Tagged: “Metalens” Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:49 am on August 18, 2022 Permalink | Reply
    Tags: "A matter of vision", 2016 A newly developed “metalens", , , “Metalens”, Federico Capasso believed a flat lens could revolutionize advanced products and devices., ,   

    From “The Harvard Gazette” : “A matter of vision” 

    From “The Harvard Gazette”

    At

    Harvard University

    8.17.22
    Alvin Powell

    1
    A new type of lens developed in Federico Capasso’s lab has gotten its first big market boost. Credit: Jon Chase/Harvard Staff Photographer.

    Federico Capasso believed a flat lens could revolutionize advanced products and devices. But he needed help innovating one, and getting it to market.

    In June 2016, Alan Gordon’s phone was ringing off the hook. On the cover of the prominent journal Science [below] was a striking image of a newly developed “metalens,” an array of tiny rectangular nanostructures that looked like skyscrapers in a vanishingly small city and focused light to a single point.

    It was an invention that for years had been followed by doubt. Early results proved the concept, but the models were able to focus so little light it was thought a metalens might never be improved enough to be useful, one expert said. Later, better findings were questioned as inaccurate, and requests came in from incredulous reviewers for actual design details.

    “They say it’s impossible, or you’re cheating somewhere in the system,” said Reza Khorasaninejad, a former postdoctoral fellow who was first author on several metalens papers before leaving Harvard in 2017.

    But the promise for the esoteric innovation beckoned, too. Federico Capasso, the Robert L. Wallace Professor of Applied Physics in whose lab the devices were developed, had long recognized that they had the potential to do everything conventional lenses could do and more, enabling new functionality in a smaller package for all kinds of advanced devices like those for handheld facial recognition that need to “see” and do so cheaply enough that they might disrupt an industry still making lenses as they long had been, out of curved elements of glass or plastic. But it would be a long road, one that illustrates the roadblocks scientists and entrepreneurs face between the light-bulb moment and actual products.

    “That’s what I liked about Federico. He doesn’t listen to these guys,” said Khorasaninejad, who worked in Capasso’s lab for three years. “He told us, ‘Let’s focus on this.’ He gave us the resources; he gave us the guidance.”

    2
    While traditional lenses use curved glass or plastic to bend light and focus an image, a metalens uses a series of tiny pillars on a millimeter-thin wafer. Metalenz.

    In early 2016, a team led by Capasso, with key contributions by Khorasaninejad, graduate student Rob Devlin, and postdoc Wei Ting Chen, showed that it indeed could be done and done well enough that commercial devices were possible. Capasso filed a report of invention with the Harvard Office of Technology Development and, soon after, the discovery made Science’s cover. Gordon, OTD’s director of business development for physical sciences, stepped in to manage the avalanche of interest.

    “I’ve been doing this for far longer than I like to admit but that paper, the invention, and the patent we filed generated far more commercial interest — from companies, entrepreneurs, investors — than any other hard-tech invention I can remember,” said Gordon. “It was exciting and a bit shocking. We met and talked with a lot of people about this work.”

    Those people understood then what Capasso had seen more than a decade earlier. Lenses are essential components in a host of devices, focusing and detecting light — both visible and invisible — for applications well beyond imaging, including facial recognition in smartphones and laptops, proximity and gesture detection to enhance responsive functions in automated devices, depth-sensing cameras, environmental awareness in drones and robots, and collision avoidance in self-driving cars.

    In many of those devices, space is tight. The stacked elements of plastic or glass in traditional lenses have resisted the true miniaturization that most other components have undergone. They remain among the bulkier components, and a bottleneck in device design.

    “I hold up my cellphone and pull out a credit card,” Gordon said, describing how he introduces the technology to potential investors. “There are only two reasons the phone is not as slim as the credit card. One is the camera and the other is the battery. The metalens will help enable the phone to be as slim as a credit card.”

    While traditional lenses use curved glass or plastic to bend light and focus an image, a metalens uses a series of tiny pillars on a millimeter-thin wafer. The pillars are smaller than the wavelength of light and transparent to the desired wavelength. The pillars’ shape, the distances between them, and their arrangement on the wafer are varied to bend light as desired.

    Not long after that Science cover, OTD licensed the technology to a startup, Boston-based Metalenz, founded by Capasso, Devlin, and Bart Riley, a tech entrepreneur with whom that office had previously worked. Now Metalenz’s chief executive, Devlin made a key materials advance in the Capasso lab that greatly improved the lenses’ efficiency. Earlier this year, Metalenz logged its first major sale, with manufacturer STMicroelectronics. STMicro will use metalenses in the company’s “time of flight” modules, which provide 3D sensing in an array of devices and which have previously sold 1.7 billion units. Those units appear in everything from drones to robots to smartphones. Metalenz said in June that it expects its optical components to be in millions of consumer devices this year.

    Khorasaninejad, who today is CEO and cofounder of San Francisco-based Leadoptik, called the deal “a very, very strong endorsement from industry,” while Capasso said that the metalens can be made in the same factories as computer chips is potentially “game-changing,” as it unifies two industries: semiconductor manufacturing and lens-making.

    “The same planar technology, known as deep ultraviolet lithography, to mass-produce integrated circuits — chips — can be used by the same foundry to make flat optics such as metalenses,” Capasso said. “It means that the entire camera module of a cellphone or laptop will eventually be manufactured in one sweep, including the metalens and the sensor.”

    ‘Can you get rid of the lens?’

    Capasso came to Harvard in 2003 after a career at Bell Labs, where, in 1994, he and colleagues invented and developed the quantum cascade laser, currently being commercialized in devices for chemical sensing and spectroscopy.

    Capasso traced the development of the metalens to a conversation he had more than a decade ago with Jim Anderson, the Philip S. Weld Professor of Atmospheric Chemistry. The two had been discussing putting a quantum cascade laser on a drone that Anderson wanted to use to detect certain chemicals in the atmosphere, but there wasn’t enough room. That was in part because of the bulky optical elements needed for focusing. Anderson got to the heart of the problem.

    “He said, ‘Can you get rid of the lens?’” Capasso recalled. “My first reaction was, ‘What the hell is he talking about?’ But then I said, ‘No, wait a moment.’”

    Capasso started to brainstorm the idea with a couple of students in his group. Starting in 2007 or 2008, they began to focus on the scientific question of whether it was possible to bend light in an entirely flat device.

    Early work used what they termed “plasmonic antennas” that eventually evolved into metasurfaces — millimeter-thick, two-dimensional surfaces studded with tiny nanostructures smaller than the wavelength of light. Those arrays, Capasso said, can alter the path of light flowing through it in a kind of “artificial refraction.”

    That work progressed incrementally, producing several scientific papers that led to a 2011 breakthrough, published in Science and now cited more than 5,400 times. Capasso and members of his lab demonstrated they could tune the nanostructures and bend light to a roughly focused “hotspot.”

    While the results were of scientific interest, the efficiency was so low that most of the light was lost, a result that skeptics said meant it would never become useful.

    Bringing fresh eyes, new skills

    In 2012, Devlin joined the lab. With no optics background, Devlin instead worked in an area Capasso thought would be key: materials science and nanofabrication. Devlin himself believed that the lab had mostly figured out the science, and that choosing the right materials and fabrication processes would be critical to improved results.

    “The metasurface was a great proof of concept, but the devices themselves were really inefficient,” Devlin said. “There were problems in how it was fabricated, in materials, and design.”

    Devlin set about considering materials and processes that not only worked in the lab, but that would also work, if a successful device needed to be scaled up. Ultimately, he settled on titanium dioxide, a compound widely used in paint pigment, sunscreen, food coloring, and as a reflective surface in dielectric mirrors. More importantly to Devlin, it had low light-absorption properties.

    By late 2015, there were eight to 10 people in the lab working on different aspects of metasurfaces. As each turned their focus to lens performance, they brought perspectives and insights gleaned from their diverse prior efforts.

    Devlin knew they had things right when the efficiency — the amount of the available light the device could focus — abruptly began to climb, rising from 10 percent to 85 percent in a few weeks. The rapid improvement and clarity of the resulting images stunned Devlin, Khorasaninejad, and Chen.

    Those results spurred the 2016 Science paper, which not only generated a buzz in the lens industry, but also became a runner-up for Science’s breakthrough of the year. Despite the accolades and new belief in the promise of a metalens, it still focused just single wavelengths of light. And, while there were certainly uses for single-wavelength light — facial recognition, for example, is done by bouncing a single wavelength outside the visible spectrum off a person’s face and analyzing the light that returns — the next challenge was to produce the first “achromatic” metalens, one that focuses light across the visible spectrum.

    “I locked myself in my office with Wei Ting Chen for the weekend, and I said, ‘Now we need to understand what we have done,’” Capasso said. “Our design ensured that all the colors, irrespective of where they take off, arrive at the same time in the same spot.”

    It took two years, but in 2018, they became the first to report success, with high resolution.

    In the meantime, though, Gordon was fielding calls from industry and advising Capasso and Devlin as to the next step of the metalenses’ commercial development. He counseled them that founding a startup around a new technology tends to be more successful than licensing it to a large corporation, where it can get lost. They listened and founded Metalenz to commercialize the invention and look for additional applications.

    Devlin, meanwhile, had a decision to make. He had entered his graduate studies thinking he would pursue an academic track when he left Capasso’s lab. But he had the opportunity to be among the founders of Metalenz and shepherd the device’s development himself.

    To Capasso, though, Devlin’s first priority was finishing the degree. He didn’t let up on the younger scientist, requiring he continue research and complete another scientific paper. Then Capasso ran interference with investors and companies wanting a piece of Devlin’s time.

    “Federico made sure I was not abandoning the completion of my Ph.D.,” Devlin said. “He said, ‘No one is to contact Rob until he completes his dissertation.’”

    Devlin defended his dissertation in 2017 and graduated in June 2018. When OTD and Metalenz announced the startup to the world in 2021, Devlin was its chief executive.

    “The Ph.D. student is not always a CEO type, but some are, and Rob has shown he has the personality for it,” Gordon said.

    The last several years have seen Devlin taking the company through several startup milestones, securing funds, developing relationships with manufacturers, and the recent announcement that the company’s metalenses will go into mass production.

    Though Metalenz has licensed more than 20 Capasso lab patents from Harvard, Capasso and his students and postdocs are busily working on new discoveries. A current focus is on ultracompact, polarization-sensitive cameras — based on flat optics — that can detect the direction in which light vibrates after it’s transmitted or reflected, revealing otherwise invisible details of a scene. His group is involved with two collaborations with NASA on these cameras, related to Earth sciences and solar physics. He and his students are also toying with the idea of a “universal camera” that can see all properties of light at the same time, including ones that can’t be seen by existing cameras. Capasso described that challenge as “very ambitious.”

    “We are here to learn, starting with me,” Capasso said. “I always tell students, ‘If you have something good, you have to give it away. Don’t keep it to yourself.’”

    Science paper:
    Science

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University (US) had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 9:06 am on February 23, 2021 Permalink | Reply
    Tags: "New “metalens” shifts focus without tilting or moving", A new MIT-fabricated metalens shifts focus without tilting; shifting; or otherwise moving., , “Metalens”, , , , , , Reflection, Refraction, The new lens is made of a phase-changing material called GSST. It comprises germanium; antimony;tellurium and selenium.   

    From MIT: “New “metalens” shifts focus without tilting or moving” 

    MIT News


    From MIT News

    February 22, 2021
    Jennifer Chu

    1
    A new MIT-fabricated metalens shifts focus without tilting, shifting, or otherwise moving. The design may enable miniature zoom lenses for drones, cellphones, or night-vision goggles. Credit: the researchers.

    Polished glass has been at the center of imaging systems for centuries. Their precise curvature enables lenses to focus light and produce sharp images, whether the object in view is a single cell, the page of a book, or a far-off galaxy.

    Changing focus to see clearly at all these scales typically requires physically moving a lens, by tilting, sliding, or otherwise shifting the lens, usually with the help of mechanical parts that add to the bulk of microscopes and telescopes.

    Now MIT engineers have fabricated a tunable “metalens” that can focus on objects at multiple depths, without changes to its physical position or shape. The lens is made not of solid glass but of a transparent “phase-changing” material that, after heating, can rearrange its atomic structure and thereby change the way the material interacts with light.

    The researchers etched the material’s surface with tiny, precisely patterned structures that work together as a “metasurface” to refract or reflect light in unique ways. As the material’s property changes, the optical function of the metasurface varies accordingly. In this case, when the material is at room temperature, the metasurface focuses light to generate a sharp image of an object at a certain distance away. After the material is heated, its atomic structure changes, and in response, the metasurface redirects light to focus on a more distant object.

    In this way, the new active “metalens” can tune its focus without the need for bulky mechanical elements. The novel design, which currently images within the infrared band, may enable more nimble optical devices, such as miniature heat scopes for drones, ultracompact thermal cameras for cellphones, and low-profile night-vision goggles.

    “Our result shows that our ultrathin tunable lens, without moving parts, can achieve aberration-free imaging of overlapping objects positioned at different depths, rivaling traditional, bulky optical systems,” says Tian Gu, a research scientist in MIT’s Materials Research Laboratory.

    Gu and his colleagues have published their results today in the journal Nature Communications. His co-authors include Juejun Hu, Mikhail Shalaginov, Yifei Zhang, Fan Yang, Peter Su, Carlos Rios, Qingyang Du, and Anuradha Agarwal at MIT; Vladimir Liberman, Jeffrey Chou, and Christopher Roberts of MIT Lincoln Laboratory; and collaborators at the University of Massachusetts at Lowell, the University of Central Florida, and Lockheed Martin Corporation.

    A material tweak

    The new lens is made of a phase-changing material that the team fabricated by tweaking a material commonly used in rewritable CDs and DVDs. Called GST, it comprises germanium, antimony, and tellurium, and its internal structure changes when heated with laser pulses. This allows the material to switch between transparent and opaque states — the mechanism that enables data stored in CDs to be written, wiped away, and rewritten.

    Earlier this year, the researchers reported adding another element, selenium, to GST to make a new phase-changing material: GSST. When they heated the new material, its atomic structure shifted from an amorphous, random tangle of atoms to a more ordered, crystalline structure. This phase shift also changed the way infrared light traveled through the material, affecting refracting power but with minimal impact on transparency.

    The team wondered whether GSST’s switching ability could be tailored to direct and focus light at specific points depending on its phase. The material then could serve as an active lens, without the need for mechanical parts to shift its focus.

    “In general when one makes an optical device, it’s very challenging to tune its characteristics postfabrication,” Shalaginov says. “That’s why having this kind of platform is like a holy grail for optical engineers, that allows [the metalens] to switch focus efficiently and over a large range.”

    In the hot seat

    In conventional lenses, glass is precisely curved so that incoming light beam refracts off the lens at various angles, converging at a point a certain distance away, known as the lens’ focal length. The lenses can then produce a sharp image of any objects at that particular distance. To image objects at a different depth, the lens must physically be moved.

    Rather than relying on a material’s fixed curvature to direct light, the researchers looked to modify GSST-based metalens in a way that the focal length changes with the material’s phase.

    In their new study, they fabricated a 1-micron-thick layer of GSST and created a “metasurface” by etching the GSST layer into microscopic structures of various shapes that refract light in different ways.

    “It’s a sophisticated process to build the metasurface that switches between different functionalities, and requires judicious engineering of what kind of shapes and patterns to use,” Gu says. “By knowing how the material will behave, we can design a specific pattern which will focus at one point in the amorphous state, and change to another point in the crystalline phase.”

    They tested the new metalens by placing it on a stage and illuminating it with a laser beam tuned to the infrared band of light. At certain distances in front of the lens, they placed transparent objects composed of double-sided patterns of horizontal and vertical bars, known as resolution charts, that are typically used to test optical systems.

    The lens, in its initial, amorphous state, produced a sharp image of the first pattern. The team then heated the lens to transform the material to a crystalline phase. After the transition, and with the heating source removed, the lens produced an equally sharp image, this time of the second, farther set of bars.

    “We demonstrate imaging at two different depths, without any mechanical movement,” Shalaginov says.

    The experiments show that a metalens can actively change focus without any mechanical motions. The researchers say that a metalens could be potentially fabricated with integrated microheaters to quickly heat the material with short millisecond pulses. By varying the heating conditions, they can also tune to other material’s intermediate states, enabling continuous focal tuning.

    “It’s like cooking a steak — one starts from a raw steak, and can go up to well done, or could do medium rare, and anything else in between,” Shalaginov says. “In the future this unique platform will allow us to arbitrarily control the focal length of the metalens.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.


    Stem Education Coalition

    MIT Seal
    Massachusetts Institute of Technology (MIT) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory, the Bates Center, and the Haystack Observatory, as well as affiliated laboratories such as the Broad and Whitehead Institutes.

    MIT Haystack Observatory, Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. MIT is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia, wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after MIT was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst. In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    MIT was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, MIT faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the MIT administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.
    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, MIT catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at MIT that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    MIT’s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at MIT’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, MIT became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected MIT profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of MIT between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, MIT no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and MIT’s defense research. In this period MIT’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. MIT ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six MIT students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at MIT over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, MIT’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    MIT has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the OpenCourseWare project has made course materials for over 2,000 MIT classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    MIT was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, MIT launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, MIT announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the MIT faculty adopted an open-access policy to make its scholarship publicly accessible online.

    MIT has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the MIT community with thousands of police officers from the New England region and Canada. On November 25, 2013, MIT announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the MIT community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) was designed and constructed by a team of scientists from California Institute of Technology, MIT, and industrial contractors, and funded by the National Science Foundation.

    MIT/Caltech Advanced aLigo .

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and MIT physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an MIT graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: