Tagged: Milky Way Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:18 am on March 13, 2019 Permalink | Reply
    Tags: "Streams of Stars Snaking Through the Galaxy Could Help Shine a Light on Dark Matter", Adrian Price-Whelan calls GD-1 "the Goldilocks stream" because it's in just the right place., , , At about 33000 light-years (10 kiloparsecs) GD-1 is the longest stellar stream in the galactic halo, , , Dark matter makes up the bulk of the mass in the universe but it has never been directly observed, , , Milky Way, scores of dark matter seeds are scattered through galaxies like the Milky Way, , The stellar stream known as GD-1 is a thin flow of material tucked inside the Galactic halo   

    From smithsonian.com: “Streams of Stars Snaking Through the Galaxy Could Help Shine a Light on Dark Matter” 

    From smithsonian.com

    March 12, 2019
    Nola Taylor Redd

    When the Milky Way consumes another galaxy, tendrils of stellar streams survive the merger, containing clues about the universe’s mysterious unseen matter.

    An ultraviolet image of the Andromeda galaxy, the closest major galaxy to the Milky Way, taken by NASA’s Galaxy Evolution Explorer space telescope. Like our own galaxy, Andromeda is a spiral galaxy with a flat rotating disk of stars and gas and a concentrated bulge of stars at the center. (NASA/JPL-Caltech)

    When a small galaxy strays too close to the Milky Way, the gravity from our larger galaxy reels it in. Gas and stars are ripped from the passing galaxy as it falls inward toward its doom, creating streams of material that stretch between the galactic pair. These streams continue to tear away stars until the infalling object has been completely consumed. After the merger is over, some of the only remaining signs of the devoured object are the stellar streams snaking through the Milky Way, a small sample of stars from a galaxy long gone.

    In addition to being a record of the past, one of these streams may provide the first direct evidence for small scale clusters of dark matter—the elusive material that is believed to account for 85 percent of all matter in the universe. A recent analysis of a trail of stars reveals that it interacted with a dense object in the last few hundred million years. After ruling out the most likely suspects, the researchers determined that the relatively recently made gap in the stream may have been caused by a small clump of dark matter. If confirmed, the eddies of this stellar stream could help scientists sort through the competing theories about dark matter and perhaps even close in on the characteristics of the mysterious material.

    The stellar stream known as GD-1 is a thin flow of material tucked inside the Galactic halo, the loose collection of stars and gases surrounding the disk of the Milky Way. Using data released last April from the European Space Agency’s Gaia space telescope, which is in the process of assembling the most detailed map of the Milky Way’s stars ever made, astronomers were able to use precise positional data to reconstruct the movement of the stars in GD-1.

    ESA/GAIA satellite

    Torn from a cloud of material, the stream is the last remnant of an object that was likely consumed by our galaxy in the last 300 million years—an eyeblink on astronomical timescales.

    Gaia found two small breaks in the stream, the first unambiguous observation of gaps in a stellar stream, as well as a dense collection of stars called a spur. Together, these features suggest that a small but massive object shook up the material of the stream.

    “I think this is the first direct dynamical evidence for the small-scale [structure] of dark matter,” says Adrian Price-Whelan, an astronomer at the Flatiron Institute in New York. Working with Ana Bonaca of the Harvard-Smithsonian Center for Astrophysics, Price-Whelan investigated the newfound structures in GD-1 to determine their source and presented the results earlier this year at the winter meeting of the American Astronomical Society.

    At about 33,000 light-years (10 kiloparsecs), GD-1 is the longest stellar stream in the galactic halo. While Price-Whelan and his colleagues were able to use models to show that one of the gaps formed during the generation of the stream, the other gap remained a mystery. However, along with the puzzle, Gaia also revealed a solution: the spur.

    When an object travels past or through a stellar stream, it disrupts the stars. Price-Whelan compares the disruption to a strong jet of air blowing across a stream of water. The water—or stars—plume outward along the path of the disruptor, creating a gap. Some move so fast that they escape the stream and go flying off into space, lost forever. Others are pulled back into the stream to form eddy-like features astronomers call spurs. After a few hundred million years, most spurs merge back into the stream, and only the gap remains, though some can be longer-lived.

    When it comes to spotting structures in stellar streams, Price-Whelan calls GD-1 “the Goldilocks stream” because it’s in just the right place. GD-1 is within the stars of the Milky Way, but moving in the opposite direction, making it easier for astronomers to pick out the stars in the stream from the surrounding objects. “At any given location, it’s moving differently from the way most of the other stars in that part of the sky are moving,” Price-Whelan says.

    The researchers modeled what type of objects could be responsible for the relatively newborn spur spotted in GD-1. They determined that the responsible object had to weigh in with a mass somewhere between 1 million and 100 million times the mass of the sun. Stretching only about 65 light-years (20 pc) in length, the object would have been incredibly dense. The interaction between the stream and the dense object would have likely happened within the last few hundred million years out of the 13.8-billion-year lifetime of the universe.

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Dark matter isn’t the only object that could have disrupted the stellar stream. A globular cluster or dwarf galaxy swooping nearby could also have created the gap and spur. Price-Whelan and his colleagues turned their eyes toward all known such objects and calculated their orbits, finding that none came close enough to GD-1 in the last billion years to shake things up. A chance encounter with a primordial black hole could have sent the stream’s stars flying, but it would have been an extremely rare event.

    According to dark matter simulations that allow for small structures, scores of dark matter seeds are scattered through galaxies like the Milky Way. A stream like GD-1 is expected to encounter at least one such seed within the last 8 billion years, making dark matter a far more likely perturber based on encounter rates than any other object.

    Dark matter makes up the bulk of the mass in the universe, but it has never been directly observed. The two leading theories for its existence are the warm dark matter model and the Lambda cold dark matter model (ΛCDM), which is the model preferred by most scientists.

    Lambda-Cold Dark Matter, Accelerated Expansion of the Universe, Big Bang-Inflation (timeline of the universe) Date 2010 Credit: Alex Mittelmann Cold creation

    Under ΛCDM, dark matter forms clumps that can be as large as a galaxy or as small as a soda can. Warm dark matter models suggest that the material has less massive particles and lacks the can-sized structures that the ΛCDM model suggests. Finding evidence for small scale structures of dark matter could help weed out certain models and start to narrow in on some of the characteristics of the tantalizing stuff.

    “Streams might be the only avenue that we could [use to] study the lowest mass end of what dark matter is doing,” Price-Whelan says. “If we want to be able to confirm or reject or rule out different theories of dark matter, we really need to know what’s happening at [the low] end.”

    Gaia’s data helped identify the stars of the spur, but it’s not detailed enough to compare the velocity differences between them and the stars in the stream, which could help confirm that dark matter perturbed the structure. Price-Whelan and his colleagues want to use NASA’s Hubble Space Telescope to further study the movement of the faint stars in GD-1. Although Gaia has opened the door to wide-scale examination of the movement of stars across the Milky Way, Price-Whelan says that it can’t compete with the HST when it comes to very faint stars. “You can drill much deeper when you have a dedicated telescope like Hubble,” he says.

    The differences in how the stars of the stream and spur move could help astronomers determine how much energy the perturbing object carried, as well as allow researchers to calculate its orbit. These pieces of information could be used to track down the disruptive dark matter clump and study its immediate environment.

    In addition to making a more in-depth study of GD-1, astronomers plan to apply the same techniques enabled by Gaia’s data to some of the more than 40 other streams surrounding the Milky Way. Spotting spurs and gaps in other streams and tying them to dark matter could further improve our understanding of how the mysterious substance interacts with the visible galaxy.

    After decades of puzzling over the mystery of dark matter, the gaps and spurs in stellar streams like GD-1 may finally help to reveal the secrets of the substance that makes up most of the universe. “This is one of the most exciting things that has come out of Gaia,” Price-Whelan says.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Smithsonian magazine and Smithsonian.com place a Smithsonian lens on the world, looking at the topics and subject matters researched, studied and exhibited by the Smithsonian Institution — science, history, art, popular culture and innovation — and chronicling them every day for our diverse readership.

  • richardmitnick 1:47 pm on January 4, 2019 Permalink | Reply
    Tags: , , , , , Milky Way, The Large Magellanic Cloud could hit our galaxy in two billion years’ time., The Milky Way is on a collision course with a neighbouring galaxy that could fling our Solar System into space   

    From Durham University: “Milky Way heading for catastrophic collision” 

    Durham U bloc

    From Durham University

    4 January 2019

    Hubble Space Telescope image representing a merger between two galaxies (M51a and M51b) similar in mass to the Milky Way and the Large Magellanic Cloud. Credit: NASA, ESA, S. Beckwith (STScI), and The Hubble Heritage Team (STScI/AURA)

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Large Magellanic Cloud by by German astrophotographer Eckhard Slawik

    There’s an enemy in our midst. Quietly circling around our galaxy, it could send our Solar System hurtling out of the Milky Way and into the obscurity of interstellar space.

    Its name is the Large Magellanic Cloud (LMC), and even though it is one of the more researched satellite galaxies buzzing around our own, astrophysicists are only now seeing it for what it truly is: an unusually large cosmic threat.

    The Milky Way is on a collision course with a neighbouring galaxy that could fling our Solar System into space.

    The Large Magellanic Cloud could hit our galaxy in two billion years’ time.

    On the off chance that humans survive for another two billion years, our descendants will be in for a treat.

    If the catastrophic collision wakes up the black hole sleeping at the center of our galaxy, this dark beast will begin devouring everything in sight, growing ten times larger than it already is.

    As it feeds on surrounding gas, the stage will be set and the show will begin – what the researchers describe as a “spectacular display of cosmic fireworks.”

    “This phenomenon will generate powerful jets of high energy radiation emanating from just outside the black hole,” explains lead author Marius Cautun, a cosmologist at Durham University.

    “While this will not affect our Solar System, there is a small chance that we might not escape unscathed from the collision between the two galaxies which could knock us out of the Milky Way and into interstellar space.”

    Our galaxy is long overdue for such a collision. So far, it has managed to get by relatively unscathed in the grand scheme of things. Especially when you consider the company that it keeps.

    The Milky Way is surrounded by a group of smaller satellite galaxies, orbiting quietly around us.

    These galaxies can lead separate lives for many billions of years, but on occasion, they can find themselves sinking into the centre of their host galaxy, until at last they collide and are swallowed up completely.

    In this way, galaxies are constantly evolving and growing, but the Milky Way’s poor appetite makes it quite atypical.

    In comparison to our own galaxy, for instance, Andromeda can devour galaxies weighing nearly 30 times more.

    “We think that up to now our galaxy has had only a few mergers with very low mass galaxies,” says co-author Alis Deason, a computational cosmologist at Durham University.

    “This represents very slim pickings when compared to nearby galaxies of the same size as the Milky Way.”

    This galactic collision would happen much sooner than the predicted impact between the Milky Way and another neighbour, Andromeda, which scientists say will hit our galaxy in eight billion years.

    Andromeda Galaxy Adam Evans

    Active black hole

    The coming together with the Large Magellanic Cloud could wake up our galaxy’s dormant black hole, which would begin devouring surrounding gas and increase in size by up to ten times.

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Sgr A* from ESO VLT

    As it feeds, the now-active black hole would throw out high-energy radiation.

    While these cosmic fireworks are unlikely to affect life on Earth, researchers say there is a small chance that the initial collision could send our Solar System hurtling into space.

    Dark matter

    The Large Magellanic Cloud is the Milky Way’s brightest satellite galaxy and only entered our neighbourhood about 1.5 billion years ago. It sits about 163,000 light years from our galaxy.

    Until recently, astronomers thought that it would either orbit the Milky Way for many billions of years, or, since it moves so fast, escape from our galaxy’s gravitational pull.

    However, recent measurements indicate that the Large Magellanic Cloud has nearly twice as much dark matter than previously thought.

    Solar System

    Researchers say that since it has a larger than expected mass, the Large Magellanic Cloud is rapidly losing energy and is doomed to collide with our galaxy, which could have consequences for our Solar System.

    Lead researcher Dr Marius Cautun, a postdoctoral fellow in our Institute for Computational Cosmology, said: “There is a small chance that we might not escape unscathed from the collision between the two galaxies, which could knock us out of the Milky Way and into space.”

    Read the full research paper MNRAS.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Durham U campus

    Durham University is distinctive – a residential collegiate university with long traditions and modern values. We seek the highest distinction in research and scholarship and are committed to excellence in all aspects of education and transmission of knowledge. Our research and scholarship affect every continent. We are proud to be an international scholarly community which reflects the ambitions of cultures from around the world. We promote individual participation, providing a rounded education in which students, staff and alumni gain both the academic and the personal skills required to flourish.

  • richardmitnick 1:53 pm on December 16, 2018 Permalink | Reply
    Tags: , , , , , , Milky Way,   

    From EarthSky: “What is the Local Group?” 


    From EarthSky

    How many galaxies are now known to lie within our Local Group of galaxies? How does our Milky Way rank, size-wise? And what about the vast superclusters beyond?

    One view of the Local Group- a bit to constricted.The 3 largest galaxies in the Local Group are, in descending order, Messier 31 the Andromeda galaxy, the Milky Way, and Messier 33 also known as the Triangulum Galaxy

    Iconic view of the Local Group. Andrew Z. Colvin 3 March 2011

    We know where our galaxy is located, but only locally speaking. The Milky Way galaxy is one of more than 54 galaxies known as the Local Group. The three largest members of the group are our Milky Way (second-biggest), the Andromeda galaxy (biggest) and the Triangulum Galaxy. The other galaxies in the Local Group are dwarf galaxies, and they’re mostly clustered around the three larger galaxies.

    The Local Group does have a gravitational center. It’s somewhere between the Milky Way and the Andromeda Galaxy.

    The Local Group has a diameter of about 10 million light-years.

    Astronomers have also discovered that our Local Group is on the outskirts of a giant supercluster of galaxies, known as the Virgo Supercluster.

    Virgo Supercluster NASA

    Virgo Supercluster, NASA, Wikipedia

    At least 100 galaxy groups and clusters are located within the Virgo Supercluster. Its diameter is thought to be about 110 million light-years.

    The Virgo Supercluster may be part of an even-larger structure that astronomers call the Laniakea Supercluster.

    Laniakea supercluster. From Nature The Laniakea supercluster of galaxies R. Brent Tully, Hélène Courtois, Yehuda Hoffman & Daniel Pomarède at http://www.nature.com/nature/journal/v513/n7516/full/nature13674.html. Milky Way is the red dot.

    It consists of perhaps 100,000 galaxies stretched out over some 520 million light-years.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.orgin 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

  • richardmitnick 12:55 pm on September 24, 2018 Permalink | Reply
    Tags: , , , , , , Milky Way,   

    From COSMOS Magazine: “A galactic near-miss set stars on an unexpected path around the Milky Way” 

    Cosmos Magazine bloc

    From COSMOS Magazine

    24 September 2018
    Ben Lewis

    A close pass from the Sagittarius dwarf galaxy sent ripples through the Milky Way that are still visible today.

    Image Credit: R. Ibata (UBC), R. Wyse (JHU), R. Sword (IoA)

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Tiny galaxy; big trouble. Gaia imaging shows the Sagittarius galaxy, circled in red. ESA/Gaia/DPAC

    ESA/GAIA satellite

    Between 300 and 900-million years ago the Sagittarius dwarf galaxy made a close pass by the Milky Way, setting millions of stars in motion, like ripples on a pond. The after-effects of that galactic near miss are still visible today, according to newly published findings.

    The unique pattern of stars left over from the event was detected by the European Space Agency’s star mapping mission, Gaia. The details are contained in a paper written by Teresa Antoja and colleagues from the Universitat de Barcelona in Spain, and published in the journal Nature.

    The movements of over six million stars in the Milky Way were tracked by Gaia to reveal that groups of them follow different courses as they orbit the galactic centre.

    In particular, the researchers found a pattern that resembled a snail shell in a graph that plotted star altitudes above or below the plane of the galaxy, measured against their velocity in the same direction. This is not to say that the stars themselves are moving in a spiral, but rather that the roughly circular orbits correlate with up-and-down motion in a pattern that has never been seen before.

    While some perturbations in densities and velocities had been seen previously, it was generally assumed that the movement of the disk’s stars is largely in dynamic equilibrium and symmetry about the galactic plane. Instead, Antoja’s team discovered something had knocked the disk askew.

    “It is a bit like throwing a stone in a pond, which displaces the water as ripples and waves,” she explains.

    Whereas water will eventually settle out after being disturbed, a star’s motion carries signatures from the change in movement. While the ripples in the distribution caused by Sagittarius passing by has evened out, the motion of the stars themselves still carry the pattern.

    “At the beginning the features were very weird to us,” says Antoja. “I was a bit shocked and I thought there could be a problem with the data because the shapes are so clear.”

    The new revelations came about because of a huge increase in quality of the Gaia data, compared to what had been captured previously. The new information provided, for the first time, a measurement of three-dimensional speeds for the stars. This allowed the study of stellar motion using the combination of position and velocity, known as “phase space”.

    “It looks like suddenly you have put the right glasses on and you see all the things that were not possible to see before,” says Antoja.

    Computer models suggest the disturbance occurred between 300 and 900 million years ago – a point in time when it’s known the Sagittarius galaxy came near ours.

    In cosmic terms, that’s not very long ago, which also came as a surprise. It was known that the Milky Way had endured some much earlier collisions – smashing into a dwarf galaxy some 10 billion years ago, for instance – but until now more recent events had not been suspected. The Gaia results have changed that view.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 9:44 am on August 7, 2018 Permalink | Reply
    Tags: , , , , , , Milky Way   

    From EarthSky: “Dark Rift in the Milky Way” 


    From EarthSky

    August 7, 2018
    Bruce McClure

    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    Standing under a dark sky? Look up! In August, you’ll notice a long, dark lane dividing the bright Milky Way. This Dark Rift is a place where new stars are forming.

    Thick dust clouds block our night-time view of the Milky Way, creating what is sometimes called the Great Rift or Dark Rift. Image via NASA.

    Have you ever looked up from a dark place on a starry August evening and noticed the dark areas in the Milky Way? For centuries, skywatchers pondered this Great Rift or Dark Rift, as it’s called, but today’s astronomers know it consists of dark, obscuring dust in the disk of our Milky Way galaxy.

    How to see the Dark Rift. The Milky Way is easy to see if you have dark skies. It’s a shining band, stretching across the sky. If you want to see the Dark Rift, that’s easy, too, as long as you realize you aren’t looking for a bright object. You’re looking instead for dark lanes of dust, running the length of the starlit Milky Way band.

    The Great Rift – also known as the Dark Rift – and the Milky Way pass through the Summer Triangle and above the Teapot asterism in Sagittarius.

    You will be looking south from sometime in June or July (probably) through about October – in a dark sky – and, from a Northern Hemisphere location, you’ll see the Milky Way come off the southern to southeastern horizon. Notice that the Milky Way band looks milky white. The skies aren’t really black like ink between stars in the Milky Way. You will know when you see the Dark Rift because it is as if someone took a marker and colored it darker.

    The Dark Rift begins just above the constellation Sagittarius the Archer. Follow the Milky Way up until you see a black area in the Milky Way just before you get to the constellation Cygnus, which has the shape of a cross.

    Photo via Manish Mamtani.

    Don’t miss the Milky Way and Great Rift rise. One of the most spectacular sights is to see the Milky Way as it rises. Around 10 p.m. in June, step outside and look in the east to see the phenomena of the Great Rift and the rest of the Milky Way make its dramatic entrance as it rises into the night skies. In July and August, the Great Rift will already be up as darkness falls.

    Make sure you have your binoculars handy to scan the Milky Way. There are many interesting star-forming regions, star clusters and millions of stars that will capture your attention.

    Look in the Great Rift and imagine all the stars that will eventually reveal themselves as the molecular gas dissipates. More about that below.

    Shown is the interaction between interstellar dust in the Milky Way and the structure of our galaxy’s magnetic field, as detected by ESA’s Planck satellite over the entire sky. Image via ESA on Pinterest.

    ESA/Planck 2009 to 2013

    Molecular dust is the reason it is dark. Stars are formed from great clouds of gas and dust in our Milky Way galaxy and other galaxies. When we look up at the starry band of the Milky Way and see the Dark Rift, we are looking into our galaxy’s star-forming regions. The protostars (newly forming stars) are generating molecular dust that doesn’t allow light in the visual spectrum to shine through.

    However, with the advancement of telescopes that see in different light waves – such as X-rays or infrared – we now know that there’s activity in the area.

    This painting shows some of the animal shapes that the Incas saw in the Dark Rift of the Milky Way. Image via Coricancha Sun Temple in Cusco/Futurism.

    Ancient cultures focused on the dark not the light areas. You know those paintings where if you look at the light areas you see one thing, but in the dark areas you see something else?

    The Dark Rift is a bit like that. A few ancient cultures in Central and South America saw the dark areas of the Milky Way as constellations. These dark constellations had a variety of myths associated with them. For example, one important dark constellation was Yacana the Llama. It rises above Cuzco, the ancient city of the Incas, every year in November.

    By the way, the other famous area of the sky that is obscured by molecular dust is visible from the Southern Hemisphere. It’s the famous Coalsack Nebula near the Southern Cross, also known as the constellation Crux. The Coalsack is another region of star-forming activity in our night sky – much like the Great Rift.

    Bottom line: On an August night, looking edgewise into our galaxy’s disk, you’ll notice a long, dark lane dividing the bright starry band of the Milky Way. This so-called Dark Rift or Great Rift is a place where new stars are forming.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.org in 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

  • richardmitnick 1:12 pm on May 14, 2018 Permalink | Reply
    Tags: , , , , Milky Way   

    From European Space Agency: “Our galaxy’s heart” 

    ESA Space For Europe Banner

    From European Space Agency


    Milky Way NASA/JPL-Caltech /ESO R. Hurt

    ESO/ATLASGAL consortium; ESA/Planck

    ESO APEX Telescope ATLASGAL Large Area Survey of the Galaxy

    ESO/APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)

    ESA/Planck 2009 to 2013

    At first glance, this image may resemble red ink filtering through water or a crackling stream of electricity, but it is actually a unique view of our cosmic home. It reveals the central plane of the Milky Way as seen by ESA’s Planck satellite and the Atacama Pathfinder Experiment (APEX), which is located at an altitude of around 5100m in the Chilean Andes and operated by the European Southern Observatory.

    This image was released in 2016 as the final product of an APEX survey mapping the galactic plane visible from the southern hemisphere at submillimetre wavelengths (between infrared and radio on the electromagnetic spectrum). It complements previous data from ESA’s Planck and Herschel space observatories.

    Planck and APEX are an ideal pairing. APEX is best at viewing small patches of sky in great detail while Planck data is ideal for studying areas of sky at the largest scales. It covers the entire sky – no mean feat. The two work together well, and offer a unique perspective on the sky.

    This image reveals numerous objects within our galaxy. The bright pockets scattered along the Milky Way’s plane in this view are compact sources of submillimetre radiation: very cold, clumpy, dusty regions that may shed light on myriad topics all the way from how individual stars form to how the entire Universe is structured.

    From right to left, notable sources include NGC 6334 (the rightmost bright patch), NGC 6357 (just to the left of NGC 6334), the galactic core itself (the central, most extended, and brightest patch in this image), M8 (the bright lane branching from the plane to the bottom left), and M20 (visible to the upper left of M8). A labelled view can be seen here.

    Planck was launched on 14 May 2009 and concluded its mission in October 2013. The telescope returned a wealth of information about the cosmos; its main aim was to study the Cosmic Microwave Background (CMB), the relic radiation from the Big Bang. Among other milestones, Planck produced an all-sky map of the CMB at incredible sensitivity and precision, and took the ‘magnetic fingerprint’ of the Milky Way by exploring the behaviour of certain light emitted by dust within our galaxy.

    Its observations are helping scientists to explore and understand how the Universe formed, its composition and contents, and how it has evolved from its birth to present day.

    APEX is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory, and the European Southern Observatory, ESO. The telescope is operated by ESO.

    See the full article here .

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

  • richardmitnick 8:59 am on April 25, 2018 Permalink | Reply
    Tags: , , , , , , Milky Way,   

    From Science Magazine: “European satellite reveals motions of more than 1 billion stars and shape of the Milky Way” 

    Science Magazine

    Apr. 25, 2018
    Daniel Clery

    The Large Magellanic Cloud, one of the Milky Way’s nearest neighbors, may be more massive than previously thought. The image is not a photograph, but rather a map of the density of stars detected by Gaia in each pixel.

    Large Magellanic Cloud. Adrian Pingstone December 2003

    ESA/GAIA satellite

    “It’s like waiting for Christmas,” said Vasily Belokurov, an astronomer at the University of Cambridge in the United Kingdom last week. Today, the gifts arrived: the exact positions, motions, brightnesses, and colors of 1.3 billion stars in and around the Milky Way, as tracked by the European Space Agency’s (ESA’s) €750 million Gaia satellite, which after launch in 2013 began measuring the positions of stars and, over time, how they move. On 25 April, ESA made Gaia’s second data set—based on 22 months of observations—publicly available, which should enable a precise 3D map of large portions of the galaxy and the way it moves. “Nothing comes close to what Gaia will release,” Belokurov says.

    One might think that the galaxy is completely mapped. But large parts of it are obscured by gas and dust, and it is hard to discern structure from the vantage of the solar system. Gaia is not only expected to clarify the spiral structures of the galaxy today, but because the satellite traces how stars move, astronomers can wind the clock backward and see how the galaxy evolved over the past 13 billion years—a field known as galactic archaeology. With Gaia’s color and brightness information, astronomers can classify the stars by composition and identify the stellar nurseries where different types were born, to understand how chemical elements were forged and distributed.

    Gaia isn’t only about the Milky Way. For solar system scientists, the new data set will contain data on 14,000 asteroids. That’s a small fraction of the roughly 750,000 known minor bodies, but Gaia provides orbit information 100 times more accurate than before, says University of Cambridge astronomer Gerry Gilmore, who heads the U.K. branch of Gaia’s data processing consortium. That should help astronomers identify families of asteroids and trace how they relate to each other, shedding light on the solar system’s past and how planets formed from smaller bodies.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 9:34 am on April 21, 2018 Permalink | Reply
    Tags: , , , , , Milky Way,   

    From University of Heidelberg: “Stars Are Born in Loose Groupings” 

    U Heidelberg bloc

    University of Heidelberg

    20 April 2018

    Analysis of Gaia satellite data points to a new view of star formation.

    ESA/GAIA satellite

    Based on previously published data from the Gaia Mission, researchers at Heidelberg University have derived the conditions under which stars form. The Gaia satellite is measuring the three-dimensional positions and motions of stars in the Milky Way with unprecedented accuracy.

    Milky Way Galaxy Credits: NASA/JPL-Caltech/R. Hurt

    Milky Way by GAIA ESA

    Using these data, Dr Jacob Ward and Dr Diederik Kruijssen determined the positions, distances and speeds of a large number of young massive stars within 18 nearby loose stellar groupings. The researchers were able to demonstrate that there is no evidence whatsoever that these associations are expanding. They therefore could not have originated as a dense cluster and then expanded to their current size.

    The long-standing model of star formation maintains that most, if not all stars originate in relatively densely packed star clusters. Experts refer to this as the “monolithic” model of star formation. Based on that model, every grouping of young stars observable today must have had its origin in one or more much denser clusters. After the stars formed, these clusters expelled the remaining molecular gas and were able to expand due to the loss of the gravitationally bound mass. Today’s less dense clusters would have formed in this way and hence now, millions of years later, would evidence clear signs of strong expansion.

    For Dr Ward and Dr Kruijssen, the results of their research clearly indicate that the “monolithic” model of star formation is simply not viable. Both researchers favour another explanation, namely that only a small fraction of stars are born within dense clusters. Instead, stars form across wide-spread molecular gas clouds across a broad range of densities. This “hierarchical” model of star formation explains today’s star clusters and associations with a variety of densities showing no signs of further expansion.

    The next publication of data from the Gaia Mission is scheduled for April 25 this year. By then, data on over a billion stars will have been collected – at least five hundred times that of the two million stars that were included in this initial study. Jacob Ward and Diederik Kruijssen hope that this new data will enable them to expand their study to potentially hundreds of loose stellar groupings, known as OB Associations, and to delve much further into the question of how stars originate. Dr Ward and Dr Kruijssen conduct research at the Institute of Astronomical Computing at Heidelberg University’s Centre for Astronomy (ZAH). Their research is part of the work being done in the Collaborative Research Center (CRC 881) “The Milky Way System”.

    Hubble Space Telescope image of the OB association Cepheus OB4, one of the loose groupings of young stars studied by Dr Ward and Dr Kruijssen. The young stars are visible in bright blue; the gas and dust left after their formation is shown in red colours and dark shades. The results of the Gaia satellite show that Cepheus OB4 undergo no expansion, indicating that the stars formed in their current spatial configuration.
    Source: Davide De Martin & the ESA/ESO/NASA Photoshop FITS Liberator.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U Heidelberg Campus

    Founded in 1386, Heidelberg University, a state university of BadenWürttemberg, is Germany’s oldest university. In continuing its timehonoured tradition as a research university of international standing the Ruprecht-Karls-University’s mission is guided by the following principles:
    Firmly rooted in its history, the University is committed to expanding and disseminating our knowledge about all aspects of humanity and nature through research and education. The University upholds the principle of freedom of research and education, acknowledging its responsibility to humanity, society, and nature.

  • richardmitnick 7:06 am on February 28, 2018 Permalink | Reply
    Tags: , , , , Milky Way, ,   

    From Universe Today: “Amazing High Resolution Image of the Core of the Milky Way, a Region with Surprisingly Low Star Formation Compared to Other Galaxies” 


    Universe Today

    27 Feb , 2018
    Matt Williams

    The centre of the Milky Way Galaxy seen through NASA’s Spitzer Space Telescope. http://www.spitzer.caltech.edu/images/1540-ssc2006-02a-A-Cauldron-of-Stars-at-the-Galaxy-s-Center

    NASA/Spitzer Infrared Telescope

    Compared to some other galaxies in our Universe, the Milky Way is a rather subtle character. In fact, there are galaxies that are a thousands times as luminous as the Milky Way, owing to the presence of warm gas in the galaxy’s Central Molecular Zone (CMZ). This gas is heated by massive bursts of star formation that surround the Supermassive Black Hole (SMBH) at the nucleus of the galaxy.

    The core of the Milky Way also has a SMBH (Sagittarius A*) and all the gas it needs to form new stars.

    SgrA* NASA/Chandra

    But for some reason, star formation in our galaxy’s CMZ is less than the average. To address this ongoing mystery, an international team of astronomers conducted a large and comprehensive study of the CMZ to search for answers as to why this might be.

    The study, titled Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge recently appeared in the Monthly Notices of the Royal Astronomical Society. The study was led by Daniel Walker of the Joint ALMA Observatory and the National Astronomical Observatory of Japan, and included members from multiple observatories, universities and research institutes.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

  • richardmitnick 2:49 pm on December 9, 2017 Permalink | Reply
    Tags: , , , , , Milky Way   

    From aeon: “Galactic position system” 



    Sarah Scoles

    Detail from Starry Night (1888) by Vincent Van Gogh, Musée D’Orsay, Paris. Photo by Getty Images

    Credits: NASA/JPL-Caltech/R. Hurt (SSC/Caltech)

    Every few months, the artist Jon Lomberg kneels next to a croton plant, removes the cheap earring that pierces a speckle on one of its leaves, and fastens a new yellow stud into the same hole. This, he says, pointing to the stud, represents the Sun. He is standing 30ft from the middle of the 100-ft-wide Galaxy Garden in the Captain Cook district of western Hawai’i. The highly manicured garden is an accurate scale model of the Milky Way galaxy, where every step takes you 2,000 light years from where you stood before. Here, the speckles on the leaves of ‘gold dust’ crotons stand in for stars. The plants reach out in spiral arms from the garden’s centre, where a spouting fountain plays the part of a monster black hole. Along the spiral limbs crowd hibiscus, vincas and red and black crotons where nebulae, gas and dust belong.

    Jon Lomberg’s Galaxy Garden. Photo by Heidy and Pierre Lesage© 2010/www.galaxygarden.net

    When Lomberg stands up, his Milky Way makeover finished, he looks down at our yellow star. The garden’s opposing edge is 70ft away, the distance filled with other speckled leaves. ‘You put a basketball around where Earth is, and everything you’re going to see in the night sky is in that ball,’ he says, adding that other stars are too distant and dust-dimmed. ‘When you see the whole garden,’ Lomberg continues, ‘without any math, or any need for explanation, the scale becomes apparent.’

    It is difficult to picture ourselves in the Milky Way. We have no problem placing ourselves within, say, California, or the United States. Even second-graders can point to a spot on a globe and say: ‘I live there.’ And by third grade, they can position that globe in a neat line of planets, telling you smugly that those worlds orbit the Sun, a next-door version of the points of light in the night sky. But beyond that, what? Everything is so distant that we often lump it all into the ‘out there’ category, so that Pluto and Polaris might as well be in the same spot. Perhaps that’s why, as Lomberg says, many people erroneously use galaxy and solar system as synonyms.

    Only in the past few decades have we become scientifically and technologically advanced enough to situate ourselves within the 100,000-light-year-wide wilderness we call home (where one light year is a distance equivalent to 6 trillion miles). But making heads or tails of galactic latitude and longitude isn’t easy for anyone, including astronomers. We were born inside the Milky Way, and (spoiler alert) we will all die inside the Milky Way. Imagine being trapped inside a building and trying to determine what it looks like from the outside – its layout, when it was last painted, tin roof or shingled? You can catalogue half baths, peer out of a window and describe awnings. But assembling those pieces into a gestalt is like trying to understand your brain using your brain. You’ll never have an aerial view.

    Now imagine you’ve never heard of this strange concept of ‘building’. That’s the situation astronomers found themselves in until the 1920s. The Milky Way has always streaked our sky, a diffuse stripe spreading from horizon to horizon. Its Latin name – Via Lactea – comes from this fuzzy lane-like appearance. But it wasn’t until Galileo Galilei trained his telescope on it 400 years ago that we knew for sure that it was made of stars – stars just like Sirius, but much further away.

    As centuries passed, telescopes grew larger, allowing astronomers to detect fainter objects. Looking deeper into space than ever before, they began to see strange helical clouds. Thinking that they were just baroque clouds of gas within our own galaxy, astronomers called them ‘spiral nebulae’. After all, if you don’t know an object’s true size, it could be small and nearby, or distant and huge. And in the late 19th century, the proximate cosmos was the whole cosmos.

    We had long ago learned that Earth is not the hub of the solar system, but it was the helical clouds, and an argument known as the Great Debate, that pushed the Milky Way off its pedestal. Heber Curtis, director of the Allegheny Observatory in Pittsburgh, suggested in 1920 that the galaxy is just another spiral nebula – simply the one we happen to inhabit. Each other nebula is an ‘island universe’, a Milky Way beyond the Milky Way.

    On the other side of the debate was Harlow Shapley of the Mount Wilson Observatory in California.

    Edwin Hubble at the 100 inch Hooker telescope at Mt Wilson

    Mt Wilson 100 inch Hooker Telescope, perched atop the San Gabriel Mountains outside Los Angeles, CA, USA

    If each nebula is an ‘island universe’, he said, the closest – Andromeda – would be millions of light years away.

    Andromeda Galaxy NASA/ESA Hubble

    We now know, of course, that Andromeda is an island universe, and that it houses more than a trillion suns. So do other galaxies 13 million, even 13 billion, light years away. Not only is the Milky Way not the entirety of the Universe, it’s not even a remarkable galaxy. The good news is, this ordinariness is what gives us a chance to describe our ‘building’ from the outside.

    We can count on the Milky Way to look and behave like an average spiral galaxy, and the Universe contains tens of billions of those. Wherever we look in the Universe, we see the laws of physics – the strong and weak nuclear forces that make atoms tick; the electromagnetics that attract opposites; the gravity that orders orbits – moulding gas into stars, and stars into galaxies. Peering out of our cosmic window, we can survey these structures to learn about our own. If the spiral nebulae we see have arms and bulges, perhaps the Milky Way sports them, too.

    From the side, the Milky Way is a thin disk with a bulge in the middle. From above or below, it resembles a hurricane, with spiral arms where rain bands would be. Four of them curl from the eye of the storm. The Perseus Arm and, interior to it, the Sagittarius Arm wrap around our side of the Milky Way, while the Scutum-Centaurus and Norma-Cygnus arms form a near-mirror-image on the other side.

    A stream of stars forms a curved lane between Perseus and Sagittarius. It is on this 15,000-light-year-long branch, called the Orion Arm, that our Sun sits. For a long time, astronomers believed the Orion Arm was insubstantial. Last June, however, they discovered our arm is a major appendage in its own right, more like Perseus and Sagittarius than like a minor spur.

    That’s a pretty basic discovery to make so late in the game. But nearly all knowledge of galactic limbs comes from invisible parts of the light spectrum, studies of which are – relative to the optical astronomy that began with Galileo’s telescope – in their infancy. Until extrasensory telescopes augmented our anatomy, we couldn’t sense the spiral arms. Scientists didn’t discover them until the 1950s, with the first radio surveys of hydrogen gas. From these simplest atoms, radio waves 21cm long cut through the thick curtain of particles that stands between us and the other side of the Milky Way. Those particles block the visible light, but longer-wavelength radiation zips right past them, just as FM transmissions pass right through the walls of your house.

    Radio waves and infrared radiation also shed light on how spiral arms move and why they exist in the first place. Although their shape suggests that they rotate with the galaxy, carrying stars along with them, they move at their own pace, like terrestrial traffic jams. While cars bottleneck, they eventually crawl out the other side. The traffic overdensity itself, however, persists. And so do spiral arms, which contain about 10 per cent more stars and gas than the rest of the galaxy. The Sun’s slow passage through the Perseus-Orion jam will take some 10 million years in total. After that, our star will be in a limbless space for 100 million years.

    All spiral arms lead to the Milky Way’s centre. There, a bar of stars in long, looping orbits forms the tapered shape of a cat’s pupil. This eye is 27,000 light years across – nearly as wide as the distance between Earth and the galactic centre – and pokes out of the galaxy’s plane at a 45º angle. Above and below this midsection, nearly 200 spheres, each packed with hundreds of thousands of ancient stars, orbit. Out of the Milky Way’s plane, these ‘globular clusters’ live their long lives in isolation from each other and the rest of the galaxy. If Earth were inside one of them, our night sky would beam down thousands of stars as bright as Sirius.

    At the very centre of the galaxy, 27,190 light years from Earth, sits the Milky Way’s most significant object.

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Our fastest spacecraft would take 475 million years to arrive at its boundary, beyond which 4 million suns-worth of mass is squished into a singularity. This supermassive black hole, called Sagittarius A*, appears to orchestrate galactic motions, making every last atom its satellite, but this is an illusion. Everything orbits the centre of mass – the point at which the gravitation from all directions is the same. Just as the Earth spins on its axis and revolves around the Sun, the whole Milky Way whirls around the centre of mass. Even Sagittarius A*, very slightly offset from the galaxy’s true centre, does a delicate jig.

    The region around the black hole is dense with dust, which blocks and scatters visible light. Because no optical telescopes could see to the centre, astronomers did not find evidence of Sagittarius A*’s existence until 1974, when radio telescopes became powerful enough to nail the precise location of a strangely compact source of radiation that coincided with the galactic bull’s-eye.

    Ohio State Big Ear Radio Telescope, Construction of the Big Ear began in 1956 and was completed in 1961, and it was finally turned on for the first time in 1963

    A disk of swirling material surrounds Sagittarius A*. Stripped from stars and gas clouds, these rub against each other as they move. The friction heats things up, causing the disk to glow with radiation. Sometimes, an unfortunate clump of matter falls past the black hole’s event horizon – the point of no return – and the only memorial is a burst of photons. In the 10,000 light years right around the black hole, 10 billion stars bulge in a peanut shape. When astronomers look at the farther-out orbits, such as that of our Sun, the motions don’t perform as expected. The speeds depend on distance from the galactic centre and the amount of mass inside the orbit. Given that we’re in the podunk part of the Milky Way, low-density and far from the middle, our orbit should be slower. But the Milky Way’s farthest-flung suburbs have the same pace as its New York Cities.

    Vera Rubin in the 1970s, NYT
    Vera Rubin, a researcher at the Carnegie Institution for Science in Washington DC, observed the same surprising motions in other galaxies in 1970. Here, dark matter enters the picture. To generate enough gravity to make the Sun orbit so fast, 80 per cent of the galaxy’s mass must be missing. Black as space, this dark matter pervades the Milky Way – including the solar system and maybe the space next to you right now – and forms a huge halo around the visible galaxy.

    Caterpillar Project A Milky-Way-size dark-matter halo and its subhalos circled, an enormous suite of simulations . Griffen et al. 2016

    And while this invisible cloak might be the most mysterious of the Milky Way’s shrouds, it is not the only one. A balloon of gas also envelops us, extending hundreds of thousands of light years beyond the galaxy’s visible borders – farther from the galaxy’s edges than the galaxy itself measures from edge to edge. If you could ball up this hydrogen, you could create at least 10 billion new stars.

    Even more hydrogen streams in from extragalactic space. Clouds of high-velocity gas come from smaller, nearby galaxies after the Milky Way’s immense gravity re-routes them. One known as Smith’s Cloud weighs more than a million suns, but it’s spread so thin that it fills as much sky (or it would, if you had radio-sensing eyes) as the Orion constellation.


    When it arrives 30 million years from now, it will set off a burst of star formation. Snacks such as the Smith Cloud will allow the Milky Way to continue making new stars, even after it has consumed the food on its own plate.

    The Milky Way sometimes likes to steal sustenance from the Large and Small Magellanic Clouds, which can be seen orbiting our galaxy on dark, clear nights in the Southern Hemisphere.

    Large Magellanic Cloud. Adrian Pingstone December 2003

    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2

    Magellanic Bridge ESA_Gaia satellite. Image credit V. Belokurov D. Erkal A. Mellinger.

    But the theft does not go unavenged: the Magellanic Clouds might have turned the Milky Way into a warped and vibrating thing. As they move through space-time, they create a wake, just like rocks skipped across water. The undulations bump into our dark matter, bending the galaxy. Its edges flap and wave on timescales we can never experience.

    The Berkeley astronomer Leo Blitz theorised the cause of this warp. A renowned galactic researcher, he also is the scientific consultant for the Galaxy Garden. Before Lomberg broke ground, he sought out Blitz to ensure the floral Milky Way would be accurate. Each landscaping choice he made represents years of graduate students’ lives, scientific collaborations spanning continents and decades, and terabytes (and terabytes) of archived data. This Hawai’ian garden is the only place where you can truly feel that you’re in the Milky Way, because here you are in the Milky Way. ‘You’re walking around, bending down, looking down, then looking up,’ he says. ‘It’s a sensory experience.’

    If you stand where the Sun’s earring is and survey the fecundity around you, it’s easy to believe that you actually do live inside something larger than your world. Lomberg believes this cosmic swaddling – and the accompanying smallness – should be part of our mental toolkit.

    While acknowledging that your speckishness in the galaxy can make you feel trivial, Lomberg insists that the crushing scale doesn’t have to squash your importance. ‘There’s really no such thing as big or small,’ he says. ‘There’s only bigger or smaller. In some contexts, the galaxy is a tiny insignificant thing. So if the galaxy is not significant, then is anything significant? I think that the answer is that either nothing is or everything is.’

    If you zoom out of the Milky Way entirely, you’ll find 26 known dwarf galaxies orbiting us. It’s likely that 1,000 more are hiding out there, some nearly invisible, and made mostly of dark matter or cold hydrogen gas. Beyond them lie the other members of the Local Group.

    Local Group. Andrew Z. Colvin 3 March 2011

    These galaxies, 54 of which are known, travel together through space, and their gravitational centre lies between our galaxy and its nearest large neighbour, the Andromeda galaxy. Around the Milky Way and Andromeda, 12 other large galaxies form a protective circle known as the Council of Giants.

    Council of Giants
    Date 28 February 2016
    Source http://www.atlasoftheuniverse.com/galgrps.gif

    The gravitational tethers that bind these galaxies are strong enough to resist the dark energy that is pushing everything apart, and getting faster every femtosecond (or one quadrillionth of a second).

    The Local Group is part of the Virgo Supercluster, which contains more than 100 galaxy groups and clusters, but even this structure is cosmically insignificant. Just as Earth is one of many planets, the Sun is an average star, and just as the Milky Way is a predictable spiral galaxy, the Virgo Supercluster has 10 million massive siblings.

    Virgo Supercluster, Wikipedia

    That number hardly means anything to those of us who are five or six feet tall, perhaps travel to a foreign continent once, and die when we’re 85 if we’re lucky. But imagine that the Galaxy Garden really is the galaxy: the visible Universe would be the size of Earth, and it would be immaculately landscaped with hundreds of billions of Galaxy Garden clones, all congregating in clusters and superclusters. Long filaments of gas and dark matter bridge superclusters, connecting them across voids. If you could see it from afar, the cosmos would look a lot like a brain: a collection of neurons, where each supercluster is a bright dendrite, and each filament an axon.

    Our brains have fewer synapses than the visible Universe, but they’ve enabled us to situate ourselves within it. Lomberg envisions a world in which every third-grader knows where the ‘You are here’ label goes on a galactic map and can give you directions from there to the Scutum-Centaurus Arm. ‘The Milky Way is as important to your self-identification as the fact that you live on planet Earth, or you live in the solar system,’ he says. ‘We may be insignificant, but we figured out that we’re in a galaxy. For insignificant nothings, that’s pretty good.’

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Since 2012, Aeon has established itself as a unique digital magazine, publishing some of the most profound and provocative thinking on the web. We ask the big questions and find the freshest, most original answers, provided by leading thinkers on science, philosophy, society and the arts.

    Aeon has three channels, and all are completely free to enjoy:

    Essays – Longform explorations of deep issues written by serious and creative thinkers

    Ideas – Short provocations, maintaining Aeon’s high editorial standards but in a more nimble and immediate form. Our Ideas are published under a Creative Commons licence, making them available for republication.

    Video – A mixture of curated short documentaries and original Aeon productions

    Through our Partnership program, we publish pieces from university research groups, university presses and other selected cultural organisations.

    Aeon was founded in London by Paul and Brigid Hains. It now has offices in London, Melbourne and New York. We are a not-for-profit, registered charity operated by Aeon Media Group Ltd. Aeon is endorsed as a Deductible Gift Recipient (DGR) organisation in Australia and, through its affiliate Aeon America, registered as a 501(c)(3) charity in the US.

    We are committed to big ideas, serious enquiry and a humane worldview. That’s it.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: