Tagged: MIT Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:01 am on May 7, 2021 Permalink | Reply
    Tags: "Physicists Find a Novel Way to Switch Antiferromagnetism On and Off", , , MIT,   

    From DOE’s Brookhaven National Laboratory (US) and From MIT : “Physicists Find a Novel Way to Switch Antiferromagnetism On and Off” 

    From DOE’s Brookhaven National Laboratory (US)

    and

    MIT News

    From MIT

    May 6, 2021
    Jennifer Chu, Massachusetts Institute of Technology (US)

    The findings could lead to faster, more secure memory storage, in the form of antiferromagnetic bits.

    1
    In turning antiferromagnetism on and off, physicists may have found a route toward faster, denser, and more secure memory devices. Credit: stock image.

    When you save an image to your smartphone, those data are written onto tiny transistors that are electrically switched on or off in a pattern of “bits” to represent and encode that image. Most transistors today are made from silicon, an element that scientists have managed to switch at ever-smaller scales, enabling billions of bits, and therefore large libraries of images and other files, to be packed onto a single memory chip.

    But growing demand for data, and the means to store them, is driving scientists to search beyond silicon for materials that can push memory devices to higher densities, speeds, and security.

    Now MIT physicists have shown preliminary evidence that data might be stored as faster, denser, and more secure bits made from antiferromagnets.

    Antiferromagnetic, or AFM materials are the lesser-known cousins to ferromagnets, or conventional magnetic materials. Where the electrons in ferromagnets spin in synchrony — a property that allows a compass needle to point north, collectively following the Earth’s magnetic field — electrons in an antiferromagnet prefer the opposite spin to their neighbor, in an “antialignment” that effectively quenches magnetization even at the smallest scales.

    The absence of net magnetization in an antiferromagnet makes it impervious to any external magnetic field. If they were made into memory devices, antiferromagnetic bits could protect any encoded data from being magnetically erased. They could also be made into smaller transistors and packed in greater numbers per chip than traditional silicon.

    Now the MIT team has found that by doping extra electrons into an antiferromagnetic material, they can turn its collective antialigned arrangement on and off, in a controllable way. They found this magnetic transition is reversible, and sufficiently sharp, similar to switching a transistor’s state from 0 to 1. The results, published today in Physical Review Letters, demonstrate a potential new pathway to use antiferromagnets as a digital switch.

    “An AFM memory could enable scaling up the data storage capacity of current devices — same volume, but more data,” says the study’s lead author Riccardo Comin, assistant professor of physics at MIT.

    Comin’s MIT co-authors include lead author and graduate student Jiarui Li, along with Zhihai Zhu, Grace Zhang, and Da Zhou; as well as Roberg Green of the University of Saskatchewan (CA); Zhen Zhang, Yifei Sun, and Shriram Ramanathan of Purdue University (US); Ronny Sutarto and Feizhou He of Canadian Light Source [Centre Canadien de rayonnement synchrotron] (CA); and Jerzy Sadowski at Brookhaven National Laboratory.

    “An AFM memory could enable scaling up the data storage capacity of current devices — same volume, but more data,” says the study’s lead author Riccardo Comin, assistant professor of physics at Massachusetts Institute of Technology (US).

    Magnetic memory

    To improve data storage, some researchers are looking to MRAM, or magnetoresistive RAM, a type of memory system that stores data as bits made from conventional magnetic materials. In principle, an MRAM device would be patterned with billions of magnetic bits. To encode data, the direction of a local magnetic domain within the device is flipped, similar to switching a transistor from 0 to 1.

    MRAM systems could potentially read and write data faster than silicon-based devices and could run with less power. But they could also be vulnerable to external magnetic fields.

    “The system as a whole follows a magnetic field like a sunflower follows the sun, which is why, if you take a magnetic data storage device and put it in a moderate magnetic field, information is completely erased,” Comin says.

    Antiferromagnets, in contrast, are unaffected by external fields and could therefore be a more secure alternative to MRAM designs. An essential step toward encodable AFM bits is the ability to switch antiferromagnetism on and off. Researchers have found various ways to accomplish this, mostly by using electric current to switch a material from its orderly antialignment, to a random disorder of spins.

    “With these approaches, switching is very fast,” says Li. “But the downside is, everytime you need a current to read or write, that requires a lot of energy per operation. When things get very small, the energy and heat generated by running currents are significant.”

    Doped disorder

    Comin and his colleagues wondered whether they could achieve antiferromagnetic switching in a more efficient manner. In their new study, they work with neodymium nickelate, an antiferromagnetic oxide grown in the Ramanathan lab. This material exhibits nanodomains that consist of nickel atoms with an opposite spin to that of its neighbor, and held together by oxygen and neodymium atoms. The researchers had previously mapped the material’s fractal properties.

    Since then, the researchers have looked to see if they could manipulate the material’s antiferromagnetism via doping — a process that intentionally introduces impurities in a material to alter its electronic properties. In their case, the researchers doped neodymium nickel oxide by stripping the material of its oxygen atoms.

    When an oxygen atom is removed, it leaves behind two electrons, which are redistributed among the other nickel and oxygen atoms. The researchers wondered whether stripping away many oxygen atoms would result in a domino effect of disorder that would switch off the material’s orderly antialignment.

    To test their theory, they grew 100-nanometer-thin films of neodymium nickel oxide and placed them in an oxygen-starved chamber, then heated the samples to temperatures of 400 degrees Celsius to encourage oxygen to escape from the films and into the chamber’s atmosphere.

    As they removed progressively more oxygen, they studied the films using advanced magnetic X-ray crystallography techniques to determine whether the material’s magnetic structure was intact, implying that its atomic spins remained in their orderly antialignment, and therefore retained antiferomagnetism. If their data showed a lack of an ordered magnetic structure, it would be evidence that the material’s antiferromagnetism had switched off, due to sufficient doping.

    Through their experiments, the researchers were able to switch off the material’s antiferromagnetism at a certain critical doping threshold. They could also restore antiferromagnetism by adding oxygen back into the material.

    Now that the team has shown doping effectively switches AFM on and off, scientists might use more practical ways to dope similar materials. For instance, silicon-based transistors are switched using voltage-activated “gates,” where a small voltage is applied to a bit to alter its electrical conductivity. Comin says that antiferromagnetic bits could also be switched using suitable voltage gates, which would require less energy than other antiferromagnetic switching techniques.

    “This could present an opportunity to develop a magnetic memory storage device that works similarly to silicon-based chips, with the added benefit that you can store information in AFM domains that are very robust and can be packed at high densities,” Comin says. “That’s key to addressing the challenges of a data-driven world.”

    This research was supported, in part, by the Air Force Office of Scientific Research Young Investigator Program and the Natural Sciences and Engineering Research Council of Canada. This research used resources of the Center for Functional Nanomaterials and National Synchrotron Light Source II, both U.S. Department of Energy Office of Science User Facilities located at Brookhaven National Laboratory.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    Massachusetts Institute of Technology (MIT)(US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    One of ten national laboratories overseen and primarily funded by the DOE(US) Office of Science, DOE’s Brookhaven National Laboratory (US) conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University(US), the largest academic user of Laboratory facilities, and Battelle(US), a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University(US) and Battelle Memorial Institute(US). From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology (US) to have a facility near Boston, Massachusettes(US). Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University(US), Cornell University(US), Harvard University(US), Johns Hopkins University(US), Massachusetts Institute of Technology(US), Princeton University(US), University of Pennsylvania(US), University of Rochester(US), and Yale University(US).

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.


    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source (US) operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II (US) [below].

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.
    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.
    BNL National Synchrotron Light Source II(US), Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years.[19] NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.
    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.
    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University.
    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to ATLAS experiment, one of the four detectors located at the Large Hadron Collider (LHC).

    It is currently operating at CERN near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the SNS accumulator ring in partnership with Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    Brookhaven plays a role in a range of neutrino research projects around the world, including theDaya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Brookhaven Campus.

     
  • richardmitnick 12:42 pm on May 4, 2021 Permalink | Reply
    Tags: "Nano flashlight enables new applications of light", , , MIT, ,   

    From MIT : “Nano flashlight enables new applications of light” 

    MIT News

    From MIT

    May 4, 2021
    Elizabeth A. Thomson | Materials Research Laboratory

    1
    Schematic of three different nano flashlights for the generation of (left to right) focused, wide-spanning, and collimated light beams. Each flashlight could have different applications. Credit: Robin Singh.

    In work that could someday turn cell phones into sensors capable of detecting viruses and other minuscule objects, MIT researchers have built a powerful nanoscale flashlight on a chip.

    Their approach to designing the tiny light beam on a chip could also be used to create a variety of other nano flashlights with different beam characteristics for different applications. Think of a wide spotlight versus a beam of light focused on a single point.

    For many decades, scientists have used light to identify a material by observing how that light interacts with the material. They do so by essentially shining a beam of light on the material, then analyzing that light after it passes through the material. Because all materials interact with light differently, an analysis of the light that passes through the material provides a kind of “fingerprint” for that material. Imagine doing this for several colors — i.e., several wavelengths of light — and capturing the interaction of light with the material for each color. That would lead to a fingerprint that is even more detailed.

    Most instruments for doing this, known as spectrometers, are relatively large. Making them much smaller would have a number of advantages. For example, they could be portable and have additional applications (imagine a futuristic cell phone loaded with a self-contained sensor for a specific gas). However, while researchers have made great strides toward miniaturizing the sensor for detecting and analyzing the light that has passed through a given material, a miniaturized and appropriately shaped light beam—or flashlight—remains a challenge. Today that light beam is most often provided by macroscale equipment like a laser system that is not built into the chip itself as the sensors are.

    Complete sensor

    Enter the MIT work. In two recent papers in Nature Scientific Reports, researchers describe not only their approach for designing on-chip flashlights with a variety of beam characteristics, they also report building and successfully testing a prototype. Importantly, they created the device using existing fabrication technologies familiar to the microelectronics industry, so they are confident that the approach could be deployable at a mass scale with the lower cost that implies.

    Nature Scientific Reports

    Nature Scientific Reports

    Overall, this could enable industry to create a complete sensor on a chip with both light source and detector. As a result, the work represents a significant advance in the use of silicon photonics for the manipulation of light waves on microchips for sensor applications.

    “Silicon photonics has so much potential to improve and miniaturize the existing bench-scale biosensing schemes. We just need smarter design strategies to tap its full potential. This work shows one such approach,” says PhD candidate Robin Singh SM ’18, who is lead author of both papers.

    “This work is significant, and represents a new paradigm of photonic device design, enabling enhancements in the manipulation of optical beams,” says Dawn Tan, an associate professor at the Singapore University of Technology and Design (SUTD) (SG) who was not involved in the research.

    The senior coauthors on the first paper are Anuradha “Anu” Murthy Agarwal, a principal research scientist in MIT’s Materials Research Laboratory, Microphotonics Center, and Initiative for Knowledge and Innovation in Manufacturing; and Brian W. Anthony, a principal research scientist in MIT’s Department of Mechanical Engineering. Singh’s coauthors on the second paper are Agarwal; Anthony; Yuqi Nie, now at Princeton University (US); and Mingye Gao, a graduate student in MIT’s Department of Electrical Engineering and Computer Science.

    How they did it

    Singh and colleagues created their overall design using multiple computer modeling tools. These included conventional approaches based on the physics involved in the propagation and manipulation of light, and more cutting-edge machine-learning techniques in which the computer is taught to predict potential solutions using huge amounts of data. “If we show the computer many examples of nano flashlights, it can learn how to make better flashlights,” says Anthony. Ultimately, “we can then tell the computer the pattern of light that we want, and it will tell us what the design of the flashlight needs to be.”

    All of these modeling tools have advantages and disadvantages; together they resulted in a final, optimal design that can be adapted to create flashlights with different kinds of light beams.

    The researchers went on to use that design to create a specific flashlight with a collimated beam, or one in which the rays of light are perfectly parallel to each other. Collimated beams are key to some types of sensors. The overall flashlight that the researchers made involved some 500 rectangular nanoscale structures of different dimensions that the team’s modeling predicted would enable a collimated beam. Nanostructures of different dimensions would lead to different kinds of beams that in turn are key to other applications.

    The tiny flashlight with a collimated beam worked. Not only that, it provided a beam that was five times more powerful than is possible with conventional structures. That’s partly because “being able to control the light better means that less is scattered and lost,” says Agarwal.

    Singh describes the excitement he felt upon creating that first flashlight. “It was great to see through a microscope what I had designed on a computer. Then we tested it, and it worked!”

    This research was supported, in part, by the MIT Skoltech Initiative.

    Additional MIT facilities and departments that made this work possible are the Department of Materials Science and Engineering, the Materials Research Laboratory, the Institute for Medical Engineering and Science, and MIT.nano.

    Overall, this could enable industry to create a complete sensor on a chip with both light source and detector. As a result, the work represents a significant advance in the use of silicon photonics for the manipulation of light waves on microchips for sensor applications.

    “Silicon photonics has so much potential to improve and miniaturize the existing bench-scale biosensing schemes. We just need smarter design strategies to tap its full potential. This work shows one such approach,” says PhD candidate Robin Singh SM ’18, who is lead author of both papers.

    “This work is significant, and represents a new paradigm of photonic device design, enabling enhancements in the manipulation of optical beams,” says Dawn Tan, an associate professor at the Singapore University of Technology and Design who was not involved in the research.

    The senior coauthors on the first paper are Anuradha “Anu” Murthy Agarwal, a principal research scientist in MIT’s Materials Research Laboratory, Microphotonics Center, and Initiative for Knowledge and Innovation in Manufacturing; and Brian W. Anthony, a principal research scientist in MIT’s Department of Mechanical Engineering. Singh’s coauthors on the second paper are Agarwal; Anthony; Yuqi Nie, now at Princeton University; and Mingye Gao, a graduate student in MIT’s Department of Electrical Engineering and Computer Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    Massachusetts Institute of Technology (MIT)(US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 10:56 am on May 4, 2021 Permalink | Reply
    Tags: "SMART investigates the science behind varying performance of different colored LEDs", , MIT,   

    From MIT : “SMART investigates the science behind varying performance of different colored LEDs” 

    MIT News

    From MIT

    April 28, 2021
    Singapore-MIT Alliance for Research and Technology

    1
    An array of multicolored LEDs periodically arranged to give off visible light. A combination of InGaN-based red, blue, and green LEDs is essential to cover lighting demands efficiently in the entire visible spectrum.
    Credits: Singapore-MIT Alliance for Research and Technology

    Researchers from the Low Energy Electronic Systems (LEES) interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, together with MIT and National University of Singapore (NUS) (SG), have found a method to quantify the distribution of compositional fluctuations in the indium gallium nitride (InGaN) quantum wells at different indium concentrations.

    InGaN light emitting diodes (LEDs) have revolutionized the field of solid-state lighting due to their high efficiencies and durability, and low costs. The color of the LED emission can be changed by varying the indium concentration in the InGaN compound, giving InGaN LEDs the potential to cover the entire visible spectrum. InGaN LEDs with relatively low amounts of indium compared to gallium, such as the blue, green, and cyan LEDs, have enjoyed significant commercial success for communication, industry, and automotive applications. However, LEDs with higher indium concentrations, such as red and amber LEDs, suffer from a drop in efficiency with the increasing amount of indium.

    Currently, red and amber LEDs are made using aluminum indium gallium phosphide (AlInGaP) instead of InGaN due to InGaN’s poor performance in the red and amber spectrum caused by the efficiency drop. Understanding and overcoming the efficiency drop is the first step toward developing InGaN LEDs covering the whole visible spectrum, which would significantly reduce production costs.

    In a paper recently published in Physical Review Materials, the team employed a multifaceted method to understand the origin of compositional fluctuations and their potential effect on the efficiency of InGaN LEDs. The accurate determination of compositional fluctuations is critical to understanding their role in reducing efficiency in InGaN LEDs with higher indium compositions.

    “The [origin of the] efficiency drop experienced in higher indium concentration InGaN LEDs is still unknown to this date,” says co-author Professor Silvija Gradecak of the Department of Materials Science and Engineering at NUS, who is also a principal investigator at SMART LEES and a visiting professor at MIT. “It is important to understand this efficiency drop to create solutions that will be able to overcome it. In order to do so, we have designed a method that is able to detect and study the compositional fluctuations in the InGaN quantum wells to determine its role in the efficiency drop.”

    The researchers developed a multifaceted method to detect indium compositional fluctuations in the InGaN quantum wells using synergistic investigation that combines complementary computational methods, advanced atomic-scale characterization, and autonomous algorithms for image processing.

    Tara Mishra, lead author and SMART PhD fellow, says, “This method developed and used in our research is of general applicability and can be adapted to other materials science investigations where compositional fluctuations need to be investigated.”

    “The method that we developed can be widely applied and provide significant value and impact on other materials science studies, where atomistic compositional fluctuations play an important role in material performance,” says Pieremanuele Canepa, co-author of the paper, principal investigator at SMART LEES, assistant professor in the departments of Materials Science and Engineering and Chemical and Biomolecular Engineering at NUS, and a former MIT postdoc. “The understanding of the atomic distribution of InGaN at varying indium concentrations is key to developing next-generation full-color displays using the InGaN LED platform.”

    The research found that the indium atoms are randomly distributed in a relatively low-indium content InGaN. On the other hand, partial phase separation is observed in higher indium content InGaN, where random compositional fluctuations are concurrent with pockets of indium-rich regions.

    The findings advanced the understanding of the atomic microstructure of the InGaN and its potential effect on the performance of LEDs, paving the way for future research to determine the role of compositional fluctuations in the new generation of InGaN LEDs and design strategies to prevent the degradation of these devices.

    The research was carried out by SMART and supported by the National Research Foundation Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART’s LEES interdisciplinary research group is creating new integrated circuit technologies that result in increased functionality, lower power consumption, and higher performance for electronic systems. These integrated circuits of the future will impact applications in wireless communications, power electronics, LED lighting, and displays. LEES has a vertically integrated research team possessing expertise in materials, devices, and circuits, comprising multiple individuals with professional experience within the semiconductor industry. This ensures that the research is targeted to meet the needs of the semiconductor industry both within Singapore and globally.

    SMART was established by MIT in partnership with the NRF in 2007. SMART is the first entity in CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five interdisciplinary research groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and LEES.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    Massachusetts Institute of Technology (MIT)(US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 9:35 pm on May 2, 2021 Permalink | Reply
    Tags: "On course to create a fusion power plant", MIT,   

    From MIT : “On course to create a fusion power plant” 

    MIT News

    From MIT

    April 29, 2021
    Paul Rivenberg | Plasma Science and Fusion Center

    1
    ARCH is a conceptual design for an onboard fusion device capable of generating ammonia fuel for ship engines.
    Credits: Ethan Peterson.

    “There is no lone genius who solves all the problems.”

    Dennis Whyte, director of the Plasma Science and Fusion Center (PSFC), is reflecting on a guiding belief behind his nuclear science and engineering class 22.63 (Principles of Fusion Engineering). He has recently watched his students, working in teams, make their final presentations on how to use fusion technology to create carbon-free fuel for shipping vessels. Since taking on the course over a decade ago, Whyte has moved away from standard lectures, prodding the class to work collectively on finding solutions to “real-world” issues. Over the past years the course, and its collaborative approach to design, has been instrumental in guiding the real future of fusion at the PSFC.

    For decades researchers have explored fusion, the reaction that powers the sun, as a potential source of virtually endless, carbon-free energy on Earth. MIT has studied the process with a series of “Alcator” tokamaks, compact machines that use high magnetic fields to keep the hot plasma inside and away from the walls of a donut-shaped vacuum vessel long enough for fusion to occur. But understanding how plasma affects tokamak materials, and making the plasma dense and hot enough to sustain fusion reactions, has been elusive.

    Incubating fusion machines and design teams

    The second time he taught the course, Whyte was ready for his students to attack problems related to net-energy tokamak operation, necessary to produce substantial and economical power. These problems could not be explored with the PSFC’s Alcator C-Mod tokamak , which maintained fusion in only brief pulses, but they could be studied by a class tasked with designing a fusion device that can operate around the clock.

    Around this time Whyte learned of high-temperature superconducting (HTS) tape, a newly available class of superconducting material that supported creating higher magnetic fields for effectively confining the plasma. It had the potential to surpass the performance of the previous generation of superconductors, like niobium-tin, which was being used in ITER, the burning plasma fusion experiment being built in France.


    Could the class design a machine that would answer questions about steady-state operation, while taking advantage of this revolutionary product? Furthermore, what if components of the machine could be easily taken out and replaced or altered, making the tokamak flexible for different experiments?

    What the class conceived was a tokamak called “Vulcan.” Whyte calls his students’ efforts “eye-opening,” original enough to produce five peer-reviewed articles for Fusion Engineering and Design. Although the tokamak design was never directly built, its exploration of demountable magnetic coils, made from the new HTS tape, suggested a path for a fusion future.

    Two years later, Whyte started his students down that path. He asked, “What would happen in a device where we try to make 500 megawatts of fusion power — identical to what ITER does — but we use this new HTS technology?”

    With student teams working on separate aspects of the project and coordinating with other groups to create an integrated design, Whyte decided to make the class environment even more collaborative. He invited PSFC fusion experts to contribute. In this “collective community teaching” environment the students expanded on the research from the previous class, creating the basis for HTS magnets and demountable coils.

    As before, the innovations explored resulted in a published paper. The lead author was then-graduate student Brandon Sorbom PhD ’17. He introduced the fusion community to ARC, describe in the article’s title as “a compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets.” Because ARC was too large a project to consider building immediately, Whyte and some of his postdocs and students eventually began thinking about how they could study the most important elements of the ARC design in a smaller device.

    Their answer was SPARC, based on the experience gained from designing Vulcan and ARC.

    This compact, high-field, net fusion energy experiment has become a collaboration between MIT and Commonwealth Fusion Systems (CFS), a Cambridge, Massachusetts-based startup seeded with talent from 22.63. Bob Mumgaard and Dan Brunner, who helped design Vulcan, are in CFS leadership, as is Brandon Sorbom. MIT NSE Assistant Professor Zach Hartwig, who participated as a student in the Vulcan project, has also stayed involved in the SPARC project and developments.

    The economic question

    The course had become an incubator for researchers interested in using the latest technology to re-imagine how quickly a fusion power plant would be possible. It helped redirect the focus of the PSFC from Alcator C-Mod, which ended operation in 2016, toward SPARC and ARC, and technology innovation. In the process the PSFC, whose fusion program had been largely funded by the U.S. Department of Energy, realized it would also need to expand its research sponsorship to private funding.

    The discussions with the private sector brought home the requirement not just for technical feasibility, but for making fusion an attractive product economically. This inspired Whyte to add an economic constraint to the 2020 22.63 class project, noting “it changes how you think about attacking the design.” Consequently, he expanded the teaching team to include Eric Ingersoll, founder and managing director at LucidCatalyst and TerraPraxis. Together they imagined a novel application and market that could use fusion as an intense carbon-free energy source — international shipping.

    The virtual nature of this year’s course offered the unique chance for a number of students, postdocs, and teachers from Princeton University (US) to join the class as volunteers, with the intent of eventually creating a similarly structured course at Princeton. They integrated with MIT students and instructors into four teams working interdependently to design an onboard method of generating ammonia fuel for ship engines. The device was dubbed “ARCH,” the H standing for Hydrogen. By making innovations to the fusion design, mostly focused on improving materials and heat removal, the team showed they could meet economic targets.

    For MIT graduate student Rachel Bielajew, part of the Systems Integration Team, focusing on the economics of the project provided a very different experience from her other classes and everyday research.

    “It was definitely motivating to have an economic target driving design choices,” she says. “The class also reinforced for me that the pathway to successful fusion reactors is multidisciplinary and there is important research to be done in many fields.”

    Whyte’s teaching journey has been as transformative for him as for his students.

    “If you give young people the time, the tools, and the imaginative space to work together towards meaningful goals — it’s hard to imagine a more powerful force,” he says. “The class and the innovation provided by the collective student effort have changed my worldview, and, I believe, the prospects for fusion energy.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 11:10 pm on April 29, 2021 Permalink | Reply
    Tags: "Nanostructured device stops light in its tracks", , , MIT, ,   

    From MIT : “Nanostructured device stops light in its tracks” 

    MIT News


    From MIT

    April 29, 2021
    Research Laboratory of Electronics

    1
    As a laser illuminates these nanometer-scale devices (blue wave), attosecond electron flashes are generated (red pulse) at the ends of nanotips and used to trace out weak light fields (red wave). Credit: Marco Turchetti.

    Understanding how light waves oscillate in time as they interact with materials is essential to understanding light-driven energy transfer in materials, such as solar cells or plants. Due to the fantastically high speeds at which light waves oscillate, however, scientists have yet to develop a compact device with enough time resolution to directly capture them.

    Now, a team led by MIT researchers has demonstrated chip-scale devices that can directly trace the weak electric field of light waves as they change in time. Their device, which incorporates a microchip that uses short laser pulses and nanoscale antennas, is easy to use, requiring no special environment for operation, minimal laser parameters, and conventional laboratory electronics.

    The team’s work, published earlier this month in Nature Photonics, may enable the development of new tools for optical measurements with applications in areas such as biology, medicine, food safety, gas sensing, and drug discovery.

    “The potential applications of this technology are many,” says co-author Phillip Donnie Keathley, group leader and Research Laboratory of Electronics (RLE) research scientist. “For instance, using these optical sampling devices, researchers will be able to better understand optical absorption pathways in plants and photovoltaics, or to better identify molecular signatures in complex biological systems.”

    Keathley’s co-authors are lead author Mina Bionta, a senior postdoc at RLE; Felix Ritzkowsky, a graduate student at the DESY German Electron Synchrotron [Deütsches Elektronen-Synchrotron](DE) and the University of Hamburg [Universität Hamburg] (DE) who was an MIT visiting student; and Marco Turchetti, a graduate student in RLE. The team was led by Keathley working with professors Karl Berggren in the MIT Department of Electrical Engineering and Computer Science (EECS); Franz Kärtner of DESY and University of Hamburg in Germany; and William Putnam of the University of California at Davis (US). Other co-authors are Yujia Yang, a former MIT postdoc now at Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH), and Dario Cattozzo Mor, a former visiting student.

    The ultrafast meets the ultrasmall — time stands still at the head of a pin

    Researchers have long sought methods for measuring systems as they change in time. Tracking gigahertz waves, like those used for your phone or Wi-Fi router, requires a time resolution of less than 1 nanosecond (one-billionth of a second). To track visible light waves requires an even faster time resolution — less than 1 femtosecond (one-millionth of one-billionth of a second).

    The MIT and DESY research teams designed a microchip that uses short laser pulses to create extremely fast electronic flashes at the tips of nanoscale antennas. The nanoscale antennas are designed to enhance the field of the short laser pulse to the point that they are strong enough to rip electrons out of the antenna, creating an electronic flash that is quickly deposited into a collecting electrode. These electronic flashes are extremely brief, lasting only a few hundred attoseconds (a few one-hundred-billionths of one-billionth of 1 second).

    Using these fast flashes, the researchers were able to take snapshots of much weaker light waves oscillating as they passed by the chip.

    “This work shows, once more, how the merger of nanofabrication and ultrafast physics can lead to exciting insights and new ultrafast measurements tools,” says Professor Peter Hommelhoff, chair for laser physics at the Friedrich–Alexander University Erlangen–Nürnberg [Friedrich-Alexander-Universität Erlangen-Nürnberg](DE) , who was not connected with this work. “All this is based on the deep understanding of the underlying physics. Based on this research, we can now measure ultrafast field waveforms of very weak laser pulses.”

    The ability to directly measure light waves in time will benefit both science and industry, say the researchers. As light interacts with materials, its waves are altered in time, leaving signatures of the molecules inside. This optical field sampling technique promises to capture these signatures with greater fidelity and sensitivity than prior methods while using compact and integratable technology needed for real-world applications.

    This research was supported by the U.S. Air Force Office of Scientific Research through a Young Investigator Program entitled “On-Chip PHz Processing of Optical Fields using Nanostructured Electron Emitters,” and a Multi University Research Initiative (MURI) program entitled “Empty State Electronics.” The work was also supported in part by the European Research Council, the MIT-Hamburg PIER program at DESY, and SENSE.nano at MIT.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 8:36 am on April 1, 2021 Permalink | Reply
    Tags: "TESS’s exoplanet catalog grows to over 2200 worlds", , , , , , MIT, ,   

    From MIT via From EarthSky: “TESS’s exoplanet catalog grows to over 2200 worlds” 

    MIT News

    From MIT

    via

    1

    a href=”http://earthsky.org/”> From EarthSky

    April 1, 2021
    Paul Scott Anderson

    When the TESS planet hunter launched nearly 3 years ago, some 4,000 exoplanets were known.

    NASA confirmed in late March that TESS has discovered over 2,200 additional exoplanet candidates orbiting distant stars.

    1
    NASA’s TESS space telescope has found more than 2,200 exoplanet candidates so far, including hundred of smaller rocky worlds. National Aeronautics Space Agency(US).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO)(US) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 9:41 pm on March 29, 2021 Permalink | Reply
    Tags: "Physicists flip particle accelerator setup to gain a clearer view of atomic nuclei", , “Inverse kinematics”, , MIT, , ,   

    From MIT : “Physicists flip particle accelerator setup to gain a clearer view of atomic nuclei” 

    MIT News

    From MIT News

    March 29, 2021
    Jennifer Chu

    Shooting beams of ions at proton clouds may help researchers map the inner workings of neutron stars.

    1
    Shooting beams of ions at proton clouds, like throwing nuclear darts at the speed of light, can provide a clearer view of nuclear structure. Credits: Jose-Luis Olivares/ MIT.

    Physicists at MIT and elsewhere are blasting beams of ions at clouds of protons —like throwing nuclear darts at the speed of light — to map the structure of an atom’s nucleus.

    The experiment is an inversion of the usual particle accelerators, which hurl electrons at atomic nuclei to probe their structures. The team used this “inverse kinematics” approach to sift out the messy, quantum mechanical influences within a nucleus, to provide a clear view of a nucleus’ protons and neutrons, as well as its short-range correlated (SRC) pairs. These are pairs of protons or neutrons that briefly bind to form super-dense droplets of nuclear matter and that are thought to dominate the ultradense environments in neutron stars.

    The results, published today in Nature Physics, demonstrate that inverse kinematics may be used to characterize the structure of more unstable nuclei — essential ingredients scientists can use to understand the dynamics of neutron stars and the processes by which they generate heavy elements.

    “We’ve opened the door for studying SRC pairs, not only in stable nuclei but also in neutron-rich nuclei that are very abundant in environments like neutron star mergers,” says study co-author Or Hen, assistant professor of physics at MIT. “That gets us closer to understanding such exotic astrophysical phenomena.”

    Hen’s co-authors include Jullian Kahlbow and Efrain Segarra of MIT, Eli Piasetzky of Tel Aviv University [ אוּנִיבֶרְסִיטַת תֵּל אָבִיב} (IL), and researchers from Technical University of Darmstadt [Technische Universität Darmstadt](DE), the Joint Institute for Nuclear Research [Объединенный институт ядерных исследований России](RU) [JINR], the Alternative Energies and Atomic Energy Commission [Commissariat à l’énergie atomique et aux énergies alternatives] (FR)(CEA), and the GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtzzentrum für Schwerionenforschung] (DE).

    An inverted accelerator

    Particle accelerators typically probe nuclear structures through electron scattering, in which high-energy electrons are beamed at a stationary cloud of target nuclei. When an electron hits a nucleus, it knocks out protons and neutrons, and the electron loses energy in the process. Researchers measure the energy of the electron beam before and after this interaction to calculate the original energies of the protons and neutrons that were kicked away.

    While electron scattering is a precise way to reconstruct a nucleus’ structure, it is also a game of chance. The probability that an electron will hit a nucleus is relatively low, given that a single electron is vanishingly small in comparison to an entire nucleus. To increase this probability, beams are loaded with ever-higher electron densities.

    Scientists also use beams of protons instead of electrons to probe nuclei, as protons are comparably larger and more likely to hit their target. But protons are also more complex, and made of quarks and gluons, the interactions of which can muddy the final interpretation of the nucleus itself.

    To get a clearer picture, physicists in recent years have inverted the traditional setup: By aiming a beam of nuclei, or ions, at a target of protons, scientists can not only directly measure the knocked out protons and neutrons, but also compare the original nucleus with the residual nucleus, or nuclear fragment, after it has interacted with a target proton.

    “With inverted kinematics, we know exactly what happens to a nucleus when we remove its protons and neutrons,” Hen says.

    Quantum sifting

    The team took this inverted kinematics approach to ultrahigh energies, using JINR’s particle accelerator facility to target a stationary cloud of protons with a beam of carbon-12 nuclei, which they shot out at 48 billion electron-volts — orders of magnitude higher than the energies found naturally in nuclei.

    At such high energies, any nucleon that interacts with a proton will stand out in the data, compared with noninteracting nucleons that pass through at much lower energies. In this way, the researchers can quickly isolate any interactions that did occur between a nucleus and a proton.

    From these interactions, the team picked through the residual nuclear fragments, looking for boron-11 — a configuration of carbon-12, minus a single proton. If a nucleus started out as carbon-12 and wound up as boron-11, it could only mean that it encountered a target proton in a way that knocked out a single proton. If the target proton knocked out more than one proton, it would have been the result of quantum mechanical effects within the nucleus that would be difficult to interpret. The team isolated boron-11 as a clear signature and discarded any lighter, quantumly influenced fragments.

    The team calculated the energy of the proton knocked out of the original carbon-12 nucleus, based on each interaction that produced boron-11. When they set the energies into a graph, the pattern fit exactly with carbon-12’s well-established distribution — a validation of the inverted, high-energy approach.

    They then turned the technique on short-range correlated pairs, looking to see if they could reconstruct the respective energies of each particle in a pair — fundamental information for ultimately understanding the dynamics in neutron stars and other neutron-dense objects.

    They repeated the experiment and this time looked for boron-10, a configuration of carbon-12, minus a proton and a neutron. Any detection of boron-10 would mean that a carbon-12 nucleus interacted with a target proton, which knocked out a proton, and its bound partner, a neutron. The scientists could measure the energies of both the target and the knocked out protons to calculate the neutron’s energy and the energy of the original SRC pair.

    In all, the researchers observed 20 SRC interactions and from them mapped carbon-12’s distribution of SRC energies, which fit well with previous experiments. The results suggest that inverse kinematics can be used to characterize SRC pairs in more unstable and even radioactive nuclei with many more neutrons.

    “When everything is inverted, this means a beam driving through could be made of unstable particles with very short lifetimes that live for a millisecond,” says Julian Kahlbow, a joint postdoc at MIT and Tel-aviv University and a co-leading author of the paper. “That millisecond is enough for us to create it, let it interact, and let it go. So now we can systematically add more neutrons to the system and see how these SRCs evolve, which will help us inform what happens in neutron stars, which have many more neutrons than anything else in the universe.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO)(US) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 12:38 pm on March 28, 2021 Permalink | Reply
    Tags: "Controlling bubble formation on electrodes", MIT, The gas forms bubbles that can temporarily block the active electrode surface., Water-splitting is basically a way to generate hydrogen out of electricity   

    From MIT: “Controlling bubble formation on electrodes” 

    MIT News


    From MIT

    March 26, 2021
    David L. Chandler

    1
    This image shows the interplay among electrode wettability, porous structure, and overpotential. With the decrease of wettability (moving left to right), the gas-evolving electrode transitions from an internal growth and departure mode to a gas-filled mode, associated with a drastic change of bubble behaviors and significant increase of overpotential.
    Credit: The researchers.

    Using electricity to split water into hydrogen and oxygen can be an effective way to produce clean-burning hydrogen fuel, with further benefits if that electricity is generated from renewable energy sources. But as water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces.

    Now, a study at MIT has for the first time analyzed and quantified how bubbles form on these porous electrodes. The researchers have found that there are three different ways bubbles can form on and depart from the surface, and that these can be precisely controlled by adjusting the composition and surface treatment of the electrodes.

    The findings could apply to a variety of other electrochemical reactions as well, including those used for the conversion of carbon dioxide captured from power plant emissions or air to form fuel or chemical feedstocks. The work is described today in the journal Joule, in a paper by MIT visiting scholar Ryuichi Iwata, graduate student Lenan Zhang, professors Evelyn Wang and Betar Gallant, and three others.

    “Water-splitting is basically a way to generate hydrogen out of electricity, and it can be used for mitigating the fluctuations of the energy supply from renewable sources,” says Iwata, the paper’s lead author. That application was what motivated the team to study the limitations on that process and how they could be controlled.

    Because the reaction constantly produces gas within a liquid medium, the gas forms bubbles that can temporarily block the active electrode surface. “Control of the bubbles is a key to realizing a high system performance,” Iwata says. But little study had been done on the kinds of porous electrodes that are increasingly being studied for use in such systems.

    The team identified three different ways that bubbles can form and release from the surface. In one, dubbed internal growth and departure, the bubbles are tiny relative to the size of the pores in the electrode. In that case, bubbles float away freely and the surface remains relatively clear, promoting the reaction process.

    In another regime, the bubbles are larger than the pores, so they tend to get stuck and clog the openings, significantly curtailing the reaction. And in a third, intermediate regime, called wicking, the bubbles are of medium size and are still partly blocked, but manage to seep out through capillary action.

    The team found that the crucial variable in determining which of these regimes takes place is the wettability of the porous surface. This quality, which determines whether water spreads out evenly across the surface or beads up into droplets, can be controlled by adjusting the coating applied to the surface. The team used a polymer called PTFE, and the more of it they sputtered onto the electrode surface, the more hydrophobic it became. It also became more resistant to blockage by larger bubbles.

    2
    New experiments showed that the wettability of the surface makes a big difference in the way bubbles form and leave the surface. On the left, a higher-wettability porous surface leads to small bubbles that leave quickly, while lower wettability, right, leads to bigger bubbles that clog the material’s pores and reduce efficiency.

    The transition is quite abrupt, Zhang says, so even a small change in wettability, brought about by a small change in the surface coating’s coverage, can dramatically alter the system’s performance. Through this finding, he says, “we’ve added a new design parameter, which is the ratio of the bubble departure diameter [the size it reaches before separating from the surface] and the pore size. This is a new indicator for the effectiveness of a porous electrode.”

    Pore size can be controlled through the way the porous electrodes are made, and the wettability can be controlled precisely through the added coating. So, “by manipulating these two effects, in the future we can precisely control these design parameters to ensure that the porous medium is operated under the optimal conditions,” Zhang says. This will provide materials designers with a set of parameters to help guide their selection of chemical compounds, manufacturing methods and surface treatments or coatings in order to provide the best performance for a specific application.

    While the group’s experiments focused on the water-splitting process, the results should be applicable to virtually any gas-evolving electrochemical reaction, the team says, including reactions used to electrochemically convert captured carbon dioxide, for example from power plant emissions.

    Gallant, an associate professor of mechanical engineering at MIT, says that “what’s really exciting is that as the technology of water splitting continues to develop, the field’s focus is expanding beyond designing catalyst materials to engineering mass transport, to the point where this technology is poised to be able to scale.” While it’s still not at the mass-market commercializable stage, she says, “they’re getting there. And now that we’re starting to really push the limits of gas evolution rates with good catalysts, we can’t ignore the bubbles that are being evolved anymore, which is a good sign.”

    The MIT team also included Kyle Wilke, Shuai Gong, and Mingfu He. The work was supported by Toyota Central R&D Labs, the Singapore-MIT Alliance for Research and Technology (SMART), the U.S.-Egypt Science and Technology Joint Fund, and the Natural Science Foundation of China.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 2:33 pm on March 27, 2021 Permalink | Reply
    Tags: "MIT astronomers discover new galaxy clusters hiding in plain sight", , , , , Galaxy cluster CHIPS1911+4455, Galaxy clusters contain hundreds to thousands of galaxies bound together by gravity., MIT, MIT Kavli Institute for Astrophysics and Space Research,   

    From MIT : “MIT astronomers discover new galaxy clusters hiding in plain sight” 

    MIT News


    From MIT News

    March 26, 2021
    Kelso Harper | MIT Kavli Institute for Astrophysics and Space Research

    MIT Kavli Institute for Astrophysics and Space Research.

    1
    The newly discovered galaxy cluster CHIPS1911+4455 has a unique twisted shape compared to other rapidly cooling galaxy clusters. This image was taken with the Hubble Space Telescope.
    Credits: National Aeronautics and Space Administration(US)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) Hubble Space Telescope Heritage Team

    MIT astronomers have discovered new and unusual galactic neighborhoods that previous studies overlooked. Their results [The Astrophysical Journal], published today, suggest that roughly 1 percent of galaxy clusters look atypical and can be easily misidentified as a single bright galaxy. As researchers launch new cluster-hunting telescopes, they must heed these findings or risk having an incomplete picture of the universe.

    Galaxy clusters contain hundreds to thousands of galaxies bound together by gravity. They move through a hot soup of gas called the intracluster medium, which contains more mass than all the stars in all the galaxies within it. This hot gas fuels star formation as it cools and emits X-ray radiation that we can observe with space-based telescopes.

    This bright gas cloud creates a fuzzy halo of X-rays around galaxy clusters, making them stand out from more discrete point sources of X-rays produced by, for example, a star or quasar. However, some galactic neighborhoods break this mold, as MIT Associate Professor Michael McDonald learned nine years ago.

    In 2012, McDonald discovered a cluster unlike any other, which shone bright like a point source in the X-ray. Its central galaxy hosts a ravenous black hole that consumes matter and spews X-rays so bright as to drown out the diffuse radiation of the intracluster medium. In its core, the cluster forms stars at a rate roughly 500 times higher than most other clusters, giving it the blue glow of a young star population instead of the typical red hue of aging stars.

    “We’d been looking for a system like this for decades,” McDonald says of the Phoenix cluster. And yet, it had been observed and passed over years prior, assumed to be a single galaxy instead of a cluster. “It’d been in the archive for decades and no one saw it. They were looking past it because it didn’t look right.”

    And so, McDonald wondered, what other unusual clusters might be lurking in the archive, waiting to be found? Thus, the Clusters Hiding in Plain Sight (CHiPS) survey was born.

    Taweewat Somboonpanyakul, a graduate student in McDonald’s lab, devoted his entire PhD to the CHiPS survey. He began by selecting potential cluster candidates from decades of X-ray observations. He used existing data from ground-based telescopes in Hawaii and New Mexico, and visited the Magellan telescopes in Chile to take new images of the remaining sources, hunting for neighboring galaxies that would reveal a cluster. In the most promising cases, he zoomed in with higher-resolution telescopes such as the space-based Chandra X-Ray Observatory and Hubble Space Telescope.

    After six years, the CHiPS survey has now come to a close. Today in The Astrophysical Journal, Somboonpanyakul published the survey’s cumulative results, which include the discovery of three new galaxy clusters. One of these clusters, CHIPS1911+4455, is similar to the rapidly-star-forming Phoenix cluster and was described in a paper in January in The Astrophysical Journal Letters. It’s an exciting finding since astronomers know of just a few other Phoenix-like clusters. This cluster invites further study, however, as it has a twisted shape with two extended arms, whereas all other rapidly-cooling clusters are circular. The researchers believe it may have collided with a smaller galaxy cluster. “It’s super unique compared to all the galaxy clusters that we now know,” says Somboonpanyakul.

    In all, the CHiPS survey revealed that older X-ray surveys missed roughly 1 percent of galactic neighborhoods because they look different than the typical cluster. This can have significant implications, since astronomers study galaxy clusters to learn about how the universe expands and evolves. “We need to find all the clusters to get those things right,” McDonald explains. “Ninety-nine percent completion isn’t enough if you want to push the frontier.”

    As scientists discover and study more of these unusual galaxy clusters, they may better understand how they fit into the broader cosmic picture. At this point, they don’t know whether a small number of clusters are always in this strange, Phoenix-like state, or if this is perhaps a typical phase that all clusters undergo for a short period of time — roughly 20 million years, a fleeting moment by spacetime standards. It’s difficult for astronomers to tell the difference, as they only get a single snapshot of each cluster nearly frozen in time. But with more data, they can make better models of the physics governing these galactic neighborhoods.

    The conclusion of the CHiPS survey coincides with the launch of a new X-ray telescope, eROSITA, which aims to grow our catalogue of clusters from a few hundred to tens of thousands. But unless they change the way they look for those clusters, they will miss hundreds that deviate from the norm. “The people that are building out the cluster searches for this new X-ray telescope need to be aware of this work,” says McDonald. “If you miss 1 percent of the clusters, there’s a fundamental limit to how well you can understand the universe.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO)(US) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
  • richardmitnick 3:39 pm on March 24, 2021 Permalink | Reply
    Tags: "Measuring the invisible" Particle physicist Lindley Winslow, ABRACADABRA experiment at MIT, , , CUORE Experiment LNGS - Gran Sasso National Laboratory(IT), Kamioka Liquid Scintillator Antineutrino Detector-KamLAND, LBNL Cryogenic Dark Matter Search(US), Lindley Winslow has participated in many experiments herein enumerated., MIT, , , Particle physicist Lindley Winslow seeks the universe’s smallest particles for answers to its biggest questions., , ,   

    From MIT: “Measuring the invisible” Particle physicist Lindley Winslow 

    MIT News


    From MIT

    March 24, 2021
    Jennifer Chu

    Particle physicist Lindley Winslow seeks the universe’s smallest particles for answers to its biggest questions.

    1
    MIT particle physicist Lindley Winslow seeks the universe’s smallest particles for answers to its biggest questions.
    Credit: M. Scott Brauer.

    When she entered the field of particle physics in the early 2000’s, Lindley Winslow was swept into the center of a massive experiment to measure the invisible.

    Scientists were finalizing the Kamioka Liquid Scintillator Antineutrino Detector-KamLAND, a building-sized particle detector built within a cavernous mine deep inside the Japanese Alps.

    KamLAND Neutrino Detector(JP) at the Kamioka Observatory, [Institute for Cosmic Ray Research; (神岡宇宙素粒子研究施設](JP) in located in a mine in Hida, Japan.

    The experiment was designed to detect neutrinos — subatomic particles that pass by the billions through ordinary matter.

    Neutrinos are produced anywhere particles interact and decay, from the Big Bang to the death of stars in supernovae. They rarely interact with matter and are therefore pristine messengers from the environments that create them.

    By 2000, scientists had observed neutrinos from various sources, including the sun, and hypothesized that the particles were morphing into different “flavors” by oscillating. KamLAND was designed to observe the oscillation, as a function of distance and energy, in neutrinos generated by Japan’s nearby nuclear reactors.

    Winslow joined the KamLAND effort the summer before graduate school and spent months in Japan, helping to prepare the detector for operation and then collecting data.

    “I learned to drive a manual transmission on reinforced land cruisers into the mine, past a waterfall, and down a long tunnel, where we then had to hike up a steep hill to the top of the detector,” Winslow says.

    In 2002, the experiment detected neutrino oscillations for the first time.

    “It was one of those moments in science where you know something that no one else in the world does,” recalls Winslow, who was part of the scientific collaboration that received the Breakthrough Prize in Fundamental Physics in 2016 for the discovery.

    The experience was pivotal in shaping Winslow’s career path. In 2020, she received tenure as associate professor of physics at MIT, where she continues to search for neutrinos, with KamLAND and other particle-detecting experiments that she has had a hand in designing.

    “I like the challenge of measuring things that are very, very hard to measure,” Winslow says. “The motivation comes from trying to discover the smallest building blocks and how they affect the universe we live in.”

    Measuring the impossible

    Winslow grew up in Chadds Ford, Pennsylvania, where she explored the nearby forests and streams, and also learned to ride horses, even riding competitively in high school.

    She set her sights west for college, with the intention of studying astronomy, and was accepted to the University of California at Berkeley(US), where she happily spent the next decade, earning first an undergraduate degree in physics and astronomy, then a master’s and PhD in physics.

    Midway through college, Winslow learned of particle physics and the large experiments to detect elusive particles. A search for an undergraduate research project introduced her to the LBNL Cryogenic Dark Matter Search(US), or CDMS, an experiment that was run beneath the Stanford University(US) campus.

    CDMS at Stanford University

    CDMS was designed to detect weakly interacting massive particles, or WIMPS — hypothetical particles that are thought to comprise dark matter — in detectors wrapped in ultrapure copper. For her first research project, Winslow helped analyze copper samples for the experiment’s next generation.

    “I liked seeing how all these pieces worked together, from sourcing the copper to figuring out how to build an experiment to basically measure the impossible,” Winslow says.

    Her later work with KamLAND, facilitated by her quantum mechanics professor and eventual thesis advisor, further inspired her to design experiments to search for neutrinos and other fundamental particles.

    “Little particles, big questions”

    After completing her PhD, Winslow took a postdoc position with Janet Conrad, professor of physics at MIT. In Conrad’s group, Winslow had freedom to explore ideas beyond the lab’s primary projects. One day, after watching a video about nanocrystals, Conrad wondered whether the atomic-scale materials might be useful in particle detection.

    “I remember her saying, ‘These nanocrystals are really cool. What can we do with them? Go!’ And I went and thought about it,” Winslow says.

    She soon came back with an idea: What if nanocrystals made from interesting isotopes could be dissolved in liquid scintillator to also realize more sensitive neutrino detection? Conrad thought it was a good idea and helped Winslow seek out grants to get the project going.

    In 2010, Winslow was awarded the L’Oréal for Women in Science Fellowship and a grant that she put toward the nanocrystal experiment, which she named “NuDot”, for the quantum dots (a type of nanocrystal) that she planned to work into a detector. When she finished her postdoc, she accepted a faculty position at the University of California at Los Angeles(US), where she continued laying plans for NuDot.

    A cold bargain

    Winslow spent two years at UCLA, during a time when the search for neutrinos circled around a new target: neutrinoless double-beta decay, a hypothetical process that, if observed, would prove that the neutrino is also its own antiparticle, which would help to explain why the universe has more matter than antimatter.

    At MIT, physics professor and department head Peter Fisher was looking to hire someone to explore double-beta decay. He offered the job to Winslow, who negotiated in return.

    “I told him what I wanted was a dilution refrigerator,” Winslow recalls. “The base price for one these is not small, and it’s asking a lot in particle physics. But he was like, ‘done!’”

    Winslow joined the MIT faculty in 2015, setting her lab up with a new dilution refrigerator that would allow her to cool macroscopic crystals to millikelvin temperatures to look for heat signatures from double-beta decay and other interesting particles. Today she is continuing to work on NuDot and the new generation of KamLAND, and is also a key member of CUORE Experiment LNGS – Gran Sasso National Laboratory(IT), a massive underground experiment in Italy with a much larger dilution refrigerator, designed to observe neutrinoless double-beta decay.

    Winslow has also made her mark on Hollywood. In 2016, while settling in at MIT, a colleague at UCLA recommended her as a consultant to the remake of the film Ghostbusters. The set design department was looking for ideas for how to stage the lab of one of the movie’s characters, a particle physicist. “I had just inherited a lab with a huge amount of junk that needed to be cleared out — gigantic crates filled with old scientific equipment, some of which had started to rust,” Winslow says. “[The producers] came to my lab and said, ‘This is perfect!’ And in the end it was a really fun collaboration.”

    In 2018, her work took a surprising turn when she was approached by theorist Benjamin Safdi, then at MIT, who with MIT physicist Jesse Thaler and former graduate student Yonatan Kahn PhD ’15 had devised a thought experiment named ABRACADABRA, to detect another hypothetical particle, the axion, by simulating a magnetar — a type of neutron star with intense magnetic fields that should make any interacting axions briefly detectable. Safdi heard of Winslow’s refrigerator and wondered whether she could engineer a detector inside it to test the idea.

    3
    4
    ABRACADABRA experiment at MIT.

    “It was an example of the wonderfulness that is MIT,” recalls Winslow, who jumped at the opportunity to design an entirely new experiment. In its first successful run, the ABRACADABRA detector reported no evidence of axions. The team is now designing larger versions, with greater sensitivity, to add to Winslow’s stable of growing detectors.

    “That’s all part of my group’s vision for the next 25 years: building big experiments that might detect little particles, to answer big questions,” Winslow says.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel