Tagged: Millimeter/submillimeter astronomy Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:53 am on April 21, 2017 Permalink | Reply
    Tags: , An Exploration of Dusty Galaxies, , , , Millimeter/submillimeter astronomy, , Submillimeter Common-User Bolometer Array (SCUBA-2), UKIDSS Ultra Deep Survey field   

    From AAS NOVA: ” An Exploration of Dusty Galaxies” 

    AASNOVA

    American Astronomical Society

    21 April 2017
    Susanna Kohler

    1
    A small section of the UKIDSS Ultra Deep Survey field. A new study of 53 submillimeter galaxies in this field reveals more about galaxies in our early universe. [University of Nottingham/Omar Almaini]

    Submillimeter galaxies — i.e., galaxies that we detect in the submillimeter wavelength range — are mysterious creatures. It’s only within the last couple decades that we’ve had telescope technology capable of observing them, and we’re only now getting to the point where angular resolution limits allow us to examine them closely. A new study has taken advantage of new capabilities to explore the properties of a sample of 52 of these galaxies.

    Dusty Star Formation

    Submillimeter galaxies are generally observed in the early universe. Though they’re faint in other wavebands, they’re extremely luminous in infrared and submillimeter — their infrared luminosities are typically trillions of times the Sun’s luminosity. This is thought to be because these galaxies are very actively forming stars at rates of hundreds of times that of the Milky Way!

    2
    Example 10” × 10” true-color images of ten submillimeter galaxies in the authors’ ALMA-identified sample. [Simpson et al. 2017]

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    Submillimeter galaxies are also extremely dusty, so we don’t see their star formation directly in optical wavelengths. Instead, we see the stellar light after it’s been absorbed and reemitted by interstellar dust lanes — we’re indirectly observing heavily obscured star formation.

    Why look for submillimeter galaxies? Studying them can help us to learn about galaxy and star formation early in our universe’s history, and help us to understand how the universe has evolved into what we see locally today.

    Submillimeter Struggles

    Due to angular resolution limitations in the past, we often couldn’t pin down the exact locations of submillimeter galaxies, preventing us from examining them properly. But now a team of scientists has used the Atacama Large Millimeter/submillimeter array (ALMA) to precisely locate 52 submillimeter galaxies identified by the Submillimeter Common-User Bolometer Array (SCUBA-2) in the UKIDSS Ultra Deep Survey field.

    East Asia Observatory James Clerk Maxwell telescope, Mauna Kea, Hawaii, USA

    The precise locations made possible by ALMA allowed the team — led by James Simpson (University of Edinburgh and Durham University) — to identify the multi-wavelength properties of these galaxies in a pilot study that they hope to extend to many more similar galaxies in the future.

    3
    Photometric redshift distribution of the ALMA-identified submillimeter galaxies in the authors’ sample (grey). [Simpson et al. 2017]

    Lessons from Distant Galaxies

    What did Simpson and collaborators learn in this study?

    1. For the set of galaxies for which the team could measure photometric redshifts, the median redshift was z ~ 2.65 (though redshifts ranged up to z ~ 5).
    2. Submillimeter galaxies are cooler and larger than local far-infrared galaxies (known as ULIRGs). The authors therefore argue that it’s unlikely that ULIRGs are evolved versions of submillimeter galaxies.
    3. Estimates of dust mass in these galaxies suggest that effectively all of the optical-to-near-infrared light from colocated stars is obscured by dust.
    4. Estimates of the future stellar mass of these galaxies suggest that they cannot evolve into lenticular or spiral galaxies. Instead, the authors conclude, submillimeter galaxies must be the progenitors of local elliptical galaxies.

    Citation

    J. M. Simpson et al 2017 ApJ 839 58. doi:10.3847/1538-4357/aa65d0

    Related Journal Articles

    The scuba-2 cosmology legacy survey: alma resolves the rest-frame far-infrared emission of sub-millimeter galaxies doi: 10.1088/0004-637X/799/1/81
    The scuba-2 cosmology legacy survey: alma resolves the bright-end of the sub-millimeter number counts doi: 10.1088/0004-637X/807/2/128
    An alma survey of submillimeter galaxies in the extended chandra deep field south: the redshift distribution and evolution of submillimeter galaxies doi: 10.1088/0004-637X/788/2/125
    The scuba-2 cosmology legacy survey: multiwavelength counterparts to 103 submillimeter galaxies in the ukidss-uds field doi: 10.3847/0004-637X/820/2/82
    The scuba-2 cosmology legacy survey: ultraluminous star-forming galaxies in a z = 1.6 cluster doi: 10.1088/0004-637X/782/1/19
    Extremely red submillimeter galaxies: new z ≳ 4–6 candidates discovered using alma and jansky vla doi: 10.3847/1538-4357/835/2/286

    NRAO/VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:41 pm on April 12, 2017 Permalink | Reply
    Tags: , , , , Millimeter/submillimeter astronomy, , Planetary body 2014 UZ224 more informally known as DeeDee,   

    From ALMA: “ALMA Investigates ‘DeeDee,’ a Distant, Dim Member of Our Solar System” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    April 12, 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp
    1
    Artist concept of the planetary body 2014 UZ224, more informally known as DeeDee. ALMA was able to observe the faint millimeter-wavelength “glow” emitted by the object, confirming it is roughly 635 kilometers across. At this size, DeeDee should have enough mass to be spherical, the criterion necessary for astronomers to consider it a dwarf planet, though it has yet to receive that official designation. Credit: Alexandra Angelich (NRAO/AUI/NSF)

    Using the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have revealed extraordinary details about a recently discovered far-flung member of our solar system, the planetary body 2014 UZ224, more informally known as DeeDee.

    2
    ALMA image of the faint millimeter-wavelength “glow” from the planetary body 2014 UZ224, more informally known as DeeDee. At three times the distance of Pluto from the Sun, DeeDee is the second most distant known TNO with a confirmed orbit in our solar system. Credit: ALMA (ESO/NAOJ/NRAO)

    At about three times the current distance of Pluto from the Sun, DeeDee is the second most distant known trans-Neptunian object (TNO) with a confirmed orbit, surpassed only by the dwarf planet Eris. Astronomers estimate that there are tens-of-thousands of these icy bodies in the outer solar system beyond the orbit of Neptune.

    The new ALMA data reveal, for the first time, that DeeDee is roughly 635 kilometers across, or about two-thirds the diameter of the dwarf planet Ceres, the largest member of our asteroid belt. At this size, DeeDee should have enough mass to be spherical, the criterion necessary for astronomers to consider it a dwarf planet, though it has yet to receive that official designation.

    “Far beyond Pluto is a region surprisingly rich with planetary bodies. Some are quite small but others have sizes to rival Pluto, and could possibly be much larger,” said David Gerdes, a scientist with the University of Michigan and lead author on a paper appearing in the Astrophysical Journal Letters. “Because these objects are so distant and dim, it’s incredibly difficult to even detect them, let alone study them in any detail. ALMA, however, has unique capabilities that enabled us to learn exciting details about these distant worlds.”

    Currently, DeeDee is about 92 astronomical units (AU) from the Sun. An astronomical unit is the average distance from the Earth to the Sun, or about 150 million kilometers. At this tremendous distance, it takes DeeDee more than 1,100 years to complete one orbit. Light from DeeDee takes nearly 13 hours to reach Earth.

    Gerdes and his team announced the discovery of DeeDee in the fall of 2016. They found it using the 4-meter Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile as part of ongoing observations for the Dark Energy Survey, an optical survey of about 12 percent of the sky that seeks to understand the as-yet mysterious force that is accelerating the expansion of the universe.

    The Dark Energy Survey produces vast troves of astronomical images, which give astronomers the opportunity to also search for distant solar system objects.

    The initial search, which includes nearly 15,000 images, identified more than 1.1 billion candidate objects. The vast majority of these turned out to be background stars and even more distant galaxies. A small fraction, however, were observed to move slowly across the sky over successive observations, the telltale sign of a TNO.

    One such object was identified on 12 separate images. The astronomers informally dubbed it DeeDee, which is short for Distant Dwarf.

    The optical data from the Blanco telescope enabled the astronomers to measure DeeDee’s distance and orbital properties, but they were unable to determine its size or other physical characteristics. It was possible that DeeDee was a relatively small member of our solar system, yet reflective enough to be detected from Earth. Or, it could be uncommonly large and dark, reflecting only a tiny portion of the feeble sunlight that reaches it; both scenarios would produce identical optical data.

    Since ALMA observes the cold, dark universe, it is able to detect the heat – in the form of millimeter-wavelength light – emitted naturally by cold objects in space. The heat signature from a distant solar system object would be directly proportional to its size.

    “We calculated that this object would be incredibly cold, only about 30 degrees Kelvin, just a little above absolute zero,” said Gerdes.

    While the reflected visible light from DeeDee is only about as bright as a candle seen halfway the distance to the moon, ALMA was able to quickly home in on the planetary body’s heat signature and measure its brightness in millimeter-wavelength light.

    This allowed astronomers to determine that it reflects only about 13 percent of the sunlight that hits it. That is about the same reflectivity of the dry dirt found on a baseball infield.

    By comparing these ALMA observations to the earlier optical data, the astronomers had the information necessary to calculate the object’s size. “ALMA picked it up fairly easily,” said Gerdes. “We were then able to resolve the ambiguity we had with the optical data alone.”

    Objects like DeeDee are cosmic leftovers from the formation of the solar system. Their orbits and physical properties reveal important details about the formation of planets, including Earth.

    This discovery is also exciting because it shows that it is possible to detect very distant, slowly moving objects in our own solar system. The researchers note that these same techniques could be used to detect the hypothesized “Planet Nine” that may reside far beyond DeeDee and Eris.

    “There are still new worlds to discover in our own cosmic backyard,” concludes Gerdes. “The solar system is a rich and complicated place.”

    3

    Orbits of objects in our solar system, showing the current location of the planetary body ‘DeeDee’.
    Credit: Alexandra Angelich (NRAO/AUI/NSF)

    Additional information

    This research is presented in a paper titled “Discovery and physical characterization of a large scattered disk object at 92 AU,” appearing in the Astrophysical Journal Letters.

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).

    ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    ALMA Array

    NRAO ALMA

    GBO radio telescope, Green Bank, West Virginia, USA
    Green Bank Observatory radio telescope, Green Bank, West Virginia, USA, formerly supported by NSF, but now on its own
    NRAO VLA
    NRAO VLA

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).
    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 2:25 pm on April 7, 2017 Permalink | Reply
    Tags: , ALMA Captures Explosive Star Birth, , , , Millimeter/submillimeter astronomy, Orion Molecular Cloud   

    From ALMA: “ALMA Captures Explosive Star Birth” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    07 April 2017
    Contacts

    John Bally
    University of Colorado, USA
    Email: john.bally@Colorado.EDU

    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    Stellar explosions are most often associated with supernovae, the spectacular deaths of stars. But new ALMA observations of the Orion Nebula complex provide insights into explosions at the other end of the stellar life cycle, star birth. Astronomers captured these dramatic images of the remains of a 500-year-old explosion as they explored the firework-like debris from the birth of a group of massive stars, demonstrating that star formation can be a violent and explosive process too. The colours in the ALMA data represent the relative Doppler shifting of the millimetre-wavelength light emitted by carbon monoxide gas. The blue colour in the ALMA data represents gas approaching at the highest speeds; the red colour is from gas moving toward us more slowly. The background image includes optical and near-infrared imaging from both the Gemini South and ESO Very Large Telescope. The famous Trapezium Cluster of hot young stars appears towards the bottom of this image. The ALMA data do not cover the full image shown here. Credit: ALMA (ESO/NAOJ/NRAO), J. Bally/H. Drass et al.

    3
    In one of the most detailed astronomical images ever produced, NASA/ESA’s Hubble Space Telescope captured an unprecedented look at the Orion Nebula. … This extensive study took 105 Hubble orbits to complete. All imaging instruments aboard the telescope were used simultaneously to study Orion. The Advanced Camera mosaic covers approximately the apparent angular size of the full moon.

    5
    Photo taken by Rogelio Bernal Andreo in October 2010 of the Orion constellation showing the surrounding nebulas of the Orion Molecular Cloud complex. Also captured is the red supergiant Betelgeuse (top left) and the famous belt of Orion composed of the OB stars Altitak, Alnilam and Mintaka. To the bottom right can be found the star Rigel. The red crescent shape is Barnard’s Loop. The photograph appeared as the Astronomy Picture of the Day on October 23, 2010.
    Date 23 August 2012
    Source http://deepskycolors.com/astro/JPEG/RBA_Orion_HeadToToes.jpg

    Star birth can be a violent and explosive event, as dramatically illustrated in new ALMA images.

    Around 500 years ago, a pair of adolescent protostars had a perilously close encounter that blasted their stellar nursery apart.

    Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have examined the widely scattered debris from this explosive event, gaining new insights into the sometimes-fierce relationship among sibling stars.

    Shortly after starting to form some 100,000 years ago, several protostars in the Orion Molecular Cloud 1 (OMC-1), a dense and active star factory about 1,500 light-years from Earth just behind the Orion Nebula, latched onto each other gravitationally and gradually drew closer.

    Eventually, two of these stars either grazed each other or collided, triggering a powerful eruption that launched other nearby protostars and hundreds of giant streamers of dust and gas into interstellar space at speeds greater than 150 kilometers per second. This cataclysmic interaction released as much energy as our Sun emits over the course of 10 million years.

    Today, the remains of this spectacular explosion are visible from Earth.

    2
    Credit: ALMA (ESO/NAOJ/NRAO), J. Bally

    “What we see in this once calm stellar nursery is a cosmic version of a fireworks display, with giant streamers rocketing off in all directions,” said John Bally with the University of Colorado and lead author on a paper published in the Astrophysical Journal.

    3
    Stellar explosions are most often associated with supernovae, the spectacular deaths of stars. But new ALMA observations of the Orion Nebula complex provide insights into explosions at the other end of the stellar life cycle, star birth. Astronomers captured these dramatic images of the remains of a 500-year-old explosion as they explored the firework-like debris from the birth of a group of massive stars, demonstrating that star formation can be a violent and explosive process too. The colours in the ALMA data represent the relative Doppler shifting of the millimetre-wavelength light emitted by carbon monoxide gas. The blue colour in the ALMA data represents gas approaching at the highest speeds; the red colour is from gas moving toward us more slowly. The background is an infrared image from the HAWK-I camera on ESO’s Very Large Telescope. The ALMA data only cover the region marked by the box. Credit:ALMA (ESO/NAOJ/NRAO), J. Bally/H. Drass et al.

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO HAWK-I

    Groups of stars such as those in OMC-1 are born when a cloud of gas hundreds of times more massive than our Sun begins to collapse under its own gravity. In the densest regions, protostars form and begin to drift about randomly. Over time, this random motion can dampen, which allows some of the stars to fall toward a common center of gravity, usually dominated by a particularly large protostar.

    If these stars draw too close to each other before they drift away into the galaxy, violent interactions can occur. According to the researchers, such explosions are expected to be relatively short lived, with the remnants like those seen by ALMA lasting only centuries.

    “Though fleeting, protostellar explosions may be relatively common,” said Bally. “By destroying their parent cloud, as we see in OMC-1, such explosions may also help to regulate the pace of star formation in these giant molecular clouds.”

    Bally and his team observed this feature previously with the Gemini-South telescope in Chile.

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    These earlier images, taken in the near infrared, reveal the remarkable structure of the streamers, which extend nearly a light-year from end to end.

    Hints of the explosive nature of this outflow were first uncovered in 2009 with the Submillimeter Array in Hawaii.

    CfA Submillimeter Array Mauna Kea, Hawaii, USA

    The new ALMA data, however, provide much greater clarity, unveiling important details about the distribution and high-velocity motion of the carbon monoxide (CO) gas inside the streamers. This helps astronomers understand the underlying force of the blast and the impact such events could have on star formation across the galaxy.

    “People most often associate stellar explosions with ancient stars, like a nova eruption on the surface of a decaying star or the even more spectacular supernova death of an extremely massive star,” Bally says. “ALMA has given us new insights into explosions on the other end of the stellar life cycle, star birth.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 2:13 pm on April 5, 2017 Permalink | Reply
    Tags: , Millimeter/submillimeter astronomy, , Spring Cleaning in an Infant Star System   

    From ALMA: “Spring Cleaning in an Infant Star System” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    03 April 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    Credit: ALMA (ESO/NAOJ/NRAO)/ Fedele et al.

    This image depicts the dusty disc encircling the young, isolated star HD 169142. The Atacama Large Millimeter/submillimeter Array (ALMA) imaged this disc in high resolution by picking up faint signals from its constituent millimetre-sized dust grains. The vivid rings are thick bands of dust, separated by deep gaps.

    Optimised to study the cold gas and dust of systems like HD 169142, ALMA’s sharp eyes have revealed the structure of many infant solar systems with similar cavities and gaps. A variety of theories have been proposed to explain them — such as turbulence caused by magnetorotational instability, or the fusing of dust grains — but the most plausible explanation is that these pronounced gaps were carved out by giant protoplanets.

    When solar systems form gas and dust coalesce into planets. These planets then effectively spring clean their orbits, clearing them of gas and dust and herding the remaining material into well-defined bands. The deep gaps seen in this image are consistent with the presence of multiple protoplanets — a finding that agrees with other optical and infrared studies of the same system.

    Observing such dusty protoplanetary discs with ALMA allows scientists to investigate the first steps of planet formation in a bid to unveil the evolutionary paths of these infant systems.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 2:59 pm on March 23, 2017 Permalink | Reply
    Tags: ALMA Observes Galaxies Embedded in Super-Halos, , , , , Millimeter/submillimeter astronomy,   

    From ALMA: “ALMA Observes Galaxies Embedded in Super-Halos” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    23 March 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    Artist impression of a progenitor of Milky Way-like galaxy in the early Universe with a background quasar shining through a ‘super halo’ of hydrogen gas surrounding the galaxy. New ALMA observations of two such galaxies reveal that those large halos extend well beyond the galaxies’ dusty, star-forming disks. The galaxies were initially found by the absorption of background quasar light passing through the galaxies. ALMA was able to image the ionized carbon in the galaxies’ disks, revealing crucial details about their structures. Credit: A. Angelich (NRAO/AUI/NSF).

    By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the Universe was only eight percent of its current age. These progenitors of today’s giant spiral galaxies are surrounded by “super halos” of hydrogen gas that extend many tens of thousands of light-years beyond their dusty, star-filled disks.

    Astronomers initially detected these galaxies by studying the intense light from even-more-distant quasars. As this light travels through an intervening galaxy on its way to Earth, it can pick up the unique spectral signature from the galaxy’s gas. This technique, however, generally prevents astronomers from seeing the actual light emitted by the galaxy, which is overwhelmed by the much brighter emission from the background quasar.

    “Imagine a tiny firefly next to a high-power searchlight. That’s what astronomers are up against when it comes to observing these young versions of our home galaxy,” said Marcel Neeleman a postdoctoral fellow at the University of California, Santa Cruz, and lead author on a paper appearing in the journal Science. “We can now see the galaxies themselves, which gives us a fantastic opportunity to learn about the earliest history of our galaxy and others like it.”

    With ALMA, the astronomers were finally able to observe the natural millimeter-wavelength “glow” emitted by ionized carbon in the dense and dusty star-forming regions of the galaxies. This carbon signature, however, is considerably offset from the gas first detected by quasar absorption. This extreme separation indicates that the galaxies’ gas content extends well beyond their star-filled disks, suggesting that each galaxy is embedded in a massive halo of hydrogen gas.

    “We had expected we would see faint emission right on top of the quasar, and instead we saw bright galaxies at large separations from the quasar,” said J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz and co-author of the paper. The separation from the quasar to the observed galaxy is about 137,000 light-years for one galaxy and about 59,000 light-years for the other.

    According to the researchers, the neutral hydrogen gas revealed by its absorption of quasar light is most likely part of a large halo or perhaps an extended disk of gas around the galaxy. “It’s not where the star formation is, and to see so much gas that far from the star-forming region means there is a large amount of neutral hydrogen around the galaxy,” Neeleman said.

    2
    Composite ALMA and optical image of a young Milky Way-like galaxy 12 billion light-years away and a background quasar 12.5 billion light-years away. Light from the quasar passed through the galaxy’s gas on its way to Earth, revealing the presence of the galaxy to astronomers. New ALMA observations of the galaxy’s ionized carbon (green) and dust continuum (blue) emission show that the dusty, star-forming disk of the galaxy is vastly offset from the gas detected by quasar absorption at optical wavelengths (red). This indicates that a massive halo of gas surrounds the galaxy. The optical data are from the Keck I Telescope at the W.M. Keck Observatory. Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman & J. Xavier Prochaska; Keck Observatory.


    Keck Observatory, Mauna Kea, Hawaii, USA

    The new ALMA data show that these young galaxies are already rotating, which is one of the hallmarks of the massive spiral galaxies we see in the Universe today. The ALMA observations further reveal that both galaxies are forming stars at moderately high rates: more than 100 solar masses per year in one galaxy and about 25 solar masses per year in the other.

    “These galaxies appear to be massive, dusty, and rapidly star-forming systems, with large, extended layers of gas,” Prochaska said.

    “ALMA has solved a decades-old question on galaxy formation,” said Chris Carilli, an astronomer with the National Radio Astronomy Observatory in Socorro, N.M., and co-author on the paper. “We now know that at least some very early galaxies have halos that are much more extended than previously considered, which may represent the future material for galaxy growth.”

    The galaxies, which are officially designated ALMA J081740.86+135138.2 and ALMA J120110.26+211756.2, are each about 12 billion light-years from Earth. The background quasars are each roughly 12.5 billion light-years from Earth.

    This research is presented in a paper titled “[C II] 158-μm emission from the host galaxies of damped Lyman alpha systems,” by M. Neeleman et al., scheduled for publication in the journal Science on 24 March 2017. [Link is above.]

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 7:55 am on March 17, 2017 Permalink | Reply
    Tags: , ALMA Confirms ability to see a “Cosmic Hole, , , , , Millimeter/submillimeter astronomy, , Sunyaev-Zel'dovich effect (SZ effect)   

    From ALMA: “ALMA Confirms ability to see a “Cosmic Hole” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    17 March 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    The image shows the measurement of the SZ effect in the galaxy cluster RX J1347.5-1145 taken with ALMA (blue). The background image was taken by the Hubble Space Telescope. A “hole” caused by the SZ effect is seen in the ALMA observations. Credit: ALMA (ESO/NAOJ/NRAO), Kitayama et al., NASA/ESA Hubble Space Telescope.

    Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) successfully imaged a radio “hole” around a galaxy cluster 4.8 billion light-years away from the Earth. This is the highest resolution image ever taken of such a hole caused by the Sunyaev-Zel’dovich effect (SZ effect). The image proves ALMA’s high capability to investigate the distribution and temperature of gas around galaxy clusters through the SZ effect.

    A research team led by Tetsu Kitayama, a professor at Toho University, Japan, used ALMA to investigate the hot gas in a galaxy cluster. The hot gas is an essential component to understand the nature and evolution of galaxy clusters. Even though the hot gas does not emit radio waves detectable with ALMA, the gas scatters the radio waves of the Cosmic Microwave Background and makes a “hole” around the galaxy cluster. This is the Sunyaev-Zel’dovich effect[1].

    The team observed the galaxy cluster RX J1347.5-1145 known among astronomers for its strong SZ effect and which has been observed many times with radio telescopes.

    2
    ROSAT Lensing Cluster RX J1347-1145. Max-Planck-Institut für extraterrestrische Physik

    For example, the Nobeyama 45-m Radio Telescope, operated by the National Astronomical Observatory of Japan, has revealed an uneven distribution of the hot gas in this galaxy cluster, which was not seen in X-ray observations.

    .
    Nobeyama Radio Telescope, located in the Nobeyama highlands in Nagano, Japan

    To better understand the unevenness, astronomers need higher resolution observations. But relatively smooth and widely-distributed objects, such as the hot gas in galaxy clusters, are difficult to image with high-resolution radio interferometers.

    To overcome this difficulty, ALMA utilized the Atacama Compact Array, also known as the Morita Array, the major Japanese contribution to the project.


    Atacama Compact Array alma.mtk.nao.ac.jp

    The Morita Array’s smaller diameter antennas and the close-packed antenna configuration provide a wider field of view. By using the data from the Morita Array, astronomers can precisely measure the radio waves from objects subtending a large angle on the sky.

    3
    This cluster of galaxies, RX J1347.5–1145, was observed by the NASA/ESA Hubble Space Telescope as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). The cluster is one of most massive known galaxy clusters in the Universe. Credit: ESA/Hubble, NASA.


    NASA/ESA Hubble Telescope

    With ALMA, the team obtained an SZ effect image of RX J1347.5-1145, with twice the resolution and ten times better sensitivity than previous observations. This is the first image of the SZ effect with ALMA. The ALMA SZ image is consistent with the previous observations and better illustrates the pressure distribution of hot gas. It proves that ALMA is highly capable of observing the SZ effect and clearly shows that a gigantic collision is ongoing in this galaxy cluster.

    “It was nearly 50 years ago that the SZ effect was proposed for the first time,” explains Kitayama. “The effect is pretty weak, and it has been tough to image the effect with high resolution. Thanks to ALMA, this time we made a long-awaited breakthrough to pave a new path to probe the cosmic evolution.”

    Notes

    “Cosmic Microwave Background (CMB)” radio waves come from every direction. When CMB radio waves pass through the hot gas in a galaxy cluster, the radio waves interact with high-energy electrons in the hot gas and gain energy. As a result, the CMB radio waves shift to higher energy. Observing from the Earth, the CMB in the original energy range has less intensity near the galaxy cluster. This is called the “Sunyaev-Zel’dovich effect,” first proposed by Rashid Sunyaev and Yakov Zel’dovich in 1970.

    Additional information

    These observation results were published as Kitayama et al. The Sunyaev-Zel’dovich effect at 5″: RX J1347.5-1145 imaged by ALMA in the Publications of the Astronomical Society of Japan in October 2016.

    The research team members are: Tetsu Kitayama (Toho University), Shutaro Ueda (Japan Aerospace Exploration Agency), Shigehisa Takakuwa (Kagoshima University / Academia Sinica Institute of Astronomy and Astrophysics), Takahiro Tsutsumi (U. S. National Radio Astronomy Observatory), Eiichiro Komatsu (Max-Planck Institute for Astrophysics / Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo), Takuya Akahori (Kagoshima University), Daisuke Iono (National Astronomical Observatory of Japan / SOKENDAI), Takuma Izumi (The University of Tokyo), Ryohei Kawabe (National Astronomical Observatory of Japan / SOKENDAI / The University of Tokyo), Kotaro Kohno (The University of Tokyo), Hiroshi Matsuo (National Astronomical Observatory of Japan / SOKENDAI), Naomi Ota (Nara Women’s University), Yasushi Suto (The University of Tokyo), Motokazu Takizawa (Yamagata University), and Kohji Yoshikawa (University of Tsukuba).

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 10:34 am on March 15, 2017 Permalink | Reply
    Tags: , , , Cat's Paw Nebula (also known as NGC 6334), , Millimeter/submillimeter astronomy, Protostar Blazes Bright, , Reshaping Its Stellar Nursery   

    From ALMA: “Protostar Blazes Bright, Reshaping Its Stellar Nursery” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    15 March 2017
    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    Masaaki Hiramatsu

    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    1
    ALMA image of the glowing dust inside NGC 6334I, a protocluster containing an infant star that is undergoing an intense growth spurt, likely triggered by an avalanche of gas falling onto its surface. ALMA (ESO/NAOJ/NRAO); C. Brogan, B. Saxton (NRAO/AUI/NSF).

    A massive protostar, deeply nestled in its dust-filled stellar nursery, recently roared to life, shining nearly 100 times brighter than before. This outburst, apparently triggered by an avalanche of star-forming gas crashing onto the surface of the star, supports the theory that young stars can undergo intense growth spurts that reshape their surroundings.

    Astronomers made this discovery by comparing new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile with earlier observations from the Submillimeter Array (SMA) in Hawaii.


    CfA Submillimeter Array Mauna Kea, Hawaii, USA

    “We were amazingly fortunate to detect this spectacular transformation of a young, massive star,” said Todd Hunter, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, USA, and lead author on a paper published in the Astrophysical Journal Letters. “By studying a dense star-forming cloud with both ALMA and the SMA, we could see that something dramatic had taken place, completely changing a stellar nursery over a surprisingly short period of time.”

    In 2008, before the era of ALMA, Hunter and his colleagues used the SMA to observe a small but active portion of the Cat’s Paw Nebula (also known as NGC 6334), a star-forming complex located about 5,500 light-years from Earth in the direction of the southern constellation Scorpius. This nebula is similar in many respects to its northern cousin, the Orion Nebula, which is also brimming with young stars, star clusters, and dense cores of gas that are on the verge of becoming stars. The Cat’s Paw Nebula, however, is forming stars at a faster rate.

    2
    Inside the Cats’s Paw Nebula as seen in an infrared image from NASA’s Spitzer Space Telescope (left), ALMA discovered that an infant star is undergoing an intense growth spurt, shining nearly 100 brighter than before and reshaping its stellar nursery (right). Credit: ALMA (ESO/NAOJ/NRAO), T. Hunter; C. Brogan, B. Saxton (NRAO/AUI/NSF); NASA Spitzer.


    NASA/Spitzer

    The initial SMA observations of this portion of the nebula, dubbed NGC 6334I, revealed what appeared to be a typical protocluster: a dense cloud of dust and gas harboring several still-growing stars.

    Young stars form in these tightly packed regions when pockets of gas become so dense that they begin to collapse under their own gravity. Over time, disks of dust and gas form around these nascent stars and funnel material onto their surfaces helping them grow.

    This process, however, may not be entirely slow and steady. Astronomers now believe that young stars can also experience spectacular growth spurts, periods when they rapidly acquire mass by gorging on star-forming gas.

    The new ALMA observations of this region, taken in 2015 and 2016, reveal that dramatic changes occurred toward a portion of the protocluster called NGC 6334I-MM1 in the years since the original SMA observations. This region is now about four times brighter at millimeter wavelengths, meaning that the central protostar is nearly 100 times more luminous than before.

    The astronomers speculate that leading up to this outburst, an uncommonly large clump of material was drawn into the star’s accretion disk, creating a logjam of dust and gas. Once enough material accumulated, the logjam burst, releasing an avalanche of gas onto the growing star.

    4
    Comparing observations by two different millimeter-wavelength telescopes, ALMA and the SMA, astronomers noted a massive outburst in a star-forming cloud. Because the ALMA images are more sensitive and show finer detail, it was possible to use them to simulate what the SMA could have seen in 2015 and 2016. By subtracting the earlier SMA images from the simulated images, astronomers could see that a significant change had taken place in MM1 while the other three millimeter sources (MM2, MM3, and MM4) are unchanged. ALMA (ESO/NAOJ/NRAO); SMA, Harvard/Smithsonian CfA

    This extreme accretion event greatly increased the star’s luminosity, heating its surrounding dust. It’s this hot, glowing dust that the astronomers observed with ALMA. Though similar events have been observed in infrared light, this is the first time that such an event has been identified at millimeter wavelengths.

    To ensure that the observed changes were not the result of differences in the telescopes or simply a data-processing error, Hunter and his colleagues used the ALMA data as a model to accurately simulate what the SMA — with its more modest capabilities — would have seen if it conducted similar operations in 2015 and 2016. By digitally subtracting the actual 2008 SMA images from the simulated images, the astronomers confirmed that there was indeed a significant and consistent change to one member of the protocluster.

    “Once we made sure we were comparing the two sets of observations on an even playing field, we knew that we were witnessing a very special time in the growth of a star,” said Crystal Brogan, also with the NRAO and co-author on the paper.

    Further confirmation of this event came from complementary data taken by the Hartebeesthoek Radio Astronomy Observatory in South Africa.


    Hartebeesthoek Radio Astronomy Observatory, located west of Johannesburg South Africa

    This single-dish observatory was monitoring the radio signals from masers in the same region. Masers are the naturally occurring cosmic radio equivalent of lasers. They are powered by a variety of energetic processes throughout the universe, including outbursts from rapidly growing stars.

    The data from the Hartebeesthoek observatory reveal an abrupt and dramatic spike in maser emission from this region in early 2015, only a few months before the first ALMA observation. Such a spike is precisely what astronomers would expect to see if there were a protostar undergoing a major growth spurt.

    “These observations add evidence to the theory that star formation is punctuated by a sequence of dynamic events that build up a star, rather than a smooth continuous growth,” concluded Hunter. “It also tells us that it is important to monitor young stars at radio and millimeter wavelengths, because these wavelengths allow us to peer into the youngest, most deeply embedded star-forming regions. Catching such events at the earliest stage may reveal new phenomena of the star-formation process.”

    This research is presented in a paper titled “An extraordinary outburst in the massive protostellar system NGC6334I-MM1: Quadrupling of the millimeter continuum,” by T.R. Hunter et al., published in the Astrophysical Journal Letters [https://arxiv.org/abs/1701.08637].

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large
    NAOJ

     
  • richardmitnick 8:39 pm on February 7, 2017 Permalink | Reply
    Tags: ALMA Reveals the Structure of a Low-Mass Protostar System, , , , Millimeter/submillimeter astronomy, , The protostar L1527 IRS also known as IRAS 04368+2557   

    From ALMA: “ALMA Reveals the Structure of a Low-Mass Protostar System” 

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ALMA

    08 February 2017
    Dr. Nami Sakai
    RIKEN Star and Planet Formation Laboratory, Japan
    Email: nami.sakai@riken.jp
    Tel: +81-(0)48-467-1411

    Nicolás Lira T.
    Press Coordinator
    Joint ALMA Observatory
    Santiago, Chile
    Tel: +56 2 24 67 65 19
    Cell: +56 9 94 45 77 26
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
Tokyo, Japan

    Tel: +81 422 34 3630

    E-mail: hiramatsu.masaaki@nao.ac.jp

    Richard Hook
    Public Information Officer, ESO

    Garching bei München, Germany

    Tel: +49 89 3200 6655

    Cell: +49 151 1537 3591
    Email: rhook@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory
    Charlottesville, Virginia, USA
    Tel: +1 434 296 0314
    Cell: +1 202 236 6324
    E-mail: cblue@nrao.edu

    1
    Artist’s impression of L1527

    2
    The protostar L1527 IRS, also known as IRAS 04368+2557, as seen by NASA’s Spitzer Space Telescope (John Tobin)

    A team of astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the almost edge-on system of the low-mass protostar L1527. This protostar is in a star forming region in the Taurus molecular cloud, about 450 light years away and has a spinning protoplanetary disk, almost edge-on to our view, embedded in a large envelope of molecules and dust. ALMA allowed the researchers to resolve for the first time the structure of this young stellar system.

    One of the big puzzles in astrophysics is how stars like the Sun manage to form from collapsing molecular clouds in star-forming regions of the Universe. The puzzle is known technically as the angular momentum problem in stellar formation. The problem essentially is that the gas in the star-forming cloud have some rotation, which gives each element of the gas an amount of angular momentum. As they collapse inward, eventually they reach a state where the gravitational pull of the nascent star is balanced by the centrifugal force, so that they will no longer collapse inward of a certain radius unless they can shed some of the angular momentum. This point is known as the centrifugal barrier.

    Now, using measurements taken by ALMA’s radio antennas, a group led by Nami Sakai of the RIKEN Star and Planet Formation Laboratory has found clues as to how the gas in the cloud can find their way to the surface of the forming star. To gain a better understanding of the process, Sakai and her group turned to the ALMA observatory, a network of 66 radio dishes located high in the Atacama Desert of northern Chile. The dishes are connected in a carefully choreographed configuration so that they can provide images on radio emissions from protostellar regions around the sky.

    3
    Integrated intensity distributions of CCH and SO, two important molecules, superposed on the 0.8 mm dust continuum map. The IRE traced by CCH is broadened inward of the radius of about 150 au.

    Previously, Sakai had discovered, from observations of molecules around the same protostar, that unlike the commonly held hypothesis, the transition from envelope to the inner disk—which later forms into planets—was not smooth but very complex. “As we looked at the observational data,” says Sakai, “we realized that the region near the centrifugal barrier—where particles can no longer infall—is quite complex, and we realized that analyzing the movements in this transition zone could be crucial for understanding how the envelope collapses.”

    The new observations show a broadening of the envelope in the transition zone between the inner disk and the outer envelope. Sakai compares it to a “traffic jam in the region just outside the centrifugal barrier, where the gas heats up as the result of a shock wave.” And he adds that “It became clear from the observations that a significant part of the angular momentum is lost by gas being cast in the vertical direction from the flattened protoplanetary disk that formed around the protostar.”

    This behavior accorded well with digital simulations the group had done using a purely ballistic model, where the particles behave like simple projectiles that do not need to be influenced by magnetic or other forces.

    Sakai plan to continue to use observations from the powerful ALMA array “to further refine the understanding of the dynamics of stellar formation and fully explain how matter collapses onto the forming star. This work could also help to better understand the evolution of our own Solar System.”

    Additional information

    The research was published in the Monthly Notices of the Royal Astronomical Society published by Oxford University Press as Sakai, Nami et al., Vertical Structure of the Transition Zone from Infalling Rotating Envelope to Disk in the Class 0 Protostar, IRAS04368+2557.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon
    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small

    ESO 50

    NAOJ

     
  • richardmitnick 4:27 pm on January 25, 2017 Permalink | Reply
    Tags: , , , Milky-Way-Like Galaxies Seen in their Awkward Adolescent Years, Millimeter/submillimeter astronomy, ,   

    From NRAO: “Milky-Way-Like Galaxies Seen in their Awkward Adolescent Years” 

    NRAO Icon
    National Radio Astronomy Observatory

    NRAO Banner

    December 20, 2016
    Charles Blue
    NRAO Public Information Officer
    +1 434.296.0314;
    cblue@nrao.edu

    1
    Four Milky-Way-like progenitor galaxies as seen as they would have appeared 9 billion years ago. ALMA observations of carbon monoxide (red) is superimposed on images taken with the Hubble Space Telescope. The carbon monoxide would most likely be suffused throughout the young galaxies. Credit. ALMA (ESO/NAOJ/NRAO) C. Papovich; A. Angelich (NRAO/AUI/NSF); NASA/ESA Hubble Space Telescope

    Spiral galaxies like our own Milky Way were not always the well-ordered, pinwheel-like structures we see in the universe today. Astronomers believe that about 8-10 billion years ago, progenitors of the Milky Way and similar spiral galaxies were smaller, less organized, but amazingly rich in star-forming material; so much so, that they would have been veritable star factories, churning out new stars faster than at any other point in their lifetimes. Now, astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have found evidence to support this view. By studying four very young versions of galaxies like the Milky Way as they were seen approximately 9 billion years ago, the astronomers discovered that each galaxy was incredibly rich in carbon monoxide gas, a well-known tracer of star-forming gas. “We used ALMA to detect adolescent versions of the Milky Way and found that such galaxies do indeed have much higher amounts of molecular gas, which would fuel rapid star formation,” said Casey Papovich, an astronomer at Texas A&M University in College Station and lead author on a paper appearing in Nature Astronomy. “I liken these galaxies to an adolescent human who consumes prodigious amounts of food to fuel their own growth during their teenage years.” Though the relative abundance of star-forming gas is extreme in these galaxies, they are not yet fully formed and rather small compared to the Milky Way as we see it today. The new ALMA data indicate that the vast majority of the mass in these galaxies is in cold molecular gas rather than in stars. These observations, the astronomers note, are helping build a complete picture of how matter in Milky-Way-size galaxies evolved and how our own galaxy formed.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The NRAO operates a complementary, state-of-the-art suite of radio telescope facilities for use by the scientific community, regardless of institutional or national affiliation: the Very Large Array (VLA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Long Baseline Array (VLBA)*.

    ALMA Array

    NRAO ALMA

    GBO radio telescope, Green Bank, West Virginia, USA
    Green Bank Observatory radio telescope, Green Bank, West Virginia, USA, formerly supported by NSF, but now on its own
    NRAO VLA
    NRAO VLA

    The NRAO is building two new major research facilities in partnership with the international community that will soon open new scientific frontiers: the Atacama Large Millimeter/submillimeter Array (ALMA), and the Expanded Very Large Array (EVLA). Access to ALMA observing time by the North American astronomical community will be through the North American ALMA Science Center (NAASC).
    *The Very Long Baseline Array (VLBA) comprises ten radio telescopes spanning 5,351 miles. It’s the world’s largest, sharpest, dedicated telescope array. With an eye this sharp, you could be in Los Angeles and clearly read a street sign in New York City!

    Astronomers use the continent-sized VLBA to zoom in on objects that shine brightly in radio waves, long-wavelength light that’s well below infrared on the spectrum. They observe blazars, quasars, black holes, and stars in every stage of the stellar life cycle. They plot pulsars, exoplanets, and masers, and track asteroids and planets.

     
  • richardmitnick 1:05 pm on January 16, 2017 Permalink | Reply
    Tags: , , , , , Millimeter/submillimeter astronomy, ,   

    From Motherboard: “An Earth-Sized Telescope is About to ‘See’ a Black Hole For the First Time” 

    motherboard

    Motherboard

    January 13, 2017
    William Rauscher

    We were perched dizzyingly high in the Chilean Andes, ringed by a herd of sixty-six white giants. Through the broad windows of the low, nondescript building in which we stood, we could see massive white radio antennas outside against the Martian-red soil of the desolate Chajnantor Plateau, their dishes thrust towards a pure blue sky.

    This is the Atacama Large Millimeter Array, also known as ALMA—one of the world’s largest radio telescope arrays, an international partnership that spans four continents. In spring of 2017, ALMA, along with eight other telescopes around the world, will aim towards the center of the Milky Way, around 25,000 light years from Earth, in an attempt to capture the first-ever image of a black hole. This is part of a daring astronomy project called the Event Horizon Telescope (EHT).

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres
    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    My partner Dave Robertson and I took turns huffing from a can of oxygen to stave off the altitude sickness that can come on at 16,500 feet. Our guide Danilo Vidal, an energetic Chilean who wore his dark hair in a ponytail, pointed to a grey metal door with a glass window. “If we open that door,” said Vidal, “everyone in science will hate us for the rest of our lives.” Confused by this cryptic statement, I took another hit from the oxygen and peered through the glass, into the heart of the experiment.

    Among a small forest of processors, I could see an eggshell-white box that resembled a dorm room refrigerator. Inside was the brand-new maser, an ultraprecise atomic clock that syncs up every antenna on-site, and then syncs ALMA itself to the Event Horizon Telescope’s global network, lending so much dish-space and processing power that it effectively doubles the entire network’s resolution.

    1
    Christophe Jacques of the NRAO inspects the wiring on ALMA’s new hydrogen maser atomic clock during installation. Image: Carlos Padilla/NRAO/AUI/NSF

    To keep equipment from overheating, the room is kept at an absurdly low temperature—very close to absolute zero. If we opened the door, Vidal explained, emergency systems would instantly shut down the maser to protect it, and ALMA’s beating heart would stop, ruining multiple international astronomy projects, including the EHT.

    Claudio Follert, an ALMA fiber-optic specialist in his mid-fifties, was there in 2014 when the maser first arrived—he told me it was a machine he had never seen before, carried in by strange men. The men were sent by the EHT, which is based out of MIT.

    The EHT is made possible by the maser’s astonishing precision—about one billion times more precise than the clock in your smartphone.

    Designed by an international team led by MIT scientist Shep Doeleman, the EHT is the first of its kind-a global telescope network that uses a technique called interferometry to synthesize astronomical data from multiple sources, each with its own maser—including ALMA in Chile, the Large Millimeter Telescope atop the Sierra Negra volcano in Mexico, and the National Radio Astronomy Observatory in Virginia.

    Together, these telescopes create a super-telescope that is quite literally the size of the Earth, with enough resolution to photograph an orange on the Moon.

    With ALMA recently added to this Avengers-like team of radio telescopes, the network is ten times more sensitive. As a result, Doeleman’s group believes it has the firepower to penetrate the interstellar gases that cloak their targets: supermassive black holes. Drawn into orbit by the black holes’ gravity, these gases form gargantuan clouds that yield nothing to optical telescopes.

    Faint radio signals from the black holes, on the other hand, slip through the gas clouds and are ultimately detected on Earth.

    Black holes are the folk legends of outer space. Since no light can escape them, they’re invisible to the eye, and we have no confirmation that they actually exist—only heaps of indirect evidence, particularly the gravitational wobbles in orbits of nearby stars, the behavior of interstellar gas clouds, and the gaseous jets that spew into space when an unseen source of extreme gravity appears to rip cosmic matter to shreds.

    Black holes challenge our most fundamental beliefs about reality. Visionary scientific minds, including the theoretical physicists Stephen Hawking and Kip Thorne, have devoted entire books to unpacking the hallucinatory scenarios thought to be induced by black holes’ gravitational forces—imagine the bottom of your body violently wrenched away from the top, physically stretching you like a Looney Tunes character, a scenario that Thorne’s Black Holes and Time Warps paints in stomach-churning detail.

    2
    An image from the heart of the Milky Way from NASA’s Chandra X-ray Observatory. The supermassive black hole is at the center. Image: NASA/CXC/MIT/F. Baganoff et al.

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    Sag A*  NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way
    Sag A* NASA Chandra X-Ray Observatory 23 July 2014, the supermassive black hole at the center of the Milky Way

    Black holes are thought to lurk at the centers of galaxies including our own. Prove the existence of Sagittarius A*, the supermassive black hole at the heart of the Milky Way, and you are one step closer to solving another mystery: the origin of humankind, and all life as we know it.

    “The black hole at the center of our galaxy has everything to do with our own origin,” said Violette Impellizzeri, an ALMA astronomer collaborating with Event Horizon Telescope. Supermassive black holes are thought to regulate the stars that surround them, influencing their formation and orbit. “Understanding how our galaxy was formed leads to our own origin directly,” she said.

    Scientists estimate the mass of Sagittarius A* to be four million times that of our Sun, yet its diameter is roughly equal to the distance from our sun to Mercury—not much, in cosmic terms. The resulting density produces gravity so strong that space and time distort around it, making it invisible.

    The current theory, espoused by Thorne, is that the distance from the center of a black hole, known as the singularity, to its edge, known as the event horizon, becomes so warped that it nears infinite length, and light simply runs out of energy as it tries to escape.

    It took Doeleman, the project leader at MIT, to decide that in order to see the unseeable, you would first have to create a new kind of vision. With ALMA as part of the giant EHT network, we can take a radio “photograph” of the matter that orbits Sagittarius A*—called the accretion disk—and finally see the black hole in shadow: its first-ever portrait.

    • Vidal and Follert, the guide and fiber-optic specialist, led us out onto the plateaus. There was work to do: one of the antennas was hobbled by a damaged radio receptor.

    It was blindingly bright and windy, not to mention dry—Chajnantor is located in Chile’s Atacama Desert, the driest place on Earth, if you don’t count the poles. Completely inhospitable for human beings, Chajnantor is an ideal setting for a radio telescope: the elevation puts it closer to the stars, and the strikingly low water vapor keeps the cosmic signals pristine.

    For some, like ALMA’s crew, as well as Doeleman, the extreme environment is part of the attraction. “I just love getting to the telescopes,” he said. At 50, Doeleman is fresh-faced, with glasses and thinning hair that make him look every part the bookish scientist. His outgoing personality and entrepreneurial vigor reflect an explorer’s spirit more at home in the field than behind a desk.

    Doeleman regularly travels to each EHT site around the world, many of them located in extreme environments like the Andes or the Sierra Negra. “The adventure part is what motivates me—driving along dirt roads, up the sides of mountains, to install new instruments, doing observations that have never been done before. It’s a little bit like Jacques Cousteau—we’re not sitting in armchairs in our offices.”

    Outside on Chajnantor, I felt light-headed. I tried to keep my breathing steady: low oxygen can quickly wreck your mental faculties. On the plateau, Dave and I were dwarfed by ALMA’s antennas, which blocked out the desert sun. They felt powerful and eerie, like Easter Island statues. Even when standing directly beneath these behemoths, it wasn’t clear how they were controlled—the white dishes seemed to twist and pivot without warning.

    3
    Using a technique called interferometry, ALMA’s antennas can be configured to act as one giant antenna, and ALMA itself can be synced up with telescopes worldwide. Image: Dave Robertson

    An ALMA antenna is useless when one of its radio receptors is out of tune. We followed Follert up several steel ladders, boots clanging on metal, until we were in a low-ceilinged maintenance room inside one of the antennas. We helped him remove the damaged receptor, a long metal cylinder resembling a futuristic bazooka.

    Vidal drove us back down the mountain to the Operations Support Facility (OSF), ALMA’s headquarters, so we could see the lab where receptors are maintained.

    Per strict international regulations, Vidal was required to breathe through an oxygen tube as he drove, lest the high altitude cause him to lose consciousness behind the wheel.

    As we descended, Vidal radioed at regular intervals to identify our location. All around us the mountain slopes were red, rocky and barren—no wonder that NASA regularly deploys expeditions to this desert to replicate conditions on Mars.

    Located at 9,000 ft, the OSF is where ALMA’s staff call home: a total of 600 scientists working in shifts are based here, including engineers and technicians, from over 20 countries. The working conditions can be extreme. Staff hole up in weeklong shifts separated from friends and family, and endure the short and long-term health risks of high elevation, including a stroke or pulmonary edema, where fluid fills your lungs and you suffocate.

    It is thus maybe not surprising to find out that the entire staff are monitored regularly by medical personnel, and that emergency oxygen and a hyperbaric chamber are on-hand.

    They unwind by exercising and watching movies, although certain sci-fi flicks are frowned upon. “We need a break from space sometimes,” said Follert. Alcohol consumption on site is strictly forbidden—have even a tipple and you risk amplifying the physical effects of high elevation.

    4
    Aerial picture of ALMA’s Operations Support Facility. Image: Carlos Padilla/NRAO/AUI/NSF

    The close teamwork at ALMA is absolutely essential for the life of the observatory. Detecting cosmic radio signals, including those sent from a black hole, requires constant cooperation across teams, who must obsessively calibrate, maintain and repair their instruments to fend off unwanted noise.

    ALMA and the other telescopes on the EHT will soon turn towards the center of the Milky Way to tune in to the black hole’s narrow radio frequency. The data that ALMA collects will be so large, it cannot be transferred online. Instead, physical hard drives will shipped by “sneakernet”: loaded into the belly of a 747 and flown directly to MIT.

    When ALMA’s data is correlated with the other telescopes later this year, Sagittarius A* should appear against the glowing gas of the accretion disk. Maybe.

    Actually, said Doeleman, “we don’t know what we’re going to see. Nature can be cruel. We may see something boring. But we’re not married to one outcome—we’re going to see nature the way nature is.”

    See the full article here .

    The full EHT:

    Event Horizon Telescope Array

    Event Horizon Telescope map

    The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at https://www.as.arizona.edu/event-horizon-telescope.

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment (APEX)

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    Future Array/Telescopes

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The future is wonderful, the future is terrifying. We should know, we live there. Whether on the ground or on the web, Motherboard travels the world to uncover the tech and science stories that define what’s coming next for this quickly-evolving planet of ours.

    Motherboard is a multi-platform, multimedia publication, relying on longform reporting, in-depth blogging, and video and film production to ensure every story is presented in its most gripping and relatable format. Beyond that, we are dedicated to bringing our audience honest portraits of the futures we face, so you can be better informed in your decision-making today.

     
    • Jim Ruebush 1:51 pm on January 16, 2017 Permalink | Reply

      Very interesting. I look forward to seeing results. The radio telescopes at Atacama are the subject of a blog post of mine a few years ago. http://bit.ly/2jpp7hl

      Only 2 miles from my home in Iowa is a radio telescope part of the VLBA. I’ve been fortunate to go up inside and stand in the dish. What fun.

      Keep up the good work and posts.

      Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: