Tagged: Medicine Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:21 am on September 28, 2022 Permalink | Reply
    Tags: "The Secret Microscope That Sparked a Scientific Revolution", A lens 10 times more powerful than anything built before it- a design which wouldn’t be bested for another 150 years., , “Letter 18”: Van Leeuwenhoek (lay-u-when-hoke) had looked everywhere and found what he called animalcules (Latin for “little animals”) in everything., , Despite the prodigious genius of Galileo and Hooke neither produced lenses with anything close to the magnifying power of Van Leeuwenhoek’s., Germ theory, How a Dutch fabric seller became the first person ever to see a microorganism., How did he do it? How did a shopkeeper build a microscopic lens that surpassed the world’s greatest by an order of magnitude?, Medicine, , Microorganisms are the second most abundant life-forms on Earth., Neutron tomography, Only one lens survives today that produces the 270X magnification Van Leeuwenhoek used to make his greatest discovery., Two of the types that Van Leeuwenhoek identified-protozoa and bacteria-responsible for more than half the deaths of every human who has ever lived., Van Leeuwenhoek became the first person to ever see a microorganism., Van Leeuwenhoek crafted more than 500 microscopes but only 11 of his instruments survive today., Van Leeuwenhoek had no idea about the pivotal role his little animals played., Van Leeuwenhoek zealously guarded how he made his revolutionary lens.,   

    From “WIRED“: “The Secret Microscope That Sparked a Scientific Revolution” 

    From “WIRED“

    9.27.22
    Cody Cassidy

    1
    Illustration: Ariel Davis.

    How a Dutch fabric seller made the most powerful magnifying lens of his time—and of the next 150 years—and became the first person ever to see a microorganism.

    “On September 7, 1674, Antonie Van Leeuwenhoek, a fabric seller living just south of The Hague, Netherlands, burst forth from scientific obscurity with a letter to London’s Royal Society detailing an astonishing discovery. While he was examining algae from a nearby lake through his homemade microscope, a creature “with green and very glittering little scales,” which he estimated to be a thousand times smaller than a mite, had darted across his vision.

    Two years later, on October 9, 1676, he followed up with another report so extraordinary that microbiologists today refer to it simply as “Letter 18”: Van Leeuwenhoek (lay-u-when-hoke) had looked everywhere and found what he called animalcules (Latin for “little animals”) in everything.

    He found them in the bellies of other animals, his food, his own mouth, and other people’s mouths. When he noticed a set of remarkably rancid teeth, he asked the owner for a sample of his plaque, put it beneath his lens, and witnessed “an inconceivably great number of little animalcules” moving “so nimbly among one another, that the whole stuff seemed alive.” After a particularly uncomfortable evening, which he blamed on a fatty meal of hot smoked beef, he examined his own stool beneath his lens and saw animalcules that were “somewhat longer than broad, and their belly, which was flat-like, furnished with sundry little paws”—a clear description of what we now know as the parasite giardia.

    With his observations of these fast, fat, and sundry-pawed creatures, Van Leeuwenhoek became the first person to ever see a microorganism—a discovery of almost incalculable significance to human health and our understanding of life on this planet.

    Microorganisms are the second most abundant life-forms on Earth. Two of the types that Van Leeuwenhoek identified—protozoa and bacteria—are by some estimates responsible for more than half the deaths of every human who has ever lived, and yet until he observed them their existence had hardly been seriously postulated, much less proven. Of course, he had no idea about the pivotal role his little animals played, but his revelation provided the foundation for germ theory—the greatest leap forward in the history of medicine. Even more surprising, this monumental discovery was not made by one of the 17th century’s great scientific minds such as Galileo or Isaac Newton. Instead, a secretive, obsessive, self-taught Dutchman of little renown did it by handcrafting a lens 10 times more powerful than anything built before it. His design wouldn’t be bested for another 150 years.

    Yet even as scientists steadily unlocked the secrets of Van Leeuwenhoek’s microworld over the past 350 years, one great mystery eluded them: How the hell did he do it? How did a shopkeeper working during his off hours build a microscopic lens that surpassed the world’s greatest by an order of magnitude?

    While Leeuwenhoek shared nearly everything he saw through his microscope in exactingly detailed letters, he zealously guarded how he made his revolutionary lens. When asked, he declined or obfuscated. Even as his discoveries made him so famous that the King of England requested to see his animalcules and Peter the Great stopped in Delft to see his lenses, the Dutchman never revealed his secrets.

    Van Leeuwenhoek crafted more than 500 microscopes but only 11 of his instruments survive today—and only one that produces the 270X magnification he used to make his greatest discovery. Because that lens remains sandwiched between brass plates, determining its mode of manufacture would require disassembling the microscope—an affront tantamount to scraping paint off the Mona Lisa to determine the sequence of Leonardo’s brush strokes.

    Most of Van Leeuwenhoek’s contemporaries believed he had invented a new glassblowing technique. Clifford Dobell, who wrote the brilliant 1960 biography Antony Van Leeuwenhoek and His Little Animals, postulated that he created his best lenses by simply grinding and polishing them better than anyone else. But in three centuries of speculation, no one could say for sure.

    Tiemen Cocquyt’s interest in Van Leeuwenhoek’s secrets began in the late 2000s, soon after first seeing one of his microscopes, which was then locked away in the basement of the University Museum Utrecht. “How could this toy open up the microworld?” Cocquyt remembers thinking.

    Cocquyt is a curator in the National Museum Boerhaave in Leiden, Netherlands, which houses an array of early optical instruments, including several of the microscopes. He has spent much of his career investigating the origins of Europe’s 17th-century optical revolution, when visual instruments suddenly leaped from simple magnifiers to the great telescopes of Galileo and Christiaan Huygens. (That revolution was inadvertently sparked, Cocquyt says, by Italian advances in making ultra-clear glass.)

    Over Zoom, Cocquyt shows me a replica of a Van Leeuwenhoek microscope, and it does look like a toy—a doll’s hand mirror, to be exact. It’s barely 3 inches tall, with a thin handle leading to a square brass plate. The lens sits beneath a pinhole in the plate’s center, and on the back side a pin for holding samples is connected to a set of screws for focal adjustment.

    When Cocquyt first examined the exposed glass of the lens, he believed its smooth surface indicated it could only have been created by heat. Thus, like many of Van Leeuwenhoek’s contemporaries, he suspected the Dutchman had invented a new glassblowing technique. But without looking inside, he could only speculate.

    The definitive answer, he hoped, might be found with the help of a nuclear reactor.

    At its simplest, a magnifying lens is nothing more than a curved piece of transparent material—usually glass. As light passes through that angled glass, it decelerates, and its path is redirected, or refracted. Depending on its design, a lens can manipulate light in any number of ways, but magnifying lenses like Van Leeuwenhoek’s are spherical—technically called bi-convex—and refract light into a single focal point. “In essence, it serves as a light funnel,” says Steve Ruzin, curator of the Golub Collection of antique microscopes at The University of California-Berkeley. Place your eye at the narrow end of the funnel, and an enormous amount of light arriving from the lens’s focal point crams through your pupil.

    This has two effects. First, the more light your eye receives from an object, the more detail it can perceive. Second, by funneling all the light hitting the lens through the width of your pupil, the image consumes your entire field of view. An object that once projected onto your retina as an undetectable speck now appears in Imax.

    Of course, not all spherical lenses magnify equally. A big lens with a gentle curve refracts the light traveling through it only slightly, and thus barely enlarges the image. A small lens with a sharp curve refracts the light more, enlarging the image a great deal. Moderately powered spherical lenses of the 17th century were about the size of a pea. Van Leeuwenhoek’s greatest lenses were smaller than a sixth that size. At that diameter, construction becomes exceptionally difficult. Even the smallest manufacturing defect—a bubble, scuff, or scratch—could project an enormously disfiguring visual aberration. Larger, less powerful lenses are far more forgiving. They are simple enough to create that they’ve been found among remnants of the oldest civilizations. The earliest-known handcrafted lens is a piece of ground rock crystal capable of 3X magnification that archeologists discovered in a nearly 3,000-year-old Assyrian palace. But because glass occurs naturally, its magnifying power has probably been independently discovered and harnessed many times throughout history.

    Nevertheless, lenses never exceeded much beyond the power of typical modern reading glasses until the early 1590s, when a Dutch lens maker named Hans Janssen built a microscope capable of 9X magnification. Janssen’s contraption inspired many copycats, one of which intrigued Galileo, who modified one of his own telescopes to produce a microscope that one witness claimed could show “flies which appear large as a lamb.”

    In 1665—only a few years before Van Leeuwenhoek peered through his first lens—microscopes emerged into the public consciousness when the polymath Robert Hooke published his surprise bestseller Micrographia. The book included Hooke’s observations, interpretations, illustrations, and even simple instructions on how anyone could make their own lenses: Hold a thin hair of glass over a flame until a bead forms, ‘which will hang at the end of the thread,’ writes Hooke. Snap off the bead, and the result is a spherical magnifier.

    But despite the prodigious genius of Galileo and Hooke neither produced lenses with anything close to the magnifying power of Van Leeuwenhoek’s. “Leeuwenhoek took an opportunity that lay somehow undeveloped in the 1660s and pushed it into the best result that was possible,” Cocquyt says.

    He did so by first eschewing Hooke’s and Galileo’s preference for using multiple lenses arranged in sequence. This design is common in modern microscopes—it’s a bit like projecting an image into another projector—but achieving that magnifying effect without producing huge distortions requires extreme precision. Until that challenge was solved in the early 19th century, single-lens microscopes like Van Leeuwenhoek’s could achieve far superior results.

    Hooke was aware of this shortcoming in his design, yet he still preferred multiple lenses, thanks in part to their ease of use. High-powered lenses have such an extremely short focal point that with just one, the viewer has to place their eye incredibly close to the lens, making blinking difficult. Hooke wrote that he found single-lens microscopes “offensive to my eye.” Ruzin told me that looking through one of Van Leeuwenhoek’s surviving devices is “terribly uncomfortable.”

    Van Leeuwenhoek’s design may have been torture to use, but it was also brilliant—and that brilliance extended beyond his super-powered lenses. Because his device was handheld, he could backlight his sample by holding it up against sunlight or a flame, while his contemporaries’ desk-bound microscopes could only be lit from above. Top-down lighting works well for opaque objects, such as a bee’s stinger, but not for pond water and other translucent samples, where it’s far easier to see microorganisms. To observe these liquids, Van Leeuwenhoek filled a small glass capsule, glued it to the microscope’s pin, and held the instrument up to light.

    “It almost seems as if Van Leeuwenhoek knew that a new microworld was to unfold,” Cocquyt told me. One of his scientific rivals, Johannes Hudde, later said, “isn’t it surprising that we never had the creativity to use these ball lenses to observe little things against the daylight, and that an uneducated and ignorant man such as Van Leeuwenhoek had to be the one to teach this to us.”

    Van Leeuwenhoek was the fifth son of a basket maker, born in the Delft—a small port city in South Holland known for its picturesque waterways, pottery, and beer. At 16 he departed for an apprenticeship as a dry goods seller in Amsterdam, but six years later he returned home, married the daughter of a well-regarded local brewer, and purchased his own fabric shop.

    He spent his twenties growing a successful business but suffered immense personal tragedy. Of the five children he and his wife Barbara had in their 12 years of marriage, four died in infancy; Barbara would soon follow. Few biographical details have survived from his first decade back in Delft, but he held a number of odd jobs in addition to running his draper shop, including working as chief custodian of the local courthouse. A stint as town surveyor offers one clue to Van Leeuwenhoek’s budding scientific potential: proof he had learned geometry.

    His obsession with magnifying lenses began sometime in his mid-thirties. How he came upon it isn’t known. His writings never touch on its origins. Perhaps, as many have speculated, he started using lenses to inspect the quality of his cloth. Or maybe he got caught up in the public mania for microscopes following the publication of Hooke’s Micrographia. Van Leeuwenhoek never mentions the book in any of his letters, but the timing aligns, and he clearly read it: Some of his experiments replicate Hooke’s too closely to be a coincidence. But regardless of how Van Leeuwenhoek got into microscopy, by 1668 he had begun pursuing it with an unusual tenacity. While traveling in England that year, he saw the white cliffs of Dover and felt compelled to examine their chalky slopes beneath his lens: “I observed that chalk consisteth of very small transparent particles; and these transparent particles lying one upon another, is, methinks now, the reason why chalk is white.”

    By 1673, though still operating in complete obscurity, he was already making the world’s most powerful lenses. His obscurity might very well have continued, and the momentous discovery of microorganisms might well have served only to satisfy this curious individual’s psychological compulsion, were it not for a Delft physician named Renier de Graaf.

    De Graaf had come to some renown through his experiments using dyes to determine organ function, and in 1673 he introduced Van Leeuwenhoek to the Royal Society with a note calling him a “most ingenious person … who has devised microscopes which far surpass those which we have hitherto seen.” Following that preamble, Van Leeuwenhoek described the body parts of a louse in his precise-yet-meandering writing style that is, as one biographer notes, “distinguished with a certain business formality, but an almost total lack of coherence.” Over the next year, he sent five more letters to the Royal Society conveying interesting but not particularly controversial observations about the globules in milk and the structure of his fingernails. Then, on September 7, 1674, he sent the letter reporting his shocking discovery: Within an otherwise unremarkable drop of pond water he had seen “glittering” creatures a thousand times smaller than any animal he had previously observed.

    The Society’s secretary, Henry Oldenburg, replied to Van Leeuwenhoek with understandable restraint: “This phenomenon, and some of the following ones seeming to be very extraordinary, the author hath been desired to acquaint us with his method of observing, that others may confirm such observations as these.” Van Leeuwenhoek quickly responded, providing eyewitness accounts of a few local dignitaries who had looked through his lenses—but refused to disclose the secrets of his techniques. “My method for seeing the very smallest animalcules and minute eels, I do not impart to others; nor how to see very many animalcules at one time. That I keep for myself alone,” he wrote. Even when Hooke himself, who learned to speak Dutch just so he could communicate with Van Leeuwenhoek without translation, specifically asked how he made his observations, the stubborn scientist refused for reasons that were, as Hooke later wrote, “best known to himself.”

    Three years later, after a few failed attempts by others, Hooke finally managed to re-create Van Leeuwenhoek’s experiment well enough to prove his observations at a gathering of the Royal Society. The confirmation made the Dutch draper famous, but despite repeated inquiry he took his secrets to the grave.

    In 2018, Cocquyt and his team of researchers set out to reveal them without taking Van Leeuwenhoek’s 350-year-old microscope apart. That’s where the nuclear reactor comes in.

    Neutron tomography is a scanning technique that is as remarkable as it is completely insane. It involves blasting neutrons generated by atomic collisions through a large-caliber barrel—which sticks out of a reactor’s nuclear chamber like the devil’s cannon—and into whatever object needs scanning. Neutrons, beyond irradiating everything they hit, pass right through metals but slam into most low-mass elements, including those in glass. Sensors behind the object detect the neutrons, producing an image that reveals their inner structure. Recent scans have led to the discovery of a dinosaur inside another dinosaur’s belly and the remnants of ice in martian meteorites.

    A nuclear reactor in Van Leeuwenhoek’s hometown of Delft had recently installed a neutron tomography instrument, and Cocquyt used it to examine the Dutchman’s lenses in their birthplace. He first placed a replica microscope in front of the neutron scanner—a test to ensure he didn’t render a priceless piece of scientific history radioactive for 1,000 years. When he next scanned the inventor’s less-powerful microscopes, the images clearly showed the glass to have hard edges and a slight lentil shape. “Exactly what you would expect for a ground lens,” Cocquyt says.

    But on his most powerful lens, neutron tomography revealed that Van Leeuwenhoek used another technique entirely. It was almost perfectly spherical and completely smooth, without the sharp rim inevitably created by a traditional grinding cup. Even more tellingly, the lens retained the faint remnants of a snapped stem, concealed by the brass plates since the day Van Leeuwenhoek had placed it there.

    The stem is a smoking gun. It’s the unavoidable result of forming a lens by melting a thread of glass until a bead forms on its end and then snapping it off. In other words, to make his greatest lens, Van Leeuwenhoek copied Hooke’s simple recipe from the book that likely inspired him. Cocquyt believes this may explain why he was so circumspect when Hooke asked about his methods; he wanted to avoid giving credit to Hooke himself.

    Published in Science Advances [below] last year, Cocquyt’s discovery that Van Leeuwenhoek used a well-known technique reveals a deeper truth about the state of microscopy in the 17th century. It suggests that for all the crafting genius required to make his tiny, super-powered lens, Van Leeuwenhoek’s greatest insight may have been that there was something new to see by making one.

    Fig. 1 The two original Van Leeuwenhoek microscopes that were studied with neutron tomography.
    2
    The lens sits mounted between the brass plates, at the position of the specimen pin. (A) A medium-powered (×118) instrument (Rijksmuseum Boerhaave, Leiden, inventory number V7017). Note that there is a redundant drill hole in the upper left corner of the instrument, not to be confused with its lens aperture, which is directly behind the pin. This microscope is numbered #1 by Van Zuylen. Photo credit: Tom Haartsen Fotografie, Ouderkerk aan de Amstel. (B) The instrument with the highest magnification among the preserved ones (×266) (Utrecht University Museum, inventory number UM-1). This microscope is numbered #3 by Van Zuylen. Photo credit: Utrecht University Museum.

    Fig. 4 Orthogonal cross sections of computed tomography of the Van Leeuwenhoek microscopes from Leiden and Utrecht.
    3
    (A) The cross sections of the lentil-shaped lens of the medium-powered microscope (V7017). (B) The circular cross section of the high-powered microscope (UM-1). The XZ projection shows that this ball-shaped lens has a tiny glass stem connected to it.

    [More instructive images are available in the science paper.]

    This seems intuitive and incredibly obvious to a modern reader. What kind of scientist wouldn’t want to see in greater detail? But before Van Leeuwenhoek, most microscopists used their lenses to reveal greater detail about the visible world—things they could already see to some degree with the naked eye. Their drawings of bee stingers and ant legs do not lose their resemblance to the creatures readers were familiar with. Had they used Van Leeuwenhoek’s high-powered lenses, their depictions would not have been recognizable to anyone.

    Leeuwenhoek had no inkling that minuscule, alien-like creatures awaited him, but his obsession with the microworld drove him to leave the visible world behind and discover a vast new microbial one living under—and inside—our noses.”

    Science paper:
    Science Advances

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:14 pm on September 6, 2022 Permalink | Reply
    Tags: "Analyzing the potential of AlphaFold in drug discovery", An artificial intelligence program called AlphaFold, , , , Medicine, MIT’s Institute for Medical Engineering and Science   

    From MIT’s Institute for Medical Engineering and Science: “Analyzing the potential of AlphaFold in drug discovery” 

    From MIT’s Institute for Medical Engineering and Science

    At

    The Massachusetts Institute of Technology

    9.6.22
    Anne Trafton | MIT News Office

    1
    Using protein structures generated by the AI software AlphaFold, MIT researchers investigated whether existing computational models could identify the mechanisms of action of antibacterial compounds. Image: MIT News, with images from iStockphoto.

    Over the past few decades, very few new antibiotics have been developed, largely because current methods for screening potential drugs are prohibitively expensive and time-consuming. One promising new strategy is to use computational models, which offer a potentially faster and cheaper way to identify new drugs.

    A new study from MIT reveals the potential and limitations of one such computational approach. Using protein structures generated by an artificial intelligence program called AlphaFold, the researchers explored whether existing models could accurately predict the interactions between bacterial proteins and antibacterial compounds. If so, then researchers could begin to use this type of modeling to do large-scale screens for new compounds that target previously untargeted proteins. This would enable the development of antibiotics with unprecedented mechanisms of action, a task essential to addressing the antibiotic resistance crisis.

    However, the researchers, led by James Collins, the Termeer Professor of Medical Engineering and Science in MIT’s Institute for Medical Engineering and Science (IMES) and Department of Biological Engineering, found that these existing models did not perform well for this purpose. In fact, their predictions performed little better than chance.

    “Breakthroughs such as AlphaFold are expanding the possibilities for in silico drug discovery efforts, but these developments need to be coupled with additional advances in other aspects of modeling that are part of drug discovery efforts,” Collins says. “Our study speaks to both the current abilities and the current limitations of computational platforms for drug discovery.”

    In their new study, the researchers were able to improve the performance of these types of models, known as molecular docking simulations, by applying machine-learning techniques to refine the results. However, more improvement will be necessary to fully take advantage of the protein structures provided by AlphaFold, the researchers say.

    Collins is the senior author of the study, which appears today in the journal Molecular Systems Biology. MIT postdocs Felix Wong and Aarti Krishnan are the lead authors of the paper.

    Molecular interactions

    The new study is part of an effort recently launched by Collins’ lab called the Antibiotics-AI Project, which has the goal of using artificial intelligence to discover and design new antibiotics.

    AlphaFold, an AI software developed by DeepMind and Google, has accurately predicted protein structures from their amino acid sequences. This technology has generated excitement among researchers looking for new antibiotics, who hope that they could use the AlphaFold structures to find drugs that bind to specific bacterial proteins.

    To test the feasibility of this strategy, Collins and his students decided to study the interactions of 296 essential proteins from E. coli with 218 antibacterial compounds, including antibiotics such as tetracyclines.

    The researchers analyzed how these compounds interact with E. coli proteins using molecular docking simulations, which predict how strongly two molecules will bind together based on their shapes and physical properties.

    This kind of simulation has been successfully used in studies that screen large numbers of compounds against a single protein target, to identify compounds that bind the best. But in this case, where the researchers were trying to screen many compounds against many potential targets, the predictions turned out to be much less accurate.

    By comparing the predictions produced by the model with actual interactions for 12 essential proteins, obtained from lab experiments, the researchers found that the model had false positive rates similar to true positive rates. That suggests that the model was unable to consistently identify true interactions between existing drugs and their targets.

    Using a measurement often used to evaluate computational models, known as auROC, the researchers also found poor performance. “Utilizing these standard molecular docking simulations, we obtained an auROC value of roughly 0.5, which basically says you’re doing no better than if you were randomly guessing,” Collins says.

    The researchers found similar results when they used this modeling approach with protein structures that have been experimentally determined, instead of the structures predicted by AlphaFold.

    “AlphaFold appears to do roughly as well as experimentally determined structures, but we need to do a better job with molecular docking models if we’re going to utilize AlphaFold effectively and extensively in drug discovery,” Collins says.

    Better predictions

    One possible reason for the model’s poor performance is that the protein structures fed into the model are static, while in biological systems, proteins are flexible and often shift their configurations.

    To try to improve the success rate of their modeling approach, the researchers ran the predictions through four additional machine-learning models. These models are trained on data that describe how proteins and other molecules interact with each other, allowing them to incorporate more information into the predictions.

    “The machine-learning models learn not just the shapes, but also chemical and physical properties of the known interactions, and then use that information to reassess the docking predictions,” Wong says. “We found that if you were to filter the interactions using those additional models, you can get a higher ratio of true positives to false positives.”

    However, additional improvement is still needed before this type of modeling could be used to successfully identify new drugs, the researchers say. One way to do this would be to train the models on more data, including the biophysical and biochemical properties of proteins and their different conformations, and how those features influence their binding with potential drug compounds.

    This study both lets us understand just how far we are from realizing full machine-learning-based paradigms for drug development, and provides fantastic experimental and computational benchmarks to stimulate and direct and guide progress towards this future vision,” says Roy Kishony, a professor of biology and computer science at Technion (the Israel Institute of Technology), who was not involved in the study.

    With further advances, scientists may be able to harness the power of AI-generated protein structures to discover not only new antibiotics but also drugs to treat a variety of diseases, including cancer, Collins says. “We’re optimistic that with improvements to the modeling approaches and expansion of computing power, these techniques will become increasingly important in drug discovery,” he says. “However, we have a long way to go to achieve the full potential of in silico drug discovery.”

    The research was funded by the James S. McDonnell Foundation, the Swiss National Science Foundation, the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, and the Broad Institute of MIT and Harvard. The Antibiotics-AI Project is supported by the Audacious Project, the Flu Lab, the Sea Grape Foundation, and the Wyss Foundation.

    Science paper:
    Molecular Systems Biology

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT Institute for Medical Engineering and Science or IMES is a research institute at the Massachusetts Institute of Technology that aims to combine engineering, medicine, and science to solve challenges in human health. The institute was established in 2012.

    IMES serves to bring together scientific advances with clinical medicine by serving as the point of intersection with major hospitals and industry partners. IMES is also the MIT home for the Harvard–MIT Program in Health Sciences and Technology.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 12:06 pm on September 5, 2022 Permalink | Reply
    Tags: "60 New Autism Genes Identified", , , Medicine   

    From Columbia University: “60 New Autism Genes Identified” 

    Columbia U bloc

    From Columbia University

    8.18.22

    1

    A new study led by Columbia researchers has uncovered 60 genes linked to autism spectrum disorder (ASD) that may provide important clues to the causes of autism across the full spectrum of the disorder.

    “Overall, the genes we found may represent a different class of genes that are more directly associated with the core symptoms of ASD than previously discovered genes,” says Wendy Chung, MD, PhD, the Kennedy Family Professor of Pediatrics and chief of clinical genetics in the Department of Pediatrics at the Columbia University Vagelos College of Physicians and Surgeons.

    The findings were published Aug. 18 in Nature Genetics [below].

    Several genes have been previously linked to autism and as a group are responsible for about 20% of all cases. Most individuals who carry these genes have profound forms of autism and additional neurological issues, such as epilepsy and intellectual disability.

    To uncover hidden autism genes that can explain the majority of cases, the researchers tapped into data from nearly 43,000 people with autism, including 35,000 individuals from the SPARK autism research study of the Simons Foundation.

    Five of the genes identified by the new study have a more moderate impact on autism characteristics, including cognition, than previously discovered genes.

    “We need to do more detailed studies including more individuals who carry these genes to understand how each gene contributes to the features of autism, but we think these genes will help us unravel the biological underpinnings that lead to most cases of autism,” Chung says.

    The five newly identified genes also explain why autism often seems to run in families. Unlike previously known autism genes, which are due to de novo or new mutations, genetic variants in the five new genes were often inherited from the participant’s parents.

    Chung says that many more moderate-effect genes remain to be discovered and finding them should help researchers better understand the biology of the brain and behavior across the full spectrum of autism.

    Science paper:
    Nature Genetics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

     
  • richardmitnick 9:13 am on September 2, 2022 Permalink | Reply
    Tags: "Largest Study to Date Identifies New Autism Genes", A study identified new genes linked to autism and other neurodevelopmental disorders., , , Medicine   

    From Carnegie Mellon University: “Largest Study to Date Identifies New Autism Genes” 

    From Carnegie Mellon University

    8.31.22
    Stacy Kish

    Abby Simmons
    Dietrich College of Humanities and Social Sciences
    abbysimmons@cmu.edu

    A study identified new genes linked to autism and other neurodevelopmental disorders.

    Autism spectrum disorder affects about 2% of children in the United States. While most cases are inherited, a small number are a result of rare genetic variations. A new study provides the results of the largest genetic analysis to date to understand the genetics behind autism and other neurodevelopmental conditions. The results reveal 185 genes associated with autism, many for the first time. The study was published in the Aug. 18 issue of the journal Nature Genetics [below].

    The study examined the genomes of more than 150,000 participants. Of this group, 20,000 have been diagnosed with autism. The results offer the most comprehensive analysis of the diverse forms of genetic variation in autism and shed insight on the molecular roots of brain development and neurodiversity, presenting potential new lines of inquiry to understand the biology of autism.

    “Benefiting from an international collaboration and a massive collection of data, we have identified hundreds of genes that can be pursued in further studies of autism,” said co-senior author Kathryn Roeder, the UPMC Professor of Statistics and Life Sciences in the Department of Statistics and Data Science at Carnegie Mellon University.

    1
    Kathryn Roeder

    “With these findings we are beginning to understand how these genes and genetic variations exert their effects during neurodevelopment.”

    This study benefits from new data analysis methods that focused on the sections of the protein-coding portions of the genome, called the exome. To reveal genetic variants associated with autism, the researchers analyzed exome sequencing data from the Autism Sequencing Consortium, the Simons Foundation Powering Autism Research (SPARK) project, and the Lundbeck Foundation Initiative for Integrative Psychiatric Research. This approach generated large volumes of data that were analyzed using cloud-based computing to identify changes that could be associated to genetic variations linked to autism.

    “Resources pooled together by this collaboration allowed us to extract information from genetic data more efficiently and to start teasing apart the relationship between autism and other developmental disabilities, bringing us closer to understanding the fundamental neurobiology of autism,” said co-senior author Bernie Devlin, professor of psychiatry and clinical and translational science at the University of Pittsburgh.

    The team identified 185 genes that are significantly associated with autism. Many of the variants were new and not inherited from the parents. The variations resulted from the loss of one copy of a gene, the change in the spelling of a gene or duplicate copies that could all alter a gene’s function.

    The researchers compared the newly identified autism variants to a large dataset of 31,000 families in which one child has been diagnosed with developmental delay and/or other neurodevelopmental conditions. They found a great deal of overlap between the newly identified genes and other conditions associated with developmental delay.

    In this study, Roeder focused on the expression of the gene in the developing human neurons. She determined genes linked predominantly to developmental delay tend to be active in early neuronal development. Conversely, autism-related genes tend to play a role in more mature neurons.

    In addition, the team found the subset of genes that are more strongly tied to autism show some overlap with genes uncovered in an earlier study of schizophrenia. This result suggests a possible shared biological pathways underlying the two conditions.

    With new data expected soon from the SPARK project and plans to analyze whole-genome data that includes both coding and noncoding sequences, the scientists hope to fill out a more complete picture of the genetic architecture of autism and related conditions.

    “This is just the first discovery step,” said co-first author and Broad Institute associate member Harrison Brand, an assistant professor in neurology at Massachusetts General Hospital and Harvard Medical School. “Now that we have this list of high-confidence genes, we can take it to the functional modeling stage to explore the biological mechanisms that underlie the features of autism.”

    Roeder and Devlin were joined on this study by colleagues from the University of Pittsburgh School of Medicine, the Broad Institute of MIT and Harvard, Icahn School of Medicine at Mount Sinai and University of California San Francisco. The project, titled “Rare coding variation provides insight into the genetic architecture and phenotypic context of autism,” received funding from the Simons Foundation for Autism Research Initiative, including the SSC-ASC Genomics Consortium and the SPARK project, the National Human Genome Research Institute, the National Institute of Mental Health, the National Institute of Child Health and Human Development and the Seaver Foundation.

    Science paper:
    Nature Genetics

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Carnegie Mellon University is a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.
    CMU has been a birthplace of innovation since its founding in 1900.
    Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.
    Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.
    We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.

    The university was established by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research, formerly a part of the University of Pittsburgh. Since then, the university has operated as a single institution.

    The university has seven colleges and independent schools, including the College of Engineering, College of Fine Arts, Dietrich College of Humanities and Social Sciences, Mellon College of Science, Tepper School of Business, Heinz College of Information Systems and Public Policy, and the School of Computer Science. The university has its main campus located 3 miles (5 km) from Downtown Pittsburgh, and the university also has over a dozen degree-granting locations in six continents, including degree-granting campuses in Qatar and Silicon Valley.

    Past and present faculty and alumni include 20 Nobel Prize laureates, 13 Turing Award winners, 23 Members of the American Academy of Arts and Sciences, 22 Fellows of the American Association for the Advancement of Science , 79 Members of the National Academies, 124 Emmy Award winners, 47 Tony Award laureates, and 10 Academy Award winners. Carnegie Mellon enrolls 14,799 students from 117 countries and employs 1,400 faculty members.
    Research

    Carnegie Mellon University is classified among “R1: Doctoral Universities – Very High Research Activity”. For the 2006 fiscal year, the university spent $315 million on research. The primary recipients of this funding were the School of Computer Science ($100.3 million), the Software Engineering Institute ($71.7 million), the College of Engineering ($48.5 million), and the Mellon College of Science ($47.7 million). The research money comes largely from federal sources, with a federal investment of $277.6 million. The federal agencies that invest the most money are the National Science Foundation and the Department of Defense, which contribute 26% and 23.4% of the total university research budget respectively.

    The recognition of Carnegie Mellon as one of the best research facilities in the nation has a long history—as early as the 1987 Federal budget Carnegie Mellon University was ranked as third in the amount of research dollars with $41.5 million, with only Massachusetts Institute of Technology and Johns Hopkins University receiving more research funds from the Department of Defense.

    The Pittsburgh Supercomputing Center is a joint effort between Carnegie Mellon, University of Pittsburgh, and Westinghouse Electric Company. Pittsburgh Supercomputing Center was founded in 1986 by its two scientific directors, Dr. Ralph Roskies of the University of Pittsburgh and Dr. Michael Levine of Carnegie Mellon. Pittsburgh Supercomputing Center is a leading partner in the TeraGrid, the National Science Foundation’s cyberinfrastructure program.

    Scarab lunar rover is being developed by the RI.

    The Robotics Institute (RI) is a division of the School of Computer Science and considered to be one of the leading centers of robotics research in the world. The Field Robotics Center (FRC) has developed a number of significant robots, including Sandstorm and H1ghlander, which finished second and third in the DARPA Grand Challenge, and Boss, which won the DARPA Urban Challenge. The Robotics Institute has partnered with a spinoff company, Astrobotic Technology Inc., to land a CMU robot on the moon by 2016 in pursuit of the Google Lunar XPrize. The robot, known as Andy, is designed to explore lunar pits, which might include entrances to caves. The RI is primarily sited at Carnegie Mellon’s main campus in Newell-Simon hall.

    The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon, with offices in Pittsburgh, Pennsylvania, USA; Arlington, Virginia, and Frankfurt, Germany. The SEI publishes books on software engineering for industry, government and military applications and practices. The organization is known for its Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI), which identify essential elements of effective system and software engineering processes and can be used to rate the level of an organization’s capability for producing quality systems. The SEI is also the home of CERT/CC, the federally funded computer security organization. The CERT Program’s primary goals are to ensure that appropriate technology and systems management practices are used to resist attacks on networked systems and to limit damage and ensure continuity of critical services subsequent to attacks, accidents, or failures.

    The Human–Computer Interaction Institute (HCII) is a division of the School of Computer Science and is considered one of the leading centers of human–computer interaction research, integrating computer science, design, social science, and learning science. Such interdisciplinary collaboration is the hallmark of research done throughout the university.

    The Language Technologies Institute (LTI) is another unit of the School of Computer Science and is famous for being one of the leading research centers in the area of language technologies. The primary research focus of the institute is on machine translation, speech recognition, speech synthesis, information retrieval, parsing and information extraction. Until 1996, the institute existed as the Center for Machine Translation that was established in 1986. From 1996 onwards, it started awarding graduate degrees and the name was changed to Language Technologies Institute.

    Carnegie Mellon is also home to the Carnegie School of management and economics. This intellectual school grew out of the Tepper School of Business in the 1950s and 1960s and focused on the intersection of behavioralism and management. Several management theories, most notably bounded rationality and the behavioral theory of the firm, were established by Carnegie School management scientists and economists.

    Carnegie Mellon also develops cross-disciplinary and university-wide institutes and initiatives to take advantage of strengths in various colleges and departments and develop solutions in critical social and technical problems. To date, these have included the Cylab Security and Privacy Institute, the Wilton E. Scott Institute for Energy Innovation, the Neuroscience Institute (formerly known as BrainHub), the Simon Initiative, and the Disruptive Healthcare Technology Institute.

    Carnegie Mellon has made a concerted effort to attract corporate research labs, offices, and partnerships to the Pittsburgh campus. Apple Inc., Intel, Google, Microsoft, Disney, Facebook, IBM, General Motors, Bombardier Inc., Yahoo!, Uber, Tata Consultancy Services, Ansys, Boeing, Robert Bosch GmbH, and the Rand Corporation have established a presence on or near campus. In collaboration with Intel, Carnegie Mellon has pioneered research into claytronics.

     
  • richardmitnick 7:20 am on August 29, 2022 Permalink | Reply
    Tags: "Old Mysteries and New Insights", Ancient DNA illuminates 15000 years of history at Europe-Asia crossroads., , , Medicine,   

    From The Harvard Medical School: “Old Mysteries and New Insights” 

    harvard-medical-school-bloc

    From The Harvard Medical School

    at

    Harvard University
    News & Research

    Ancient DNA illuminates 15000 years of history at Europe-Asia crossroads.

    1

    Fresco of a horse from the ancient kingdom of Urartu in what is now Armenia and Turkey. The new DNA analyses included several individuals associated with the kingdom. Image: EvgenyGenkin/CC BY-SA 3.0

    Growing up in Greece, Iosif Lazaridis shared his compatriots’ appreciation that they lived in “the crossroads of Europe and Asia,” past and present.

    To the east lay Turkey and Armenia, gateways to the Near East and Asia. To the north were the Balkans, leading the way into central Europe.

    Lazaridis wondered how people in these regions were related to one another. Who shared long-ago ancestry with whom? How might those forebears have moved around this part of the world and had children with one another throughout millennia? How deeply connected were their modern descendants despite national borders and political conflicts?

    Many people moved to Greece from the Balkans after the collapse of the Soviet Union, and many Greeks descend from refugees who came from Turkey in the early 20th century, Lazaridis knew. “Surely these changes that happened as I was growing up and that I heard about from old people were just the tip of the iceberg of what had happened in the centuries before,” he said.

    The questions simmered at the back of Lazaridis’ mind as he moved to California to earn a PhD in information and computer science. They followed him to Boston, where he joined the lab of geneticist David Reich at Harvard Medical School.

    There, he and colleagues around the world began to unearth answers through the study of ancient DNA.

    Now, Lazaridis is co-first author of a trio of papers, published Aug. 25 in the journal Science [below], that tell the most complete story yet of ancestry in this pivotal part of the world.

    The studies describe 15,000 years of genetic history in what the team has dubbed the Southern Arc: the lands sweeping from southeastern Europe into the Middle East, encompassing more than a dozen countries from Romania and Serbia through Greece and Turkey into Armenia, Azerbaijan, Iran, Lebanon, and Israel.

    Featuring the genomes of more than 1,300 ancient people, 727 of them sequenced for the first time, the work represents one of the largest analyses to date of ancient human DNA.

    “Often there’s an artificial distinction between Europe and Asia that people make,” said Lazaridis, research fellow in genetics at HMS who serves as a staff scientist in the Reich lab. “For these studies, we said, we have a bunch of people who are neighbors; let’s forget about such preconceptions and try to figure out how they’re all related and who moved where across time.”

    1
    Map of the intersection between Europe and the Middle East shows many yellow dots interspersed with pink and gray dots connected by black lines to create more than one dozen defined regionsThe geography of the Southern Arc as described in the new trio of papers. The colored circles and squares mark sites where ancient individuals whose DNA was analyzed in the studies were found. Yellow dots indicate genomes studied for the first time. Image: Lazaridis, Alpaslan-Roodenberg, et al., Science

    In addition to illuminating shifts in different populations’ genetic makeup across the centuries, the analyses provide fresh genetic insights into old mysteries such as the identities of Minoan and Mycenaean peoples and the geographic origin of Indo-European languages.

    “This is a major leap forward in the field and a milestone in terms of richness of data from this complex region,” said co-senior author Reich, professor of genetics at HMS and professor of human evolutionary biology at Harvard University. “Some very striking stories emerge thanks to the power of ancient DNA in large sample sizes.”

    No easy feat

    The results were made possible by collaboration across borders and specialties. The Reich lab partnered with researchers at the University of Vienna to lead a 206-person team based in more than 30 countries.

    “These studies were accomplished through a huge amount of raw human effort,” said Lazaridis.

    Lazaridis shares first authorship of the papers with Songül Alpaslan-Roodenberg, a physical anthropologist from Turkey who is affiliated with the Reich lab and the University of Vienna. Reich shares senior authorship with Ron Pinhasi, a physical anthropologist and geneticist at the University of Vienna.

    “One amazing thing about these papers is they represent cooperation between countries where it’s historically been difficult to get along, such as Greece, Turkey, Armenia, Albania, Bulgaria, and North Macedonia,” said Reich. “Navigating that was a complex issue.”

    The team also overcame climatic challenges.

    Until a few years ago, it was difficult or impossible to recover DNA from ancient people buried in regions like the Middle East because heat degrades the delicate material. The discovery in 2015 that an inner-ear bone does an exceptional job of preserving DNA and the development of new sequencing and analytic techniques threw open the doors to studying large collections of ancient DNA from previously inaccessible environments.

    Co-authors in different fields worked together to interpret the findings in light of what was already known through archaeological evidence, ancient texts, and other materials. Some of the discoveries add detail to existing histories. Others fill in gaps. Still others challenge conventional theories.

    “Once you look at this many individuals across space and time in an expansive view, you start seeing connections you couldn’t if you focused on only one site or period,” said Lazaridis.

    The findings

    “These findings are another example of how archaeogenetic results can provide a missing layer of information that cannot be obtained from other sources,” said Alpaslan-Roodenberg.

    Science papers:
    Science
    The genetic history of the Southern Arc: A bridge between West Asia and Europe

    Ancient DNA from Mesopotamia suggests distinct Pre-Pottery and Pottery Neolithic migrations into Anatolia

    A genetic probe into the ancient and medieval history of Southern Europe and West Asia

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    harvard-medical-school-campus

    The The Harvard Medical School community is dedicated to excellence and leadership in medicine, education, research and clinical care. To achieve our highest aspirations, and to ensure the success of all members of our community, we value and promote common ideals that center on collaboration and service, diversity, respect, integrity and accountability, lifelong learning, and wellness and balance. To be a citizen of this community means embracing a collegial spirit that fosters inclusion and promotes achievement.

    From Harvard University

    8.25.22
    STEPHANIE DUTCHEN

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge (UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 8:56 am on August 22, 2022 Permalink | Reply
    Tags: "Proximity to fracking sites associated with risk of childhood cancer", , Medicine,   

    From Yale University: “Proximity to fracking sites associated with risk of childhood cancer” 

    From Yale University

    8.17.22

    Fred Mamoun
    fred.mamoun@yale.edu
    203-436-2643

    1
    Credit: iStock.com/milehightraveler.

    Pennsylvania children living near unconventional oil and gas (UOG) developments at birth were two to three times more likely to be diagnosed with leukemia between the ages of 2 and 7 than those who did not live near this oil and gas activity, after accounting for other factors that could influence cancer risk, a novel study from the Yale School of Public Health finds.

    The registry-based study, published Aug. 17 in the journal Environmental Health Perspectives [below], included nearly 2,500 Pennsylvania children, 405 of whom were diagnosed with acute lymphoblastic leukemia, the most common type of cancer in children.

    Acute lymphoblastic leukemia, also referred to as ALL, is a type of leukemia that arises from mutations to lymphoid immune cells. Although long-term survival rates are high, children who survive this disease may be at higher risk of other health problems, developmental challenges, and psychological issues. Unconventional oil and gas development, more commonly referred to as fracking (short for hydraulic fracturing), is a method for extracting gas and oil from shale rock. The process involves injecting water, sand, and chemicals into bedrock at high pressure, which allows gas and oil to flow into a well and then be collected for market.

    For communities living nearby, UOG development can pose a number of potential threats. Chemical threats include, for example, air pollution from vehicle emissions and well and road construction, and water pollution from hydraulic fracturing or spills of wastewater. Hundreds of chemicals have been reportedly used in UOG injection water or detected in wastewater, some of which are known or suspected to be cancer causing. The paucity of data on the association between UOG and childhood cancer outcomes has fueled public concerns about possible cancer clusters in heavily drilled regions and calls for more research and government action.

    “Unconventional oil and gas development can both use and release chemicals that have been linked to cancer, so the potential for children living near UOG to be exposed to these chemical carcinogens is a major public health concern,” said the study’s senior author, Nicole Deziel, associate professor of epidemiology at the Yale School of Public Health.

    “Studies of UOG exposure and cancer are extremely few in number. We set out to conduct a high-quality study to further investigate this potential relationship,” added Cassandra Clark, the study’s first author and a postdoctoral associate at the Yale Cancer Center. “Our results indicate that exposure to UOG may be an important risk factor for ALL, particularly for children exposed in utero.”

    The study also found that drinking water could be an important pathway of exposure to oil and gas-related chemicals. The authors applied a new exposure metric in this study that they call “IDups” (which stands for “inverse distance to the nearest upgradient unconventional oil and gas well”). This means that the researchers identified UOG wells that fell within a child’s watershed area — the zone from which a drinking water well serving their home would likely draw water — and calculated the distance from the home to the nearest of those UOG wells. UOG wells falling within the watershed area are expected to be more likely to impact the home’s drinking water supply, they said.

    “Previous health studies have found links between proximity to oil and gas drilling and various children’s health outcomes,” said Deziel. “This study is among the few to focus on drinking water specifically and the first to apply a novel metric [Environ. Sci. Technol. (below)] designed to capture potential exposure through this pathway.”

    This work adds to a growing body of literature [Current Environmental Health Reports (below)] on UOG exposure and children’s health used to inform policy, such as setback distances (the required minimum distance between a private residence or other sensitive location and a UOG well). Current setback distances are the subject of much debate in the United States, with some calling for setback distances to be lengthened to more than 305 meters (1,000 feet) and as far as 1,000 meters (3,281 feet). The allowable setback in Pennsylvania, where the study was conducted, is 500 feet, or 152 meters.

    “Our findings of increased risk of ALL at distances of two kilometers or more from UOG operations, in conjunction with evidence from numerous other studies, suggest that existing setback distances, which may be as little as 150 feet, are insufficiently protective of children’s health,” Clark said. “We hope that studies like ours are taken into account in the ongoing policy discussion around UOG setback distances.”

    Other authors from the Yale School of Public Health include Xiaomei Ma, Joshua L. Warren, Keli M. Sorrentino, Nicholaus P. Johnson, and Nina S. Kadan-Lottick (Kadan-Lottick is now at Georgetown University). Authors from the Yale School of Environment include James E. Saiers and Mario Soriano Jr. (Soriano is now at Princeton University).

    Science papers:
    Environmental Health Perspectives
    Environ. Sci. Technol.
    Current Environmental Health Reports

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 10:11 am on August 9, 2022 Permalink | Reply
    Tags: "The Effects of Noise on Health", , Medicine, The European Environmental Agency reports that noise ranks second only to air pollution as the environmental exposure most harmful to public health.,   

    From The Harvard Medical School: “The Effects of Noise on Health” 

    harvard-medical-school-bloc

    From The Harvard Medical School

    at

    Harvard University
    News & Research

    8.9.22
    Stephanie Dutchen

    1
    Credit: Merovingian/Digitalvision Vectors/Getty images.

    Airplanes pierce the night. Leaf blowers interrupt fall mornings. Quiet gives way to air conditioners, pounding music, construction equipment, street traffic, barking dogs, sirens.

    For half a century, U.S. agencies such as the EPA have deemed noise pollution “a growing danger to the health and welfare of the Nation’s population.” The European Environmental Agency reports that noise ranks second only to air pollution as the environmental exposure most harmful to public health [below].

    Yet, in sectors from government regulation to health care practice, the threats posed by noise remain “often underestimated,” according to the International Commission on Biological Effects of Noise.

    Researchers and clinicians are trying to change this. They’ve shown that noise pollution not only drives hearing loss, tinnitus, and hypersensitivity to sound, but can cause or exacerbate cardiovascular disease; type 2 diabetes; sleep disturbances; stress; mental health and cognition problems, including memory impairment and attention deficits; childhood learning delays; and low birth weight. Scientists are investigating other possible links, including to dementia.

    Research also reveals how noise pollution connects with climate change. Many contributors to global warming generate noise, chief among them transportation and fossil fuel extraction and processing. Urban sprawl and deforestation destroy natural carbon absorption reservoirs while removing natural sound buffers. Technologies that help people deal with climate change, like air conditioners and generators, can be noisy. Conversely, certain climate mitigation strategies such as creating green spaces in concrete jungles offer opportunities to muffle noise.

    Wanted: better models

    Estimates hold that chronic noise exposure contributes to 48,000 new cases of heart disease in Europe each year and disrupts the sleep of 6.5 million people. Quantifying noise pollution’s contribution to health problems and death in the United States, however, remains a challenge because of poor measuring and monitoring, says Peter James, an HMS associate professor of population medicine in Harvard Pilgrim Health Care Institute’s Department of Population Medicine. This makes it harder to determine the best policies and medical practices for care.

    “The U.S. hasn’t really funded noise control or noise research since the 1980s,” says James. “It’s a big problem. We need to prioritize this so we can really pin down how noise affects health.”

    James helps colleagues apply existing noise modeling data to large cohort studies, such as the Nurses’ Health Study, to analyze participants’ noise exposures and health outcomes. The models have low resolution, however, and working with them can be frustrating: researchers can’t be sure whether a negative finding means noise doesn’t contribute to a particular outcome, such as something as seemingly unrelated as menopause onset, or the data weren’t robust enough to reveal a connection. James hopes to augment epidemiological data with input from participants using sensors and apps, which can deliver precise location and health information.

    “Given what we do know, noise is too significant an issue for us to sit around and wait to have perfect data,” he says.

    James led a seminal 2017 study, published in Environmental Health Perspectives [below], which shows that people in neighborhoods with low socioeconomic status and higher proportions of residents of color bear the brunt of noise pollution in this country.

    “We want our patients to reduce their exposure as much as possible, such as wearing ear plugs or investing in soundproofing insulation, but that’s not possible for many who live in the noisiest areas,” he says. “To say the onus is on the individual to fix their noise exposure is not feasible.”

    Heart, felt

    Another branch of inquiry focuses on how vibrations from noise can cause impairments. Part of the answer lies in the stress-response system. Researchers have found that the more people are bothered by noise, the greater the health risks they face from it. Yet, even those who tune out noise pollution, whether when awake or asleep, experience autonomic stress reactions.

    Ahmed Tawakol, an HMS associate professor of medicine at Massachusetts General Hospital, and Michael Osborne, an HMS instructor in medicine at Mass General, have used advanced PET scanning to show that transportation noise is associated with heightened activity of the amygdala relative to regulatory cortical regions. Amygdalar activity can trigger stress pathways, including inflammation, that can lead to cardiovascular and metabolic diseases. Participants with a higher ratio of amygdalar to cortical activity had more risk for adverse outcomes in follow-up. The link persisted even after accounting for other disease risk factors.

    In the clinic, Tawakol and Osborne say that evidence supports strategic intervention rather than trying to squeeze questions about noise into each patient encounter.

    “If a patient mentions noise as a cause of stress, especially if they have or are at risk of cardiovascular disease, I’d certainly recommend personal noise mitigation strategies and stress reduction techniques,” Osborne says.

    As researchers reveal the mechanisms and magnitude of noise-induced illness, clinicians will become better equipped to identify at-risk patients and prescribe effective solutions.

    Science papers:
    Environmental Health Perspectives 2017

    The European Environmental Agency reports that noise ranks second only to air pollution as the environmental exposure most harmful to public health:

    EEA, 2020, Environmental noise in Europe — 2020, EEA Report No 22/2019, accessed 5 August 2020.

    ETC/ACM, 2018, Implications of environmental noise on health and wellbeing in Europe, Eionet Report ETC/ACM No 2018/10, European Topic Centre on Air Pollution and Climate Change Mitigation, accessed 3 April 2019.

    van Kamp, I., et al., 2018, Study on methodology to perform environmental noise and health assessment, RIVM Report No 2018-0121, National Institute for Public Health and the Environment (Netherlands).

    WHO, 2019, ‘International Statistical Classification of Diseases and Related Health Problems, 10th revision’, World Health Organization, accessed 5 November 2020.

    WHO Europe, 2016, Health risk assessment of air pollution — general principles, World Health Organization Regional Office for Europe, Copenhagen, accessed 4 August 2020.

    WHO Europe, 2018, Environmental noise guidelines for the European region, World Health Organization Regional Office for Europe, Copenhagen, accessed 7 December 2018.

    WHO and JRC, 2011, Burden of disease from environmental noise — quantification of healthy life years lost in Europe, World Health Organization, accessed 5 May 2014.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    harvard-medical-school-campus

    The The Harvard Medical School community is dedicated to excellence and leadership in medicine, education, research and clinical care. To achieve our highest aspirations, and to ensure the success of all members of our community, we value and promote common ideals that center on collaboration and service, diversity, respect, integrity and accountability, lifelong learning, and wellness and balance. To be a citizen of this community means embracing a collegial spirit that fosters inclusion and promotes achievement.

    From Harvard University

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge (UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 4:28 pm on July 20, 2022 Permalink | Reply
    Tags: "The brains of children with Autism Spectrum Disorder may not always ‘see’ body language", , , , Medicine,   

    From The University of Rochester: “The brains of children with Autism Spectrum Disorder may not always ‘see’ body language” 

    From The University of Rochester

    Jul. 18, 2022

    Kelsie Smith Hayduk
    (585) 273-1374
    Kelsie_Smith-hayduk@URMC.Rochester.edu

    1
    Credit: University of Rochester NewsCenter

    Noticing and understanding what it means when a person leans into a conversation or takes a step back and crosses their arms is a vital part of human communication. Researchers at the Del Monte Institute for Neuroscience at the University of Rochester have found that children with autism spectrum disorder may not always process body movements effectively, especially if they are distracted by something else.

    “Being able to read and respond to someone’s body language is important in our daily interactions with others,” said Emily Knight, M.D., Ph.D., clinical and postdoctoral fellow in Pediatrics and Neuroscience, is the first author of the study recently published in Molecular Autism [below]. “Our findings suggest that when children with autism are distracted by something else, their brains process the movements of another person differently than their peers.”

    Key differences in brain processes

    Using electroencephalogram (EEG), researchers recorded the brain waves of children with and without autism as they watched videos of moving dots that were arranged to look like a person. In these videos the dots moved to represent actions such as running, kicking, or jumping, and at times were turned in different directions or jumbled to no longer move like a person. The six to 16 years olds were asked to either focus on the color of the dots or to focus on whether the dots moved like a person. Researchers found the brainwaves of children with autism did not process when the dots moved like a person if they were focused on the dot color.

    “If their brain is processing body movements less they might have a harder time understanding other people, and need to pay extra attention to body language in order to see it,” said Knight. “Knowing this can help guide new ways to support people with autism.”

    “This is more evidence of how the brain of someone with autism is processing the world around them,” said John Foxe, Ph.D., led author of the study. “This research is a vital step in creating a more inclusive space for people with autism by giving a glimpse of how their brain processes an unspoken part of communication.”

    Additional authors include Ed Freedman, Ph.D., from the University of Rochester Medical Center, John Butler, Ph.D., Aaron Krakowski, and Sophie Molholm, Ph.D., of Einstein College of Medicine. This research was supported by the National Institute of Mental Health and the University of Rochester Intellectual and Developmental Disability Research Center (UR-IDDRC) and the Rose F. Kennedy Intellectual and Developmental Disabilities Research Center (RFK-IDDRC).

    Science paper:
    Molecular Autism

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    University of Rochester campus

    The University of Rochester is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.

    The University of Rochester enrolls approximately 6,800 undergraduates and 5,000 graduate students. Its 158 buildings house over 200 academic majors. According to the National Science Foundation , Rochester spent $370 million on research and development in 2018, ranking it 68th in the nation. The university is the 7th largest employer in the Finger lakes region of New York.

    The College of Arts, Sciences, and Engineering is home to departments and divisions of note. The Institute of Optics was founded in 1929 through a grant from Eastman Kodak and Bausch and Lomb as the first educational program in the US devoted exclusively to optics and awards approximately half of all optics degrees nationwide and is widely regarded as the premier optics program in the nation and among the best in the world.

    The Departments of Political Science and Economics have made a significant and consistent impact on positivist social science since the 1960s and historically rank in the top 5 in their fields. The Department of Chemistry is noted for its contributions to synthetic organic chemistry, including the first lab-based synthesis of morphine. The Rossell Hope Robbins Library serves as the university’s resource for Old and Middle English texts and expertise. The university is also home to Rochester’s Laboratory for Laser Energetics, a Department of Energy supported national laboratory.

    University of Rochester Laboratory for Laser Energetics.

    The University of Rochester’s Eastman School of Music ranks first among undergraduate music schools in the U.S. The Sibley Music Library at Eastman is the largest academic music library in North America and holds the third largest collection in the United States.

    In its history university alumni and faculty have earned 13 Nobel Prizes; 13 Pulitzer Prizes; 45 Grammy Awards; 20 Guggenheim Awards; 5 National Academy of Sciences; 4 National Academy of Engineering; 3 Rhodes Scholarships; 3 National Academy of Inventors; and 1 National Academy of Inventors Hall of Fame.

    History

    Early history

    The University of Rochester traces its origins to The First Baptist Church of Hamilton (New York) which was founded in 1796. The church established the Baptist Education Society of the State of New York later renamed the Hamilton Literary and Theological Institution in 1817. This institution gave birth to both Colgate University and the University of Rochester. Its function was to train clergy in the Baptist tradition. When it aspired to grant higher degrees it created a collegiate division separate from the theological division.

    The collegiate division was granted a charter by the State of New York in 1846 after which its name was changed to Madison University. John Wilder and the Baptist Education Society urged that the new university be moved to Rochester, New York. However, legal action prevented the move. In response, dissenting faculty, students, and trustees defected and departed for Rochester, where they sought a new charter for a new university.

    Madison University was eventually renamed as Colgate University.

    Founding

    Asahel C. Kendrick- professor of Greek- was among the faculty that departed Madison University for Rochester. Kendrick served as acting president while a national search was conducted. He reprised this role until 1853 when Martin Brewer Anderson of the Newton Theological Seminary in Massachusetts was selected to fill the inaugural posting.

    The University of Rochester’s new charter was awarded by the Regents of the State of New York on January 31, 1850. The charter stipulated that the university have $100,000 in endowment within five years upon which the charter would be reaffirmed. An initial gift of $10,000 was pledged by John Wilder which helped catalyze significant gifts from individuals and institutions.

    Classes began that November with approximately 60 students enrolled including 28 transfers from Madison. From 1850 to 1862 the university was housed in the old United States Hotel in downtown Rochester on Buffalo Street near Elizabeth Street- today West Main Street near the I-490 overpass. On a February 1851 visit Ralph Waldo Emerson said of the university:

    “They had bought a hotel, once a railroad terminus depot, for $8,500, turned the dining room into a chapel by putting up a pulpit on one side, made the barroom into a Pythologian Society’s Hall, & the chambers into Recitation rooms, Libraries, & professors’ apartments, all for $700 a year. They had brought an omnibus load of professors down from Madison bag and baggage… called in a painter and sent him up the ladder to paint the title “University of Rochester” on the wall, and they had runners on the road to catch students. And they are confident of graduating a class of ten by the time green peas are ripe.”

    For the next 10 years the college expanded its scope and secured its future through an expanding endowment; student body; and faculty. In parallel a gift of 8 acres of farmland from local businessman and Congressman Azariah Boody secured the first campus of the university upon which Anderson Hall was constructed and dedicated in 1862. Over the next sixty years this Prince Street Campus grew by a further 17 acres and was developed to include fraternitie’s houses; dormitories; and academic buildings including Anderson Hall; Sibley Library; Eastman and Carnegie Laboratories the Memorial Art Gallery and Cutler Union.

    Twentieth century

    Coeducation

    The first female students were admitted in 1900- the result of an effort led by Susan B. Anthony and Helen Barrett Montgomery. During the 1890s a number of women took classes and labs at the university as “visitors” but were not officially enrolled nor were their records included in the college register. President David Jayne Hill allowed the first woman- Helen E. Wilkinson- to enroll as a normal student although she was not allowed to matriculate or to pursue a degree. Thirty-three women enrolled among the first class in 1900 and Ella S. Wilcoxen was the first to receive a degree in 1901. The first female member of the faculty was Elizabeth Denio who retired as Professor Emeritus in 1917. Male students moved to River Campus upon its completion in 1930 while the female students remained on the Prince Street campus until 1955.

    Expansion

    Major growth occurred under the leadership of Benjamin Rush Rhees over his 1900-1935 tenure. During this period George Eastman became a major donor giving more than $50 million to the university during his life. Under the patronage of Eastman the Eastman School of Music was created in 1921. In 1925 at the behest of the General Education Board and with significant support for John D. Rockefeller George Eastman and Henry A. Strong’s family medical and dental schools were created. The university award its first Ph.D that same year.

    During World War II University of Rochester was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission. In 1942, the university was invited to join the Association of American Universities as an affiliate member and it was made a full member by 1944. Between 1946 and 1947 in infamous uranium experiments researchers at the university injected uranium-234 and uranium-235 into six people to study how much uranium their kidneys could tolerate before becoming damaged.

    In 1955 the separate colleges for men and women were merged into The College on the River Campus. In 1958 three new schools were created in engineering; business administration and education. The Graduate School of Management was named after William E. Simon- former Secretary of the Treasury in 1986. He committed significant funds to the school because of his belief in the school’s free market philosophy and grounding in economic analysis.

    Financial decline and name change controversy

    Following the princely gifts given throughout his life George Eastman left the entirety of his estate to the university after his death by suicide. The total of these gifts surpassed $100 million before inflation and as such Rochester enjoyed a privileged position amongst the most well endowed universities. During the expansion years between 1936 and 1976 the University of Rochester’s financial position ranked third, near Harvard University’s endowment and the University of Texas System’s Permanent University Fund. Due to a decline in the value of large investments and a lack of portfolio diversity the university’s place dropped to the top 25 by the end of the 1980s. At the same time the preeminence of the city of Rochester’s major employers began to decline.

    In response the University commissioned a study to determine if the name of the institution should be changed to “Eastman University” or “Eastman Rochester University”. The study concluded a name change could be beneficial because the use of a place name in the title led respondents to incorrectly believe it was a public university, and because the name “Rochester” connoted a “cold and distant outpost.” Reports of the latter conclusion led to controversy and criticism in the Rochester community. Ultimately, the name “University of Rochester” was retained.

    Renaissance Plan
    In 1995 University of Rochester president Thomas H. Jackson announced the launch of a “Renaissance Plan” for The College that reduced enrollment from 4,500 to 3,600 creating a more selective admissions process. The plan also revised the undergraduate curriculum significantly creating the current system with only one required course and only a few distribution requirements known as clusters. Part of this plan called for the end of graduate doctoral studies in chemical engineering; comparative literature; linguistics; and mathematics the last of which was met by national outcry. The plan was largely scrapped and mathematics exists as a graduate course of study to this day.

    Twenty-first century

    Meliora Challenge

    Shortly after taking office university president Joel Seligman commenced the private phase of the “Meliora Challenge”- a $1.2 billion capital campaign- in 2005. The campaign reached its goal in 2015- a year before the campaign was slated to conclude. In 2016, the university announced the Meliora Challenge had exceeded its goal and surpassed $1.36 billion. These funds were allocated to support over 100 new endowed faculty positions and nearly 400 new scholarships.

    The Mangelsdorf Years

    On December 17, 2018 the University of Rochester announced that Sarah C. Mangelsdorf would succeed Richard Feldman as President of the University. Her term started in July 2019 with a formal inauguration following in October during Meliora Weekend. Mangelsdorf is the first woman to serve as President of the University and the first person with a degree in psychology to be appointed to Rochester’s highest office.

    In 2019 students from China mobilized by the Chinese Students and Scholars Association (CSSA) defaced murals in the University’s access tunnels which had expressed support for the 2019 Hong Kong Protests, condemned the oppression of the Uighurs, and advocated for Taiwanese independence. The act was widely seen as a continuation of overseas censorship of Chinese issues. In response a large group of students recreated the original murals. There have also been calls for Chinese government run CSSA to be banned from campus.

    Research

    Rochester is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Rochester had a research expenditure of $370 million in 2018.

    In 2008 Rochester ranked 44th nationally in research spending but this ranking has declined gradually to 68 in 2018.

    Some of the major research centers include the Laboratory for Laser Energetics, a laser-based nuclear fusion facility, and the extensive research facilities at the University of Rochester Medical Center.

    Recently the university has also engaged in a series of new initiatives to expand its programs in biomedical engineering and optics including the construction of the new $37 million Robert B. Goergen Hall for Biomedical Engineering and Optics on the River Campus.

    Other new research initiatives include a cancer stem cell program and a Clinical and Translational Sciences Institute. UR also has the ninth highest technology revenue among U.S. higher education institutions with $46 million being paid for commercial rights to university technology and research in 2009. Notable patents include Zoloft and Gardasil. WeBWorK, a web-based system for checking homework and providing immediate feedback for students was developed by University of Rochester professors Gage and Pizer. The system is now in use at over 800 universities and colleges as well as several secondary and primary schools. Rochester scientists work in diverse areas. For example, physicists developed a technique for etching metal surfaces such as platinum; titanium; and brass with powerful lasers enabling self-cleaning surfaces that repel water droplets and will not rust if tilted at a 4 degree angle; and medical researchers are exploring how brains rid themselves of toxic waste during sleep.

     
  • richardmitnick 8:22 am on July 18, 2022 Permalink | Reply
    Tags: "Insulin is an extreme financial burden for over 14% of Americans who use it", , Medicine   

    From The Yale School of Medicine: “Insulin is an extreme financial burden for over 14% of Americans who use it” 

    From The Yale School of Medicine

    At

    Yale University

    July 5, 2022
    Written by Mallory Locklear

    Media Contact:
    Fred Mamoun
    fred.mamoun@yale.edu
    203-436-2643

    1
    © stock.adobe.com

    Over 30 million Americans have diabetes, and more than 7 million of them require daily insulin. But the cost of the drug has risen considerably in the last decade. Though U.S. lawmakers are considering policies to address the challenge, not much is known about who is most burdened by insulin prices.

    In a new study, Yale researchers provide much-needed data on Americans who use insulin, whether and how they’re insured, and who is most at risk of extreme financial burden. According to their findings, 14% of people who use insulin in the United States face what are described as a “catastrophic” levels of spending on insulin, meaning they spent at least 40% of their postsubsistence income — what is available after paying for food and housing — on insulin.

    In 1996, when the pharmaceutical company Eli Lilly debuted its Humalog brand of insulin, a fast-acting type of insulin, a vial cost $21. “Now it costs more than 10 times that,” said Kasia Lipska, an associate professor at Yale School of Medicine and senior author of the study.

    And it’s not just Humalog. Insulin list prices, on average, have more than doubled in the last decade. “This is not inflation, there’s much more going on,” said Lipska.

    Much of the rising costs can be attributed to supply chains that have become more complicated, researchers said. Each step added to the chain means another entity is collecting profits, leading to higher costs for patients dependent on insulin.

    “And we have no reason to believe that will change anytime soon,” said Baylee Bakkila, a medical student at Yale School of Medicine and lead author of the study.

    For the study, the research team used data from the most recent Medical Expenditures Panel Survey, which covered 2017 to 2018. They found that nearly one in seven people who filled an insulin prescription in the U.S. experienced catastrophic spending on insulin during that time.

    And that’s just what they’re spending on insulin, Bakkila said; the estimate doesn’t include other costs typically shouldered by patients, including other medications, glucose monitors, and insulin pumps.

    “It actually underestimates the extreme financial toxicity that these individuals are experiencing because diabetes and other comorbid conditions come along with a lot of other health expenditures,” she said.

    The team also looked at how people who use insulin were insured. Most had Medicare (41.1%) or private insurance (35.7%). Others were covered by Medicaid (11.1%) or other insurance (9.9%). The remainder (2.2%) had no insurance coverage for insulin.

    Those with private insurance or no insurance paid the most out-of-pocket for insulin, followed by those with Medicare. Individuals with Medicaid or other insurance coverage paid the lowest out-of-pocket costs.

    “But what you can pay for insulin depends on what resources you have,” said Lipska. “Previous research has looked at the amount people spend on insulin. But it hasn’t looked at the amount spent on insulin vis-à-vis the resources an individual has to spend.”

    Lipska says this was the driving question behind the study: understanding how issues around insulin affordability play out on a national scale. She and her colleagues found that Medicare beneficiaries were most burdened by insulin costs, accounting for more than 61% of those burdened by “catastrophic” levels of spending.

    Medicare beneficiaries who use insulin had lower incomes than those with private, other, or no insurance. This fact, combined with Medicare’s insulin coverage limits, makes this group more vulnerable to financial burden, said the researchers.

    “If your income is high, you may be able to absorb these higher out-of-pocket costs,” Lipska said. “But if you have fewer resources, it might really drain your resources very quickly and lead to financial toxicity. And a lot of people with diabetes live on very small incomes.”

    These findings should help inform policy, the researchers say. One option currently under consideration by Congress is a $35 monthly cap on out-of-pocket expenses.

    While such a cap will help some individuals reduce their spending, researchers say, even $35 per month will be cost-prohibitive for many Americans. “It’s going to leave many still struggling and still at these catastrophic levels of spending because the cap doesn’t take into account the resources people have available,” said Lipska.

    The proposed legislation also applies only to people with Medicare or private insurance. It would offer no protection for those without insurance, Bakkila notes, and doesn’t focus on the most vulnerable populations.

    “It’s a step in the right direction but we need to go further to ensure that everyone has the ability to access insulin,” said Bakkila.

    Other policy options that could be considered include list price regulation, Medicare cost negotiation, or innovative drug spending approaches like subscription pricing models, the authors note.

    Ultimately, they say, making insulin affordable is better for everybody.

    “If we as a health care system make insulin out of reach for people, not only is that ethically wrong, but it’s also going to cost us more in the long term,” said Lipska. “We’re seeing more hospital admissions for high blood sugar emergencies and for complications. We’re seeing more disability and more poor outcomes in this very large group of people. So it’s really shortsighted not to think of it in this big-picture way.”

    The findings were published July 5 in Health Affairs.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Yale School of Medicine is the graduate medical school at Yale University, a private research university in New Haven, Connecticut. It was founded in 1810 as the Medical Institution of Yale College and formally opened in 1813.

    The primary teaching hospital for the school is Yale New Haven Hospital. The school is home to the Harvey Cushing/John Hay Whitney Medical Library, one of the largest modern medical libraries which is known for its historical collections. The faculty includes 70 National Academy of Sciences members, 47 National Academy of Medicine members, and 13 Howard Hughes Medical Institute investigators.

    U.S. News & World Report currently ranks the Yale School of Medicine 10th in the country for research and 59th in primary care. The M.D. program is highly selective; for the class of 2022, the school received 4,968 applications to fill 104 seats. The median GPA for the class was 3.89, and the median MCAT was 521.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 7:54 am on July 6, 2022 Permalink | Reply
    Tags: "Boot Camp for the Immune System", , , , Medicine,   

    From The Harvard Medical School: “Boot Camp for the Immune System” 

    harvard-medical-school-bloc

    From The Harvard Medical School

    at

    Harvard University

    June 27, 2022
    EKATERINA PESHEVA

    News & Research

    How immune cells learn to discern friend from foe

    1
    The thymus gland, shown here, is the birthplace and training ground of T cells. New research shows thymus cells assume various identities to teach nascent T cells how to distinguish friend from foe. Image: Daniel Michelson, Mathis/Benoist lab, HMS.

    The human immune system is a nearly perfect defense mechanism. It protects the body from disease-causing bacteria, viruses, and other pathogens. It detects nascent tumors and eradicates them. It cleans up cellular debris at the site of injury or infection.

    To perform its myriad functions, the immune system must, above all, differentiate between self and non-self—a remarkable selective ability that allows it to detect and disable harmful agents while sparing the body’s own tissues.

    If the immune system fails to make this distinction, it can mistakenly launch an assault against the body, causing autoimmune disorders.

    Researchers have known the general principle underlying this selective ability for some time, but exactly how immune cells learn to distinguish friend from foe has remained less well understood.

    Now, a new study led by researchers at Harvard Medical School identifies a new mechanism that explains how the body’s most powerful immune troops—T cells—learn to tell self and non-self apart.

    The work, conducted mainly in mice, was published online June 16 in Cell.

    The research shows that the thymus gland—the organ where T cells are born and trained—educates nascent immune cells by exposing them to proteins made by thymus cells that mimic various tissues throughout the body. Specifically, the research demonstrates that by assuming different identities, these specialized thymus cells preview for the maturing T cells self-proteins they would encounter once they leave their native thymus gland.

    “Think of it as having your body recreated in the thymus,” said study senior author Diane Mathis, professor of immunology in the Blavatnik Institute at HMS. “For me, it was a revelation to be able to see with my own eyes muscle-like cells in the thymus or several very different types of intestinal cells.”

    The findings, Mathis said, shed light on how the adaptive immune system acquires its ability to discern friend from foe. Glitches in this critical recognition system can have grave consequences.

    “Our immune system is super powerful. It can kill any cell in our body, it can control any pathogen we encounter, but with that power comes great responsibility,” said study first author Daniel Michelson, an MD/PhD student at HMS and a researcher in the Mathis/Benoist lab. “If that power is left unchecked, it can be lethal. In some autoimmune diseases, it is lethal.”

    School for T cells

    T cells, so named because they mature and learn to do their job in the thymus before they are released into the body, are the immune system’s elite forces charged with multiple functions. They recognize and eliminate pathogens and cancer cells; they form long-term memory of viruses and bacteria encountered in the past; they regulate inflammation and tamp down hyperactive immunity.

    But how does a newborn T cell that’s never left the thymus know which proteins are the body’s own and which herald enemy presence?

    “T cells get educated in the thymus, but the thymus is not a gut, it’s not a pancreas,” Michelson said. “There’s no reason why these T cells should be able to recognize these organs before they leave the thymus.”

    Researchers knew that this early training does take place in the thymus, but the precise teaching tools the gland uses have eluded them.

    A molecular explanation for a centuries-old observation

    Until the mid-1900s, the thymus provoked little scientific interest because it was deemed vestigial, Michelson said. But as far back as the mid-1800s—well before scientists knew what the thymus does or that an adaptive immune system existed—biologists had already noticed cells in the thymus that looked out of place. Peering into their microscopes throughout the decades, they saw cells that looked like they came from muscle, intestine, and skin. Yet, the thymus was none of the above. The observations made no sense.

    The newly published research hearkens back to a very old finding and puts it into a whole new molecular context, Michelson said.

    The study showed that these teacher cells, dubbed mimetic cells for their ability to mimic different tissues, work by co-opting various transcription factors—proteins that drive the expression of genes unique to specific tissues. When they do so, the mimetic cells effectively adopt the identities of tissues such as skin, lung, liver, or intestine. They then present themselves to immature T cells to teach them self-tolerance, the team’s experiments showed.

    The work shows that T cells-in-training that mistakenly react against self-proteins either receive a command to self-destruct or get repurposed into other types of T cells that don’t kill but instead restrain other immune cells from attacking.

    “The thymus says: This cell is autoreactive, we don’t want it in our repertoire, let’s get rid of it,” Michelson said.

    Plot twist

    Until now, the elimination of self-reactive T cells was thought to be regulated largely by a single protein called AIRE. The Mathis/Benoist lab was critical in elucidating the function of AIRE. Defects in this protein can lead to a serious immune syndrome characterized by the development of multiple types of autoimmune disorders.

    Mathis and Michelson went into their current research seeking to map the molecular pathways involved in AIRE function. Instead, they found many cells in the thymus that did not express the AIRE protein but were still capable of adopting the identities of different tissue types. AIRE, the researchers realized, was only part of the story.

    The researchers say the newly identified mimetic cells are likely to play a role in various autoimmune diseases associated with the tissue types they mimic, a hypothesis they plan to pursue.

    “We think it’s an exciting discovery that may open up a whole new vision of how certain types of autoimmune diseases arise and, more broadly, of the origins of autoimmunity,” Mathis said.

    The researchers said their next steps are to acquire an even deeper understanding of the molecular mechanisms that underlie T cell education, to study the association between individual mimetic cell types and T cell function and dysfunction, and to determine how the mechanism plays out in the human thymus.

    Study co-authors included Koji Hase of Keio University, Tsuneyasu Kaisho of Wakayama Medical University, and Christophe Benoist of HMS.

    The work was funded by National Institutes of Health grants R01AI088204, R01DK060027, and T32GM007753.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    harvard-medical-school-campus

    The The Harvard Medical School community is dedicated to excellence and leadership in medicine, education, research and clinical care. To achieve our highest aspirations, and to ensure the success of all members of our community, we value and promote common ideals that center on collaboration and service, diversity, respect, integrity and accountability, lifelong learning, and wellness and balance. To be a citizen of this community means embracing a collegial spirit that fosters inclusion and promotes achievement.

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s bestknown landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University (US)’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University (US) has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University (US) became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: