Tagged: Medicine Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:48 pm on May 29, 2023 Permalink | Reply
    Tags: , "Folding@home - How You and Your Computer Can Play Scientist", 50000 computers are better than one., , , , , , Folding@home forms the largest supercomputer in the world., Medicine, , , , The Perelman School of Medicine,   

    From The Perelman School of Medicine At The University of Pennsylvania Folding@home: “Folding@home – How You and Your Computer Can Play Scientist” 

    From The Perelman School of Medicine

    At

    U Penn bloc

    The University of Pennsylvania

    5.16.23
    Alex Gardner

    1
    Two heads are better than one. The ethos behind the scientific research project Folding@home is that same idea, multiplied: 50,000 computers are better than one.

    Folding@home is a distributed computing project which is used to simulate protein folding, or how protein molecules assemble themselves into 3-D shapes.

    1
    Folding@home

    Research into protein folding allows scientists to better understand how these molecules function or malfunction inside the human body. Often, mutations in proteins influence the progression of many diseases like Alzheimer’s disease, cancer, and even COVID-19.

    Penn is home to both the computer brains and human minds behind the Folding@home project which, with its network, forms the largest supercomputer in the world [disputed below]. All of that computing power continually works together to answer scientific questions such as what areas of specific protein implicated in Parkinson’s disease may be susceptible to medication or other treatment.

    Led by Gregory Bowman, a Penn Integrates Knowledge professor of Biochemistry and Biophysics in the Perelman School of Medicine who has joint appointments in the Department of Biochemistry and Biophysics in the Perelman School of Medicine and the Department of Bioengineering in the School of Engineering and Applied Science, Folding@home is open for any individual around the world to participate in and essentially volunteer their computer to join a huge network of computers and do research.

    Using the network hub at Penn, Bowman and his team assign experiments to each individual computer which communicates with other computers and feeds info back to Philly. To date, the network is comprised of more than 50,000 computers spread across the world.

    “What we do is like drawing a map,” said Bowman, explaining how the networked computers work together in a type of system that experts call Markov state models. “Each computer is like a driver visiting different places and reporting back info on those locations so we can get a sense of the landscape.”

    Individuals can participate by signing up and then installing software to their standard personal desktop or laptop. Participants can direct the software to run in the background and limit it to a certain percentage of processing power or have the software run only when the computer is idle.

    When the software is at work, it’s conducting unique experiments designed and assigned by Bowman and his team back at Penn. Users can play scientist and watch the results of simulations and monitor the data in real time, or they can simply let their computer do the work while they go about their lives.

    Related:
    BOINC-Berkeley Infrastructure for Open Network Computing at UC-Berkeley

    BOINC computing power
    Totals
    24-hour average: 15.270 PetaFLOPS.
    Active: 44,440 volunteers. 151,719 computers [compare to folding@home’s claim at 50,000 computers to be “the largest supercomputer in the world”.

    BOINC lets you help cutting-edge science research using your computer. The BOINC app, running on your computer, downloads scientific computing jobs and runs them invisibly in the background. It’s easy and safe.

    About 30 science projects use BOINC. They investigate diseases, study climate change, discover pulsars, and do many other types of scientific research.

    The BOINC and Science United projects are located at the University of California-Berkeley and are supported by the National Science Foundation.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Penn Medicine

    Our history of patient care began more than two centuries ago with the founding of the nation’s first hospital, Pennsylvania Hospital, in 1751 and the nation’s first medical school at the University of Pennsylvania in 1765. Penn Medicine has pioneered medical frontiers with a staff comprised of innovators who have dedicated their lives to advancing medicine through excellence in education, research and patient care.

    When you choose Penn Medicine, you benefit from more than two centuries of the highest standards in patient care, education and research. The caliber of comfort and individual attention you receive is unmatched by any other hospital in the Mid-Atlantic region.

    Nationally Recognized

    We are consistently recognized nationally and internationally for excellence in health care. The cornerstone of our reputation is our medical and support staff, who choose to dedicate their careers to serving the needs of our patients and community.

    The Hospitals of the University of Pennsylvania — Penn Presbyterian are proud to be ranked #13 in the nation and once again the #1 hospital in Pennsylvania by U.S. News & World Report’s Honor Roll of Best Hospitals.

    Providing the Community with Resources

    We promote innovation and teaching excellence. We advance medical science through research and create the next generation of leaders in medicine. We’re constantly working towards an even more precise and personalized practice of health care.

    The results of these efforts are passed directly onto you, our patients.

    Health Equity Initiative at Penn Medicine

    At Penn, we strive to provide high quality and family-centered care for our patients and the community, and support an inclusive workforce and clinical learning environment for our employees.

    Mission and History

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 12:01 pm on May 26, 2023 Permalink | Reply
    Tags: "Thought-controlled walking again after spinal cord injury", A digital bridge involving two electronic implants: one on the brain and the other on the spinal cord., , At this stage the digital bridge has only been tested in one person., , , Medicine, Neuroscientists and neurosurgeons from EPFL/CHUV/UNIL and CEA/CHUGA/ have re-established the communication between the brain and spinal cord allowing a paralyzed person to walk naturally., Neurosurgery, Scientists have created a wireless interface between the brain and the spinal cord using brain-computer interface (BCI) technology that transforms thought into action., Thanks to algorithms based on adaptive artificial intelligence methods movement intentions are decoded in real time from brain recordings., The “WIMAGINE”® devices implanted above the region of the brain that is responsible for controlling leg movements., , This digital bridge operates wirelessly allowing the patient to move around independently.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Thought-controlled walking again after spinal cord injury” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.24.23
    Emmanuel Barraud

    1
    Neuroscientists and neurosurgeons from EPFL/CHUV/UNIL and CEA/CHUGA/UGA report in the journal Nature [below] that they have re-established the communication between the brain and spinal cord with a wireless digital bridge, allowing a paralyzed person to walk again naturally.

    “We have created a wireless interface between the brain and the spinal cord using brain-computer interface (BCI) technology that transforms thought into action.”, summarizes Grégoire Courtine, Professor of Neuroscience at EPFL, CHUV and UNIL. Published in the journal Nature [below], presents the situation of Gert-Jan, 40 years old, who suffered a spinal cord injury following a bicycle accident that left him paralyzed. The digital bridge enabled him to regain natural control over the movement of his paralyzed legs, allowing him to stand, walk, and even climb stairs. Gert-Jan explains that he has recovered the pleasure of being able to share a beer standing at a bar with friends : “This simple pleasure represents a significant change in my life”.

    A digital bridge involving two electronic implants: one on the brain, the other on the spinal cord

    To establish this digital bridge, two types of electronic implants are needed. Neurosurgeon Jocelyne Bloch, who is a professor at CHUV, UNIL and EPFL, explains: “We have implanted WIMAGINE® devices above the region of the brain that is responsible for controlling leg movements. These devices developed by the CEA allows to decode the electrical signals generated by the brain when we think about walking. We also positioned a neurostimulator connected to an electrode array over the region of the spinal cord that controls leg movement.

    Guillaume Charvet, head of the BCI program at CEA, adds: “Thanks to algorithms based on adaptive artificial intelligence methods, movement intentions are decoded in real time from brain recordings.” These intentions are then converted into sequences of electrical stimulation of the spinal cord, which in turn activate leg muscles to achieve the desired movement. This digital bridge operates wirelessly allowing the patient to move around independently.

    Recovery of neurological functions

    Rehabilitation supported by the digital bridge enabled Gert-Jan to recover neurological functions that he had lost since his accident. Researchers were able to quantify remarkable improvements in his sensory perceptions and motor skills, even when the digital bridge was switched off. This digital repair of the spinal cord suggests that new nerve connections have developed.

    At this stage, the digital bridge has only been tested in one person. Jocelyne Bloch and Grégoire Courtine explain that, in the future, a comparable strategy could be used to restore arm and hand functions. They add that the digital bridge could also be applied to other clinical indications, such as paralysis due to stroke. The company ONWARD Medical, along with CEA and EPFL has received support from the European Commission trough its European Innovation Council (EIC) to develop a commercial version of the digital bridge, with the goal of making the technology available worldwide.

    Nature

    Digital bridge from brain to spinal cord
    To establish this digital bridge, we integrated two fully implanted systems that enable recording of cortical activity and stimulation of the lumbosacral spinal cord wirelessly and in real time.

    Fig. 1: Design, technology and implantation of the BSI.
    2
    a) Two cortical implants composed of 64 electrodes are positioned epidurally over the sensorimotor cortex to collect ECoG signals. A processing unit predicts motor intentions and translates these predictions into the modulation of epidural electrical stimulation programs targeting the dorsal root entry zones of the lumbosacral spinal cord. Stimulations are delivered by an implantable pulse generator connected to a 16-electrode paddle lead. b) Images reporting the pre-operative planning of cortical implant locations, and postoperative confirmation. L, left; R, right. c) Personalized computational model predicting the optimal localization of the paddle lead to target the dorsal root entry zones associated with lower limb muscles, and postoperative confirmation.

    Fig. 2: Calibration of the BSI.
    3
    a) Identification of the spatial and spectral distributions of ECoG feature weights related to attempted left hip flexions. b) Calibration of anode/cathode configurations and stimulation parameters (frequency, range of amplitudes) to elicit left hip flexions, including electromyographic signals from lower limb muscles. The polar plot reports the relative amplitude of muscle responses for the optimal configuration to target left hip flexors over the range of functional stimulation amplitudes (300 µs, 40 Hz, 14–16 mA). c) Online calibration of the BSI to enable volitional hip flexion in a seated position. Representative sequence reporting spectrogram, decoding probability and proportional modulation of stimulation amplitudes together with the resulting muscle activity and torque. The plot reports the convergence of the model over time, reaching 97 ± 0.4% after 90 s. d) Similar representations after the calibration of the BSI to enable the control over hip, knee and ankle joints of the lower limbs. e, Confusion matrices reporting the decoding accuracy for each joint (74 ± 7% s.e.m.) and the accuracy of the stimulation for each targeted muscle group (83 ±  6% s.e.m.).

    More instructive images are available in the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 7:07 am on May 25, 2023 Permalink | Reply
    Tags: "Cell Rover"- a flat antenna that could monitor processes inside cells., "Deblina Sarkar is building microscopic machines to enter our brains", , , , Deblina Sarkar makes little machines for which she has big dreams. The machines are so little that they can humbly inhabit living cells., Deblina Sarkar wants to develop miniature machines that may one day help treat Alzheimer’s disease and Parkinson’s disease and other neurological afflictions., Medicine, Nanoelectronics, , Sarkar envisions using Cell Rover to spot misfolded proteins in the brain that may be early signs of Alzheimer’s disease., , , , Ultratiny electronic devices some smaller than a mote of dust   

    From The Media Lab At The Massachusetts Institute of Technology Via “Science News” : “Deblina Sarkar is building microscopic machines to enter our brains” 

    From The Media Lab

    At

    The Massachusetts Institute of Technology

    Via

    “Science News”

    5.23.23
    Nikk Ogasa

    1
    Deblina Sarkar wants to develop miniature machines that may one day help treat Alzheimer’s disease, Parkinson’s disease and other neurological afflictions. Credit: Jimmy Day, MIT Media Lab.

    Deblina Sarkar makes little machines, for which she has big dreams. The machines are so little, in fact, that they can humbly inhabit living cells. And her dreams are so big, they may one day save your mind.

    Sarkar is a nanotechnologist and assistant professor at MIT. She develops ultratiny electronic devices, some smaller than a mote of dust, that she hopes will one day enter the brain. She’s also a fan of Kung Fu movies and likes to dance her own twist on bharata natya, a classical Indian dance form. Occasionally she goes hiking with her graduate students, once taking them as far as Yellowstone. Building camaraderie is vital, Sarkar says. But “I’m probably working day and night on my research,” she confesses. “There is an urgent problem at hand.”

    That problem is Alzheimer’s disease, Parkinson’s disease and other neurological afflictions that assault the minds of millions of people worldwide. Sarkar’s solution: Employ minute machines to detect and reverse these disorders.

    “She was always interested in applying … electronics to biological systems,” says collaborator and bioengineering researcher Samir Mitragotri of Harvard University, who has known Sarkar for about a decade and was on her thesis committee. She envisions using her tools to “transform how people are conducting biology,” he says, “bridging the worlds.”

    A focus on nanoelectronics

    Born in Kolkata, India, Sarkar credits both of her parents as early inspirations. Her boldness as a researcher comes from her mother, who as a young woman defied social norms in her village by working to fund her own education and speaking out against the dowry system. Meanwhile, Sarkar’s father sparked her fascination for engineering.

    At the age of 15, he abandoned his dreams of becoming an engineer to find other jobs; he needed to support his parents and the rest of his family after his father, an Indian freedom fighter, was shot in the leg and could no longer work. Still, Sarkar recalls her father finding time for his passion, fashioning devices to make home life more convenient. These included an electricity-free washing machine and vehicles that could freight hefty loads down local byroads to their house.

    “That got me very, very interested in science and technology,” Sarkar says. “Engineering specifically.”

    After earning a bachelor’s degree in electrical engineering from the Indian Institute of Technology Dhanbad, Sarkar moved to California to study nanoelectronics at the University of California-Santa Barbara. There, she tested new ways to create nanodevices that could reduce the amount of power consumed by computers and other everyday electronics.

    One standout device Sarkar developed during her graduate work was a transistor that reduced the amount of power lost as heat by 90 percent compared with some of today’s most common silicon transistors (SN: 3/18/22). For the breakthrough, UC Santa Barbara awarded Sarkar’s Ph.D. dissertation the Lancaster Award for its impact in advancing math, physical sciences and engineering.

    When tech meets the body

    Along the way, Sarkar became fascinated with the brain, which she calls “the lowest energy computer.” A project imaging amyloid-beta plaques as a postdoc at MIT opened the door to fusing her dual interests, and she stayed on as an assistant professor to found the Nano-Cybernetic Biotrek group. Her group develops nanodevices that can interface with living cells, and “neuromorphic” computing devices, which have architectures inspired by the human brain and nervous system.

    So far, the group’s most innovative device may be the “Cell Rover”, a flat antenna that could monitor processes inside cells. For a study reported in 2022, Sarkar and her colleagues used magnetic fields to finesse a Cell Rover, roughly the size of a tardigrade, into a mature frog egg cell. The team demonstrated that when stimulated by a magnetic field created by an alternating current, molecules in the nanodevice vibrated at frequencies safe for living cells. Using a wire coil receiver, the researchers were able to detect how those vibrations affected the device’s own magnetic field, thus showing it could communicate with the outside world. Cell Rovers could be outfitted with films that latch onto and detect select proteins or other biomolecules.

    Sarkar envisions using the device to spot misfolded proteins in the brain that may be early signs of Alzheimer’s disease. Today, memory loss is the only way to know a living person has Alzheimer’s, but by then, the damage is irreversible, Sarkar says. Cell Rovers could also be paired with nanodevices that harvest energy from and electrically stimulate cells, opening the door for new types of brain electrodes and subcellular pacemakers. Or fleets of remotely controlled devices could replace invasive surgeries — detecting a small tumor growing in the brain, for example, and maybe even killing it.

    2
    When left undisturbed, the magnetic molecules in the Cell Rover are randomly oriented (top). But when subjected to a magnetic field produced by an alternating current, they will repeatedly flip around and reorient themselves (bottom). Those movements strain the device and cause it to vibrate in ways the researchers can detect. Credit: B. Joy et al/Nature Communications 2022.

    Nature Communications [below]

    Sarkar is essentially establishing a new field of science, at the intersection of nanoelectronics and biology, Mitragotri says. “There are many opportunities for the future.”

    One day, Sarkar hopes to insert nanodevices between human neurons to boost the computing speed of the fleshy processor already in our skulls. Our brains are remarkable, she says, but “we could be better than what we are.”

    Nature Communications 2022

    Fig. 1: Schematic representation and operating principle of the “Cell Rover”.
    3
    a) Schematic diagram showing the wireless operation of a Cell Rover from inside a cell (Xenopus oocyte). The zoomed in view shows the Cell Rover and its equivalent circuit representation as a parallel RLC resonator. b) Schematic diagram illustrating the principle of magnetostriction. The red and blue faces indicate north and south poles of the magnetic domains in the material respectively. The randomly oriented magnetic domains align in the direction of an applied magnetic field which in turn causes a strain in the material.

    Fig. 2: Characterization of Cell Rovers in air and water.
    4

    a) Schematic diagram showing the wireless detection of a Cell Rover using a receiving (Rx) coil consisting of two identical but oppositely wound solenoids connected to a lock-in amplifier. The transmission (Tx) coil generates the AC excitation magnetic field and a permanent magnet is used to produce the required DC bias magnetic field. b) Comparison between measured and FEA simulated wirelessly detected voltage amplitude from a Cell Rover in air as a function of frequency of excitation magnetic field. The signal amplitude is maximum (Vmax) at the resonance frequency (4.532 MHz). The calculation for the quality factor (Q) from the Full Width at Half Maximum (FWHM) is also shown. c) FEA simulation of the distribution of strain in the Cell Rover at the resonance frequency (4.532 MHz). d) FEA simulation showing the magnetic flux density distribution in the Rx coil containing the Cell Rover at the resonance frequency (4.532 MHz). A zoomed in view of the mid-plane of the resonator is also shown. e) Impedance vs Frequency of the Cell Rover in air measured using a Vector Network Analyzer (VNA) and the corresponding equivalent circuit model fit which gives a mechanical quality factor (Q) of 497.0 and a magnetomechanical coupling coefficient (k^2) of 1.12%. The calculated values for motional inductance (Lm), motional capacitance (Cm), and motional resistance (Rm) are also shown. Comparison of measured f) voltage amplitude and g) phase of the Cell Rover in air and water as a function of frequency of excitation magnetic field. h) Impedance vs Frequency of the Cell Rover in water measured using a VNA and the corresponding equivalent circuit model fit which gives a resonance frequency of 4.452 MHz, quality factor of 80.0 and magnetomechanical coupling coefficient (k^2) of 1.12%. All measurements shown are for a Cell Rover of dimension 500 μm × 200 μm × 28 μm at optimum bias magnetic field of 125 Oe.

    More instructive images are available in the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Media Lab is a research laboratory at the Massachusetts Institute of Technology, growing out of MIT’s Architecture Machine Group in the School of Architecture. Its research does not restrict to fixed academic disciplines, but draws from technology, media, science, art, and design. As of 2014, Media Lab’s research groups include neurobiology, biologically inspired fabrication, socially engaging robots, emotive computing,bionics, and hyperinstruments.

    The Media Lab was founded in 1985 by Nicholas Negroponte and former MIT President Jerome Wiesner, and is housed in the Wiesner Building (designed by I. M. Pei), also known as Building E15. The Lab has been written about in the popular press since 1988, when Stewart Brand published The Media Lab: Inventing the Future at M.I.T., and its work was a regular feature of technology journals in the 1990s. In 2009, it expanded into a second building.

    The Media Lab came under scrutiny in 2019 due to its acceptance of donations from convicted child sex offender Jeffrey Epstein. This led to the resignation of its director, Joi Ito, and the launch of an “immediate, thorough and independent” investigation into the “extremely serious” and “deeply disturbing allegations about the engagement between individuals at the Media Lab and Jeffrey Epstein” by the president of MIT.

    Some recurring themes of work at the Media Lab include human adaptability, human computer interaction, education and communication, artistic creation and visualization, and designing technology for the developing world. Other research focus includes machines with common sense, sociable robots, prosthetics, sensor networks, musical devices, city design, and public health. Research programs all include iterative development of prototypes which are tested and displayed for visitors.

    Each of these areas of research may incorporate others. Interaction design research includes designing intelligent objects and environments. Educational research has also included integrating more computation into learning activities – including software for learning, programmable toys, and artistic or musical instruments. Examples include Lego Mindstorms, the PicoCricket, and One Laptop per Child.

    Research groups

    As of 2020, the MIT Media Lab has the following research groups:

    Affective Computing: “advancing wellbeing by using new ways to communicate, understand, and respond to emotion”
    Biomechatronics: “enhancing human physical capability.”
    Camera Culture: “making the invisible visible – inside our bodies, around us, and beyond – for health, work, and connection”
    City Science: “looking beyond smart cities”
    Conformable Decoders: “converting the patterns of nature and the human body into beneficial signals and energy”
    Fluid Interfaces: “designing wearable systems for cognitive enhancement”
    Future Sketches: “exploring the essence of code as a creative medium”
    Human Dynamics: “exploring how social networks can influence our lives in business, health, governance, and technology adoption and diffusions”
    Lifelong Kindergarten: “engaging people in creative learning experiences”
    Mediated Matter: “designing for, with, and by nature”
    Molecular Machines: “engineering at the limits of complexity with molecular-scale parts”
    Nano-Cybernetic Biotrek: “inventing disruptive technologies for nanoelectronic computation and creating new paradigms for life-machine symbiosis”
    Opera of the Future: “extending expression, learning, and health through innovations in musical composition, performance, and participation”
    Personal Robots: “building socially engaging robots and interactive technologies to help people live healthier lives, connect with others, and learn better”
    Poetic Justice: “exploring new forms of social justice through art”
    Responsive Environments: “augmenting and mediating human experience, interaction, and perception with sensor networks”
    Sculpting Evolution: “exploring evolutionary and ecological engineering”
    Signal Kinetics: “extending human and computer abilities in sensing, communication, and actuation through signals and networks”
    Social Machines: “promoting deeper learning and understanding in human networks”
    Space Enabled: “advancing justice in Earth’s complex systems using designs enabled by space”
    Tangible Media: “seamlessly coupling the worlds of bits and atoms by giving dynamic physical form to digital information and computation”
    Viral Communications: “creating scalable technologies that evolve with user inventiveness”

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:25 am on May 15, 2023 Permalink | Reply
    Tags: "Francesca Riccio-Ackerman Works to Improve Access to Prosthetics", , As an undergraduate Riccio-Ackerman worked on clinical trials for neural-enabled myoelectric arms controlled by nerves in the body., , Francesca Riccio-Ackerman is also helping to establish a supply chain for prosthetic limb and orthotic brace parts and equipping clinics with machines and infrastructure to serve more patients., Medicine, Part of the quest to improve human mobility means ensuring that the people who need access to prosthetic care can get it—for the duration of their lives., People with amputation need low-level consistent care for years. There really needs to be a long-term investment in improving this., Riccio-Ackerman is designing and building a sustainable care and delivery model in Sierra Leone to multiply the production of prosthetic limbs and strengthen the country’s prosthetic sector., ,   

    From “Spectrum” At The Massachusetts Institute of Technology: “Francesca Riccio-Ackerman Works to Improve Access to Prosthetics” 

    From “Spectrum”

    At

    The Massachusetts Institute of Technology

    5.12.23
    Kara Baskin

    1
    PhD student Francesca Riccio-Ackerman and a technician inspect a prosthesis in Sierra Leone. Photo: Adikalie Kamara.

    2
    Partially assembled and spare prosthetic components from a clinic in Koidu, Sierra Leone. Photo: Adikalie Kamara.

    In Sierra Leone, war and illness have left up to 40,000 people requiring orthotics and prosthetics services, but there is a profound lack of access to specialized care, says Francesca Riccio-Ackerman, a biomedical engineer and PhD student studying health equity and health systems. There is just one fully certified prosthetist available for the thousands of patients in the African nation who are living with amputation, she notes. The ideal number is one for every 250, according to the World Health Organization and the International Society of Orthotics and Prosthetics.

    The data point is significant for Riccio-Ackerman, who conducts research in the MIT Media Lab’s Biomechatronics Group and in the K. Lisa Yang Center for Bionics, both of which aim to improve translation of assistive technologies to people with disabilities. “We’re really focused on improving and augmenting human mobility,” she says. For Riccio-Ackerman, part of the quest to improve human mobility means ensuring that the people who need access to prosthetic care can get it—for the duration of their lives.

    In September 2021, the Yang Center provided funding for Riccio-Ackerman to travel to Sierra Leone, where she witnessed the lingering physical effects of a brutal decade-long civil war that ended in 2002. Prosthetic and orthotic care in the country, where a vast number of patients are also disabled by untreated polio or diabetes, has become more elusive, she says, as global media attention on the war’s aftermath has subsided. “People with amputation need low-level, consistent care for years. There really needs to be a long-term investment in improving this.”

    Through the Yang Center and supported by a fellowship from the new MIT Morningside Academy for Design, Riccio-Ackerman is designing and building a sustainable care and delivery model in Sierra Leone that aims to multiply the production of prosthetic limbs and strengthen the country’s prosthetic sector. “[We’re working] to improve access to orthotic and prosthetic services,” she says.

    She is also helping to establish a supply chain for prosthetic limb and orthotic brace parts and equipping clinics with machines and infrastructure to serve more patients. In January 2023, her team launched a four-year collaboration with the Sierra Leone Ministry of Health and Sanitation. One of the goals of the joint effort is to enable Sierra Leoneans to obtain professional prosthetics training, so they can care for their own community without leaving home.

    From engineering to economics

    Riccio-Ackerman was drawn to issues around human mobility after witnessing her aunt suffer from rheumatoid arthritis. “My aunt was young, but she looked like she was 80 or 90. She was sick, in pain, in a wheelchair— a young spirit in an old body,” she says.

    As a biomedical engineering undergraduate student at Florida International University, Riccio-Ackerman worked on clinical trials for neural-enabled myoelectric arms controlled by nerves in the body. She says that the technology was thrilling yet heartbreaking. She would often have to explain to patients who participated in testing that they couldn’t take the devices home and that they may never be covered by insurance.

    Riccio-Ackerman began asking questions: “What factors determine who gets an amputation? Why are we making devices that are so expensive and inaccessible?” This sense of injustice inspired her to pivot away from device design and toward a master’s degree in health economics and policy at the SDA Bocconi School of Management in Milan.

    She began work as a research specialist with Hugh Herr SM ’93, professor of arts and sciences at the MIT Media Lab and codirector of the Yang Center, helping to study communities that were medically neglected in prosthetic care. “I knew that the devices weren’t getting to the people who need them, and I didn’t know if the best way to solve it was through engineering,” Riccio-Ackerman explains.

    While Riccio-Ackerman’s PhD should be finished within three years, she’s only at the beginning of her health care equity work. “We’re forging ahead in Sierra Leone and thinking about translating our strategy and methodologies to other communities around the globe that could benefit,” she says. “We hope to be able to do this in many, many countries in the future.”

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT “Spectrum” connects friends and supporters of the Massachusetts Institute of Technology to MIT’s vision, impact, and exceptional community.

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Seal

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of the MIT community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind. Paths of discovery cross every day at MIT, propelling groundbreaking research and furthering personal development. Although it’s not always clear where a path will lead, MIT aims high, working to ensure that humanity’s collective trajectory is pointed toward a brighter future.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute .

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst . In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, The Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, The Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period The Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 The Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from The California Institute of Technology , The Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:16 am on May 11, 2023 Permalink | Reply
    Tags: "‘Pangenome’ hopes to represent more diverse view of humans", , Because both GRCh38 and T2T-CHM13 are mainly built from individuals of mostly European ancestry medical tools that use them as a reference might not work for patients of non-European descent., , , , , Last year researchers published the most complete human genome to date-one that represents virtually 100% of the total human sequence., Medicine, , The complete reference genome-known as T2T-CHM13-still doesn’t reflect the genetic diversity of our species., The new pangenome adds structural variants that were previously hard to sequence and analyze., The new presentation does not include the many versions of the same gene-or alleles-that might be present in some population but not others., The researchers sequenced long reads of DNA allowing them to capture more variations than previous research efforts., To fill those gaps Benedict Paten and his colleagues incorporated genomes collected from 47 individuals and their parents with the whole group representing every continent except Antarctica., We are missing quite a bit of information that can contribute to our knowledge of health disparities and health inequities., What are your chances of getting coronary heart disease? What cancer treatment will you respond best to? The answers likely lie in your DNA.   

    From “Science Magazine” : “‘Pangenome’ hopes to represent more diverse view of humans” 

    From “Science Magazine”

    5.10.23
    Rodrigo Pérez Ortega

    1
    A new pangenome promises to make health care more equitable.Boris SV/Getty Images.

    What are your chances of getting coronary heart disease? What cancer treatment will you respond best to? The answers likely lie in your DNA. But it’s not your DNA scientists base their studies on. Instead, they look at a “reference” genome—one assembled from bits and pieces of genetic material from a few people of mostly European and African ancestry.

    Now, researchers have released the first “pangenome,” representing individuals with ancestry from across the globe. The work could improve the genetic testing for various diseases and even provide new insights into human evolution and biology.

    “It’s an exceptional advance,” says Mashaal Sohail, an evolutionary geneticist at the National Autonomous University of Mexico who was not involved in the project. “It’s making the picture of human genetic variation more accurate and more complete.”

    When the first human genome was published in 2001, it wasn’t quite finished. It was missing about 8% of its genetic alphabet, which was hard to read with the sequencing technology of the time. Scientists have been adding to this “draft genome” ever since, with the last update, known as GRCh38, released in 2017. Last year, researchers published the most complete human genome to date, one that represents virtually 100% of the total human sequence.

    But this complete reference genome, known as T2T-CHM13, still does not reflect the genetic diversity of our species. It doesn’t include the many versions of the same gene, or alleles, that might be present in some population but not others, for example. It’s also missing so-called structural variants—large chunks of DNA that could explain why each one of us is different.

    What’s more, because both GRCh38 and T2T-CHM13 are mainly built from individuals of mostly European ancestry, medical tools that use them as a reference might not work for patients of non-European descent. Biological markers that help predict certain kinds of cancer might be more accurate in people from particular parts of the globe, for example, and a genetic marker that helps gauge a person’s risk of coronary heart disease may be vastly underestimating the risk in Black people.

    “We are missing quite a bit of information that can contribute to our knowledge of health disparities and health inequities,” says Krystal Tsosie, a Diné genetic epidemiologist at Arizona State University.

    To fill those gaps, Benedict Paten, a computational genomicist at the University of California-Santa Cruz, and his colleagues at the Human Pangenome Reference Consortium (HPRC) incorporated genomes collected from 47 individuals and their parents, with the whole group representing every continent except Antarctica. They analyzed the genome of each individual in detail, parsing out which portions belonged to each parent. To have a high-quality resolution of each genome, the researchers sequenced long reads of DNA, allowing them to capture more variations than previous research efforts. That added 119 million more base pairs—the building blocks of DNA—to the previously known 3.2 billion in GRCh38. The team also found 1115 new gene duplications, involved in evolution, the scientists report today in a series of papers published in Nature [below].

    The new pangenome adds structural variants that were previously hard to sequence and analyze, says Sarah Tishkoff, a human geneticist at the University of Pennsylvania who was not involved in the new study. “It’s a very important resource.”

    For Heidi Rehm, a geneticist at Massachusetts General Hospital, the new pangenome could also be a major advance for rare genetic diseases. These conditions are hard to study because mutations that cause them might not show up in GRCh38. The pangenome, she says, might be a better tool to identify such genetic mutations and diagnose patients. “That’s significant.”

    The new pangenome is not only relevant medically, it will also open the doors to more accurate evolutionary genetic studies, Sohail says. With more people now represented, researchers could fill gaps in our evolutionary history, especially in historically understudied parts of the globe.

    The HPRC team wants to add more genomes in the future. It has already added an additional 123, Paten says, and it hopes to reach the goal of 350 by next year.

    So far, most of the institutions that partake in HPRC are based in the United States and Europe. Karen Miga, a geneticist at UCSC who is part of HPRC, says the next phase of the project is to make it a truly international effort and collaborate with institutions abroad.

    The team now aims to sequence new genomes from other regions that have been historically underrepresented, such as the Middle East, which researchers have struggled to sample adequately.

    Tsosie says it’s important that the team not just use a wide diversity of genomes, but that it also actively reaches out to the communities it’s studying and understand their health care needs. This way, these communities can directly benefit medically from the project’s results. Thus far, Tsosie says, she hasn’t seen this approach with HPRC. Miga says her team is already in talks with researchers who represent such communities to figure out the best way to collaborate.

    Tishkoff says that even adding hundreds of additional genomes to the new pangenome isn’t enough. There’s a lot more diversity out there, she says. “But this is a great start.”

    Nature
    Nature
    Nature
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 9:49 am on May 10, 2023 Permalink | Reply
    Tags: "GWAS": genome-wide association studies, "NIMH": National Institute of Mental Health, "UC Santa Cruz to lead data collection center for major federal project on genetic underpinnings of neurological conditions", , , Medicine, Neurological disease attacks our spirit like no other disease., One of the first major tasks for the team at UC Santa Cruz will be to coordinate selection of the 250 most relevant genes to study out of the nearly 30000 protein coding genes in the human genome., Phenotyping of neuropsychiatric conditions, Scientists are particularly interested in genes that are involved in multiple neuropsychiatric conditions and in which small mutations translate to major phenotypes., Some important genes may not be represented in past GWAS studies due to lack of sampling across diverse populations., Standardizing the phenotyping of neuropsychiatric conditions with a variety of models ranging from human stem cell models such as brain organoids and neurons all the way to zebrafish., , This nationwide project is a frontal assault on the biological mechanisms behind neurological disease building on more than two decades of genomic advances in which UCSC has played a role., UCSC Genomics Institute   

    From The University of California-Santa Cruz: “UC Santa Cruz to lead data collection center for major federal project on genetic underpinnings of neurological conditions” 

    From The University of California-Santa Cruz

    5.9.23
    Emily Cerf
    ecerf@ucsc.edu

    1
    David Haussler, Scientific Director at the UCSC Genomics Institute, is a principal investigator on the new Data Coordination Center. (Photo by Carolyn Lagattuta)

    2
    Mohammed Mostajo Radji, a research scientist at the Genomics Institute, will be a co-investigator on the project playing a key leadership role.

    The UC Santa Cruz Genomics Institute will run the Data Coordination Center for the Scalable and Systematic Neurobiology of Psychiatric and Neurodevelopmental Disorder Risk Genes (SSPsyGene) Consortium, a new major effort from the National Institute of Mental Health (NIMH) to study the 250 most important genes linked to a wide range of neuropsychiatric conditions.

    A five-year grant from the NIMH, which is a branch of the National Institutes of Health (NIH), puts a UCSC-led team in charge of managing the large, complex data sets that will be created throughout this project. The data generation centers for the consortium will be: UC Los Angeles; Yale; Rutgers, Northshore University, University of Chicago, and Baylor College; and the Broad Institute and MIT. UCSC will also lead several outreach efforts connected to this project.

    “Working with the data generation centers and the NIH, we want to standardize the phenotyping of neuropsychiatric conditions using a variety of models ranging from human stem cell models such as brain organoids and neurons, all the way to model organisms like zebrafish,” said Mohammed Mostajo Radji, a research scientist at the Genomics Institute and a co-investigator on the project. “We need to prioritize the most important genes underlying neurological conditions. We are particularly interested in genes that are involved in multiple neuropsychiatric conditions, and in which small mutations translate to major phenotypes”.

    This grant will provide nearly $7.5 million in funding over the next five years. The principal investigators (PIs) of the Data Coordination Center will be David Haussler, Scientific Director at the UCSC Genomics Institute, and Tom Nowakowski, an associate professor at UC San Francisco, with Mostajo-Radji playing a key leadership role as well. Co-investigators will be Associate Professor of Molecular, Cell and Developmental Biology Olena Vaske, Associate Professor of Biomolecular Engineering Benedict Paten, and Genomics Institute Associate Research Scientist Max Haeussler. The program manager will be Catharina Lindley.

    “Neurological disease attacks our spirit like no other disease, and so many families have had to cope with lifetime illness from it,” Haussler said. “This nationwide project is a frontal assault on the biological mechanisms behind neurological disease, building on more than two decades of genomic advances that UCSC is proud to have played a role in. We are very honored to have been chosen to be the coordination center for it.”

    One of the first major tasks for the team at UC Santa Cruz will be to coordinate an initial selection of the 250 most relevant genes for the consortium to study out of the nearly 30,000 protein coding genes in the human genome. This selection will take place over the first three to six months of the project and involve a science-informed ranking and classification process, drawing on previous genome-wide association studies (“GWAS”) of neurological conditions.

    They will also consider that some important genes may not be represented in past GWAS studies due to lack of sampling across diverse populations, which can cause researchers to miss genes that are less common among people of European ancestry.

    After the initial genes are selected, the data generation centers will lead research on these genes over the next five years. This will help the researchers understand which genes and their specific mutations overlap in many disorders and therefore are important to study.

    Multiple types of data will be produced that UCSC researchers will be tasked with coordinating into a cohesive story. These data will include genomic and physiological data of human brain organoids, as well as high-speed imaging of human neuronal activity, and behavior of zebrafish.The Genomics Institute’s data coordination efforts will emphasize standardization and accessibility across these data.

    “This is the next frontier,” Mostajo-Radji said. “It took the wider genomics community several years of massive effort to standardize genomics, but at this point genomics is such a productive field because so much of the data is standard — anyone from anywhere in the world can see and understand the data because we all speak the same language. We have not gotten to this point yet with neuroscience phenotyping, but it’s time.”

    The data will be available to the consortium members in a form quite similar to that presented by the UCSC Genome Browser, which is one of the most widely used genomics data repositories by scientists worldwide. It will be hosted in a data biosphere environment, a concept for modular and interoperable genomics data storage pioneered by Paten. They will also follow the FAIR principles, standards to ensure data is findable, accessible, interoperable, and reusable.

    “We at the Genomics Institute have a history of structuring and making genomic data available to scientists and the public, from the human genome itself to the Cancer Genome Atlas and other major projects,” Haeussler said. “The SSPsyGene project continues this tradition, and we will ensure data is easily and quickly accessible to everyone in the consortium at first, and ultimately to the public.”

    Throughout the course of the project, the UCSC and UCSF researchers will strive to create a collaborative environment among the consortium members, and communicate with the larger neuroscience and genomics communities. They will also coordinate a series of capstone projects that will serve to test the data interoperability and fine-tune common data standards.

    Outreach efforts connected to this project will include developing a class at UC Santa Cruz on neuroscience global health diplomacy that focuses on how communities of scientists are built around addressing neurological disorders.

    The class, as with the overall consortium, will focus on how scientists can effectively ask a targeted research question across a population as diverse as the entire United States.

    Mary Goldman, a Design and Outreach Engineer at the UCSC Genomics Institute, led the writing coordination of this grant, with help from Katrina Slater, former UCSC Genomics Institute Grants Management Specialist.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz campus.

    The University of California-Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    The University of California-Santa Cruz is a public land-grant research university in Santa Cruz, California. It is one of the ten campuses in the University of California system. Located on Monterey Bay, on the edge of the coastal community of Santa Cruz, the campus lies on 2,001 acres (810 ha) of rolling, forested hills overlooking the Pacific Ocean.

    Founded in 1965, The University of California-Santa Cruz began with the intention to showcase progressive, cross-disciplinary undergraduate education, innovative teaching methods and contemporary architecture. The residential college system consists of ten small colleges that were established as a variation of the Oxbridge collegiate university system.

    Among the Faculty is 1 Nobel Prize Laureate, 1 Breakthrough Prize in Life Sciences recipient, 12 members from the National Academy of Sciences, 28 members of the American Academy of Arts and Sciences, and 40 members of the American Association for the Advancement of Science. Eight University of California-Santa Cruz alumni are winners of 10 Pulitzer Prizes. The University of California-Santa Cruz is classified among “R1: Doctoral Universities – Very high research activity”. It is a member of the Association of American Universities, an alliance of elite research universities in the United States and Canada.

    The university has five academic divisions: Arts, Engineering, Humanities, Physical & Biological Sciences, and Social Sciences. Together, they offer 65 graduate programs, 64 undergraduate majors, and 41 minors.

    Popular undergraduate majors include Art, Business Management Economics, Chemistry, Molecular and Cell Biology, Physics, and Psychology. Interdisciplinary programs, such as Computational Media, Feminist Studies, Environmental Studies, Visual Studies, Digital Arts and New Media, Critical Race & Ethnic Studies, and the History of Consciousness Department are also hosted alongside UCSC’s more traditional academic departments.

    A joint program with The University of California-Hastings enables University of California-Santa Cruz students to earn a bachelor’s degree and Juris Doctor degree in six years instead of the usual seven. The “3+3 BA/JD” Program between University of California-Santa Cruz and The University of California-Hastings College of the Law in San Francisco accepted its first applicants in fall 2014. University of California-Santa Cruz students who declare their intent in their freshman or early sophomore year will complete three years at The University of California-Santa Cruz and then move on to The University of California-Hastings to begin the three-year law curriculum. Credits from the first year of law school will count toward a student’s bachelor’s degree. Students who successfully complete the first-year law course work will receive their bachelor’s degree and be able to graduate with their University of California-Santa Cruz class, then continue at The University of California-Hastings afterwards for two years.

    According to the National Science Foundation, The University of California-Santa Cruz spent $127.5 million on research and development in 2018, ranking it 144th in the nation.

    Although designed as a liberal arts-oriented university, The University of California-Santa Cruz quickly acquired a graduate-level natural science research component with the appointment of plant physiologist Kenneth V. Thimann as the first provost of Crown College. Thimann developed The University of California-Santa Cruz’s early Division of Natural Sciences and recruited other well-known science faculty and graduate students to the fledgling campus. Immediately upon its founding, The University of California-Santa Cruz was also granted administrative responsibility for the Lick Observatory, which established the campus as a major center for Astronomy research. Founding members of the Social Science and Humanities faculty created the unique History of Consciousness graduate program in The University of California-Santa Cruz’s first year of operation.

    Famous former University of California-Santa Cruz faculty members include Judith Butler and Angela Davis.

    The University of California-Santa Cruz’s organic farm and garden program is the oldest in the country, and pioneered organic horticulture techniques internationally.

    As of 2015, The University of California-Santa Cruz’s faculty include 13 members of the National Academy of Sciences, 24 fellows of the American Academy of Arts and Sciences, and 33 fellows of the American Association for the Advancement of Science. The Baskin School of Engineering, founded in 1997, is The University of California-Santa Cruz’s first and only professional school. Baskin Engineering is home to several research centers, including the Center for Biomolecular Science and Engineering and Cyberphysical Systems Research Center, which are gaining recognition, as has the work that UCSC researchers David Haussler and Jim Kent have done on the Human Genome Project, including the widely used University of California-Santa Cruz Genome Browser. The University of California-Santa Cruz administers the National Science Foundation’s Center for Adaptive Optics.

    Off-campus research facilities maintained by The University of California-Santa Cruz include the Lick and The W. M. Keck Observatory, Mauna Kea, Hawai’i and the Long Marine Laboratory. From September 2003 to July 2016, The University of California-Santa Cruz managed a University Affiliated Research System (UARC) for the NASA Ames Research Center under a task order contract valued at more than $330 million.

    The University of California-Santa Cruz was tied for 58th in the list of Best Global Universities and tied for 97th in the list of Best National Universities in the United States by U.S. News & World Report’s 2021 rankings. In 2017 Kiplinger ranked The University of California-Santa Cruz 50th out of the top 100 best-value public colleges and universities in the nation, and 3rd in California. Money Magazine ranked The University of California-Santa Cruz 41st in the country out of the nearly 1500 schools it evaluated for its 2016 Best Colleges ranking. In 2016–2017, The University of California-Santa Cruz Santa Cruz was rated 146th in the world by Times Higher Education World University Rankings. In 2016 it was ranked 83rd in the world by the Academic Ranking of World Universities and 296th worldwide in 2016 by the QS World University Rankings.

    In 2009, RePEc, an online database of research economics articles, ranked the The University of California-Santa Cruz Economics Department sixth in the world in the field of international finance. In 2007, High Times magazine placed The University of California-Santa Cruz as first among US universities as a “counterculture college.” In 2009, The Princeton Review (with Gamepro magazine) ranked The University of California-Santa Cruz’s Game Design major among the top 50 in the country. In 2011, The Princeton Review and Gamepro Media ranked The University of California-Santa Cruz’s graduate programs in Game Design as seventh in the nation. In 2012, The University of California-Santa Cruz was ranked No. 3 in the Most Beautiful Campus list of Princeton Review.

    The University of California-Santa Cruz is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    The University of California-Santa Cruz Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).

    Search for extraterrestrial intelligence expands at Lick Observatory

    New instrument scans the sky for pulses of infrared light

    March 23, 2015
    By Hilary Lebow
    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at The University of California-Santa Cruz’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at The University of Toronto (CA)’s Dunlap Institute for Astronomy and Astrophysics (CA).

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch.)

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at University of California’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.


    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at The University of California-San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy and Astrophysics (CA).

    NIROSETI team from left to right Rem Stone UCO Lick Observatory Dan Werthimer, UC Berkeley; Jérôme Maire, U Toronto; Shelley Wright, The University of California-San Diego Patrick Dorval, U Toronto; Richard Treffers, Starman Systems. (Image by Laurie Hatch).

    Wright worked on an earlier SETI project at Lick Observatory as a University of California-Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at The University of California-Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    Drake Equation, Frank Drake, Seti Institute.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

     
  • richardmitnick 9:06 pm on April 26, 2023 Permalink | Reply
    Tags: , "Off-menu materials science", , , , , , , , Medicine, , ,   

    From The School of Engineering At The Massachusetts Institute of Technology: “Off-menu materials science” 

    From The School of Engineering

    At

    The Massachusetts Institute of Technology

    4.26.23
    Daniel de Wolff | MIT Industrial Liaison Program

    1
    Robert Macfarlane’s work has implications for climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure. Photo: David Sella/MIT Corporate Relations

    A formerly self-described dyed-in-the-wool chemist who has gradually transitioned to research that sits at the interface of science and engineering, Associate Professor Robert Macfarlane and his Macfarlane Lab at MIT explore the chemical sciences that impact materials development and real-world applications. Considering his chosen line of research, he says, “I want to understand things from the level of a chemist, using the intuition of bonding and chemical interactions I gained from my chemistry education, and translate that molecular-level understanding into control over material structure across all length scales from micro- to macroscopic.” His work has implications for areas of impact including climate and sustainability, energy, health and medicine, manufacturing technologies, sensing and computing, simulation and data science, transportation, and infrastructure.

    According to Macfarlane, one of the great limitations of industrial and applied research is a shortsighted view that equates “material design” with “material selection.” In other words, there is already a well-defined catalog of materials to consider when designing devices or architectures. Macfarlane’s hypothesis: Current devices and applications are stymied by the materials available. So, while many of his colleagues are focused on designing specific applications using just the materials that currently exist, Macfarlane and his lab prioritize making the materials that enable future development of those applications. He’s expanding the catalogue of materials from which both academics and industry can choose, building a new tool set to build better versions of the next solar cells, batteries, drug delivery vehicles, etc.

    “One of the driving principles of our work,” he says, “is designing smart materials that can spontaneously organize into more complex, higher-order structures upon introduction of a pre-programmed stimulus.” Broadly speaking, he applies these principles to developing novel ways to assemble nanoparticles that are scalable and compositionally versatile. His materials may look like, behave like, and can be processed like plastics, but they are partially (or in some cases predominantly) composed of metals, ceramics, or semiconductors.


    Robert J. Macfarlane – Understanding the Material Applications of Chemistry.

    His work with one of these new building blocks, self-assembling nanocomposite tectons (NCTs), put the Macfarlane lab on the map. He points out that while nanoparticle self-assembly is a decades-old concept, the field has persistently struggled to develop scalable, cost-effective methods to implement the innovation. At best, most researchers in the field making scalable materials this way can develop 2D films (i.e., a material that coats a full square centimeter area, but is only a few micrometers thick). Nobody had succeeded in building large structures that were macroscopic in all three dimensions until Macfarlane and his lab stepped in. Their innovation uses more scalable, cost-effective components like synthetic polymers as nanoparticle coatings to drive the particle assembly process. The resulting materials derive their properties from the original nanoparticle, but “sprinkling on these decorative objects,” as Macfarlane explains it, allows the particles to spontaneously organize themselves. The key advances enabled by the polymer coatings they use include greater scalability, but also greater composition versatility and better processability — meaning they can not only make the materials, but also shape them into physical forms that are critical for industrial use.

    Rather than reinventing the wheel for every potential device application or material, Macfarlane tunes his NCTs, imbuing them with particular properties — optical, electrical, or mechanical — enabling faster turnaround between envisioning or designing a new structure and beginning the process of fabricating it. As for potential applications, Macfarlane says, “The modular nature of NCTs provides multiple design handles to alter the composition, size, and thermodynamics of assembly to introduce new geometric arrangements and properties of the resulting material. As a result, these structures have potential application in the areas of plasmonics and photonics, heterogeneous catalysis, and energy storage.”

    More recently, the Macfarlane group has begun exploring cross-linkable nanoparticles. Otherwise referred to as “the XNP concept,” it has gained significant traction with industry. These XNPs similarly consist of nanoparticles coated with polymers, but with a key addition — the polymers can be chemically cross-linked after they are molded into the appropriate physical form. This cross-linking switches the XNP building blocks from being soft and malleable (i.e., a toothpaste or “Silly Putty”-like consistency) to being rigid, like a traditional plastic. While such materials are commonplace in polymer development, the Macfarlane lab’s XNPs are able to make such materials while still remaining as much as 85 percent-by-weight (wt%) nanoparticle content. For comparison, similar materials typically have about 1-10 wt% nanoparticle.

    This new XNP-enabled composition space enables combinations of properties that are otherwise nearly impossible to access. The work borrows similar ideas from NCTs in that XNPs are also nanoparticles coated in polymers, but applies to a wider range of materials and pushes the bar for scalability even higher as the specific polymers used are even easier to synthesize. Applications for this material might include protective coating for a battery or a micro electronic device that enables rapid heat dissipation to prevent device burnout. Other potential future applications include low dielectric materials required for 5G and 6G communications, scratch-resistant anti-reflection coatings for lenses and mirrors, or porous materials for gas separation and storage.

    “There are a host of different things that we are thinking about in the optical, mechanical, chemical, and thermal spaces,” says Macfarlane. “The XNP concept has become an enabling technology for all sorts of different applications. And we’ve been talking with multiple industry partners, each of which has their own specific niche. One of the advantages is that the XNP approach enables a plug-and-play concept where we can change out the polymer, change out the particle, or change out the physical form of the object being made, but the XNP concept remains the same.”

    Speaking of industry collaboration, Macfarlane notes a recent collaboration with a large adhesives company. “We were able to take some very simple constructs that we had been working with, and by sprinkling in a tiny amount of them to these adhesives, we kept the stickiness of the tape intact and increased the cohesive strength by factor of three. This is a very immediate, obvious real-world impact from something that we might not have even thought of if we hadn’t been talking with industry.”

    Going forward, Macfarlane says he and his lab intend to develop new materials with an eye toward scalability, sustainability, and versatility — using the templates that they have already developed and expanding them into the most impactful areas of application. “At the Macfarlane Lab, we don’t build one-off materials or one-off devices,” he says. “We build platforms that allow a multitude of people to make a variety of applications, devices, and technologies. Industry doesn’t always consider the limitations of the current materials-design catalogue. In my lab at MIT, we’re working to provide off-menu options to solve your real-world challenges.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT School of Engineering is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts. The School of Engineering has eight academic departments and two interdisciplinary institutes. The School grants SB, MEng, SM, engineer’s degrees, and PhD or ScD degrees. The school is the largest at MIT as measured by undergraduate and graduate enrollments and faculty members.

    Departments and initiatives:

    Departments:

    Aeronautics and Astronautics (Course 16)
    Biological Engineering (Course 20)
    Chemical Engineering (Course 10)
    Civil and Environmental Engineering (Course 1)
    Electrical Engineering and Computer Science (Course 6, joint department with MIT Schwarzman College of Computing)
    Materials Science and Engineering (Course 3)
    Mechanical Engineering (Course 2)
    Nuclear Science and Engineering (Course 22)

    Institutes:

    Institute for Medical Engineering and Science
    Health Sciences and Technology program (joint MIT-Harvard, “HST” in the course catalog)

    (Departments and degree programs are commonly referred to by course catalog numbers on campus.)

    Laboratories and research centers

    Abdul Latif Jameel Water and Food Systems Lab
    Center for Advanced Nuclear Energy Systems
    Center for Computational Engineering
    Center for Materials Science and Engineering
    Center for Ocean Engineering
    Center for Transportation and Logistics
    Industrial Performance Center
    Institute for Soldier Nanotechnologies
    Koch Institute for Integrative Cancer Research
    Laboratory for Information and Decision Systems
    Laboratory for Manufacturing and Productivity
    Materials Processing Center
    Microsystems Technology Laboratories
    MIT Lincoln Laboratory Beaver Works Center
    Novartis-MIT Center for Continuous Manufacturing
    Ocean Engineering Design Laboratory
    Research Laboratory of Electronics
    SMART Center
    Sociotechnical Systems Research Center
    Tata Center for Technology and Design

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    4

    The Computer Science and Artificial Intelligence Laboratory (CSAIL)

    The Kavli Institute For Astrophysics and Space Research

    MIT’s Institute for Medical Engineering and Science is a research institute at the Massachusetts Institute of Technology

    The MIT Laboratory for Nuclear Science

    The MIT Media Lab

    The MIT Sloan School of Management

    Spectrum

    MIT.nano

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 11:14 am on April 24, 2023 Permalink | Reply
    Tags: "BioTranslator" - the first multilingual translation framework for biomedical research., "Researchers unveil BioTranslator - a machine learning model that bridges biological data and text to accelerate biomedical discovery", , , Biomedical research has yielded troves of data on protein function and cell types and gene expression and drug formulas., BioTranslator does not merely perform similarity search on existing CVs using text-based semantics; instead it translates the user-generated text description into a biological data instance., BioTranslator frees scientists from rigidity by enabling them to search and retrieve biological data with the ease of free-form text., Medicine, Part of what makes BioTranslator unique is its ability to make predictions across multiple biological modalities without the benefit of paired data., , , , What if scientists had been able to simply type a description of the virus and its spike protein into a search bar and received information on the angiotensin-converting enzyme 2?   

    From The Paul G. Allen School of Computer Science and Engineering In The College of Engineering At The University of Washington : “Researchers unveil BioTranslator – a machine learning model that bridges biological data and text to accelerate biomedical discovery” 

    From The Paul G. Allen School of Computer Science and Engineering

    In

    The College of Engineering

    At

    The University of Washington

    4.3.23 [Just today in social media.]
    Kristin Osborne

    1
    A visualization of p97, an enzyme that plays a crucial role in regulating proteins in cancer cells, inhibited from completing its normal reaction cycle by a potential small molecule drug. With BioTranslator, the first multilingual translation framework for biomedical research, scientists will be able to search potential drug targets like p97 and other non-text biological data using free-form text descriptions. National Cancer Institute, National Institutes of Health.

    When the novel coronavirus SARS-Cov-2 began sweeping across the globe, scientists raced to figure out how the virus infected human cells so they could halt the spread.

    What if scientists had been able to simply type a description of the virus and its spike protein into a search bar, and received information on the angiotensin-converting enzyme 2 — colloquially known as the ACE2 receptor, through which the virus infects human cells — in return? And what if, in addition to identifying the mechanism of infection for similar proteins, this same search also returned potential drug candidates that are known to inhibit their ability to bind to the ACE2 receptor?

    Biomedical research has yielded troves of data on protein function, cell types, gene expression and drug formulas that hold tremendous promise for assisting scientists in responding to novel diseases as well as fighting old foes such as Alzheimer’s, cancer and Parkinson’s. Historically, their ability to explore these massive datasets has been hampered by an outmoded model that relied on painstakingly annotated data, unique to each dataset, that precludes more open-ended exploration.

    But that may be about to change. In a recent paper published in Nature Communications [below], Allen School researchers and their collaborators at Microsoft and Stanford University unveiled “BioTranslator”, the first multilingual translation framework for biomedical research. BioTranslator — a portmanteau of “biological” and “translator” — is a state-of-the-art, zero-shot classification tool for retrieving non-text biological data using free-form text descriptions.

    2
    Hanwen Xu (left) and Addie Woicik. UWashington.

    “BioTranslator serves as a bridge connecting the various datasets and the biological modalities they contain together,” explained lead author Hanwen Xu, a Ph.D. student in the Allen School. “If you think about how people who speak different languages communicate, they need to translate to a common language to talk to each other. We borrowed this idea to create our model that can ‘talk’ to different biological data and translate them into a common language — in this case, text.”

    The ability to perform text-based search across multiple biological databases breaks from conventional approaches that rely on controlled vocabularies (CVs). As the name implies, CVs come with some constraints. Once the original dataset is created via the painstaking process of manual or automatic annotation according to a predefined set of terms, it is difficult to extend them to the analysis of new findings; meanwhile, the creation of new CVs is time consuming and requires extensive domain knowledge to compose the data descriptions.

    BioTranslator frees scientists from this rigidity by enabling them to search and retrieve biological data with the ease of free-form text. Allen School professor Sheng Wang, senior author of the paper, likens the shift to when the act of finding information online progressed from combing through predefined directories to being able to enter a search term into open-ended search engines like Google and Bing.

    3
    Sheng Wang. UWashington.

    “The old Yahoo! directories relied on these hierarchical categories like ‘education,’ ‘health,’ ‘entertainment’ and so on. That meant that If I wanted to find something online 20 years ago, I couldn’t just enter search terms for anything I wanted; I had to know where to look,” said Wang. “Google changed that by introducing the concept of an intermediate layer that enables me to enter free text in its search bar and retrieve any website that matches my text. BioTranslator acts as that intermediate layer, but instead of websites, it retrieves biological data.”

    Wang and Xu previously explored text-based search of biological data by developing ProTranslator, a bilingual framework for translating text to protein function. While ProTranslator is limited to proteins, BioTranslator is domain-agnostic, meaning it can pull from multiple modalities in response to a text-based input — and, as with the switch from old-school directories to modern search engines, the person querying the data no longer has to know where to look.

    BioTranslator does not merely perform similarity search on existing CVs using text-based semantics; instead, it translates the user-generated text description into a biological data instance, such as a protein sequence, and then searches for similar instances across biological datasets. The framework is based on large-scale pretrained language models that have been fine-tuned using biomedical ontologies from a variety of related domains. Unlike other language models that are having a moment — ChatGPT comes to mind — BioTranslator isn’t limited to searching text but rather can pull from various data structures, including sequences, vectors and graphs. And because it’s bidirectional, BioTranslator not only can take text as input, but also generate text as output.

    “Once BioTranslator converts the biological data to text, people can then plug that description into ChatGPT or a general search engine to find more information on the topic,” Xu noted.

    4
    BioTranslator functions as an intermediate layer between written text descriptions and biological data. The framework, which is based on large-scale pretrained language models that have been refined using biological ontologies from a variety of domains, translates user-generated text into a non-text biological data instance — for example, a protein sequence — and searches for similar instances across multiple biological datasets. Nature Communications.

    Xu and his colleagues developed BioTranslator using an unsupervised learning approach. Part of what makes BioTranslator unique is its ability to make predictions across multiple biological modalities without the benefit of paired data.

    “We assessed BioTranslator’s performance on a selection of prediction tasks, spanning drug-target interaction, phenotype-gene association and phenotype-pathway association,” explained co-author and Allen School Ph.D. student Addie Woicik. “BioTranslator was able to predict the target gene for a drug using only the biological features of the drugs and phenotypes — no corresponding text descriptions — and without access to paired data between two of the non-text modalities. This sets it apart from supervised approaches like multiclass classification and logistic regression, which require paired data in training.”

    BioTranslator outperformed both of those approaches in two out of the four tasks, and was better than the supervised approach that doesn’t use class features in the remaining two. In the team’s experiments, BioTranslator also successfully classified novel cell types and identified marker genes that were omitted from the training data. This indicates that BioTranslator can not only draw information from new or expanded datasets — no additional annotation or training required — but also contribute to the expansion of those datasets.

    4
    Hoifung Poon (left) and Dr. Russ Altman. UWashington.

    “The number of potential text and biological data pairings is approaching one million and counting,” Wang said. “BioTranslator has the potential to enhance scientists’ ability to respond quickly to the next novel virus, pinpoint the genetic markers for diseases, and identify new drug candidates for treating those diseases.”

    Other co-authors on the paper are Allen School alum Hoifung Poon (Ph.D., ‘11), general manager at Microsoft Health Futures, and Dr. Russ Altman, the Kenneth Fong Professor of Bioengineering, Genetics, Medicine and Biomedical Data Science, with a courtesy appointment in Computer Science, at Stanford University. Next steps for the team include expanding the model beyond expertly written descriptions to accommodate more plain language and noisy text.

    Access the BioTranslator code package here.

    Nature Communications
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the University of Washington Paul G. Allen School of Computer Science and Engineering
    Mission, Facts, and Stats

    Our mission is to develop outstanding engineers and ideas that change the world.

    Faculty:
    275 faculty (25.2% women)
    Achievements:

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    PEOPLE Innovation at UW ECE is exemplified by our outstanding faculty and by the exceptional group of students they advise and mentor. Students receive a robust education through a strong technical foundation, group project work and hands-on research opportunities. Our faculty work in dynamic research areas with diverse opportunities for projects and collaborations. Through their research, they address complex global challenges in health, energy, technology and the environment, and receive significant research and education grants. IMPACT We continue to expand our innovation ecosystem by promoting an entrepreneurial mindset in our teaching and through diverse partnerships. The field of electrical and computer engineering is at the forefront of solving emerging societal challenges, empowered by innovative ideas from our community. As our department evolves, we are dedicated to expanding our faculty and student body to meet the growing demand for engineers. We welcomed six new faculty hires in the 2018-2019 academic year. Our meaningful connections and collaborations place the department as a leader in the field.

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of UW startups in FY18 came from the College of Engineering.

    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.

    u-washington-campus

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here.

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities (ARWU) has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
  • richardmitnick 8:11 am on April 24, 2023 Permalink | Reply
    Tags: "New program connects Yale experts with EMTs responding to emergency births", , During the trainings doctors do with the EMS community there’s an education session as well as simulation and hands-on skills training., If we can positively change what happens in the first five minutes of a baby’s life it can really make a difference for their long-term health and for the people taking care of them., In the last couple of decades we’ve seen a contraction in pediatric services across the country., Medicine, Neonatology, Roughly 300 babies are delivered outside hospitals each year in Connecticut-some intentionally and some not., The first responders are going to be the professionals on the scene during these events and they manage a remarkable breadth and depth of emergencies., , There’s a chance first responders will need to resuscitate a premature baby.,   

    From The School of Medicine At Yale University: “New program connects Yale experts with EMTs responding to emergency births” 

    From The School of Medicine

    At

    Yale University

    4.20.23
    Mallory Locklear

    1
    © stock.adobe.com .

    Connecticut EMTs responding to emergency births can now call Yale neonatologists for support through a new program. The goal is to improve birth outcomes.

    Roughly 300 babies are delivered outside hospitals each year in Connecticut, some intentionally and some not, and around 10% will need resuscitation. For the past year, Brooke Redmond, an assistant professor of pediatrics at Yale School of Medicine and medical director of the Waterbury Hospital neonatal intensive care unit, has offered hands-on training to emergency medical technicians (EMTs) in the Waterbury, Connecticut, area to help prepare them for such scenarios. Now, she’s created a new program that will allow her and other neonatologists to provide support during emergencies.

    The program — 24/7 BABY — launched April 1 in the Waterbury area gives first responders access to neonatologist expertise 24 hours a day, seven days a week. The goal is to improve outcomes for babies born outside of a hospital setting by ensuring first responders have guidance when they most need it.

    Redmond sat down with Yale News to talk about the challenges of unexpected births and how 24/7 BABY will help address them. This interview has been edited for length and clarity.

    2
    Brooke Redmond. Yale.

    What led you to start 24/7 BABY?

    Brooke Redmond: I began providing training sessions on neonatology and pediatrics for the Waterbury emergency medical services (EMS) community, and I focused on deliveries in the field and how to manage neonatal emergencies that are occurring outside of a hospital. It was a really fun chance for me to open the conversation with how incredible babies are and how helpful certain actions can be to turn their circumstances around in a very short period of time.

    The idea for the program came out of puzzling through what I might be able to do better to support the first responders after I’d done a couple of these sessions. I started to wonder if there was a way I could get eyes and ears on the scene directly. I began exploring some of the telehealth options we had used during the pandemic to see if we could get telehealth in the field in real time.

    A lot of people helped make it happen, and we’re now launching the program in Waterbury, since that’s where I already have connections to the EMS community. I’m lucky enough to work with two other Yale neonatologists at Waterbury Hospital, Stephanie Kyc and Ashley Cozzo, who both have a real passion for serving the community. Whichever one of us is on call at the hospital will also answer calls that come through 24/7 BABY.

    What are some of the main challenges faced by emergency responders when a baby is born outside of a hospital?

    Redmond: The differences between the environments — hospital versus in the field — are substantial. If we’re delivering a baby at the hospital, the amount of preparation involved is very extensive. We also have the luxury of having lots of team members.

    But out in the field, there’s much less warning and many fewer people available to assist. There are so many things to do in a limited amount of time, and it feels like a less controlled setting with so many different things to potentially hone in on, so identifying in the moment what could make the most difference for the baby can be challenging.

    How will 24/7 baby help?

    Redmond: During the trainings we do with the EMS community, there’s an education session as well as simulation and hands-on skills training. But first responders don’t have a ton of exposure to babies in the field. Whereas, as a neonatologist, it’s a lot easier for me to retain these skills and nuanced details because I use them all the time. This is a way for us to put our expertise surrounding something that’s common for us to do every day in the hands of people for whom it’s rare day-to-day. We don’t want to come in and change the way people do things. We want to be as helpful as possible, and for 24/7 BABY to be useful, to integrate it nicely with how the EMS community already works, and to make sure we’re providing them with what they need in a way that follows the state protocols they have to adhere to.

    Not every baby born outside of a hospital will need resuscitation, but because those that are are often premature, there’s a chance first responders will need to resuscitate. During those situations where they respond to deliveries without the luxury of extensive preparation, it can feel like there are many right things you could do all at once. One way a neonatologist might help is to direct focus on a key thing that helps pull everything together, such as clearing the airway or providing bag-mask ventilation. And while we may not be there physically, we can help them think about the resources they have that are helpful in the situation.

    Are there plans for expansion?

    Redmond: Yes, I would love to get the program out to the rest of the state. For the first three months, we’re going to really focus the conversation on the different firehouses and EMT training facilities in the Waterbury region and adjust the program based on their feedback. Then we’d like to expand into the New Haven area and Fairfield County, and then take it statewide.

    If we can positively change what happens in the first five minutes of a baby’s life, it can really make a difference for their long-term health and for the people taking care of them. I don’t know of anyone else doing something like 24/7 BABY, so we hope this can serve as a model for others. In the last couple of decades, we’ve seen a contraction in pediatric services across the country. This would be one way to help communities not as close to large neonatology centers.

    What will you need to expand 24/7 baby?

    Redmond: What we need most for the successful expansion of the program is for first responders to become aware of this resource and for it to integrate seamlessly into their current system. Expansion and wide adoption will require knowledge of the practices of individual units and collaboration with the regional networks of EMS services and central medical control.

    With the initial launch of the program, we are relying on word of mouth and on conveying the details of how 24/7 BABY works to individuals and small groups. We hope that when first responders find it helpful, they will share their experience within their organizations and with other professionals. I anticipate much of this next year continuing to focus heavily on outreach and building trust and relationships. I would love to meet personally with as many groups of first responders as are interested in hearing about partnering in this new way.

    Once we are able to make this accessible throughout Connecticut, I foresee expanding throughout New England. This program is a way of leveling the playing field for newborns, equalizing access to specialized expertise irrespective of geography, population density, and local challenges and resources.

    What sorts of feedback have you received from the emergency responder community?

    Redmond: I was doing an EMT training session in March at the firehouse in Middlebury and told them about the new program, and everyone seemed incredibly excited about having this kind of access during these emergencies. They all programmed the number into their phones and asked if they could tell others about it.

    In April, when I was at the firehouse in Beacon Falls, the EMTs described the 24/7 BABY service as a “sigh of relief.” They entered the number into their phones and took flyers to hang up and pass along to others. They said that it was reassuring to know we would be available to support them when they get called to deliveries in the community.

    The first responders are going to be the professionals on the scene during these events, and they manage a remarkable breadth and depth of emergencies. Just like in everything they do, they’re invested in doing a really good job in the relatively rare instances they come across birth complications out in the field.

    This service is for professional emergency responders. Who should parents and caregivers reach out to with questions or concerns about their babies?

    Redmond: Parents and caregivers should call their pediatrician if they have questions or concerns about their babies. If they are experiencing a true medical emergency with their child, they should call 911 or go to the emergency room.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Yale School of Medicine is the graduate medical school at Yale University, a private research university in New Haven, Connecticut. It was founded in 1810 as the Medical Institution of Yale College and formally opened in 1813.

    The primary teaching hospital for the school is Yale New Haven Hospital. The school is home to the Harvey Cushing/John Hay Whitney Medical Library, one of the largest modern medical libraries which is known for its historical collections. The faculty includes 70 National Academy of Sciences members, 47 National Academy of Medicine members, and 13 Howard Hughes Medical Institute investigators.

    U.S. News & World Report currently ranks the Yale School of Medicine 10th in the country for research and 59th in primary care. The M.D. program is highly selective; for the class of 2022, the school received 4,968 applications to fill 104 seats. The median GPA for the class was 3.89, and the median MCAT was 521.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation , Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences . The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 7:45 am on April 19, 2023 Permalink | Reply
    Tags: "SpyLigation uses light to switch on proteins", , , , , Light-activated SpyLigation allows modified proteins to react with one another inside living systems., Medicine, , , The new method allows for precise control over when and where such chemical reactions occur., , , This light-activation technology has potential applications in tissue engineering and regenerative medicine and understanding how the body works.   

    From The School of Medicine And The College of Engineering At The University of Washington: “SpyLigation uses light to switch on proteins” 

    From The School of Medicine

    And

    The College of Engineering

    At

    The University of Washington

    4.17.23
    Written by Ian Haydon, UW Medicine Institute for Protein Design

    Media contacts:
    Leila Gray | UW Medicine
    206.475.9809
    leilag@uw.edu

    James Urton | College of Engineering
    206.543.2583
    jurton@uw.edu

    This light-activation technology has potential applications in tissue engineering and regenerative medicine and understanding how the body works.

    1
    Microscopic 2D and 3D images of UW Husky logos and a dog were made with a new chemistry technique that precisely controls when and where proteins turn on. Credit: DeForest Research Group.

    Scientists can now use light to activate protein functions both inside and outside of living cells. The new method, called light-activated SpyLigation, can turn on proteins that are normally off to allow researchers to study and control them in more detail. This technology has potential uses in tissue engineering, regenerative medicine, and understanding how the body works.

    Proteins perform nearly every important task in biology, including processing DNA, metabolizing nutrients, and fighting off infections. When, where, and how proteins become active is important for a variety of biological processes. Increasingly, scientists are also exploring whether protein functions can be turned on and off to treat disease.

    “With new tools for controlling protein function, particularly those that offer controlled activation in time and space, we are working towards engineering complex tissue for transplantation,” said senior author Cole A. DeForest, a Weyerhaeuser Endowed Associate Professor of Chemical Engineering at the University of Washington College of Engineering and an associate professor of bioengineering, a joint department at the UW College of Engineering and School of Medicine.

    “Since many more people could benefit from tissue or organ transplants than there are available donors,” he said, “these methods offer real promise in combating the organ shortage crisis.”

    As reported April 17 in the journal Nature Chemistry [below], a team led by Emily Ruskowitz and Brizzia Munoz-Robles from the DeForest Research Group has shown that chemically modified protein fragments can be joined together into functional wholes using brief flashes of light.

    2
    From the science paper.

    The scientists applied their new method to control the glow of a green fluorescent protein derived from Japanese eel muscle. Inactive fragments of that protein were blended and set into a Jell-O-like gel. Then lasers were used to irreversibly recombine those fragments into complete, glowing proteins. By controlling the path of the laser, a precise pattern of glowing proteins could be formed. The scientists etched microscopic images of a husky, their university mascot, into the gel. They also used lasers to create a glowing 3D image of a dog not much taller than a human hair.

    The team also showed they could activate proteins inside human cells. Three minutes of light exposure was enough to turn on specific proteins involved in genome editing. Such a tool could one day be used to direct genetic changes to very specific areas of the body.

    Similar to so-called click chemistry, which was the subject of the 2022 Nobel Prize in Chemistry, light-activated SpyLigation allows modified proteins to react with one another inside living systems. Extending beyond prior approaches, however, the new method allows for precise control over when and where such chemical reactions occur.

    Nature Chemistry

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About The College of Engineering

    Mission, Facts, and Stats
    Our mission is to develop outstanding engineers and ideas that change the world.

    Faculty:
    275 faculty (25.2% women)
    Achievements:

    128 NSF Young Investigator/Early Career Awards since 1984
    32 Sloan Foundation Research Awards
    2 MacArthur Foundation Fellows (2007 and 2011)

    A national leader in educating engineers, each year the College turns out new discoveries, inventions and top-flight graduates, all contributing to the strength of our economy and the vitality of our community.

    Engineering innovation

    Engineers drive the innovation economy and are vital to solving society’s most challenging problems. The College of Engineering is a key part of a world-class research university in a thriving hub of aerospace, biotechnology, global health and information technology innovation. Over 50% of The University of Washington startups in FY18 came from the College of Engineering.

    Commitment to diversity and access

    The College of Engineering is committed to developing and supporting a diverse student body and faculty that reflect and elevate the populations we serve. We are a national leader in women in engineering; 25.5% of our faculty are women compared to 17.4% nationally. We offer a robust set of diversity programs for students and faculty.

    Research and commercialization

    The University of Washington is an engine of economic growth, today ranked third in the nation for the number of startups launched each year, with 65 companies having been started in the last five years alone by UW students and faculty, or with technology developed here. The College of Engineering is a key contributor to these innovations, and engineering faculty, students or technology are behind half of all UW startups. In FY19, UW received $1.58 billion in total research awards from federal and nonfederal sources.

    The University of Washington School of Medicine (UWSOM) is a large public medical school in the northwest United States, located in Seattle and affiliated with the University of Washington. According to U.S. News & World Report’s 2022 Best Graduate School rankings, University of Washington School of Medicine ranked #1 in the nation for primary care education, and #7 for research.

    UWSOM is the first public medical school in the states of Washington, Wyoming, Alaska, Montana, and Idaho. The school maintains a network of teaching facilities in more than 100 towns and cities across the five-state region. As part of this “WWAMI” partnership, medical students from Wyoming, Alaska, Montana, and Idaho spend their first year and a half at The University of Wyoming , The University of Alaska-Anchorage , Montana State University , or The University of Idaho , respectively. In addition, sixty first-year students and forty second-year students from Washington are based at Gonzaga University in Spokane. Preference is given to residents of the WWAMI states.
    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.

    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    The University of Washington is a public research university in Seattle, Washington, United States. Founded in 1861, University of Washington is one of the oldest universities on the West Coast; it was established in downtown Seattle approximately a decade after the city’s founding to aid its economic development. Today, the university’s 703-acre main Seattle campus is in the University District above the Montlake Cut, within the urban Puget Sound region of the Pacific Northwest. The university has additional campuses in Tacoma and Bothell. Overall, University of Washington encompasses over 500 buildings and over 20 million gross square footage of space, including one of the largest library systems in the world with more than 26 university libraries, as well as the UW Tower, lecture halls, art centers, museums, laboratories, stadiums, and conference centers. The university offers bachelor’s, master’s, and doctoral degrees through 140 departments in various colleges and schools, sees a total student enrollment of roughly 46,000 annually, and functions on a quarter system.

    University of Washington is a member of the Association of American Universities and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UW spent $1.41 billion on research and development in 2018, ranking it 5th in the nation. As the flagship institution of the six public universities in Washington state, it is known for its medical, engineering and scientific research as well as its highly competitive computer science and engineering programs. Additionally, University of Washington continues to benefit from its deep historic ties and major collaborations with numerous technology giants in the region, such as Amazon, Boeing, Nintendo, and particularly Microsoft. Paul G. Allen, Bill Gates and others spent significant time at Washington computer labs for a startup venture before founding Microsoft and other ventures. The University of Washington’s 22 varsity sports teams are also highly competitive, competing as the Huskies in the Pac-12 Conference of the NCAA Division I, representing the United States at the Olympic Games, and other major competitions.

    The university has been affiliated with many notable alumni and faculty, including 21 Nobel Prize laureates and numerous Pulitzer Prize winners, Fulbright Scholars, Rhodes Scholars and Marshall Scholars.

    In 1854, territorial governor Isaac Stevens recommended the establishment of a university in the Washington Territory. Prominent Seattle-area residents, including Methodist preacher Daniel Bagley, saw this as a chance to add to the city’s potential and prestige. Bagley learned of a law that allowed United States territories to sell land to raise money in support of public schools. At the time, Arthur A. Denny, one of the founders of Seattle and a member of the territorial legislature, aimed to increase the city’s importance by moving the territory’s capital from Olympia to Seattle. However, Bagley eventually convinced Denny that the establishment of a university would assist more in the development of Seattle’s economy. Two universities were initially chartered, but later the decision was repealed in favor of a single university in Lewis County provided that locally donated land was available. When no site emerged, Denny successfully petitioned the legislature to reconsider Seattle as a location in 1858.

    In 1861, scouting began for an appropriate 10 acres (4 ha) site in Seattle to serve as a new university campus. Arthur and Mary Denny donated eight acres, while fellow pioneers Edward Lander, and Charlie and Mary Terry, donated two acres on Denny’s Knoll in downtown Seattle. More specifically, this tract was bounded by 4th Avenue to the west, 6th Avenue to the east, Union Street to the north, and Seneca Streets to the south.

    John Pike, for whom Pike Street is named, was the university’s architect and builder. It was opened on November 4, 1861, as the Territorial University of Washington. The legislature passed articles incorporating the University, and establishing its Board of Regents in 1862. The school initially struggled, closing three times: in 1863 for low enrollment, and again in 1867 and 1876 due to funds shortage. University of Washington awarded its first graduate Clara Antoinette McCarty Wilt in 1876, with a bachelor’s degree in science.

    19th century relocation

    By the time Washington state entered the Union in 1889, both Seattle and the University had grown substantially. University of Washington’s total undergraduate enrollment increased from 30 to nearly 300 students, and the campus’s relative isolation in downtown Seattle faced encroaching development. A special legislative committee, headed by University of Washington graduate Edmond Meany, was created to find a new campus to better serve the growing student population and faculty. The committee eventually selected a site on the northeast of downtown Seattle called Union Bay, which was the land of the Duwamish, and the legislature appropriated funds for its purchase and construction. In 1895, the University relocated to the new campus by moving into the newly built Denny Hall. The University Regents tried and failed to sell the old campus, eventually settling with leasing the area. This would later become one of the University’s most valuable pieces of real estate in modern-day Seattle, generating millions in annual revenue with what is now called the Metropolitan Tract. The original Territorial University building was torn down in 1908, and its former site now houses the Fairmont Olympic Hotel.

    The sole-surviving remnants of Washington’s first building are four 24-foot (7.3 m), white, hand-fluted cedar, Ionic columns. They were salvaged by Edmond S. Meany, one of the University’s first graduates and former head of its history department. Meany and his colleague, Dean Herbert T. Condon, dubbed the columns as “Loyalty,” “Industry,” “Faith”, and “Efficiency”, or “LIFE.” The columns now stand in the Sylvan Grove Theater.

    20th century expansion

    Organizers of the 1909 Alaska-Yukon-Pacific Exposition eyed the still largely undeveloped campus as a prime setting for their world’s fair. They came to an agreement with Washington’s Board of Regents that allowed them to use the campus grounds for the exposition, surrounding today’s Drumheller Fountain facing towards Mount Rainier. In exchange, organizers agreed Washington would take over the campus and its development after the fair’s conclusion. This arrangement led to a detailed site plan and several new buildings, prepared in part by John Charles Olmsted. The plan was later incorporated into the overall University of Washington campus master plan, permanently affecting the campus layout.

    Both World Wars brought the military to campus, with certain facilities temporarily lent to the federal government. In spite of this, subsequent post-war periods were times of dramatic growth for the University. The period between the wars saw a significant expansion of the upper campus. Construction of the Liberal Arts Quadrangle, known to students as “The Quad,” began in 1916 and continued to 1939. The University’s architectural centerpiece, Suzzallo Library, was built in 1926 and expanded in 1935.

    After World War II, further growth came with the G.I. Bill. Among the most important developments of this period was the opening of the School of Medicine in 1946, which is now consistently ranked as the top medical school in the United States. It would eventually lead to the University of Washington Medical Center, ranked by U.S. News and World Report as one of the top ten hospitals in the nation.

    In 1942, all persons of Japanese ancestry in the Seattle area were forced into inland internment camps as part of Executive Order 9066 following the attack on Pearl Harbor. During this difficult time, university president Lee Paul Sieg took an active and sympathetic leadership role in advocating for and facilitating the transfer of Japanese American students to universities and colleges away from the Pacific Coast to help them avoid the mass incarceration. Nevertheless, many Japanese American students and “soon-to-be” graduates were unable to transfer successfully in the short time window or receive diplomas before being incarcerated. It was only many years later that they would be recognized for their accomplishments during the University of Washington’s Long Journey Home ceremonial event that was held in May 2008.

    From 1958 to 1973, the University of Washington saw a tremendous growth in student enrollment, its faculties and operating budget, and also its prestige under the leadership of Charles Odegaard. University of Washington student enrollment had more than doubled to 34,000 as the baby boom generation came of age. However, this era was also marked by high levels of student activism, as was the case at many American universities. Much of the unrest focused around civil rights and opposition to the Vietnam War. In response to anti-Vietnam War protests by the late 1960s, the University Safety and Security Division became the University of Washington Police Department.

    Odegaard instituted a vision of building a “community of scholars”, convincing the Washington State legislatures to increase investment in the University. Washington senators, such as Henry M. Jackson and Warren G. Magnuson, also used their political clout to gather research funds for the University of Washington. The results included an increase in the operating budget from $37 million in 1958 to over $400 million in 1973, solidifying University of Washington as a top recipient of federal research funds in the United States. The establishment of technology giants such as Microsoft, Boeing and Amazon in the local area also proved to be highly influential in the University of Washington’s fortunes, not only improving graduate prospects but also helping to attract millions of dollars in university and research funding through its distinguished faculty and extensive alumni network.

    21st century

    In 1990, the University of Washington opened its additional campuses in Bothell and Tacoma. Although originally intended for students who have already completed two years of higher education, both schools have since become four-year universities with the authority to grant degrees. The first freshman classes at these campuses started in fall 2006. Today both Bothell and Tacoma also offer a selection of master’s degree programs.

    In 2012, the University began exploring plans and governmental approval to expand the main Seattle campus, including significant increases in student housing, teaching facilities for the growing student body and faculty, as well as expanded public transit options. The University of Washington light rail station was completed in March 2015, connecting Seattle’s Capitol Hill neighborhood to the University of Washington Husky Stadium within five minutes of rail travel time. It offers a previously unavailable option of transportation into and out of the campus, designed specifically to reduce dependence on private vehicles, bicycles and local King County buses.

    University of Washington has been listed as a “Public Ivy” in Greene’s Guides since 2001, and is an elected member of the American Association of Universities. Among the faculty by 2012, there have been 151 members of American Association for the Advancement of Science, 68 members of the National Academy of Sciences, 67 members of the American Academy of Arts and Sciences, 53 members of the National Academy of Medicine, 29 winners of the Presidential Early Career Award for Scientists and Engineers, 21 members of the National Academy of Engineering, 15 Howard Hughes Medical Institute Investigators, 15 MacArthur Fellows, 9 winners of the Gairdner Foundation International Award, 5 winners of the National Medal of Science, 7 Nobel Prize laureates, 5 winners of Albert Lasker Award for Clinical Medical Research, 4 members of the American Philosophical Society, 2 winners of the National Book Award, 2 winners of the National Medal of Arts, 2 Pulitzer Prize winners, 1 winner of the Fields Medal, and 1 member of the National Academy of Public Administration. Among UW students by 2012, there were 136 Fulbright Scholars, 35 Rhodes Scholars, 7 Marshall Scholars and 4 Gates Cambridge Scholars. UW is recognized as a top producer of Fulbright Scholars, ranking 2nd in the US in 2017.

    The Academic Ranking of World Universities has consistently ranked University of Washington as one of the top 20 universities worldwide every year since its first release. In 2019, University of Washington ranked 14th worldwide out of 500 by the ARWU, 26th worldwide out of 981 in the Times Higher Education World University Rankings, and 28th worldwide out of 101 in the Times World Reputation Rankings. Meanwhile, QS World University Rankings ranked it 68th worldwide, out of over 900.

    U.S. News & World Report ranked University of Washington 8th out of nearly 1,500 universities worldwide for 2021, with University of Washington’s undergraduate program tied for 58th among 389 national universities in the U.S. and tied for 19th among 209 public universities.

    In 2019, it ranked 10th among the universities around the world by SCImago Institutions Rankings. In 2017, the Leiden Ranking, which focuses on science and the impact of scientific publications among the world’s 500 major universities, ranked University of Washington 12th globally and 5th in the U.S.

    In 2019, Kiplinger Magazine’s review of “top college values” named University of Washington 5th for in-state students and 10th for out-of-state students among U.S. public colleges, and 84th overall out of 500 schools. In the Washington Monthly National University Rankings University of Washington was ranked 15th domestically in 2018, based on its contribution to the public good as measured by social mobility, research, and promoting public service.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: