Tagged: Millimeter/submillimeter astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:01 am on April 7, 2020 Permalink | Reply
    Tags: , , , , , , , Millimeter/submillimeter astronomy, Quasar 3C 279, , Telescopes contributing also are the Submillimeter Telescope; and the South Pole Telescope., Telescopes contributing to this result were ALMA; APEX; the IRAM 30-meter telescope; the James Clerk Maxwell Telescope; the Large Millimeter Telescope; the Submillimeter Array., The data analysis to transform raw data to an image required specific computers (or correlators) hosted by the MPIfR in Bonn and the MIT Haystack Observatory.,   

    From ALMA: “Event Horizon Telescope Images of a Black-Hole Powered Jet” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    1
    2
    Illustration of multiwavelength 3C 279 jet structure in April 2017. The observing epochs, arrays, and wavelengths are noted at each panel. Credit: J.Y. Kim (MPIfR), Boston University Blazar Program (VLBA and GMVA), and Event Horizon Telescope Collaboration.

    Something is Lurking in the Heart of Quasar 3C 279. One year ago, the Event Horizon Telescope (EHT) Collaboration published the first image of a black hole in the nearby radio galaxy Messier 87.

    Mesier 87*, The first image of a black hole. This is the supermassive black hole at the center of the galaxy Messier 87. Image via JPL/ Event Horizon Telescope Collaboration.

    Now the collaboration has extracted new information from the EHT data of the far quasar 3C 279: they observed in the finest detail ever a relativistic jet that is believed to originate from the vicinity of a supermassive black hole. In their analysis, which was led by astronomer Jae-Young Kim from the Max Planck Institute for Radio Astronomy in Bonn, they studied the jet’s fine-scale morphology close to the jet base where highly variable gamma-ray emission is thought to originate. The technique used for observing the jet is called very long baseline interferometry (VLBI). The results are published in the coming issue of “Astronomy & Astrophysics, April 2020.

    The EHT collaboration continues extracting information from the groundbreaking data collected in its global campaign in April 2017. One target of the observations was the quasar 3C 279, a galaxy 5 billion light-years away, in the constellation Virgo that scientists classify as a quasar because a point of light at its center shines ultra-bright and flickers as massive amounts of gases and stars fall into the giant black hole there. The black hole is about one billion times the mass of the Sun, that is, 200 more massive than our Galactic Centre black hole. It is shredding the gas and stars that come near into an inferred accretion disk and we see it is squirting some of the gas back out in two fine fire-hose-like jets of plasma at velocities approaching the speed of light. This tells of enormous forces at play in the center.

    The EHT collaboration continues extracting information from the groundbreaking data collected in its global campaign in April 2017. One target of the observations was the quasar 3C 279, a galaxy 5 billion light-years away, in the constellation Virgo that scientists classify as a quasar because a point of light at its center shines ultra-bright and flickers as massive amounts of gases and stars fall into the giant black hole there. The black hole is about one billion times the mass of the Sun, that is, 200 more massive than our Galactic Centre black hole. It is shredding the gas and stars that come near into an inferred accretion disk and we see it is squirting some of the gas back out in two fine fire-hose-like jets of plasma at velocities approaching the speed of light. This tells of enormous forces at play in the center.

    The interpretation of the observations is challenging. Motions different than the jet direction, and apparently as fast as about 20 times the speed of light are difficult to reconcile with the early understanding of the source, this suggests traveling shocks or instabilities in a bent, possibly rotating jet, which also emits at high energies, such gamma-rays.

    The telescopes contributing to this result were ALMA, APEX, the IRAM 30-meter telescope, the James Clerk Maxwell Telescope, the Large Millimeter Telescope, the Submillimeter Array, the Submillimeter Telescope, and the South Pole Telescope.

    The telescopes work together using a technique called very long baseline interferometry (VLBI). This synchronizes facilities around the world and exploits the rotation of our planet to form one huge, Earth-size telescope. VLBI allows the EHT to achieve a resolution of 20 micro-arcseconds — equivalent to identifying an orange on Earth as seen by an astronaut from the Moon. The data analysis to transform raw data to an image required specific computers (or correlators), hosted by the MPIfR in Bonn and the MIT Haystack Observatory.

    Anton Zensus, Director at the MPIfR and Chair of the EHT Collaboration Board, stresses the achievement as a global effort: “Last year we could present the first image of the shadow of a black hole. Now we see unexpected changes in the shape of the jet in 3C 279, and we are not done yet. We are working on the analysis of data from the centre of our Galaxy in Sgr A*, and on other active galaxies such as Centaurus A, OJ 287, and NGC 1052. As we told last year: this is just the beginning.”

    Opportunities to conduct EHT observing campaigns occur once a year in early Northern springtime, but the March/April 2020 campaign had to be cancelled in response to the CoViD-19 global outbreak. In announcing the cancellation Michael Hecht, astronomer from the MIT/Haystack Observatory and EHT Deputy Project Director, concluded that: “We will now devote our full concentration to completion of scientific publications from the 2017 data and dive into the analysis of data obtained with the enhanced EHT array in 2018. We are looking forward to observations with the EHT array expanded to eleven observatories in the spring of 2021”.

    Additional Information

    The Event Horizon Telescope international collaboration announced the first-ever image of a black hole at the heart of the radio galaxy Messier 87 on April 10, 2019 by creating a virtual Earth-sized telescope. Supported by considerable international investment, the EHT links existing telescopes using novel systems — creating a new instrument with the highest angular resolving power that has yet been achieved.

    The individual telescopes involved in the EHT collaboration are: the Atacama Large Millimetre Telescope (ALMA), the Atacama Pathfinder EXplorer (APEX), the Greenland Telescope (since 2018), the IRAM 30-meter Telescope, the IRAM NOEMA Observatory (expected 2021), the Kitt Peak Telescope (expected 2021), the James Clerk Maxwell Telescope (JCMT), the Large Millimeter Telescope (LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT), and the South Pole Telescope (SPT).

    The EHT consortium consists of 13 stakeholder institutes; the Academia Sinica Institute of Astronomy and Astrophysics, the University of Arizona, the University of Chicago, the East Asian Observatory, Goethe-Universität Frankfurt, Institut de Radioastronomie Millimétrique, Large Millimeter Telescope, Max-Planck-Institut für Radioastronomie, MIT Haystack Observatory, National Astronomical Observatory of Japan, Perimeter Institute for Theoretical Physics, Radboud University and the Smithsonian Astrophysical Observatory.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 10:48 am on March 27, 2020 Permalink | Reply
    Tags: "ALMA Resolves Gas Impacted by Young Jets from Supermassive Black Hole", , , , , , Millimeter/submillimeter astronomy   

    From ALMA: “ALMA Resolves Gas Impacted by Young Jets from Supermassive Black Hole” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    1
    Reconstructed images of what MG J0414+0534 would look like if gravitational lensing effects were turned off. The emissions from dust and ionized gas around a quasar are shown in red. The emissions from carbon monoxide gas are shown in green, which have a bipolar structure along the jets. Credit: ALMA (ESO/NAOJ/NRAO), K. T. Inoue et al.

    2
    ALMA image of MG J0414+0534 (emissions from dust and ionized gas shown in red and emissions from carbon monoxide gas shown in green). Credit: ALMA (ESO/NAOJ/NRAO), K. T. Inoue at al.

    3
    Artist’s impression of MG J0414+0534. The central supermassive black hole has just emitted powerful jets, which are disturbing the surrounding gas in the host galaxy. Credit: Kindai University

    Astronomers obtained the first resolved image of disturbed gaseous clouds in a galaxy 11 billion light-years away by using the Atacama Large Millimeter/submillimeter Array (ALMA). The team found that the disruption is caused by young powerful jets ejected from a supermassive black hole residing at the center of the host galaxy. This result will cast light on the mystery of the evolutionary process of galaxies in the early Universe.

    It is commonly known that black holes exert strong gravitational attraction on surrounding matter. However, it is less well known that some black holes have fast-moving streams of ionized matter, called jets. In some nearby galaxies, evolved jets blow off galactic gaseous clouds, resulting in suppressed star formation. Therefore, to understand the evolution of galaxies, it is crucial to observe the interaction between black hole jets and gaseous clouds throughout cosmic history. However, it had been difficult to obtain clear evidence of such interaction, especially in the early Universe.

    In order to obtain such clear evidence, the team used ALMA to observe an interesting object known as MG J0414+0534. A distinctive feature of MG J0414+0534 is that the paths of light traveling from it to Earth are significantly distorted by the gravity of another ‘lensing’ galaxy between MG J0414+0534 and us, causing significant magnification.

    “This distortion works as a ‘natural telescope’ to enable a detailed view of distant objects,” says Takeo Minezaki, an associate professor at the University of Tokyo.

    Another feature is that MG J0414+0534 has a supermassive black hole with bipolar jets at the center of the host galaxy. The team was able to reconstruct the ‘true’ image of gaseous clouds as well as the jets in MG J0414+0534 by carefully accounting for the gravitational effects exerted by the intervening lensing galaxy.

    “Combining this cosmic telescope and ALMA’s high-resolution observations, we obtained exceptionally sharp vision, that is 9,000 times better than human eyesight,” adds Kouichiro Nakanishi, a project associate professor at the National Astronomical Observatory of Japan/SOKENDAI. “With this extremely high resolution, we were able to obtain the distribution and motion of gaseous clouds around jets ejected from a supermassive black hole.”

    Thanks to such a superior resolution, the team found that gaseous clouds along the jets have violent motion with speeds as high as 600 km/s, showing clear evidence of impacted gas. Moreover, it turned out that the size of the impacted gaseous clouds and the jets are much smaller than the typical size of a galaxy at this age.

    “We are perhaps witnessing the very early phase of jet evolution in the galaxy,” says Satoki Matsushita, a research fellow at Academia Sinica Institute of Astronomy and Astrophysics. “It could be as early as several tens of thousands of years after the launch of the jets.”

    “MG J0414+0534 is an excellent example because of the youth of the jets,” summarizes Kaiki Inoue, a professor at Kindai University, Japan, and the lead author of the research paper which appeared in the Astrophysical Journal Letters. “We found telltale evidence of significant interaction between jets and gaseous clouds even in the very early evolutionary phase of jets. I think that our discovery will pave the way for a better understanding of the evolutionary process of galaxies in the early Universe.”
    Additional Information

    These observation results are presented in K. T. Inoue et al. “ALMA 50-parsec resolution imaging of jet-ISM interaction in the lensed quasar MG J0414+0534” appeared in The Astrophysical Journal Letters on March 27, 2020.

    The research team members are Kaiki T. Inoue (Kindai University), Satoki Matsushita (Academia Sinica Institute of Astronomy and Astrophysics), Kouichiro Nakanishi (National Astronomical Observatory of Japan/SOKENDAI), and Takeo Minezaki (The University of Tokyo).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 11:41 am on March 5, 2020 Permalink | Reply
    Tags: "ALMA Spots Metamorphosing Aged Star", , ALMA images the old star system W43A., , , , , Key features to understand how the complex shapes of planetary nebulae are formed., Millimeter/submillimeter astronomy, , The star has ejected high-speed bipolar gas jets which are now colliding with the surrounding material.   

    From ALMA: “ALMA Spots Metamorphosing Aged Star” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    1
    ALMA image of the old star system W43A. The high velocity bipolar jets ejected from the central aged star are seen in blue, low velocity outflow is shown in green, and dusty clouds entrained by the jets are shown in orange.
    Credit: ALMA (ESO/NAOJ/NRAO), Tafoya et al.

    2
    Artist’s impression of W43A based on the ALMA observation results. Diffuse spherical gas was emitted from the star in the past. W43A has just started ejecting bipolar jets which entrain the surrounding material. Bright spots in radio emissions from water molecules are distributed around the interface of the jets and the diffuse gas.
    Credit: NAOJ.

    An international team of astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) captured the very moment when an old star first starts to alter its environment. The star has ejected high-speed bipolar gas jets which are now colliding with the surrounding material; the age of the observed jet is estimated to be less than 60 years. These are key features to understand how the complex shapes of planetary nebulae are formed.
    Sun-like stars evolve to puffed-up Red Giants in the final stage of their lives. Then, the star expels gas to form a remnant called a planetary nebula. There is a wide variety in the shapes of planetary nebulae; some are spherical, but others are bipolar or show complicated structures. Astronomers are interested in the origins of this variety, but the thick dust and gas expelled by an old star obscure the system and make it difficult to investigate the inner-workings of the process.

    To tackle this problem, a team of astronomers led by Daniel Tafoya in Chalmers University of Technology, Sweden, pointed ALMA at W43A, an old star system in the constellation Aquila, the Eagle.

    Thanks to ALMA’s high resolution, the team obtained a very detailed view of the space around W43A. “The most notable structures are its small bipolar jets,” says Tafoya, the lead author of the research paper published by the Astrophysical Journal Letters. The team found that the velocity of the jets is as high as 175 km per second, which is much higher than previous estimations. Based on this speed and the size of the jets, the team calculated the age of the jets to be less than a human life-span.

    “Considering the youth of the jets compared to the overall lifetime of a star, it is safe to say we are witnessing the ‘exact moment’ that the jets have just started to shove through the surrounding gas,” explains Tafoya. “When the jets carve through the surrounding material in some 60 years, a single person can watch the progress in their life.”

    In fact, the ALMA image clearly maps the distribution of dusty clouds entrained by the jets, which is telltale evidence that it is impacting on the surroundings.

    The team assumes that this entrainment is the key to form a bipolar-shaped planetary nebula. In their scenario, the aged star originally ejects gas spherically and the core of the star loses its envelope. If the star has a companion, gas from the companion pours onto the core of the dying star, and a portion of this new gas forms the jets. Therefore, whether or not the old star has a companion is an important factor to determine the structure of the resulting planetary nebula.

    “W43A is one of the peculiar so called ‘water fountain’ objects,” says Hiroshi Imai at Kagoshima University, Japan, a member of the team. “Some old stars show characteristic radio emissions from water molecules. We suppose that spots of these water emissions indicate the interface region between the jets and the surrounding material. We named them ‘water fountains,’ and it could be a sign that the central source is a binarity system launching a new jet.”

    “There are only 15 ‘water fountain’ objects identified to date, despite the fact that more than 100 billion stars are included in our Milky Way Galaxy,” explains José Francisco Gómez at Instituto de Astrofísica de Andalucía, Spain. “This is probably because the lifetime of the jets is quite short, so we are very lucky to see such rare objects.”

    Additional Information

    These observation results were presented in D. Tafoya et al. “Shaping the envelope of the asymptotic giant branch star W43A with a collimated fast jet” published by The Astrophysical Journal Letters on February 13, 2020.

    The research team members are Daniel Tafoya (Calmers University of Technology), Hiroshi Imai (Kagoshima University), José F. Gómez (Instituto de Astrofísica de Andalucía, CSIC), Jun-ichi Nakashima (Sun Yat-sen University), Gabor Orosz (University of Tasmania/Xinjiang Astronomical Observatory), and Bosco H. K. Yung (Nicolaus Copernicus Astronomical Center)

    This research was supported by MEXT KAKENHI (No. 16H02167), the Invitation Program for Foreign Researchers of the Japan Society for Promotion of Science (JSPS grant S14128), MINECO (Spain) Grant AYA2017-84390-C2-R (co-funded by FEDER), State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofisica de Andalucía (SEV-2017-0709), Australian Research Council Discovery project DP180101061 of the Australian government, CAS LCWR 2018-XBQNXZ-B-021, and National Key R&D Program 2018YFA0404602 of China.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 10:41 am on February 26, 2020 Permalink | Reply
    Tags: , , , , , CH3CN and CH3C15N Titan’s atmosphere., , Cosmic rays coming from outside the Solar System affect the chemical reactions involved in the formation of nitrogen-bearing organic molecules., , Millimeter/submillimeter astronomy, , , Titan is attracting much interest because of its unique atmosphere with a number of organic molecules that form a pre-biotic environment., We suppose that galactic cosmic rays play an important role in the atmospheres of other solar system bodies.   

    From ALMA: “Galactic Cosmic Rays Affect Titan’s Atmosphere” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    18 February, 2020

    Valeria Foncea
    Education and Public Outreach Officer
    Joint ALMA Observatory Santiago – Chile
    Phone: +56 2 2467 6258
    Cell phone: +56 9 7587 1963
    Email: valeria.foncea@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    1
    Optical image of Titan taken by NASA Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute.

    NASA/ESA/ASI Cassini-Huygens Spacecraft

    2
    ALMA spectra of CH3CN and CH3C15N Titan’s atmosphere. Dotted vertical lines indicate the frequency of emission lines of two molecules predicted by a theoretical model. Credit: Iino et al. (The University of Tokyo.)

    Planetary scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) revealed the secrets of the atmosphere of Titan, the largest moon of Saturn. The team found a chemical footprint in Titan’s atmosphere indicating that cosmic rays coming from outside the Solar System affect the chemical reactions involved in the formation of nitrogen-bearing organic molecules.

    Cosmic rays produced by high-energy astrophysics sources (ASPERA collaboration – AStroParticle ERAnet)

    This is the first observational confirmation of such processes, and impacts the understanding of the intriguing environment of Titan.

    Titan is attracting much interest because of its unique atmosphere with a number of organic molecules that form a pre-biotic environment.

    Takahiro Iino, a scientist at the University of Tokyo, and his team used ALMA to reveal the chemical processes in Titan’s atmosphere. They found faint but firm signals of acetonitrile (CH3CN) and its rare isotopomer CH3C15N in the ALMA data.

    “We found that the abundance of 14N in acetonitrile is higher than those in other nitrogen bearing species such as HCN and HC3N,” says Iino. “It well matches the recent computer simulation of chemical processes with high energy cosmic rays.”

    There are two important players in the chemical processes of the atmosphere: ultraviolet (UV) light from the Sun and cosmic rays coming from outside the Solar System. In the upper stratosphere, UV light selectively destroys nitrogen molecules containing 15N because UV light with the specific wavelength that interacts with 14N14N is neutralized at that altitude due to the strong absorption. Thus, nitrogen-bearing species produced at that altitude tend to exhibit a high 15N abundance. On the other hand, cosmic rays penetrate deeper and interact with nitrogen molecules containing only 14N. As a result, there is a difference in the abundance of molecules with 14N and 15N. The team revealed that acetonitrile in the lower stratosphere is more abundant in 14N than those of other previously measured nitrogen-bearing molecules.

    “We suppose that galactic cosmic rays play an important role in the atmospheres of other solar system bodies,” says Hideo Sagawa, an associate professor at Kyoto Sangyo University and a member of the research team. “The process could be universal, so understanding the role of cosmic rays in Titan is crucial in overall planetary science.”

    Titan is one of the most popular objects in ALMA observations. The data obtained with ALMA needs to be calibrated to remove fluctuations due to variations of on-site weather and mechanical glitches. For referencing, the observatory staff often points the telescope at bright sources, such as Titan, from time to time in science observations. Therefore, a large amount of Titan data is stored in the ALMA Science Archive. Iino and his team have dug into the archive and re-analyzed the Titan data and found subtle fingerprints of very tiny amounts of CH3C15N.

    More information

    These observation results are published as T. Iino et al. in The Astrophysical Journal.

    The research team members are: Takahiro Iino (The University of Tokyo), Hideo Sagawa (Kyoto Sangyo University) and Takashi Tsukagoshi (National Astronomical Observatory of Japan).

    This research was supported by the JSPS KAKENHI (No. 17K14420 and 19K14782), the Telecommunication Advancement Foundation, and the Astrobiology Center, National Institutes of Natural Sciences.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 12:23 pm on February 20, 2020 Permalink | Reply
    Tags: "How Newborn Stars Prepare for the Birth of Planets", , , , , , Millimeter/submillimeter astronomy, , Planet-forming disks around very young stars in the Orion Molecular Clouds., , This survey- called VLA/ALMA Nascent Disk and Multiplicity (VANDAM)- is the largest survey of young stars and their disks to date.   

    From ALMA: “How Newborn Stars Prepare for the Birth of Planets” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    20 February, 2020

    Valeria Foncea
    Education and Public Outreach Officer
    Joint ALMA Observatory Santiago – Chile
    Phone: +56 2 2467 6258
    Cell phone: +56 9 7587 1963
    Email: valeria.foncea@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    1
    VANDAM survey
    ALMA and the VLA observed more than 300 protostars and their young protoplanetary disks in Orion. This image shows a subset of stars, including a few binaries. The ALMA and VLA data compliment each other: ALMA sees the outer disk structure (visualized in blue), and the VLA observes the inner disks and star cores (orange).

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    An international team of astronomers used two of the most powerful radio telescopes in the world to create more than three hundred images of planet-forming disks around very young stars in the Orion Clouds. These images reveal new details about the birthplaces of planets and the earliest stages of star formation.

    Most of the stars in the universe are accompanied by planets. These planets are born in rings of dust and gas, called protoplanetary disks. Even very young stars are surrounded by these disks. Astronomers want to know exactly when these disks start to form, and what they look like. But young stars are very faint, and there are dense clouds of dust and gas surrounding them in stellar nurseries. Only highly sensitive radio telescope arrays can spot the tiny disks around these infant stars amidst the densely packed material in these clouds.

    For this new research, astronomers pointed both the Atacama Large Millimeter/submillimeter Array (ALMA) and the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) to a region in space where many stars are born: the Orion Molecular Clouds. This survey, called VLA/ALMA Nascent Disk and Multiplicity (VANDAM), is the largest survey of young stars and their disks to date.

    Very young stars, also called protostars, form in clouds of gas and dust in space. The first step in the formation of a star is when these dense clouds collapse due to gravity. As the cloud collapses, it begins to spin – forming a flattened disk around the protostar. Material from the disk continues to feed the star and make it grow. Eventually, the left-over material in the disk is expected to form planets.

    Many aspects about these first stages of star formation, and how the disk forms, are still unclear. But this new survey provides some missing clues as the VLA and ALMA peered through the dense clouds and observed hundreds of protostars and their disks in various stages of their formation.

    Young planet-forming disks

    “This survey revealed the average mass and size of these very young protoplanetary disks,” said John Tobin of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and leader of the survey team. “We can now compare them to older disks that have been studied intensively with ALMA as well.”

    What Tobin and his team found, is that very young disks can be similar in size, but are on average much more massive than older disks. “When a star grows, it eats away more and more material from the disk. This means that younger disks have a lot more raw material from which planets could form. Possibly bigger planets already start to form around very young stars.”

    Four special protostars

    Among hundreds of survey images, four protostars looked different than the rest and caught the scientists’ attention. “These newborn stars looked very irregular and blobby,” said team member Nicole Karnath of the University of Toledo, Ohio (now at SOFIA Science Center). “We think that they are in one of the earliest stages of star formation and some may not even have formed into protostars yet.”

    It is special that the scientists found four of these objects. “We rarely find more than one such irregular object in one observation,” added Karnath, who used these four infant stars to propose a schematic pathway for the earliest stages of star formation. “We are not entirely sure how old they are, but they are probably younger than ten thousand years.”

    To be defined as a typical (class 0) protostar, stars should not only have a flattened rotating disk surrounding them, but also an outflow – spewing away material in opposite directions – that clears the dense cloud surrounding the stars and makes them optically visible. This outflow is important, because it prevents stars from spinning out of control while they grow. But when exactly these outflows start to happen, is an open question in astronomy.

    One of the infant stars in this study, called HOPS 404, has an outflow of only two kilometers (1.2 miles) per second (a typical protostar-outflow of 10-100 km/s or 6-62 miles/s). “It is a big puffy sun that is still gathering a lot of mass, but just started its outflow to lose angular momentum to be able to keep growing,” explained Karnath. “This is one of the smallest outflows that we have seen and it supports our theory of what the first step in forming a protostar looks like.”

    Combining ALMA and VLA

    The exquisite resolution and sensitivity provided by both ALMA and the VLA were crucial to understand both the outer and inner regions of protostars and their disks in this survey. While ALMA can examine the dense dusty material around protostars in great detail, the images from the VLA made at longer wavelengths were essential to understand the inner structures of the youngest protostars at scales smaller than our solar system.

    “The combined use of ALMA and the VLA has given us the best of both worlds,” said Tobin. “Thanks to these telescopes, we start to understand how planet formation begins.”

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    More Information

    This research was presented in two papers:

    The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. A Statistical Characterization of Class 0 and I Protostellar Disks,” by J. Tobin et al., The Astrophysical Journal.

    “Detection of Irregular, Sub-mm Opaque Structures in the Orion Molecular Clouds: Protostars within 10000 years of formation?,” by N. Karnath et al., The Astrophysical Journal.

    2
    Observed protostars in Orion Molecular Clouds
    This image shows the Orion Molecular Clouds, the target of the VANDAM survey. Yellow dots are the locations of the observed protostars on a blue background image made by Herschel. Side panels show nine young protostars imaged by ALMA (blue) and the VLA (orange). Credit: ALMA (ESO/NAOJ/NRAO), J. Tobin; NRAO/AUI/NSF, S. Dagnello; Herschel/ESA

    4
    Schematic showing the formation of protostars
    This schematic shows a proposed pathway (top row) for the formation of protostars, based on four very young protostars (bottom row) observed by VLA (orange) and ALMA (blue). Step 1 represents the collapsing fragment of gas and dust. In step 2, an opaque region starts to form in the cloud. In step 3, a hydrostatic core starts to form due to an increase in pressure and temperature, surrounded by a disk-like structure and the beginning of an outflow. Step 4 depicts the formation of a class 0 protostar inside the opaque region, that may have a rotationally supported disk and more well-defined outflows. Step 5 is a typical class 0 protostar with outflows that have broken through the envelope (making it optically visible), an actively accreting, rotationally supported disk. In the bottom row, white contours are the protostar outflows as seen with ALMA.
    Credit: ALMA (ESO/NAOJ/NRAO), N. Karnath; NRAO/AUI/NSF, B. Saxton and S. Dagnello

    5
    Star chart of constellation Orion and observed protostars
    The Orion Molecular Clouds (blue, as seen with Herschel) are located in the constellation Orion. Red dots show the locations of the observed protostars in the VANDAM survey.
    Credit: IAU; Sky & Telescope magazine; NRAO/AUI/NSF, S. Dagnello; Herschel/ESA; ALMA (ESO/NAOJ/NRAO), J. Tobin

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50 Large

     
  • richardmitnick 5:04 pm on February 18, 2020 Permalink | Reply
    Tags: "ALMA Explores Possible Interacting Twin Disks", , , , , , , Millimeter/submillimeter astronomy,   

    From AAS NOVA: “ALMA Explores Possible Interacting Twin Disks” 

    AASNOVA

    From AAS NOVA

    17 February 2020
    Susanna Kohler

    1
    Artist’s impression of one of the two stars in the FU Orionis binary system, surrounded by an accreting disk of material. What has caused this star — and others like it — to dramatically brighten? [NASA/JPL-Caltech]

    Some young stars seem to spend a brief portion of their lives undergoing dramatic, flaring outbursts. A new study has used the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to get the closest look yet at one of these systems — possibly identifying the cause of the flares.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    2
    Artist’s impression of a young star throwing a temper tantrum as it suddenly increases its accretion rate and flares. [Caltech/T. Pyle (IPAC)]

    Young Stellar Temper Tantrums

    FU Orionis (FU Ori, for short) objects are young, pre-main-sequence stars that grow suddenly brighter — by several magnitudes! — over the span of perhaps a year. These flaring states can last on the order of decades, and they’re thought to be related to a period of increased accretion onto the star during its early years. A star may gain a significant portion of its final mass during these events.

    Beyond this general picture, there’s much we don’t understand about how or why this increase in accretion occurs. Does every star undergo a FU Ori phase early in its lifetime, accumulating extra mass in spurts and brightening each time it does? Or do only some stars behave this way? What causes the change in accretion rate? What ends this phase?

    The first step to answering some of these questions is to obtain high-resolution images of FU Ori objects so that we can better explore their structure and behavior. In a new study, a team of scientists led by Sebastián Pérez (University of Santiago, Chile; University of Chile) has used ALMA to capture a detailed look at the archetypal FU Ori system for which these objects were named.

    Signs of Interaction

    3
    ALMA continuum observations show the dust of the two disks surrounding the binary stars of FU Orionis. Each disk is about 11 AU in radius. [Pérez et al. 2020]

    FU Orionis is a binary pair of young stars that lies roughly 1,360 light-years away in the constellation of Orion. Pérez and collaborators’ ALMA observations of the system resolved, for the first time, the disks of accreting dust surrounding each of the young stars. Modeling of these disks allowed the authors to infer that they are roughly 11 AU in radius and their separation is perhaps 250 AU.

    Observations of the gas in the disks reveal its kinematics, demonstrating that the rotation of each disk is somewhat asymmetric and skewed. The authors propose that this indicates some sort of close encounter for the disks — perhaps the flyby of another star within this crowded star-forming region, or possibly even the direct interaction of the two disks of the binary with each other.

    An elongated arc of gas may connect the two components, further strengthening the argument that the two disks are interacting. And close passes between the disks of a binary or perturbations from a flyby could easily increase the accretion rate onto the stars, fueling the FU Ori outburst that we now observe.

    Several other FU Ori systems are in known binaries, providing additional targets that we can follow up with to test whether disk interactions can truly explain these objects’ sudden, dramatic flares. Meanwhile, ALMA continues to play an important role in helping us to explore how stars form and evolve.

    Citation

    “Resolving the FU Orionis System with ALMA: Interacting Twin Disks?,” Sebastián Pérez et al 2020 ApJ 889 59.
    https://iopscience.iop.org/article/10.3847/1538-4357/ab5c1b

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
  • richardmitnick 2:25 pm on February 12, 2020 Permalink | Reply
    Tags: "Understanding the Impact of Satellite Constellations on Astronomy", , , , , , Millimeter/submillimeter astronomy,   

    From International Astronomical Union: “Understanding the Impact of Satellite Constellations on Astronomy” 

    IAU bloc

    From International Astronomical Union

    2.12.20

    Piero Benvenuti
    Advisor, IAU Executive Committee
    piero.benvenuti@unipd.it

    Connie Walker
    President Commission B7
    cwalker@noao.edu

    Lars Lindberg Christensen
    IAU Press Officer
    Tucson, USA
    Tel: +1 520 318 8590
    Cell: +1 520 461 0433
    lchristensen@aura-astronomy.org

    2
    Starlink satellites on the way to parking orbit

    In June 2019, the International Astronomical Union expressed concern about the negative impact that the planned mega-constellations of communication satellites may have on astronomical observations and on the pristine appearance of the night sky when observed from a dark region. We here present a summary of the current understanding of the impact of these satellite constellations.

    Following the statement of June 2019, IAU’s Commission B7 Protection of Existing and Potential Observatory Sites and the Executive Committee Working Group Dark and Quiet Sky Protection were asked by the IAU Executive Committee to assess the situation and to start discussions with the companies that are responsible for launching and operating the mega-constellations in order to study measures to mitigate their interference.

    Commission B7 has requested the input of astronomers from different organisations (Vera C. Rubin Observatory, U. Michigan, CAHA, ESO and ESA) skilled in modeling the frequency, location and brightness of satellite mega-constellations. Some of those results are presented below. The results of the simulations, given the large number of parameters involved and the associated assumptions and uncertainties, are to be considered preliminary.

    Commission B7 has requested the input of astronomers from different organisations (Vera C. Rubin Observatory, U. Michigan, CAHA, ESO and ESA) skilled in modeling the frequency, location and brightness of satellite mega-constellations. Some of those results are presented below. The results of the simulations, given the large number of parameters involved and the associated assumptions and uncertainties, are to be considered preliminary.

    While there is large uncertainty about the future number of satellites, some simulations were conducted on the basis of a large sample of over 25 000 satellites from representative satellite constellations from different companies. With this sample, the number of satellites above the horizon at any given time would be between ~1500 and a few thousand, depending on the latitude. Most of these will appear very close to the horizon, only a few of them passing directly overhead; for instance, about 250 to 300 would have an elevation of more than 30 degrees over the horizon (i.e. where the sky is clear from obstructions, and where most of the astronomical observations are performed). The vast majority of these will be too faint to be visible to the naked eye [1] [2] [4]

    When the Sun is 18 degrees below the horizon (i.e. when the night becomes dark), the number of illuminated satellites above the horizon would be around 1000 (with around 160 at elevations higher than 30 degrees). The numbers decrease further towards the middle of the night, when more satellites are in the Earth’s shadow (e.g., no reflected sunlight) [1] [2] [4] .

    At the moment it is difficult to predict how many of the illuminated satellites will be visible to the naked eye, because of uncertainties in their actual reflectivity (also since experiments are being carried out by SpaceX to reduce the reflectivity of a Starlink satellite by adopting different coatings). The appearance of the pristine night sky, particularly when observed from dark sites, will nevertheless be altered, because the new satellites could be significantly brighter than existing orbiting man-made objects. The interference with the uncontaminated view of the night sky will be particularly important in the regions of the sky close to the horizon and less evident at high elevation [1] [2].

    The prominent trains of satellites (“strings of pearls”), often seen in images and videos, are significant immediately after launch and during the orbit-raising phase when they are considerably brighter than they are at their operational altitude and orientation. The global effect depends on how long the satellites are in this phase and on the frequency of launches [2].

    Apart from their naked-eye visibility, it is estimated that the trails of the constellation satellites will be bright enough to saturate modern detectors on large telescopes. Wide-field scientific astronomical observations will therefore be severely affected. For instance, in the case of modern fast wide-field surveys, like the ones to be carried out by the Rubin Observatory (formerly known as LSST), it is estimated that up to 30% of the 30-second images during twilight hours will be affected. Instruments with a smaller field of view would be less affected. In theory, the effects of the new satellites could be mitigated by accurately predicting their orbits and interrupting observations, when necessary, during their passage. Data processing could then be used to further “clean” the resulting images. However, the large number of trails could create significant and complicated overheads to the scheduling and operation of astronomical observations [1] [3] [4].

    A summary of the findings and of the actions that have so far been undertaken is presented in a specific IAU Theme.

    The focus of this Statement has been on the optical wavelengths. This is not to underplay the effect on the radio and submillimetre wavelength ranges, which is still under investigation. The IAU considers the consequences of satellite constellations worrisome. They will have a negative impact on the progress of ground-based astronomy, radio, optical and infrared, and will require diverting human and financial resources from basic research to studying and implementing mitigating measures.

    A great deal of attention is also being given to the protection of the uncontaminated view of the night sky from dark places, which should be considered a non-renounceable world human heritage. This is one of the main messages communicated on the dedicated IAU–UNESCO web site on astronomical heritage.

    In order to mitigate the impacts of satellite constellations that may interfere with professional and amateur astronomical observations, the IAU, in close collaboration with the American Astronomical Society (AAS), will continue to initiate discussions with space agencies and private companies that are planning to launch and operate currently planned and future satellite constellations.

    The IAU notes that currently there are no internationally agreed rules or guidelines on the brightness of orbiting manmade objects. While until now this was not considered a priority topic, it is now becoming increasingly relevant. Therefore the IAU will regularly present its findings at the meetings of the UN Committee for Peaceful Uses of Outer Space (COPUOS), bringing the attention of the world Government representatives to the threats posed by any new space initiative on astronomy and science in general. In addition, the specific theme of the mega-satellites will be included in the Programme of the IAU/UNOOSA/IAC Conference Dark and Quiet Skies for Science and Society, which will be held in Santa Cruz de La Palma, Canary Islands, Spain, on 5–8 October 2020.

    The IAU stresses that technological progress is only made possible by parallel advances in scientific knowledge. Satellites would neither operate nor properly communicate without essential contributions from astronomy and physics. It is in everybody’s interest to preserve and support the progress of fundamental science such as astronomy, celestial mechanics, orbital dynamics and relativity.

    Notes

    [1] Hainaut, Olivier (ESO), 2020, On the impact of satellite mega-constellations on astronomical observations, submitted for publication in Astronomy & Astrophysics.

    [2] Seitzer, Pat (University of Michigan), 2020, Presentation to the US National Science Foundation Astronomy and Astrophysics Advisory Committee

    [3] Tyson, Tony (Vera C. Rubin Observatory), 2020, private communication.

    [4] Galadí-Enríquez, David (Calar Alto Observatory), 2020, Geometric simulation of the visibility of Starlink satellite constellation from ground-based optical observatories: LSST as a case study, progress report, private communication.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The International Astronomical Union (IAU) was founded in 1919. Its mission is to promote and safeguard the science of astronomy in all its aspects through international cooperation. Its individual members — structured into Divisions, Commissions, and Working Groups — are professional astronomers from all over the world, at the Ph.D. level and beyond, who are active in professional research and education in astronomy. The IAU has 12422 members. The Individual Members Directory contains 10364 names in 97 countries worldwide (These Individual Members are labeled as “active” in the IAU database: they have a valid, public email, and are affiliated to at least one Division.). Of those 74 are National Members. In addition, the IAU collaborates with various scientific organizations all over the world.

    The IAU is the international astronomical organisation that brings together more than 13 500 professional astronomers from more than 100 countries worldwide. Its mission is to promote and safeguard astronomy in all its aspects, including research, communication, education and development, through international cooperation. The IAU also serves as the internationally recognised authority for assigning designations to celestial bodies and the surface features on them. Founded in 1919, the IAU is the world’s largest professional body for astronomers.

    The long-term policy of the IAU is defined by the General Assembly and implemented by the Executive Committee, while day-to-day operations are directed by the IAU Officers. The focal point of its activities is the IAU Secretariat, hosted by the Institut d’Astrophysique de Paris, France. The scientific and educational activities of the IAU are organized by its 9 Scientific Divisions and, through them, its 35 specialized Commissions covering the full spectrum of astronomy, along with its 32 Working Groups.

    The key activity of the IAU is the organization of scientific meetings. Every year the IAU sponsors nine international IAU Symposia. The IAU Symposium Proceedings series is the flagship of the IAU publications. Every three years the IAU holds a General Assembly, which offers six IAU Symposia, some 25 Joint Discussions and Special Sessions, and individual business and scientific meetings of Divisions, Commissions, and Working Groups. The proceedings of Joint Discussions and Special Sessions are published in the Highlights of Astronomy series. The reports of the GA business meetings are published in the Transactions of the IAU – B series.

     
  • richardmitnick 11:09 am on January 15, 2020 Permalink | Reply
    Tags: "Astronomers Reveal Interstellar Thread of One of Life’s Building Blocks", , , , , , , Millimeter/submillimeter astronomy, Phosphorus-how it arrived on the early Earth is something of a mystery.   

    From European Southern Observatory and ALMA: “Astronomers Reveal Interstellar Thread of One of Life’s Building Blocks” 

    ESO 50 Large

    European Southern Observatory

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ALMA

    15 January 2020

    ESO Contacts

    Víctor Rivilla
    INAF Arcetri Astrophysical Observatory
    Florence, Italy
    Tel: +39 055 2752 319
    Email: rivilla@arcetri.astro.it

    Kathrin Altwegg
    University of Bern
    Bern, Switzerland
    Tel: +41 31 631 44 20
    Email: kathrin.altwegg@space.unibe.ch

    Leonardo Testi
    European Southern Observatory
    Garching bei München, Germany
    Tel: +49 89 3200 6541
    Email: ltesti@eso.org

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6670
    Cell: +49 151 241 664 00
    Email: pio@eso.org

    ALMA Contacts

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Bárbara Ferreira
    ESO Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: pio@eso.org

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA

    ALMA and Rosetta map the journey of phosphorus

    1
    Phosphorus, present in our DNA and cell membranes, is an essential element for life as we know it. But how it arrived on the early Earth is something of a mystery. Astronomers have now traced the journey of phosphorus from star-forming regions to comets using the combined powers of ALMA and the European Space Agency’s probe Rosetta.

    2
    This ALMA image shows a detailed view of the star-forming region AFGL 5142. A bright, massive star in its infancy is visible at the centre of the image. The flows of gas from this star have opened up a cavity in the region, and it is in the walls of this cavity (shown in colour), that phosphorus-bearing molecules like phosphorus monoxide are formed. The different colours represent material moving at different speeds. Credit: ALMA (ESO/NAOJ/NRAO), Rivilla et al.

    4
    This wide-field view shows the region of the sky, in the constellation of Auriga, where the star-forming region AFGL 5142 is located. This view was created from images forming part of the Digitized Sky Survey 2. Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin


    This video starts by showing a wide-field view of a region of the sky in the constellation of Auriga. It then zooms in to show the star-forming region AFGL 5142, recently observed with ALMA. Credit: ALMA (ESO/NAOJ/NRAO), Rivilla et al.; Mario Weigand, http://www.SkyTrip.de; ESO/Digitized Sky Survey 2; Nick Risinger (skysurvey.org). Music: Astral Electronics


    This animation shows the key results from a study that has revealed the interstellar thread of phosphorus, one of life’s building blocks. Thanks to ALMA, astronomers could pinpoint where phosphorus-bearing molecules form in star-forming regions like AFGL 5142. The background of this animation shows a part of the night sky in the constellation of Auriga, where the star-forming region AFGL 5142 is located. The ALMA image of this object appears on the top left, and one of the locations where the team found phosphorus-bearing molecules is indicated by a circle. The most common phosphorus-bearing molecule in AFGL 5142 is phosphorus monoxide, represented in orange and red in the diagram that appears on the bottom left. Another molecule found was phosphorus nitride, represented in orange and blue. Using data from the ROSINA instrument onboard ESA’s Rosetta, astronomers also found phosphorus monoxide on comet 67P/Churyumov–Gerasimenko, which appears on the bottom right at the end of the video. This first sighting of phosphorus monoxide on a comet helps astronomers draw a connection between star-forming regions, where the molecule is created, all the way to Earth, where it played a crucial role in starting life.
    Credit: ESO/M. Kornmesser/L.Calçada; ALMA (ESO/NAOJ/NRAO), Rivilla et al.; ESA/Rosetta/NAVCAM; Mario Weigand, http://www.SkyTrip.de

    ESA/Rosetta spacecraft, European Space Agency’s legendary comet explorer Rosetta

    Their research shows, for the first time, where molecules containing phosphorus form, how this element is carried in comets, and how a particular molecule may have played a crucial role in starting life on our planet.

    “Life appeared on Earth about 4 billion years ago, but we still do not know the processes that made it possible,” says Víctor Rivilla, the lead author of a new study published today in the journal Monthly Notices of the Royal Astronomical Society. The new results from the Atacama Large Millimeter/Submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, and from the ROSINA instrument on board Rosetta, show that phosphorus monoxide is a key piece in the origin-of-life puzzle.

    ESA Rosetta ROSINA

    With the power of ALMA, which allowed a detailed look into the star-forming region AFGL 5142, astronomers could pinpoint where phosphorus-bearing molecules, like phosphorus monoxide, form. New stars and planetary systems arise in cloud-like regions of gas and dust in between stars, making these interstellar clouds the ideal places to start the search for life’s building blocks.

    The ALMA observations showed that phosphorus-bearing molecules are created as massive stars are formed. Flows of gas from young massive stars open up cavities in interstellar clouds. Molecules containing phosphorus form on the cavity walls, through the combined action of shocks and radiation from the infant star. The astronomers have also shown that phosphorus monoxide is the most abundant phosphorus-bearing molecule in the cavity walls.

    After searching for this molecule in star-forming regions with ALMA, the European team moved on to a Solar System object: the now-famous comet 67P/Churyumov–Gerasimenko. The idea was to follow the trail of these phosphorus-bearing compounds. If the cavity walls collapse to form a star, particularly a less-massive one like the Sun, phosphorus monoxide can freeze out and get trapped in the icy dust grains that remain around the new star. Even before the star is fully formed, those dust grains come together to form pebbles, rocks and ultimately comets, which become transporters of phosphorus monoxide.

    ROSINA, which stands for Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, collected data from 67P for two years as Rosetta orbited the comet. Astronomers had found hints of phosphorus in the ROSINA data before, but they did not know what molecule had carried it there. Kathrin Altwegg, the Principal Investigator for Rosina and an author in the new study, got a clue about what this molecule could be after being approached at a conference by an astronomer studying star-forming regions with ALMA: “She said that phosphorus monoxide would be a very likely candidate, so I went back to our data and there it was!”

    This first sighting of phosphorus monoxide on a comet helps astronomers draw a connection between star-forming regions, where the molecule is created, all the way to Earth.

    “The combination of the ALMA and ROSINA data has revealed a sort of chemical thread during the whole process of star formation, in which phosphorus monoxide plays the dominant role,” says Rivilla, who is a researcher at the Arcetri Astrophysical Observatory of INAF, Italy’s National Institute for Astrophysics.

    “Phosphorus is essential for life as we know it,” adds Altwegg. “As comets most probably delivered large amounts of organic compounds to the Earth, the phosphorus monoxide found in comet 67P may strengthen the link between comets and life on Earth.”

    This intriguing journey could be documented because of the collaborative efforts between astronomers. “The detection of phosphorus monoxide was clearly thanks to an interdisciplinary exchange between telescopes on Earth and instruments in space,” says Altwegg.

    Leonardo Testi, ESO astronomer and ALMA European Operations Manager, concludes: “Understanding our cosmic origins, including how common the chemical conditions favourable for the emergence of life are, is a major topic of modern astrophysics. While ESO and ALMA focus on the observations of molecules in distant young planetary systems, the direct exploration of the chemical inventory within our Solar System is made possible by ESA missions, like Rosetta. The synergy between world leading ground-based and space facilities, through the collaboration between ESO and ESA, is a powerful asset for European researchers and enables transformational discoveries like the one reported in this paper.”

    More information

    This research was presented in a paper to appear in Monthly Notices of the Royal Astronomical Society.

    The team is composed of V. M. Rivilla (INAF-Osservatorio Astrofisico di Arcetri, Florence, Italy [INAF-OAA]), M. N. Drozdovskaya (Center for Space and Habitability, University of Bern, Switzerland [CSH]), K. Altwegg (Physikalisches Institut, University of Bern, Switzerland), P. Caselli (Max Planck Institute for Extraterrestrial Physics, Garching, Germany), M. T. Beltrán (INAF-OAA), F. Fontani (INAF-OAA), F.F.S. van der Tak (SRON Netherlands Institute for Space Research, and Kapteyn Astronomical Institute, University of Groningen, The Netherlands), R. Cesaroni (INAF-OAA), A. Vasyunin (Ural Federal University, Ekaterinburg, Russia, and Ventspils University of Applied Sciences, Latvia), M. Rubin (CSH), F. Lique (LOMC-UMR, CNRS–Université du Havre), S. Marinakis (University of East London, and Queen Mary University of London, UK), L. Testi (INAF-OAA, ESO Garching, and Excellence Cluster “Universe”, Germany), and the ROSINA team (H. Balsiger, J. J. Berthelier, J. De Keyser, B. Fiethe, S. A. Fuselier, S. Gasc, T. I. Gombosi, T. Sémon, C. -y. Tzou).

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of ESO, the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI). ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope [below] and its world-leading Very Large Telescope Interferometer [below]as well as two survey telescopes, VISTA [below] working in the infrared and the visible-light VLT Survey Telescope [below]. Also at Paranal ESO will host and operate the Čerenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX [below] and ALMA [below], the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT [below], which will become “the world’s biggest eye on the sky”.

    See the full article here .

    This blog post was built on the ESO release for this work.
    If ALMA does their own release, a blog post will be done from that release.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

    NRAO Small
    ESO 50 Large

    ESO La Silla HELIOS (HARPS Experiment for Light Integrated Over the Sun)

    ESO/HARPS at La Silla

    ESO 3.6m telescope & HARPS at Cerro LaSilla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    MPG/ESO 2.2 meter telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO/Cerro LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo,

    2009 ESO VLTI Interferometer image, Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).

    ESO VLT 4 lasers on Yepun

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

    ESO/NTT at Cerro La Silla, Chile, at an altitude of 2400 metres

    ESO VLT Survey telescope

    Part of ESO’s Paranal Observatory, the VISTA Telescope observes the brilliantly clear skies above the Atacama Desert of Chile. Credit: ESO/Y. Beletsky, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    ESO APEXESO/MPIfR APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)at the Llano de Chajnantor Observatory in the Atacama desert.

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    ESO Next Generation Transit Survey at Cerro Paranel, 2,635 metres (8,645 ft) above sea level

    ESO Speculoos telescopes four 1m-diameter robotic telescopes at ESO Paranal Observatory 2635 metres 8645 ft above sea level

    ESO TAROT telescope at Paranal, 2,635 metres (8,645 ft) above sea level

    ESO ExTrA telescopes at Cerro LaSilla at an altitude of 2400 metres

    A novel gamma ray telescope under construction on Mount Hopkins, Arizona. a large project known as the Čerenkov Telescope Array, composed of hundreds of similar telescopes to be situated in the Canary Islands and Chile. The telescope on Mount Hopkins will be fitted with a prototype high-speed camera, assembled at the University of Wisconsin–Madison, and capable of taking pictures at a billion frames per second. Credit: Vladimir Vassiliev

     
  • richardmitnick 5:07 pm on January 6, 2020 Permalink | Reply
    Tags: "The Turbulent Life of Two Supermassive Black Holes Caught in a Galaxy Crash", , , , , , Millimeter/submillimeter astronomy, NGC 6240, NRAO-National Radio Astronomy Observatory,   

    From ALMA via NRAO: “The Turbulent Life of Two Supermassive Black Holes Caught in a Galaxy Crash” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    via

    National Radio Astronomy Observatory

    NRAO Banner

    ALMA sees material around two growing supermassive black holes in unprecedented detail.

    1.6.20

    Iris Nijman
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Cell phone: +1 (434) 249 3423
    Email: alma-pr@nrao.edu

    https://vimeo.com/nrao
    ALMA (ESO/NAOJ/NRAO), E. Treister; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble. An international team of astronomers used ALMA to create the most detailed image yet of the gas surrounding two supermassive black holes in a merging galaxy.

    3
    Credit: ALMA (ESO/NAOJ/NRAO), E. Treister; NRAO/AUI/NSF, S. Dagnello; NASA/ESA Hubble
    NGC 6240 as seen with ALMA (top) and the Hubble Space Telescope (bottom). In the ALMA image, the molecular gas is blue and the black holes are the red dots. The ALMA image provides the sharpest view of the molecular gas around the black holes in this merging galaxy.

    4
    Artist impression of the merging galaxy NGC 6240. Credit: NRAO/AUI/NSF, S. Dagnello

    An international team of astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to create the most detailed image yet of the gas surrounding two supermassive black holes in a merging galaxy.

    400 million light-years away from Earth, in the constellation of Ophiuchus, two galaxies are crashing into each other and forming a galaxy we know as NGC 6240. This peculiarly-shaped galaxy has been observed many times before, as it is relatively close by. But NGC 6240 is complex and chaotic. The collision between the two galaxies is still ongoing, bringing along in the crash two growing supermassive black holes that will likely merge as one larger black hole.

    To understand what is happening within NGC 6240, astronomers want to observe the dust and gas surrounding the black holes in detail, but previous images have not been sharp enough to do that. New ALMA observations have increased the resolution of the images by a factor of ten – showing for the first time the structure of the cold gas in the galaxy, even within the sphere of influence of the black holes.

    “The key to understanding this galaxy system is molecular gas,” explained Ezequiel Treister of the Pontificia Universidad Católica in Santiago, Chile. “This gas is the fuel that is needed to form stars, but it also feeds the supermassive black holes, which allows them to grow.”

    Most of the gas is located in a region between the two black holes. Less detailed observations taken previously suggested that this gas might be a rotating disk. “We don’t find any evidence for that,” said Treister. “Instead, we see a chaotic stream of gas with filaments and bubbles between the black holes. Some of this gas is ejected outwards with speeds up to 500 kilometers per second. We don’t know yet what causes these outflows.”

    Another reason to observe the gas in such detail is that it helps to determine the mass of the black holes. “Previous models, based on surrounding stars, indicated that the black holes were much more massive than we expected, around a billion times the mass of our Sun,” said Anne Medling of the University of Toledo in Ohio. “But these new ALMA images for the first time showed us how much gas is caught up inside the black holes’ sphere of influence. This mass is significant, and therefore we now estimate the black hole masses to be lower: around a few hundred million times the mass of our Sun. Based on this, we think that most previous black hole measurements in systems like this could be off by 5-90 percent.”

    The gas also turned out to be even closer to the black holes than the astronomers had expected. “It is located in a very extreme environment,” explained Medling. “We think that it will eventually fall into the black hole, or it will be ejected at high speeds.”

    The astronomers don’t find evidence for a third black hole in the galaxy, which another team recently claimed to have discovered. “We don’t see molecular gas associated with this claimed third nucleus,” said Treister. “It could be a local star cluster instead of a black hole, but we need to study it much more to say anything about it with certainty.”

    ALMA’s high sensitivity and resolution are crucial to learn more about supermassive black holes and the role of gas in interacting galaxies. “This galaxy is so complex, that we could never know what is going on inside it without these detailed radio images,” said Loreto Barcos-Muñoz of the National Radio Astronomy Observatory in Charlottesville, Virginia. “We now have a better idea of the 3D-structure of the galaxy, which gives us the opportunity to understand how galaxies evolve during the latest stages of an ongoing merger. In a few hundred million years, this galaxy will look completely different.”

    This research was presented at the 235th meeting of the American Astronomical Society in Honolulu, Hawaii, and in two papers:

    “The Molecular Gas in the NGC 6240 Merging Galaxy System at the Highest Spatial Resolution,” by E. Treister et al., accepted for publication in The Astrophysical Journal.
    “How to Fuel an AGN: Mapping Circumnuclear Gas in NGC 6240 with ALMA,” by A. M. Medling et al., The Astrophysical Journal Letters.

    See the full NRAO article 1.6.20 here .

    See also the full ALMA article 1.7.20 here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA)

    NRAO VLBA

    NRAO/VLBA


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).

    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

    The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 11:19 am on December 31, 2019 Permalink | Reply
    Tags: "UFRO will evaluate alternatives for antenna control systems for ALMA", , , , , , Millimeter/submillimeter astronomy,   

    From ALMA: “UFRO will evaluate alternatives for antenna control systems for ALMA” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    27 December, 2019

    1
    © ALMA (NRAO/NAOJ/ESO)

    Some of the ALMA observatory’s control systems were designed over 10 years ago and will soon need to be replaced. Universidad de la Frontera (UFRO) in Temuco, Chile, was awarded Quimal funds from Conicyt to explore maintenance alternatives for these real-time systems.

    “We are very pleased with the outcome, which is the product of an active collaboration between the observatory and the university over the last five years,” says Jorge Ibsen, Head of Computing at ALMA. “This project marks an important contribution from southern Chile to the development of local astro-engineering.”

    Dr. Patricio Galeas, professor in charge of the project, will work with a budget of around 200 million Chilean pesos and will have two years to develop the project in conjunction with ALMA. This is the first time that UFRO has been awarded an initiative of this size in the field of astronomy.

    “This development represents an important experience for the University and can generate the knowledge needed to solve similar problems in other astronomic observatories,” indicates Dr. Patricio Galeas, adding that the research team will be made up of both academic staff and students.

    The general purpose of the initiative is to design and implement a Proof of Concept (PoC) for the real-time control system, using cutting-edge industry standards.

    Tzu Chiang-Chen, Manager of the Engineering Services Group, says that “this project is of vital importance for ALMA, because it won’t just solve the obsolescence issue in the antennas’ real-time control system. It will also generate the transfer of knowledge between the observatory and UFRO.”

    The main purpose of the Quimal fund awarded to UFRO is to strengthen and promote the development of scientific astronomical research and related sciences, through projects with special emphasis on the design and construction of astronomic instrumentation; the development of astronomy-related technologies for emerging fields of research; and cutting-edge technological transfer processes. The competition was targeted at astronomers, astrophysicists and engineers from areas related to astronomy to promote the association of national institutions and researchers in the development of avant-garde technologies.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: