometer, panoramic camera and lunar penetrating radar, writes Andrew Jones at Smithsonian.com. It will also collect mineral and geological samples of the moon’s surface as well as investigate the impact of solar wind on the moon. The craft even has its own little farm, or lunar biosphere, aboard—the first of its kind. Part of an experiment designed by university students, it contains silkworm eggs, potato seeds and Arabidopsis, a model organism used in space plant studies.

    Because the far side of the moon is shielded from the radio signals coming from Earth, Chang’e-4 will conduct low frequency radio experiments using a new technique. Astronomers plan to connect a radio instrument on the landing craft with one aboard the Queqiao satellite and use the dual-system as a radio telescope—free from noisy radio interference that is common closer to Earth, reports Michael Greshko at National Geographic.

    “This will allow us for the first time to do radio observation at low frequencies that are not possible from Earth, from close to the moon and on the moon,” Radboud University astronomer Marc Klein Wolt, who leads the project, tells Greshko. “This will pave the way for a future large radio facility on the moon to study the very early universe in the period before the first stars were formed.”

    While such experiments are valuable, the landing is also considered an important accomplishment for the Chinese space program, which is quickly catching up to the decades-old United States and Russian space programs. Landing on the far side required a high level of technical expertise and unique communications solutions, Smithsonian.com’s Jones points out.

    “This is a major achievement technically and symbolically,” Namrata Goswami, an independent space analyst, tells The New York Times. “China views this landing as just a stepping stone, as it also views its future manned lunar landing, since its long-term goal is to colonize the moon and use it as a vast supply of energy.”

    In the last two decades, China has ramped up its space program, launching two space stations and sending dozens of satellites into space. Besides the U.S. and Russia, it is the only nation to send its own astronauts into space. It first visited the near side of the moon in 2013 with its Chang’e-3 lander and rover. Later in 2019, the nation plans to land Chang’e-5 on the near side of the moon and then send a sample of the moon’s surface back to Earth. In 2022, China is slated to launch another space station into orbit and has plans to establish a lunar colony later in that decade.

    While the success of Chang’e-4 is being universally celebrated by the scientific community, space policy expert Wendy Whitman Cobb at The Conversation wonders whether its an indication of second space race. The U.S. recently announced a 10-year, $2.6 billion effort to return to the moon and construct an orbiting space station. Russia has also announced intentions to send missions to the moon in the near future.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Smithsonian magazine and Smithsonian.com place a Smithsonian lens on the world, looking at the topics and subject matters researched, studied and exhibited by the Smithsonian Institution — science, history, art, popular culture and innovation — and chronicling them every day for our diverse readership.

     
  • richardmitnick 12:08 pm on August 5, 2017 Permalink | Reply
    Tags: , , Lunar lava tubes, Lunar Nanobots, Moon Studies   

    From ESA: “Lunar Nanobot” 

    ESA Space For Europe Banner

    European Space Agency

    1
    Lunar Nanobot
    Released 02/08/2017
    Copyright Lunatix

    This highly mobile, jumping Nanobot was designed by a team of space engineers challenged to develop a Moon mission that was not only technically viable but could also make a profit.

    The annual SpaceTech Master Programme of the Technical University of Graz, Austria trains space professionals to combine space and business engineering. ESA Director General Jan Woerner asked the 2016 participants to come up with a profitable business case to fit within ESA’s Moon Village concept.

    The eight SpaceTech 2016 participants presented the resulting Lunatix concept last month at ESA’s technical centre in Noordwijk, the Netherlands.

    “We want to enable you to leave your mark on the Moon,” explains ESA engineer Jorge Fiebrich. “Our ambition is to become the creative leader in lunar mobility experiences, through placing unique mobile platforms on the lunar surface.”

    The team designed these video camera-equipped Nanobots to tap into the $100 billion gaming market. After raising initial enthusiasm among Earth’s 1.8 billion gamers with controlling a virtual Nanobot on a simulated lunar surface, there will be the possibility to control real Nanobots on the Moon, in Pokemon Go!-style augmented reality scenarios.

    Science would be another business line, with the highly agile Nanobots able to probe sites of scientific interest such as lunar lava tubes.

    The Nanobots are designed to jump up to 3 m high and 10 m in distance in the one-sixth gravity of the Moon, which allows them to clear obstacles while offering an exciting gaming aspect.

    A series of Nanobots – formally known as Small Mobile Platforms – together with the Main Mobile Platform larger rover would be deployed on the Moon. Along with additional scientific payloads, the larger rover would recharge the Nanobots and give them shelter during the two-week lunar night.

    The SpaceTech team carried out a rigorous end-to-end design process, ensuring their robots could survive harsh lunar temperature swings and radiation and dust exposure, as well as continuously communicate with Earth – and their customers.

    “Through the Nanobots, humans will be experiencing the Moon in near-real time, with a two-way delay of around three seconds,” adds Jon Reijneveld, system engineer at Airbus Defence and Space. “They could be seen as the first inhabitants of the Moon Village.”

    Now the study has been completed, the participants are investigating plans to establish the company next year. For more information read the full summary here.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 1:23 pm on January 15, 2017 Permalink | Reply
    Tags: A “planetary embryo” called Theia, , , Moon Studies,   

    From UCLA: “The moon is older than scientists thought, UCLA-led research team reports” 

    UCLA bloc

    UCLA

    January 11, 2017
    Stuart Wolpert

    1
    Apollo 14 astronaut Alan Shepard. A new UCLA study determined the age of the moon by analyzing minerals brought back by the 1971 mission. NASA.

    UCLA-led research team reports that the moon is at least 4.51 billion years old, or 40 million to 140 million years older than scientists previously thought.

    The findings — based on an analysis of minerals from the moon called zircons that were brought back to Earth by the Apollo 14 mission in 1971 — are published Jan. 11 in the journal Science Advances.

    The moon’s age has been a hotly debated topic, even though scientists have tried to settle the question over many years and using a wide range of scientific techniques.

    2
    Mélanie Barboni. Carolyn Crow

    “We have finally pinned down a minimum age for the moon; it’s time we knew its age and now we do,” said Mélanie Barboni, the study’s lead author and a research geochemist in UCLA’s Department of Earth, Planetary and Space Sciences.

    The moon was formed by a violent, head-on collision between the early Earth and a “planetary embryo” called Theia, a UCLA-led team of geochemists and colleagues reported in 2016.

    The newest research would mean that the moon formed “only” about 60 million years after the birth of the solar system — an important point because it would provide critical information for astronomers and planetary scientists who seek to understand the early evolution of the Earth and our solar system.

    That has been a difficult task, Barboni said, because “whatever was there before the giant impact has been erased.” While scientists cannot know what occurred before the collision with Theia, these findings are important because they will help scientists continue to piece together major events that followed it.

    It’s usually difficult to determine the age of moon rocks because most of them contain a patchwork of fragments of multiple other rocks. But Barboni was able to analyze eight zircons in pristine condition. Specifically, she examined how the uranium they contained had decayed to lead (in a lab at Princeton University) and how the lutetium they contained had decayed to an element called hafnium (using a mass spectrometer at UCLA). The researchers analyzed those elements together to determine the moon’s age.

    “Zircons are nature’s best clocks,” said Kevin McKeegan, a UCLA professor of geochemistry and cosmochemistry, and a co-author of the study. “They are the best mineral in preserving geological history and revealing where they originated.”

    The Earth’s collision with Theia created a liquefied moon, which then solidified. Scientists believe most of the moon’s surface was covered with magma right after its formation. The uranium–lead measurements reveal when the zircons first appeared in the moon’s initial magma ocean, which later cooled down and formed the moon’s mantle and crust; the lutetium–hafnium measurements reveal when its magma formed, which happened earlier.

    “Mélanie was very clever in figuring out the moon’s real age dates back to its pre-history before it solidified, not to its solidification,” said Edward Young, a UCLA professor of geochemistry and cosmochemistry and a co-author of the study.

    Previous studies concluded the moon’s age based on moon rocks that had been contaminated by multiple collisions. McKeegan said those rocks indicated the date of some other events, “but not the age of the moon.”

    The UCLA researchers are continuing to study zircons brought back by the Apollo astronauts to study the early history of the moon.

    Co-authors of the Science Advances study are Patrick Boehnke, a former UCLA graduate student who is now a University of Chicago postdoctoral scholar; Christopher Keller, a UC Berkeley postdoctoral scholar; Issaku Kohl, a UCLA research geochemist; and Blair Schoene, associate professor of geosciences at Princeton University.

    The research was funded by NASA, and Barboni received support from the Swiss National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 10:58 am on November 1, 2016 Permalink | Reply
    Tags: , , Moon Studies,   

    From SETI Institute: “Did Early Earth Spin On Its Side?” 

    SETI Logo new
    SETI Institute

    October 31 2016
    Matija Cuk
    Email: mcuk@seti.org

    Media contact:

    Seth Shostak
    Tel: 650 960-4530
    Email: seth@seti.org

    New theoretical modeling of the ancient history of the Earth and the Moon suggests that the giant collision that spawned our natural satellite may have left Earth spinning very fast, and with its spin axis highly tilted.

    Computer simulations of what followed the collision, sometimes referred to as the “big whack,” show that, following this event, and as the young Moon’s orbit was getting bigger, the Earth lost much of its spin as well gained a nearly upright orientation with respect to the ecliptic. The simulations give new insight into the question of whether planets with big moons are more likely to have moderate climates and life.

    “Despite smart people working on this problem for fifty years, we’re still discovering surprisingly basic things about the earliest history of our world,” says Matija Cuk a scientist at the SETI Institute and lead researcher for the simulations. “It’s quite humbling.”

    Since the nineteenth century, scientists have known that the Moon is gradually moving away from Earth and that or planet’s spin is simultaneously slowing down. The cause is the ocean tides raised by the Moon which slowly dissipate energy as they move across the ocean basins. This energy has to come from somewhere, resulting in a slowing down of Earth’s rotation, with our days very slowly getting longer.

    Previous calculations done over many decades always concluded that the Moon formed close to Earth, which at the time had a rotation period of five hours. This calculation later became the basis of the giant impact theory, in which the Moon formed from debris generated in a collision between proto-Earth and a Mars-sized protoplanet.

    However, these calculations may have been missing some important physics. Four years ago, a paper in the journal Science by Cuk and Sarah Stewart (now at the University at California, Davis) suggested that post-impact Earth had a much faster spin, closer to 2 hours. A complex orbital interaction between the Moon and the Sun could have drained spin from the Earth-Moon system, causing an underestimate of Earth’s rotation. Note that a very fast early spin would eject more material from Earth into orbit during and just after the giant impact, producing a Moon that is similar in make-up to Earth’s mantle, as found by lab studies of lunar rocks.

    Since then, the plot has thickened as it was realized that tides within the Moon significantly affected its orbit during one part of its tidal migration. Today, the path of the Moon is tilted from Earths orbital plane by five degrees. Multiple theories have been offered to explain this tilt, but it was never considered significant enough to seriously challenge the idea that the Moon formed in a flat disk around the Earth. However, Erinna Chen and Francis Nimmo at the University of California, Santa Cruz reported in 2013 that internal friction due to tidal tugs by Earth should have greatly decreased the Moon’s orbital tilt over billions of years. Cuk and Stewart quickly realized a clear implication that the orbit of the Moon once had a large tilt to Earth’s orbit, changing the story of its history completely.

    “We’ve been calculating the past orbit of the Moon wrong for over fifty years now,” notes Cuk citing the work of then-doctoral student Chen. “We ignored the fact that tidal flexing within the Moon can decrease lunar orbital inclination.”

    In the paper just published in Nature, Cuk and Stewart, together with Douglas Hamilton of the University of Maryland and Simon Lock of Harvard, propose a new solution to the mystery of the lunar orbital tilt, one that also explains the Moon’s Earth-like make-up. They find that, if Earth originally spun on its side with the young Moon orbiting around its equator, solar gravitational forces could both take spin away from the system and tilt the Moon’s orbit.

    Planets bulge at their equator due to their spin, and for every planet there exists a special distance at which an orbiting satellite would feel roughly equal torque from the planet’s equatorial bulge and the distant Sun. But if the planet has an axial tilt over 70 degrees, the satellite’s orbit will suffer from a kind of orbital confusion.

    When the planet’s equator and its orbit are nearly perpendicular, the satellite becomes confused about which way is “up”, and its orbit becomes elongated due to Sun’s meddling. In the case of our Moon, the varying distance from Earth on its eccentric orbit then triggered strong tidal flexing within the Moon which fought back against the efforts of Earth’s tides to push it outward, resulting in a stalemate. Such a stalemate can last for millions of years, during which Earth kept losing its spin while the Moon did not go into a wider orbit. Instead, its orbit became more tilted.

    Once the Earth had lost enough of its original spin, the Moon broke out of this stalled state and continued its outward journey. But as the Moon left this special distance, its torque on Earth’s spin axis righted the previously highly-tilted Earth. Finally, as the Moon continued its orbital migration outward, tidal flexing within the Moon shrank its orbital inclination, bringing the lunar orbit closer to the plane of the planets.

    Despite the complexity of this story, computer calculations suggest that it is the only complete explanation so far for the current orbital and compositional properties of the Moon.

    “This work shows that there are multiple ways a planet could get a small axial tilt, making moderate seasons possible. We thought Earth was this way because of the direction of the giant impact 4.5 billion years ago, but it looks like Earth achieved this state later through a complex interaction with the Moon and the Sun,” Cuk says.

    “I wonder how many habitable Earth-like extrasolar planets also have a large Moon,” he asks.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

     
  • richardmitnick 8:17 am on November 1, 2016 Permalink | Reply
    Tags: , , Moon Studies   

    From COSMOS: “Moon-forming crash sent Earth into a spin: study” 

    Cosmos Magazine bloc

    COSMOS

    01 November 2016
    Belinda Smith

    Simulations show a collision strong enough to tilt our young planet almost on its side can explain how our moon ended up where it is today.

    1
    After a developing planet smashed into the primordial Earth, it nearly tilted the planet all the way over, simulations suggest. Ron Miller / Stocktrek Images / Getty Images

    There’s plenty about our familiar grey moon we still don’t know for sure. How did it form? Why is its orbit tilted slightly? And at around 380,000 kilometres distant, why is it so far away?

    Matija Ćuk from the SETI Institute in California and a team of US planetary scientists have an explanation. Using modelling and simulations, they conclude that the collision that formed the moon sent Earth almost rotating on its side.

    Over time, they write in Nature, interactions between the Earth, moon and sun smoothed out the whirling spin, leaving the duo in their current gravitational dance today.

    A leading theory of the moon’s genesis is the giant impact model. It states that some 4.5 billion years ago, the young Earth collided with a developing planet, Theia.

    Dust and rubble formed a disc around what was left of the Earth, which clumped together to become the moon.

    “But this scenario does not quite work if the Earth’s spin axis was tilted at the 23.5 ° angle we see today,” says Douglas Hamilton from the University of Maryland and co-author of the study.

    Physics says the debris – and thus, the moon – should have gathered into a ring around Earth’s equator. Then as tidal forces pushed the moon away, the moon should have made its way into an ecliptic plane, which is in the same plane as the Earth’s orbit around the sun.

    Instead, the moon’s orbit is tilted five degrees away from the ecliptic plane today.

    So what happened?

    Ćuk and his colleagues ran different moon-forming scenarios. The ones that ended up with an Earth-moon system most like we see today involved a collision that sent the Earth spinning extremely fast – as much as twice the rate predicted by other models.

    The impact also knocked the Earth’s tilt way off between 60 and 80 ° – almost on its side.

    The newborn moon also started off very close to Earth, tracking closely with the Earth’s equator, but then drifted away. As it approached15 times its initial distance, the sun exerted its own influence over the moon’s orbit.

    A highly tilted, fast-spinning Earth and an outward-migrating moon probably contributed to the moon’s current strange orbit, the researchers conclude.

    Hamilton acknowledges that the model isn’t perfect and doesn’t answer all questions about the moon’s orbit.

    But “what we have now is a model that is more probable and works more cleanly than previous attempts”, he says.

    “We think this is a significant improvement that gets us closer to what actually happened.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 11:24 am on October 13, 2016 Permalink | Reply
    Tags: , , Moon Studies, , NASA/Lunar Reconnaissance Orbiter   

    From Goddard: “Earth’s Moon Hit by Surprising Number of Meteoroids” 

    NASA Goddard Banner

    NASA Goddard Space Flight Center

    Oct. 13, 2016
    Nancy Jones
    nancy.n.jones@nasa.gov

    Bill Steigerwald
    william.a.steigerwald@nasa.gov

    NASA Goddard Space Flight Center, Greenbelt, Maryland
    301-286-0039 / x-5017

    Last Updated: Oct. 13, 2016
    Editor: Bill Steigerwald

    The moon experiences a heavier bombardment by small meteoroids than models had predicted, according to new observations from NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft.

    NASA/Lunar Reconna
    NASA/Lunar Reconnaissance Orbiter

    The result implies that lunar surface features thought to be young because they have relatively few impact craters may be even younger than previous estimates.

    The finding also implies that equipment placed on the moon for long durations — such as a lunar base — may have to be made sturdier. While a direct hit from a meteoroid is still unlikely, a more intense rain of secondary debris thrown out by nearby impacts may pose a risk to surface assets.


    Access mp4 video here .
    After simulating the distant view of a new impact, the camera zooms up to the surface to show actual before/after images of a new 12-meter crater taken by the Lunar Reconnaissance Orbiter narrow-angle camera. Credits: NASA/GSFC/Ernie Wright

    “Before the launch of the Lunar Reconnaissance Orbiter, it was thought that churning of the lunar regolith (soil) from meteoroid impacts typically took millions of years to overturn the surface down to 2 centimeters (about 0.8 inches),” said Emerson Speyerer of Arizona State University, Tempe. “New images from the Lunar Reconnaissance Orbiter Camera (LROC) are revealing small surface changes that are transforming the surface much faster than previously thought.” Speyerer is lead author of a paper about this research in the Oct. 13 issue of the journal Nature.

    “The newly determined churning rate means that the Apollo astronaut tracks will be gone in tens of thousands of years rather than millions,” said Mark Robinson of Arizona State University, a co-author.

    2
    One of the first steps taken on the Moon, this is an image of Buzz Aldrin’s bootprint from the Apollo 11 mission. Neil Armstrong and Buzz Aldrin walked on the Moon on July 20, 1969. Credits: NASA

    LRO went into lunar orbit in June of 2009 and has acquired an extensive set of high-resolution images of the surface, including pairs of images of the same areas taken at different times. Using these before-and-after images (temporal pairs) acquired by the LROC Narrow Angle Camera (NAC), the team identified over 200 impact craters that formed during the LRO mission, ranging in size from about 10 to 140 feet (approximately 3 to 43 meters) in diameter.

    3
    Temporal ratio image formed from two LROC Narrow Angle Camera images (after image divided by the before image) revealing a new 12 meter (~40 foot) diameter impact crater (Latitude: 36.536°N; Longitude: 12.379°E) formed between 25 October 2012 and 21 April 2013, scene is 1300 meters (~4200 feet) wide. New crater and its continuous ejecta are seen as the small bright area in the center, dark areas are the result of material blasted out of the crater to distances much further than previously thought. Credits: NASA/GSFC/Arizona State University

    Since impact craters accumulate over time, a heavily cratered surface is older than a region with fewer craters. Knowing the number of craters that form each year is important when estimating absolute ages of the youngest regions. By analyzing the number, size distribution, and the time between each NAC temporal pair, the team estimated the contemporary cratering rate on the moon. During the search, they identified about 30 percent more new craters than anticipated by previous cratering models.

    “With this potentially higher impact rate, features with young model ages derived using crater counts and the standard rate may in fact be even younger than previously thought,” said Speyerer. “However, to be certain, we need several more years of observations and new crater discoveries.”

    In addition to discovering new impact craters, the team observed over 47,000 small surface changes, which they call splotches. They are most likely caused by small impacts, according to Speyerer. There are dense clusters of these splotches around new impact sites suggesting that many splotches may be secondary surface changes caused by material thrown out from the primary impact event.

    The team estimated their accumulation over time and from measuring their size they inferred how deeply each splotch dug up the surface and thus how long it takes to effectively churn the upper few centimeters (approximately an inch) of the regolith. The team found that 99 percent of the surface would be overturned by splotch formation after about 81,000 years. This rate is over 100 times faster than previous models that considered overturn from micrometeorite impacts alone, and ignored the effects of secondary impacts.

    “The increased churning rate will be important information for future designers of moon bases, said Speyerer. “Surface assets will have to be designed to withstand impacts from small particles moving at up to 500 meters per second (about 1,600 feet per second or 1,100 miles per hour).”

    The team also found that the new impact craters are surrounded by complex reflectance patterns related to material ejected during crater formation. Many of the larger impact craters — those greater than 10 meters in diameter — exhibit up to four distinct bright or dark reflectance zones.

    The research was funded by the LRO project. The Lunar Reconnaissance Orbiter Camera was developed at Arizona State University in Tempe. LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as a project under NASA’s Discovery Program. The Discovery Program is managed by NASA’s Marshall Spaceflight Center in Huntsville, Alabama, for the Science Mission Directorate at NASA Headquarters in Washington.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    NASA’s Goddard Space Flight Center is home to the nation’s largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

    Named for American rocketry pioneer Dr. Robert H. Goddard, the center was established in 1959 as NASA’s first space flight complex. Goddard and its several facilities are critical in carrying out NASA’s missions of space exploration and scientific discovery.
    NASA Goddard campus
    NASA/Goddard Campus
    NASA image

     
  • richardmitnick 9:11 pm on September 12, 2016 Permalink | Reply
    Tags: , , , Moon Studies   

    From GIZMODO: “We Were Wrong About Where the Moon Came From” 

    GIZMODO bloc

    GIZMODO

    9.12.16
    Ria Misra

    1
    Artist’s concept of moon-Earth crash (Image: Dana Berry/SwRI)

    The moon is our almost constant frenemy in space, lighting our nights and spoiling our star-views in equal turns. But now, new measurements from Apollo-era moon rocks suggest that the moon and Earth had a much more savage past than we knew.

    A new paper out today in Nature says that the moon formed as a result of a more violent space collision than previously believed. Since the 1970s, many researchers have championed a theory in which the moon was created from thrown-off debris when a Mars-sized body grazed Earth in a relatively low-contact collision. Instead, the researchers say new evidence shows that the impact was more “like a sledgehammer hitting a watermelon.”

    The old theory of the moon’s origin—in which it formed from debris from a grazing collision—neatly explains both the moon’s size and orbital position. But a test on some lunar rocks from the Apollo mission revealed something odd which that theory couldn’t explain.

    “We’re still remeasuring the old Apollo samples from the the ‘70s, because the tech has been developing in recent years. We can measure much smaller differences between Earth and the moon, so we found a lot of things we didn’t find in the 1970s,” Kun Wang, an assistant professor at Washington University who is the lead author of the paper told Gizmodo. “The old models just could not explain the new observations.”

    If the four-decade old theory were correct, then researchers would expect to find that well over half of the moon’s material had come from that Mars-sized body that scraped Earth to form the moon. But the researchers weren’t finding signs of that in the samples; instead, chemical analyses on the samples were returning isotopic compound readings that were nearly identical.

    They started to do more and more advanced tests to try and pinpoint any differences in the signatures. They finally found one—but one that suggested that the samples’ origins were even more tightly connected than previously expected.

    The isotope signatures were the same, except for more of a heavy-potassium isotope in the lunar samples which would have required incredibly hot temperatures to separate out. A violent collision between the Earth and the Mars-sized impactor could have caused those incredibly high temperatures. In this model, the temperatures were so high and the force so powerful that the impactor and even much of Earth vaporized on contact. That vapor then expanded out over an area 500 times the size of the Earth before finally cooling and condensing into the moon.

    “We need a much, much bigger impact to form a moon according to our study,” explained Wang. “The giant impact itself should be called extremely giant impact. The amount of energy required isn’t even close.”

    This new data doesn’t just change our conception of how the moon was formed, though. It also suggests an early solar system that was much more volatile than we knew—and it could be just the beginning of what new analyses on old lunar samples could teach us.

    “Everything we know about the early solar system is from our study of meteorites and lunar samples, all those really really old rocks,” said Wang. “It has changed our understanding of the early solar system, it’s much more violent than we thought.”

    The researchers will continue to study the Apollo lunar samples to try and pull yet more clues from them. Even now, they suspect that these samples that we’ve been holding on to for decades could have more secrets to reveal.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    “We come from the future.”

    GIZMOGO pictorial

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: