Tagged: MIT Spectrum Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:55 am on June 6, 2022 Permalink | Reply
    Tags: "MIT PRIMES = A Plus for Youth", "PRIMES" pairs high schoolers with MIT graduate students and postdocs to investigate unsolved problems., "PRIMES": Program for Research in Mathematics; Engineering and Science, Math program mentoring helps high schoolers advance in research., MIT Spectrum   

    From MIT Spectrum : “MIT PRIMES = A Plus for Youth” 

    From MIT Spectrum

    Spring 2022

    1
    Adela (YiYu) Zhang ’18, left, mentored Jakin Ng ’25 in MIT’s Program for Research in Mathematics, Engineering, and Science. Photo: Ken Richardson

    Math program mentoring helps high schoolers advance in research.

    In late 2020, three researchers working in an area of math called combinatorics wrote a paper proving “a Stembridgetype equality for skew dual stable Grothendieck polynomials.” Relatively few people on the planet know what that means—and co-author Jakin Ng ’25 admits she wasn’t one of them when she dove into the project. “The first time I looked at it, I was like, ‘I don’t know how I’m ever going to be able to understand this,’” she recalls.

    At that time, Ng and her research partners, Fiona Abney-McPeek and Serena An, were high school students participating in the MIT Mathematics Department’s yearlong Program for Research in Mathematics, Engineering, and Science (PRIMES). Now they’ve submitted their paper for publication, and Ng is a first-year student at MIT in Course 18-C Mathematics with Computer Science. An is slated to enroll next year, and Abney-McPeek is at Harvard.

    PRIMES, Ng says, gave her “a taste of what professional mathematicians do—instead of just learning about results other people have already achieved, actually creating new knowledge.”

    PRIMES pairs high schoolers with MIT graduate students and postdocs to investigate unsolved problems. Founded in 2010 by math professor Pavel Etingof and lecturer Slava Gerovitch PhD ’99, it has expanded into several subprograms, all free to students. PRIMES-USA attracts some of the most advanced students nationwide, while PRIMES Circle and MathROOTS are designed to reach talented kids with less previous exposure to higher math. All of the program’s offerings aim to open the world of mathematics to more people, particularly those underrepresented in the field.

    Group projects are relatively new for PRIMES-USA, but Ng was glad to be part of a trio so each student could build on the others’ insights. She, Abney-McPeek, and An connected often and had weekly video checkins with their mentor, MIT PhD candidate Adela (YiYu) Zhang ’18.

    Zhang provided the high schoolers with background reading on Grothendieck polynomials—the symmetries of which can reveal information about a mathematically important class of geometric objects called Grassmannians—and a roadmap to help them get started. In Ng’s words, “Adela was able to zoom out and give us the macroscopic view of what we should be working on.”

    Zhang says her top priority was to help her mentees build the skills and habits all research mathematicians need, such as “being comfortable with getting stuck but still not giving up.”

    These are lessons Zhang says she feels she is still learning herself. As a young student in Shanghai, China, she was attracted to math by the beauty of famous theorems, but in her day-to-day research she has had to come to grips with slow progress. She knows what it’s like to feel a bit overwhelmed. “When I started mentoring Jakin’s group, I was just starting to work on my own project for the first time in grad school. So, I can fully sympathize with what it feels like,” she says.

    There are successes as well as setbacks. Zhang recalls that Ng spent weeks slogging through examples of an unfamiliar technique called constructing bijections before finally getting the hang of it. “She proved something using this technique, which I found really impressive,” Zhang says. “I was proud of her.”

    Ask Ng if there were moments during the year when she thought her team might never get anywhere, and she laughs. “Basically, the whole time except for the end. I think that’s the point. That’s how research goes. You have a small victory, you celebrate it, and then you’re back to not knowing what’s going on.”

    Connecting with a community

    Both Ng and Zhang say that connecting with others through math has made their research pursuits more rewarding. As an undergraduate at MIT, says Zhang, “I felt very lonely because there weren’t many women doing higher math.” She persevered thanks to encouragement from a female postdoc who supervised her in the Undergraduate Research Opportunities Program (UROP). Zhang went on to serve in turn as a mentor for UROP as well as for PRIMES. The program recognized her ongoing work in 2021 by awarding her a George Lusztig Mentorship.

    Ng started building her own math support network while growing up in Ithaca, New York, attending math camps and leading her high school’s Science Olympiad and math competition teams. She’s met some of her closest friends, including her MIT roommate, through such activities. “A lot of what kept me interested in math was having that community,” she says.

    Whatever the future holds for Ng, she says she expects math or its applications will play some part in her profession. Meanwhile, she is enjoying a variety of creative activities at MIT, including origami and music. She says PRIMES helped her see that creativity is vital to research. “You’re venturing into territory that no one has ever really studied before,” she says. “You have to think of new ways to look at something. Otherwise, it’s already been done.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Spectrum connects friends and supporters of the Massachusetts Institute of Technology to MIT’s vision, impact, and exceptional community.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Seal

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind. Paths of discovery cross every day at MIT, propelling groundbreaking research and furthering personal development. Although it’s not always clear where a path will lead, MIT aims high, working to ensure that humanity’s collective trajectory is pointed toward a brighter future.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory ,

    the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute .

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst . In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, The Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, The Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period The Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 The Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from The California Institute of Technology , The Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 11:54 am on November 23, 2020 Permalink | Reply
    Tags: “MIT has this perfect collaborative platform where you can share not only with your cohort in your studio but also with individuals in different departments [cultivating ] thoughts and ideas.”, “The role of the architect [can be] to envision the city” not only as it is but “what it might become.”, Covid-19 is profoundly impacting the lives of people around the world and may influence design solutions of the future—just as cholera once reshaped urban water and waste management., Global warming is another force that presents compelling questions for architects., MIT Spectrum, MIT’s School of Architecture and Planning (SA+P), Ous Abou Ras   

    From MIT Spectrum: “Designing the Future” Ous Abou Ras 


    From MIT Spectrum

    1
    Ous Abou Ras. Credit: Olivier Faber

    At MIT, a young architect finds the perfect platform for collaborative learning.

    As a young child, Ous Abou Ras loved going to work with his father, an architect, and poring over building plans. Originally from Syria, Abou Ras grew up in Abu Dhabi, the capital of the United Arab Emirates, and has always been drawn to building and design. “I used to love playing with LEGOs,” he recalls, “and initially I wanted to be an engineer.” Ultimately it was architecture, however, that integrated his interests in math and engineering with his appreciation for creative influences such as art and cultural history.

    Abou Ras earned undergraduate degrees in architectural design and physics from the University of Toronto and today continues to add new influences to his work as a second-year graduate student in MIT’s School of Architecture and Planning (SA+P). He is focusing on the emergent field of computational architecture.

    “The best part about MIT is that every single person in my studio has a different background, a different focus of study, and something to share with the others,” says Abou Ras, who is this year’s recipient of the Carney Goldberg Fellowship, created by the family of MIT-trained architect Carney Goldberg ’29. The support of this fellowship, says Abou Ras, has made his MIT education possible.

    Abou Ras and his SA+P classmates work in studio cohorts of approximately 30 students each, a structure that he says encourages community and a rich exchange of ideas. In the fall of 2019, his cohort’s first assignment was to create a performance space within the Emerald Necklace, a chain of connected parks designed by storied landscape architect Frederick Law Olmsted in Boston and Brookline, Massachusetts. Abou Ras designed a computational method to divide the imagined space into a grid and then algorithmically populated the space with elements such as trees and benches. The result was an innovative co-creation by architect and machine.

    Due to the Covid-19 pandemic, Abou Ras is spending the fall 2020 semester taking courses remotely from his family’s current home in Toronto, Canada. But he says classes such as 4.181 Architectural Design Workshop: Kintsugi, Upcycling, and Machine Learning, taught by SA+P faculty members Caitlin Mueller ’07, SM ’14, PhD ’14 and Daniel Marshall MA ’19, continue to expand his skills and spark his imagination. In this workshop, students combine computational modeling and design with Kintsugi, a Japanese art form in which broken fragments of pottery are reassembled into new shapes. The class perfectly suits Abou Ras’s interest in exploring the boundaries of traditional form and drawing inspiration from many disciplines. He notes that his personal influences range from writings in his own field, such as Translations from Drawing to Building and Other Essays by the architectural historian Robin Evans, to the magical realism of Colombian writer Gabriel García Márquez, whose novel One Hundred Years of Solitude reminds Abou Ras that architecture is about more than structures; it has the power to profoundly shape people and their stories.

    “Our cities are where we live, where we develop, where we evolve,” Abou Ras says. “The role of the architect [can be] to envision the city,” not only as it is but “what it might become.” This imaginative work is particularly important now, he says, as Covid-19 is profoundly impacting the lives of people around the world and may influence design solutions of the future—just as cholera once reshaped urban water and waste management.

    Global warming is another force that presents compelling questions for architects, Abou Ras notes: How will humans survive rising sea levels? How can buildings become more adaptable to changing weather? And how can cities be made greener and more sustainable? Answering such questions will take the work of many minds, which is one reason Abou Ras is glad to be at MIT.

    “MIT has this perfect collaborative platform where you can share, not only with your cohort in your studio, but also with individuals in different departments, [cultivating ] thoughts and ideas,” he says. Though architecture is rooted in technical rigor and precision, says Abou Ras, it is also “a very subjective field, and I think that the only way to learn in such a subjective field is to share as much as you can with others.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Spectrum connects friends and supporters of the Massachusetts Institute of Technology to MIT’s vision, impact, and exceptional community.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind. Paths of discovery cross every day at MIT, propelling groundbreaking research and furthering personal development. Although it’s not always clear where a path will lead, MIT aims high, working to ensure that humanity’s collective trajectory is pointed toward a brighter future.

    MIT Campus

     
  • richardmitnick 10:20 am on June 4, 2020 Permalink | Reply
    Tags: "Quantum Leaps on the Horizon", MIT Spectrum, Paola Cappellaro PhD ’06 advances next-generation computing,   

    From MIT Spectrum: “Quantum Leaps on the Horizon” 


    From MIT Spectrum

    Spring 2020
    Mark Wolverton

    1
    Paola Cappellaro experiments with a diamond chip containing qubits, shown at the center of this apparatus, seeking ways to address errors in quantum computing. Photo: Courtesy of Quantum Engineering Group

    Paola Cappellaro PhD ’06 advances next-generation computing

    “Quantum” is one of those buzzwords that shows up in everything from science fiction to business branding. But quantum computing—or, more specifically, quantum information science and engineering—is a real, cutting-edge discipline focused on developing systems that will leave today’s fastest supercomputers in the dust.

    In fact, it’s a whole ecosystem of technology based on quantum mechanics, a field of physics centered on how subatomic particles move and interact, according to Paola Cappellaro PhD ’06, an associate professor in the Department of Nuclear Science and Engineering (NSE). Cappellaro is at the forefront of MIT’s quantum computing research as leader of the Quantum Engineering Group in the Research Laboratory of Electronics.

    “In my group, we work not only on quantum computing but also on associated technologies,” Cappellaro says. “The common thread is quantum information science, how to manipulate, encode, and exploit information using quantum devices.”

    The technology is still in its infancy, but approaching computing from the vanguard of physics promises a sea change in how computers tackle huge mathematical challenges, such as breaking cryptographic codes, and simulate intricate systems, such as complex chemical reactions.

    More memory and power

    While conventional computers operate by processing bits of data consisting of zeros and ones, generally encoded in electronic form as on/off, quantum computing is based on principles that permit subatomic particles to be in different states simultaneously, enabling quantum bits, or “qubits,” to hold more information.

    In theory, a quantum computer should outmatch even the most advanced supercomputer—but so far, no one has quite figured out the best way to build one. That’s because there are many possible ways to create the qubits of data, all involving different physical systems and types of hardware. Also, qubits are delicate and subject to what physicists call “decoherence” or the collapse of their fragile quantum state at the slightest vibration or change in temperature.

    Another major challenge centers on addressing errors, which today’s computers handle through redundancy. “Instead of just encoding information in one bit, you can encode them in a certain number of bits and then you take a majority vote,” she says. This doesn’t work in the fuzzier realm of qubits, for a variety of reasons including that the disturbance caused by measurement (“wave-function collapse”) forbids checking the majority vote conditions.

    Cappellaro’s Quantum Engineering Group is using electron and nuclear spins to address this challenge. Their approach centers on a type of defect found within the crystal lattice of diamond, called a nitrogen-vacancy or N-V center, that could be harnessed to create qubits. “We came up with a way of characterizing the noise in our system and then came up with an efficient way of protecting it from errors,” she says. “What we hope is that … we can actually have a practical error correction system for today’s intermediate-scale quantum devices.”

    Collaborations at MIT

    Quantum computers are expected to be able to tackle the biggest of big data challenges, but the specific applications may depend on which systems prove most practical. “We’re still in the stage where we’re trying to pick the best technology,” Cappellaro says.

    Making such choices means exploring many different options, reflected in the broad range of researchers involved in quantum computing across the MIT School of Science and the MIT School of Engineering, as well as many groups at MIT Lincoln Laboratory. The MIT Stephen A. Schwarzman College of Computing is expected to better unite the Institute’s quantum computing efforts.

    “We have a long tradition in quantum computation,” Cappellaro observes. “But the Schwarzman College could position MIT even better to play a larger role both in the United States and on the world stage. It’s definitely an opportunity to be seized.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Spectrum connects friends and supporters of the Massachusetts Institute of Technology to MIT’s vision, impact, and exceptional community.

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind. Paths of discovery cross every day at MIT, propelling groundbreaking research and furthering personal development. Although it’s not always clear where a path will lead, MIT aims high, working to ensure that humanity’s collective trajectory is pointed toward a brighter future.

    MIT Campus

     
  • richardmitnick 8:00 am on September 3, 2019 Permalink | Reply
    Tags: Caitlin Mueller, Digital design tools date back to the very origins of the computer., Engineers generally don’t offer large-scale design suggestions in order to for example save a substantial amount of steel., Engineers should be an integral part of the process from the beginning., Engineers use computers for calculations. Architects use them for drafting., MIT Spectrum, Mueller’s goal is to employ machine learning to support the design process from both an architectural and engineering perspective., The tools she creates make it easier for architects and engineers to work together to find design solutions and assess how changes can influence metrics ranging from the energy needed to heat a buildi, Using digital tools to link architecture and engineering.,   

    From MIT Spectrum: Women in STEM- “Building Bridges” Caitlin Mueller 

    MIT News

    From MIT

    via

    1

    MIT Spectrum

    2
    Caitlin Mueller uses robotic 3-D printing to test architectural designs for non-standard elements, such as these culled tree limbs used to build a trellis. Photo: Alan Silfen

    Caitlin Mueller uses digital tools to link architecture, engineering.

    Digital design tools date back to the very origins of the computer. While earning his PhD at MIT in the early 1960s, Ivan Sutherland PhD ’63 developed Sketchpad, a computer program that allowed users to create images on a screen using a light pen instead of code.

    “He really explored this idea of how the computer would change the way we can think and design and create,” explains Caitlin Mueller, associate professor in the Building Technology Program at MIT, where she leads the Digital Structures research group. “Unfortunately, after that piece of work, it became more commonplace for both architects and engineers to think of the computer as replicating analog methods.” In other words, engineers use computers for calculations, and architects use them for drafting.

    Mueller’s goal is to employ machine learning to support the design process from both an architectural and engineering perspective. By creating software that generates design alternatives and simulates their performance, she hopes to qualitatively change how buildings are conceived and built. A big part of that is encouraging architects and engineers to work together—every step of the way.

    In the traditional building process, a client hires an architect and provides a set of specifications—X square feet, X number of rooms, etc. After finalizing the design, the architect hires an engineer, who typically looks at the design and says the building can be constructed using X amount of steel, for example. There’s often little back and forth. Engineers generally don’t offer large-scale design suggestions in order to, for example, save a substantial amount of steel. As a result, buildings that look great can often prove expensive to build and operate.

    That is a wasted opportunity, Mueller says, arguing that engineers should be an integral part of the process from the beginning. The tools she creates make it easier for architects and engineers to work together to find design solutions and assess how changes can influence metrics ranging from the energy needed to heat a building to the cost of labor in construction.

    Clients can also evaluate in real time how different designs affect costs, impact the environment, and influence factors such as occupant comfort—giving them better information on which to base decisions. Architects and engineers can further employ Mueller’s tools to ensure that, as designs are changed, a building continues to meet both a client’s requirements, such as number of rooms, and safety regulations, such as required number of egresses.

    The tools even work well on less traditional structures. Recently, Mueller’s research team used them to design a community garden trellis system in Somerville, Massachusetts, using wood from culled urban trees. “We generated interesting forms by discerning the intrinsic geometry of the trees’ branches to arrange them in structures that used the material efficiently and effectively,” Mueller says. “We would never have been able to understand how to use this complex geometry or the structural behavior of these forms without the tools we’re developing.”

    Bringing architecture and engineering together, and considering engineering problems during the design process, will ultimately lead to buildings that are more cost-effective, more environmentally friendly, and cheaper to build and operate, Mueller says.

    “People have long been lamenting the fact that architects and engineers don’t work together,” Mueller says. “Today, both because of the sustainability imperative that’s so serious and the abilities these new tools open up for us, I think in the next 5 or 10 years we’re going to see a big shift in the types of tools companies use.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
  • richardmitnick 8:14 pm on February 15, 2019 Permalink | Reply
    Tags: "Looking Forward to Fusion", , , , MIT Spectrum, Patrick White,   

    From MIT Spectrum: “Looking Forward to Fusion” 

    MIT Widget

    From MIT Spectrum

    Winter 2019

    1
    Patrick White (photographed in the Plasma Science and Fusion Center) is focused on the policy questions that will arise from the new SPARC technology. Photo: Bryce Vickmark

    Technical policy scholar Patrick White joins the SPARC project to ask: what comes after success?

    Controlled fusion power has been a tantalizing prospect for decades, promising a source of endless carbon-free energy for the world. Unfortunately, persistent technical challenges have kept that achievement on an ever-receding horizon. But recent developments in materials science and superconductivity have changed the landscape. The proposed SPARC experiment of MIT’s Plasma Science and Fusion Center (PSFC), in collaboration with the private, MIT alumni-led company Commonwealth Fusion Systems, is poised to use those breakthroughs to build the first fusion device that generates more energy than it consumes, bringing commercial fusion energy within practical reach in the near future.

    MIT SPARC fusion reactor tokamak

    Patrick White, a PhD candidate in the Department of Nuclear Science and Engineering (NSE), is looking ahead to that long-awaited day. His PhD project, funded by the Samuel W. Ing (1953) Memorial Fellowship in the NSE department and PSFC, anticipates the many questions that will follow a successful SPARC project and the development of fusion power.

    “How do you commercialize this technology that no one’s ever built before?” he asks. “It’s an opportunity to start from scratch.” White is focusing on the regulatory structures and safety analysis tools that will be necessary to bring fusion power plants out of the laboratory and onto the national power grid.

    He first became fascinated with nuclear science and technology while studying mechanical engineering at Carnegie Mellon University. “I think it was the fact that you can take a gram of uranium and release the same energy as several tons worth of coal, or that a single nuclear reactor can power a million homes for 60 years,” he remembers. “That absolutely blew me away.” He saw commercial reactor technology up close during an undergraduate summer internship with Westinghouse, and followed that with two summers in Washington, DC, working with the Defense Nuclear Facilities Safety Board.

    When White came to MIT for graduate work, he joined the MIT Energy Initiative’s major interdisciplinary study, The Future of Nuclear Energy in a Carbon-Constrained World, authoring the regulation and licensing section of the final report (which was subsequently released this past September). He began casting about for a PhD topic around the time the SPARC project was announced.

    The goal of SPARC is to demonstrate net energy from a fusion device in seven years—a key technical milestone that could lead to the construction of a commercially viable power plant scaled up to roughly twice SPARC’s diameter. Because the fusion process produces net energy at extreme temperatures no solid material can withstand, fusion researchers use magnetic fields to keep the hot plasma from coming into contact with the device’s chamber. Currently, the team building SPARC is refining the superconducting magnet technology that will be central to its operation. Already familiar with the regulatory and safety framework that’s been developed over decades of commercial fission reactor operation, White immediately began considering the challenges of regulating an entirely new potential technology that hasn’t yet been invented. One concern in the fusion community, he notes, is that “before we even have a final plant design, the regulatory system could make the ultimate device too expensive or too cumbersome to actually operate. So we’ll be looking at existing nuclear and non-nuclear industries, how they think about safety and regulation, and trying to come up with a pathway that makes the most sense for this new technology.”

    His PhD project proposal on the regulation of commercial fusion plants was selected by the PSFC for funding, and he got down to work in fall 2018 under three advisors: Zach Hartwig PhD ’14, the John C. Hardwick Assistant Professor of Nuclear Science and Engineering; assistant professor Koroush Shirvan SM ’10, PhD ’13; and Dennis Whyte, director of PSFC and the Hitachi America Professor of Engineering.

    White’s career plans beyond the fellowship remain flexible: he notes that whether he ends up working with the licensing of advanced fission reactors or in the new world of commercial fusion power will depend on the technology itself, and how SPARC and other experimental projects evolve. Another possibility is bridging the communications gap between the nuclear industry and a public that’s often apprehensive about nuclear technology: “At the end of the day, if people refuse to have it built in their backyard, you’ve got a great device that can’t actually do any good.”

    For now, White’s fellowship is not only laying the groundwork for his own future, but also perhaps the future of what would be one of the greatest technological advances of humankind. He points out that the stakes are higher than simply developing a new energy technology. “If we’re really concerned about climate change and decarbonizing, we need to have every single tool on the table,” he says. “The more tools, the better.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    MIT Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: