Tagged: Michigan State University (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:51 am on November 8, 2021 Permalink | Reply
    Tags: "Through the nuclear looking glass", A neutron star is born when a very large star becomes a supernova and explodes., , , Connecting the physics of the very small — nuclei — to the physics of the very large — neutron stars, , FRIB- Facility for Rare Isotope Beams, Michigan State University (US), National Superconducting Cyclotron Laboratory (US) at Michigan State University, Neutron stars are more massive than our sun yet they’re only about as big as Manhattan Island., , , Scientists can use the charge radii of a pair of mirror nuclei as one way to study the nature of neutron stars., There’s a force between the neutrons known as the strong interaction that works against gravity., These projects also underscore the importance of theorists and experimentalists working together.   

    From Michigan State University (US) : “Through the nuclear looking glass” 

    Michigan State Bloc

    From Michigan State University (US)

    03 November 2021

    1
    Scientists can use the charge radii of a pair of mirror nuclei as one way to study the nature of neutron stars. This pair is shown in the illustration in the looking glass. Image credit: Facility for Rare Isotope Beams.

    About 20 years ago, Michigan State University’s B. Alex Brown had an idea to reveal insights about a fundamental but enigmatic force at work in some of the most extreme environments in the universe.

    These environments include an atom’s nucleus and celestial bodies known as neutron stars, both of which are among the densest objects known to humanity. For comparison, matching the density of a neutron star would require squeezing all the Earth’s mass into a space about the size of Spartan Stadium.

    Brown’s theory laid the blueprints for connecting the properties of nuclei to neutron stars, but building that bridge with experiments would be challenging. It would take years and the unique capabilities of the DOE’s Thomas Jefferson National Accelerator Facility (US). The facility is a Department of Energy Office of Science (US) national laboratory in Virginia. So experimentalists got to work on a decades-long series of studies and Brown largely returned to his other projects.

    That is, until 2017. That’s when he said he started thinking about the beautiful precision experiments run by his colleague Kei Minamisono’s group at the National Superconducting Cyclotron Laboratory (US) at Michigan State University, and in the near-future at the Facility for Rare Isotope Beams, or FRIB. FRIB is a DOE-SC user facility at MSU that will start scientific user operation in early 2022.

    “It’s amazing how new ideas come to you,” said Brown, a professor of physics at FRIB and in MSU’s Department of Physics and Astronomy.

    The goal of this new idea was the same as his earlier theory, but it could be tested using what are known as “mirror nuclei” to provide a faster and simpler path to that destination.

    In fact, on Oct. 29, the team published a paper in the journal Physical Review Letters based on data from an experiment that took a few days to run. This comes on the heels of new data from the Jefferson Lab experiments that took years to acquire.

    “It’s quite incredible,” Brown said. “You can do experiments that take a few years to run and experiments that take a few days and get results that are very similar.”

    To be clear, the experiments in Michigan and Virginia are not competing. Rather, Krishna Kumar, a member and past chair of the Jefferson Lab Users Organization, called the experiments “wonderfully complementary.”

    “A detailed comparison of these measurements will allow us to test our assumptions and increase the robustness of connecting the physics of the very small — nuclei — to the physics of the very large — neutron stars,” said Kumar, who is also the Gluckstern Professor of Physics at The University of Massachusetts-Amherst (US). “The progress made in both experiment and theory on this broad topic underscores the importance and uniqueness of the capabilities of Jefferson Lab and NSCL, and the future will bring more such examples as new measurements are carried out at FRIB.”

    These projects also underscore the importance of theorists and experimentalists working together, especially when tackling fundamental mysteries of the universe. It was this type of collaboration that kicked off the Jefferson Lab’s experiments 20 years ago, and it’s this type of collaboration that will power future discoveries at FRIB.

    A mirror to examine the neutron skin

    One of the ironies here is that Brown hasn’t spent a lot of his time working on the two theories central to this story. Brown has published more than 800 scientific papers during his career, and the ones that inspired the experiments at NSCL and Jefferson Lab are distinct from his other work.

    “I work on many things and these are very isolated papers,” Brown said. Despite that, Brown shared them quickly. “I wrote both papers in a couple months.”

    When Brown completed the draft of his 2017 theory, he immediately shared it with Minamisono.

    “I remember I was at a conference when I got the email from Alex,” said Minamisono, a senior physicist at FRIB. “I was so excited when I read that paper.”

    The excitement came from Minamisono’s knowledge that his team could lead the experiments to test the paper’s ideas and from the theory’s implications for the cosmos.

    “This connects to neutron stars and that is so exciting as an experimentalist,” Minamisono said.

    Neutron stars are more massive than our sun yet they’re only about as big as Manhattan Island. Researchers can make accurate measurements for the mass of neutron stars, but getting exact numbers for their diameters is challenging.

    A better understanding of the push and pull of forces inside neutron stars would improve these size estimates, which is where nuclear physics comes in.

    A neutron star is born when a very large star becomes a supernova and explodes, leaving behind a core that is still more massive than our sun. The gravity of this massive leftover causes it to collapse on itself. As it collapses, the star also begins converting its matter — the stuff that makes it up — into neutrons. Hence, “neutron star.”

    There’s a force between the neutrons known as the strong interaction that works against gravity and helps puts the brakes on the collapse. This force is also in action in atomic nuclei, which are made up of neutrons and particles known as protons.

    “We know gravity, of course. There’s no issue there,” Brown said. “But we’re not so sure about what the strong interaction is for pure neutrons. There’s no laboratory on the Earth that has pure neutrons, so we make inferences from things we see in nuclei that have both protons and neutrons.”

    In atomic nuclei, the neutrons stick out a teensy bit, forming a thin, neutron-only layer that extends beyond the protons. This is called the neutron skin. Measuring the neutron skin enables researchers to learn about the strong force and, by extension, neutron stars.

    In the Jefferson Lab experiments, researchers sent electrons hurtling at lead and calcium nuclei. Based on how the electrons scatter or deflect from the nuclei, scientists could calculate upper and lower limits for the size of the neutron skin.

    For the NSCL experiments, the team needed to measure how much room the protons take up in a specific nickel nucleus. This is called the charge radius. In particular, the team examined the charge radius for nickel-54, a nickel nuclei or isotope with 26 neutrons. (All nickel isotopes have 28 protons, and those with 26 neutrons are called nickel-54 because the two numbers add up to 54.)

    What’s special about nickel-54 is that scientists already know the charge radius of its mirror nucleus, iron-54, an iron nucleus with 26 protons and 28 neutrons.

    “One nucleus has 28 protons and 26 neutrons. For the other, it’s flipped,” said Skyy Pineda, a lead author on the new research paper and a graduate student researcher on Minamisono’s team. By subtracting the charge radii, the researchers effectively remove the protons and are left with that thin neutron layer.

    “If you take the difference of the charge radii of the two nuclei, the result is the neutron skin,” Pineda said.

    To measure the charge radius of nickel-54, the team turned to its Beam Cooler and Laser Spectroscopy facility, abbreviated BECOLA. Using BECOLA, experimentalists overlap a beam of nickel-54 isotopes with a beam of laser light. Based on how the light interacts with the isotope beam, the Spartans can measure the nickel’s charge radius, Pineda said.

    Using Brown’s earlier theory, Jefferson Lab scientists needed on the order of a sextillion electrons for a measurement, or a trillion billion particles. Using the new theory, researchers instead need thousands, maybe millions of nuclei. That means that measurements that once required years can be replaced with experiments that take days.

    A future of discovery built on a history of teamwork

    This new research feels like the passing of a baton in a couple ways. For one, the Jefferson Lab experiments are entering their final phase, while FRIB stands poised to continue the exploration.

    FRIB itself represents another leg of the relay. BECOLA started running at NSCL and will continue operating at FRIB.

    Each leg builds on the last and on the collective work the runners have put in together.

    Again, that formula is nothing new. It’s what enabled a theorist at NSCL to inspire and inform experiments at a world-class lab in Virginia. What stands out about NSCL and FRIB, however, is that the user facilities are connected to a university, letting veterans and the next generation of leaders interact and share ideas that much sooner.

    “MSU is unique in having had NSCL and now FRIB. In most cases, labs like these aren’t integrated into a university campus,” said Kristian Koenig, a postdoctoral researcher on Minamisono’s team and a co-lead author on the new paper. “It gives everyone here a great opportunity.”

    Joining the MSU team on the Physical Review Letters publication were researchers from The Florida State University (US) along with The Technical University of Darmstadt [Technische Universität Darmstadt] (DE) and The GSI Helmholtz Centre for Heavy Ion Research [GSI Helmholtzzentrum für Schwerionenforschung] (DE).

    This work is supported in part by the National Science Foundation Grant No. PHY-14-30152, PHY-15-65546, PHY-18-11855, PHY-21-10365 and PHY-21-11185, the DOE-SC under Award No. DE-FG02-92ER40750, and German Research Foundation Project ID 279384907 SFB 1245.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (US) is a public research university located in East Lansing, Michigan, United States. Michigan State University (US) was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University (US) is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University (US) pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University (US) is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University (US) dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University (US) scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at MSU, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University (US) continues its research with facilities such as the Department of Energy (US)-sponsored Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory [below]. The Department of Energy (US) Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University (US), in consortium with the University of North Carolina at Chapel Hill (US) and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.

    NSF NOIRLab NOAO Southern Astrophysical Research [SOAR ] telescope situated on Cerro Pachón, just to the southeast of Cerro Tololo on the NOIRLab NOAO AURA site at an altitude of 2,700 meters (8,775 feet) above sea level.

    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University (US) Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019.[12] In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
  • richardmitnick 1:56 pm on October 1, 2021 Permalink | Reply
    Tags: "Scientists recreate cosmic reactions to unlock astronomical mysteries", , HELIOS: Helical Orbit Spectrometer, Michigan State University (US), , SOLARIS: Solenoid Spectrometer Apparatus for Reaction Studies   

    From DOE’s Argonne National Laboratory (US) : “Scientists recreate cosmic reactions to unlock astronomical mysteries” 

    Argonne Lab

    From DOE’s Argonne National Laboratory (US)

    September 28, 2021
    J.D. Amick

    Experiments will give scientists a closer look at how exploding stars create world’s heaviest elements.

    1
    An interior view of SOLARIS and the accelerator and detectors at the rear. (Image by Argonne National Laboratory.)

    How do the chemical elements, the building blocks of our universe, get built? This question has been at the core of nuclear physics for the better part of a century.

    At the beginning of the 20th century, scientists discovered that elements have a central core or nucleus. These nuclei consist of various numbers of protons and neutrons.

    Now, scientists at Michigan State University (US)’s Facility for Rare Isotope Beams (FRIB) have built and tested a device that will allow pivotal insights into heavy elements, or elements with very large numbers of protons and neutrons. Ben Kay, physicist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, led this effort. FRIB is a DOE Office of Science User Facility.

    Kay and his team have completed their first experiment using the device, called SOLARIS, which stands for Solenoid Spectrometer Apparatus for Reaction Studies. Planned experiments will reveal information about nuclear reactions that create some of the heaviest elements in our world, ranging from iron to uranium.

    Also planned are experiments with exotic isotopes. Isotopes are elements that share the same number of protons but have different numbers of neutrons. Scientists refer to certain isotopes as exotic because their ratios of protons to neutrons differ from those of typically stable or long-lived isotopes that occur naturally on Earth. Some of these unstable isotopes play an essential role in astronomical events.

    “Exploding stars, the merger of giant collapsed stars, we are now learning details about the nuclear reactions at the heart of these events,” said Kay. ​“With SOLARIS, we are able to recreate those reactions here, on Earth, to see them for ourselves.”

    The new device follows in the footsteps of HELIOS, the Helical Orbit Spectrometer, at Argonne. Both use similarly repurposed superconducting magnets from a magnetic resonance imaging (MRI) machine like that found in hospitals. In both, a beam of particles is shot at a target material inside of a vacuum chamber. When the particles collide with the target, transfer reactions occur. In such reactions, neutrons or protons are either removed or added from nuclei, depending on the particles, and their energies, used in the collision.

    “By recording the energy and angle of the various particles that are released or deflected from the collisions, we are able to gather information about the structure of the nuclei in these isotopes,” said Kay. ​“The innovative SOLARIS design provides the necessary resolution to enhance our understanding of these exotic nuclei.”

    What makes SOLARIS truly unique is it can function as a dual-mode spectrometer, meaning it can make measurements with either high or very low intensity beams. ​“SOLARIS can operate in these two modes,” explained Kay. ​“One uses a traditional silicon detector array in a vacuum. The other uses the novel gas-filled target of the Active-Target Time-Projection Chamber at Michigan State, led by SOLARIS team member and FRIB senior physicist Daniel Bazin. This first experiment tested the AT-TPC.” The AT-TPC enables scientists to use weaker beams and still collect results with the needed high accuracy.

    The AT-TPC is essentially a large chamber filled with a gas that serves as both the target for the beam and the detector medium. This differs from the traditional vacuum chamber that uses a silicon detector array and a separate, thin, solid target.

    “By filling the chamber with gas, you are ensuring that the fewer, larger particles from the low-intensity beam will make contact with the target material,” said Kay. In that way, the scientists can then study the products from those collisions.

    The team’s first experiment, led by research associate Clementine Santamaria of FRIB, examined the decay of oxygen-16 (the most common isotope of oxygen on our planet) into much smaller alpha particles. In particular, the eight protons and eight neutrons in oxygen-16 nuclei break up into a total of four alpha particles, each consisting of two protons and two neutrons.

    “By determining how oxygen-16 decays like this, comparisons can be made to that of the ​‘Hoyle state,’ an excited state of a carbon isotope that we believe plays a key role in the production of carbon in stars,” explained Kay.

    Kay and his team recorded over two million reaction events during this experiment and observed several instances of the decay of oxygen-16 into alpha particles.

    The dual functionality of SOLARIS will allow for an even broader range of nuclear reaction experiments than before, and give scientists new insights into some of the greatest mysteries of the cosmos.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    DOE’s Argonne National Laboratory (US) seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 10:54 am on September 6, 2021 Permalink | Reply
    Tags: "Enhancing photoelectric efficiency", , , , Michigan State University (US), MSU College of Engineering, When light impinges on material surfaces it can cause the ejection of electrons from the surface-a phenomenon known as the photoelectric effect.   

    From Michigan State University (US) : “Enhancing photoelectric efficiency” 

    Michigan State Bloc

    From Michigan State University (US)

    Sept. 3, 2021

    1
    Peng Zhang and Yang Zhou are working to improve the quantum efficiency of photoemission. Credit: Michigan State University.

    MSU brightens the future of medical x-rays, space communications.

    Albert Einstein might have called this research at Michigan State University a much-needed study. Einstein won a Nobel Prize in Physics in 1921 for explaining the photoelectric effect.

    New research in the MSU College of Engineering may soon guide the development of better X-rays for everyday health or improving the space satellites consumers rely on every day.

    Peng Zhang, associate professor of electrical and computer engineering, said that in simple terms the advancement involves ways that light dances on hard surfaces.

    “When light impinges on material surfaces it can cause the ejection of electrons from the surface-a phenomenon known as the photoelectric effect. High quality electron beams for tabletop particle accelerators, intense x-rays, high-resolution electron microscopes, and high power high speed electronics need light induced electron emissions,” he explained.

    So Zhang and Ph.D. student Yang Zhou studied and analyzed photoemissions from metal surfaces using laser illumination. Their theoretical tests used ultraviolet wavelengths that ranged from 200 nanometers to near-infrared wavelengths of 1200 nanometers.

    “Our results could help guide the development of highly efficient and bright photoelectron sources,” Zhang said. “That means improvements in devices and systems including signal amplifiers in radars and satellites for space-based communications to better medical imaging for daily health.”

    Their research is currently featured in an article, “Quantum model considers the effect … on photoemission,” by Chris Patrick in the American Institute of Physics Scilight.

    Also, read “Quantum efficiency of photoemission from biased metal surfaces with laser wavelengths from UV to NIR,” by Yang Zhou and Peng Zhang in the Journal of Applied Physics (2021).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (US) is a public research university located in East Lansing, Michigan, United States. Michigan State University (US) was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University (US) is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University (US) pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University (US) is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University (US) dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University (US) scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at MSU, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University (US) continues its research with facilities such as the Department of Energy (US)-sponsored Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory [below]. The Department of Energy (US) Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University (US), in consortium with the University of North Carolina at Chapel Hill (US) and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.


    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University (US) Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019.[12] In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
  • richardmitnick 1:32 pm on August 15, 2021 Permalink | Reply
    Tags: "University of Surrey and FRIB researchers explore origin of aluminum-26", , , Magnesium-26 is detectable in presolar grains of material from stars that existed before the sun., Michigan State University (US), , The composition of these grains carries the fingerprints of their parent stars., The destruction rate of aluminum-26 by capturing a proton is critical for interpreting the amount of magnesium-26 observed in the universe.,   

    From Michigan State University (US) and University of Surrey (UK): “University of Surrey and FRIB researchers explore origin of aluminum-26” 

    Michigan State Bloc

    From Michigan State University (US)

    and

    University of Surrey (UK)

    Scientists from the University of Surrey and the FRIB Laboratory at MSU teamed up to explore the origin of aluminum-26, a rare isotope that offers a window into dying stars.

    Their findings, were published in Physical Review Letters.

    Aluminum-26 provides rare insight into processes in stars. It decays into magnesium-26, which emits a characteristic gamma ray observable with satellites.

    1
    The illustration shows an aluminum-26 nucleus (green) escaping a supernova explosion. It will subsequently decay via gamma-ray emission that can be observed by satellites. Credit: Erin O’Donnell, FRIB.

    Magnesium-26 is detectable in presolar grains of material from stars that existed before the sun. The composition of these grains carries the fingerprints of their parent stars. The destruction rate of aluminum-26 by capturing a proton is critical for interpreting the amount of magnesium-26 observed in the universe. This research showed that the destruction of aluminum-26 by proton capture on the long-lived state is eight times less frequent than previously estimated.

    Gavin Lotay, senior lecturer and director of learning and teaching at the University of Surrey, was the project’s spokesperson. Alexandra Gade, professor of physics at FRIB [Facility for Rare Isotope Beams] and in MSU’s Department of Physics and Astronomy and FRIB deputy scientific director, led part of the MSU collaboration.

    Aluminum-26 has a long-lived quantum state that is difficult to study in a controlled way in the laboratory. The team used a transfer reaction that added a neutron to the radioactive isotope silicon-26 to study excited quantum states in silicon-27. These are the same states that are populated in the proton capture on the long-lived quantum state of aluminum-26. This was possible because protons and neutrons are subject to a symmetry that makes adding a proton to the long-lived state in aluminum-26 equivalent to adding a neutron to the ground state of silicon-26. The measurement used the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA), a national resource, and the laboratory’s S800 Spectrograph.

    This research stems from a longstanding collaboration between the FRIB Laboratory and the University of Surrey, where direct nuclear reactions are used to populate quantum states whose exact energies and properties are of relevance to reactions that happen in stars. The staple of the collaboration has been the use of very sensitive gamma-ray spectroscopy to tag and characterize the excited quantum states of interest. Lotay eagerly anticipates the start of science at FRIB to further his research. He has submitted three proposals for beam time at FRIB that will be considered by the first FRIB Program Advisory Committee later this summer.

    “We have now reached a truly exciting time in science, where we are able to directly probe the processes that occur in exploding stars,” said Lotay. “These celestial objects are responsible for the rich variety of chemical elements we find all around us and, by coupling gamma-ray spectroscopy with direct reaction techniques, the collaboration has been successful in obtaining key information needed to understand their properties. The collaboration is now poised to significantly expand the scope of its nuclear astrophysics program and capitalize on the vast swathe of opportunities available at the soon-to-open FRIB facility.”

    This research was funded by the U.S. Department of Energy (DOE) Office of Science Office of Nuclear Physics; the National Science Foundation; and the DOE National Nuclear Security Administration through the Nuclear Science and Security Consortium and the Science and Technologies Facilities Council of the United Kingdom.

    The U.S. Department of Energy recently highlighted the research on its website.

    Michigan State University establishes and operates FRIB as a user facility for the Office of Nuclear Physics in the U.S. Department of Energy (US) Office of Science.

    NSCL is a national user facility funded by the National Science Foundation (US), supporting the mission of the Nuclear Physics program in the NSF Physics Division.

    The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit http://www.energy.gov/science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the University of Surrey (UK)

    The University of Surrey is a public research university in Guildford, Surrey, England. The university received its royal charter in 1966, along with a number of other institutions following recommendations in the Robbins Report. The institution was previously known as Battersea College of Technology and was located in Battersea Park, London. Its roots however, go back to Battersea Polytechnic Institute, founded in 1891 to provide further and higher education in London, including its poorer inhabitants. The university’s research output and global partnerships have led to it being regarded as one of the UK’s leading research universities.

    The university is a member of the Association of MBAs and is one of four universities in the University Global Partnership Network. It is also part of the SETsquared partnership (UK) along with The University of Bath (UK), The University of Bristol (UK), the University of Southampton (UK) and The University of Exeter (UK). The university’s main campus is on Stag Hill, close to the centre of Guildford and adjacent to Guildford Cathedral. Surrey Sports Park is situated at the nearby Manor Park, the university’s secondary campus. Among British universities, the University of Surrey had the 14th highest average UCAS Tariff for new entrants in 2015.

    A major centre for satellite and mobile communications research, the university is in partnership with King’s College London (UK) and the Dresden University of Technology [Technische Universität Dresden] (DE) to develop 5G technology worldwide. It also holds a number of formal links with institutions worldwide, including the Surrey International Institute (UK), launched in partnership with the Dongbei University of Finance and Economics [东北财经大学](DUFE) (CN). The university owns the Surrey Research Park, providing facilities for over 110 companies engaged in research. Surrey has been awarded three Queen’s Anniversary Prizes for its research, with the 2014 Research Excellence Framework ranking 78% of the university’s research outputs as “world leading” or “internationally excellent”. It was named as The Sunday Times University of the Year in 2016.

    Current and emeritus academics at the university include ten Fellows of the Royal Society, twenty-one Fellows of the Royal Academy of Engineering, one Fellow of the British Academy and six Fellows of the Academy of Social Sciences. Surrey has educated many notable alumni, including Olympic gold medallists, several senior politicians, as well as a number of notable persons in various fields including the arts, sports and academia. Graduates typically abbreviate the University of Surrey to Sur when using post-nominal letters after their degree.

    Research

    The university conducts extensive research on small satellites, with its Surrey Space Centre and spin-off commercial company, Surrey Satellite Technology Ltd. In the 2001 Research Assessment Exercise, the University of Surrey received a 5* rating in the categories of “Sociology”, “Other Studies and Professions Allied to Medicine”, and “Electrical and Electronic Engineering” and a 5* rating in the categories of “Psychology”, “Physics”, “Applied Mathematics”, “Statistics and Operational Research”, “European Studies” and “Russian, Slavonic and East European Languages”.

    The 5G Innovation Centre (5GIC) at the University of Surrey opened in September 2015, for the purpose of research for the development of the first worldwide 5G network. It has gained over £40m support from international telecommunications companies including Aeroflex, MYCOM OSI, BBC, BT Group, EE (telecommunications company), Fujitsu Laboratories of Europe, Huawei, Ofcom, Rohde & Schwarz, Samsung, Telefonica and Vodafone – and a further £11.6m from the Higher Education Funding Council for England (HEFCE).

    In addition, the Surrey Research Park is a 28 ha (69-acre) low density development which is owned and developed by the university, providing large landscaped areas with water features and facilities for over 110 companies engaged in a broad spectrum of research, development and design activities. The university generates the third highest endowment income out of all UK universities “reflecting its commercially-orientated heritage.”

    Michigan State Campus

    Michigan State University (US) is a public research university located in East Lansing, Michigan, United States. Michigan State University (US) was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University (US) is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University (US) pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University (US) is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University (US) dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University (US) scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at MSU, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University (US) continues its research with facilities such as the U.S. Department of Energy-sponsored Michigan State University (US)- Department of Energy(US) Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory. The U.S. Department of Energy Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University (US), in consortium with the University of North Carolina at Chapel Hill (US) and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.


    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University (US) Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019.[12] In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
  • richardmitnick 9:37 pm on June 2, 2021 Permalink | Reply
    Tags: "Say hello to a vast underground ecosystem", An expansive microbial ecosystem living deep within Earth that is fueled by chemicals produced by volcanic eruptions and continental collisions., , , , Forcing scientists to change how they think about the deep carbon cycle over geologic time scales., , Michigan State University (US), Microbial communities eat the carbon; sulfur; and iron compounds generated by geological processes., Subduction zones are fascinating environments., The qualitative relationship between geology and biology may have significant quantitative implications., The team found microbes that live deep underground across the entirety of the subduction zone under Costa Rica act as gatekeepers., There is a diverse and thriving microbial ecosystem beneath our feet that impacts the Earth in many important ways.   

    From Michigan State University (US) : “Say hello to a vast underground ecosystem” 

    Michigan State Bloc

    From Michigan State University (US)

    May 26, 2021

    Matthew Schrenk
    Kim Ward

    MSU researchers help reveal how ‘forests’ of microbes living in geological hotspots play an underestimated role in Earth’s carbon cycle

    1
    MSU researchers and their colleagues studied the microbial communities by sampling hot springs in Costa Rica — like the one shown here — that are connected to deep Earth environments. Credit: Tom Owens.

    2
    MSU Associate Professor Matthew Schrenk samples a rock specimen for microbes.

    Michigan State University researchers have helped unveil an expansive microbial ecosystem living deep within Earth that is fueled by chemicals produced by volcanic eruptions and continental collisions.

    Spartans joined an interdisciplinary and international team of scientists to show that these microbial communities eat the carbon; sulfur; and iron compounds generated by geological processes beneath Costa Rica. The team published its results in the journal Nature Geosciences on April 22,2021.

    “There is a diverse and thriving microbial ecosystem beneath our feet that impacts the Earth in many important ways,” said Matthew Schrenk, an associate professor in MSU’s College of Natural Science. Schrenk works in the Department of Earth and Environmental Sciences and the Department of Microbiology and Molecular Genetics.

    “A huge amount of the Earth’s biodiversity is beneath our feet, and they’re critical to the functioning of the planet. Most people don’t realize that,” he said.

    Heather Miller, a doctoral student in Schrenk’s research group, also contributed to the study.

    The research team — led by Karen Lloyd, an associate professor at the University of Tennessee (US), and Donato Giovannelli, a professor at the University of Naples Federico II [Università degli Studi di Napoli Federico II] (IT) — found that this microbial ecosystem sequesters a huge amount of carbon dioxide. In fact, the team estimated that up to 170 metric tons of carbon could be gobbled up by the ecosystem every year.

    “This work shows that carbon may be siphoned off to feed a large ecosystem,” said Peter Barry, assistant scientist at the Woods Hole Oceanographic Institution (US) and co-author of the study. “This means that biology might affect carbon fluxes in and out of the Earth’s mantle, which forces scientists to change how they think about the deep carbon cycle over geologic time scales.”

    When there’s a collision between the Earth’s tectonic plates — specifically an oceanic plate and a continental plate — one plate gets pushed down, or subducted, into the mantle carrying with it materials that accumulated at the seafloor. The other plate becomes studded with volcanoes, which serves as conduits for gases escaping to the atmosphere. This is the main process by which chemical elements are moved between Earth’s surface and its interior, eventually recycling these materials over millions of years back to the surface.

    3
    An illustration of a subduction zone. Credit: Robert Simmon, NASA Goddard Space Flight Center (US)

    “Subduction zones are fascinating environments,” said Maarten de Moor, associate professor at the National University of Costa Rica [Universidad Nacional de Costa Rica] (CR) and co-author on the study. “They produce volcanic mountains and serve as portals for carbon moving between the interior and exterior of Earth.”

    In the new study, the team found microbes that live deep underground across the entirety of the subduction zone under Costa Rica act as gatekeepers, limiting the quantities of the chemicals, including important greenhouse gases, that make it into the atmosphere.

    “These microbes use chemicals from the subduction zone to form the base of an ecosystem that is large and filled with diverse primary and secondary producers,” said the University of Tennessee’s Lloyd, a co-corresponding author of the paper. “It’s like a vast forest, but underground.”

    4
    A close-up photo of a hot spring reveals white microbial biofilms fueled by chemicals associated with volcanic activity. Credit: Donato Giovannelli.

    This suggests that the known qualitative relationship between geology and biology may have significant quantitative implications for our understanding of how the distribution of carbon and other elements on Earth have changed throughout its history, potentially impacting global climate.

    “We already know of many ways in which biology has influenced the habitability of our planet, leading to the rise in atmospheric oxygen, for example,” said Giovannelli of the University of Naples Federico II and co-corresponding author. “Now, our ongoing work is revealing another exciting way in which life and our planet coevolved.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Michigan State Campus

    Michigan State University (US) is a public research university located in East Lansing, Michigan, United States. Michigan State University (US) was founded in 1855 and became the nation’s first land-grant institution under the Morrill Act of 1862, serving as a model for future land-grant universities.

    The university was founded as the Agricultural College of the State of Michigan, one of the country’s first institutions of higher education to teach scientific agriculture. After the introduction of the Morrill Act, the college became coeducational and expanded its curriculum beyond agriculture. Today, Michigan State University (US) is one of the largest universities in the United States (in terms of enrollment) and has approximately 634,300 living alumni worldwide.

    U.S. News & World Report ranks its graduate programs the best in the U.S. in elementary teacher’s education, secondary teacher’s education, industrial and organizational psychology, rehabilitation counseling, African history (tied), supply chain logistics and nuclear physics in 2019. Michigan State University (US) pioneered the studies of packaging, hospitality business, supply chain management, and communication sciences. Michigan State University (US) is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. The university’s campus houses the National Superconducting Cyclotron Laboratory, the W. J. Beal Botanical Garden, the Abrams Planetarium, the Wharton Center for Performing Arts, the Eli and Edythe Broad Art Museum, the Facility for Rare Isotope Beams, and the country’s largest residence hall system.

    Research

    The university has a long history of academic research and innovation. In 1877, botany professor William J. Beal performed the first documented genetic crosses to produce hybrid corn, which led to increased yields. Michigan State University (US) dairy professor G. Malcolm Trout improved the process for the homogenization of milk in the 1930s, making it more commercially viable. In the 1960s, Michigan State University (US) scientists developed cisplatin, a leading cancer fighting drug, and followed that work with the derivative, carboplatin. Albert Fert, an Adjunct professor at MSU, was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

    Today Michigan State University (US) continues its research with facilities such as the U.S. Department of Energy-sponsored Michigan State University (US)- Department of Energy(US) Plant Research Laboratory and a particle accelerator called the National Superconducting Cyclotron Laboratory. The U.S. Department of Energy Office of Science named Michigan State University as the site for the Facility for Rare Isotope Beams (FRIB). The $730 million facility will attract top researchers from around the world to conduct experiments in basic nuclear science, astrophysics, and applications of isotopes to other fields.

    In 2004, scientists at the Cyclotron produced and observed a new isotope of the element germanium, called Ge-60 In that same year, Michigan State University (US), in consortium with the University of North Carolina at Chapel Hill (US) and the government of Brazil, broke ground on the 4.1-meter Southern Astrophysical Research Telescope (SOAR) in the Andes Mountains of Chile.

    The consortium telescope will allow the Physics & Astronomy department to study galaxy formation and origins. Since 1999, MSU has been part of a consortium called the Michigan Life Sciences Corridor, which aims to develop biotechnology research in the State of Michigan. Finally, the College of Communication Arts and Sciences’ Quello Center researches issues of information and communication management.


    The Michigan State University (US) Spartans compete in the NCAA Division I Big Ten Conference. Michigan State Spartans football won the Rose Bowl Game in 1954, 1956, 1988 and 2014, and the university claims a total of six national football championships. Spartans men’s basketball won the NCAA National Championship in 1979 and 2000 and has attained the Final Four eight times since the 1998–1999 season. Spartans ice hockey won NCAA national titles in 1966, 1986 and 2007. The women’s cross country team was named Big Ten champions in 2019.[12] In the fall of 2019, MSU student-athletes posted all-time highs for graduation success rates and federal graduation rates, according to NCAA statistics.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: