Tagged: Mechanical Engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:50 am on May 29, 2023 Permalink | Reply
    Tags: "Sweater-Wrapped Robots Can Feel and React to Human Touch", , , , , Mechanical Engineering   

    From The Robomechanics Lab At Carnegie Mellon University: “Sweater-Wrapped Robots Can Feel and React to Human Touch” 

    From The Robomechanics Lab

    At

    Carnegie Mellon University

    5.26.23
    Stacey Federoff

    Aaron Aupperlee
    School of Computer Science
    aaupperlee@cmu.edu
    412-268-9068

    1
    RobotSweater, developed by a research team in the Robotics Institute and shown here on a robotic arm, is a machine-knitted textile “skin” that can sense contact and pressure.

    RobotSweater, developed by a research team from Carnegie Mellon University’s Robotics Institute, is a machine-knitted textile “skin” that can sense contact and pressure.

    “We can use that to make the robot smarter during its interaction with humans,” said Changliu Liu, an assistant professor of robotics in the School of Computer Science.


    Robot Sweater : Fabric Tactile Sensor “Skin”

    Just as knitters can take any kind of yarn and turn it into a sock, hat, or sweater of any size or shape, the knitted RobotSweater fabric can be customized to fit uneven three-dimensional surfaces.

    “Knitting machines can pattern yarn into shapes that are nonflat, that can be curved or lumpy,” said James McCann, an SCS assistant professor whose research has focused on textile fabrication in recent years. “That made us think maybe we could make sensors that fit over curved or lumpy robots.”

    Once knitted, the fabric can be used to help the robot “feel” when a human touches it, particularly in an industrial setting where safety is paramount. Current solutions for detecting human-robot interaction in industry look like shields and use very rigid materials that Liu notes can’t cover the robot’s entire body because some parts need to deform.

    “With RobotSweater, the robot’s whole body can be covered, so it can detect any possible collisions,” said Liu, whose research focuses on industrial applications of robotics.

    RobotSweater’s knitted fabric consists of two layers of yarn made with metallic fibers to conduct electricity. Sandwiched between the two is a netlike, lace-patterned layer. When pressure is applied to the fabric — say, from someone touching it — the conductive yarn closes a circuit and is read by the sensors.

    “The force pushes together the rows and columns to close the connection,” said Wenzhen Yuan, an SCS assistant professor and director of the RoboTouch lab. “If there’s a force through the conductive stripes, the layers would contact each other through the holes.”

    Apart from the design of the knitted layers — the culmination of dozens if not hundreds of samples and tests — the team faced another challenge in connecting the wiring and electronics components to the soft textile.

    “There was a lot of fiddly physical prototyping and adjustment,” McCann said. “The students working on this managed to go from something that seemed promising to something that actually worked.”

    What worked: wrapping the wires around snaps attached to the ends of each stripe in the knitted fabric.

    Snaps are a cost-effective and efficient solution, such that even hobbyists creating textiles with electronic elements, known as e-textiles, could use them, McCann said.

    “You need a way of attaching these things together that is strong, so it can deal with stretching, but isn’t going to destroy the yarn,” he said, adding that the team also discussed using flexible circuit boards.

    Once fitted to the robot’s body, RobotSweater can sense the distribution, shape and force of the contact. It’s also more accurate and effective than the visual sensors most robots rely on now.

    “The robot will move in the way that the human pushes it, or can respond to human social gestures,” Yuan said.

    In their research, the team demonstrated that pushing on a companion robot outfitted in RobotSweater told it which way to move or what direction to turn its head. When used on a robot arm, RobotSweater allowed a push from a person’s hand to guide the arm’s movement, while grabbing the arm told it to open or close its gripper.

    In future research, the team wants to explore how to program reactions from the swipe or pinching motions used on a touchscreen.

    The team — including SCS Ph.D. students Zilin Si and Catherine Tianhong Yu, and visiting undergraduate student Katrene Morozov from the University of California-Santa Barbara — will present the RobotSweater research paper next week at the 2023 IEEE International Conference on Robotics and Automation(ICRA).

    Begun by the three faculty members in a conversation over lunch one day, the collaboration among the team of researchers helped the RobotSweater come to life, McCann said.

    “We had a person thinking about fabrication, a person thinking about the robotics integration, a person thinking about sensing, and a person thinking about planning and control,” he said. “It’s really nice to have this project where we have the full stack of people to cover each concern.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The Robomechanics Lab is working to take robots out of the lab and factory and into challenging real world environments, such as rocky hills and cluttered houses. We use the word “robomechanics” to mean the study of the mechanics of how a robot interacts with an environment, analogous to the field of biomechanics for natural systems. Common themes that arise in our research include modeling and planning for changing contact conditions, developing systems that are inherently robust to uncertainty, and enabling more dynamic robot behaviors. The Robomechanics Lab conducts research in legged and wheeled mobile robotics, mechanism design, feedback control, computer vision, motion planning, and applications of robotics research to environmental monitoring, planetary exploration, and home assistance.

    The Robomechanics Lab believes in actively working towards creating a diverse, equitable, and inclusive environment. We do this in several ways:
    • Conduct Ethical Research – We involve all lab participants in discussion of the direction of new research projects, and ensure the project’s impact is in line with both our lab and personal values. This includes regular review of research topics, funding sources, and industry partners.
    • Drive Reform in Academia – We actively work on DEI and other reform initiatives at CMU and in the broader academic robotics community by participating in departmental initiatives, collaborating with advocacy organizations, and organizing events at conferences.
    • Foster Equitable Access – We strive to create STEM opportunities for historically marginalized students in Pittsburgh and beyond through the development and execution of outreach activities that allow us to share our technical skills and inspire the next generation of engineers.
    • Support Each Other – We sustain an inclusive environment where everyone is valued as both a researcher and an individual. This includes active, structured mentorship for all lab members as well as informal social events and regular DEI-centered conversations.

    Carnegie Mellon University is a global research university with more than 12,000 students, 95,000 alumni, and 5,000 faculty and staff.

    Carnegie Mellon University has been a birthplace of innovation since its founding in 1900.

    Today, we are a global leader bringing groundbreaking ideas to market and creating successful startup businesses.

    Our award-winning faculty members are renowned for working closely with students to solve major scientific, technological and societal challenges. We put a strong emphasis on creating things—from art to robots. Our students are recruited by some of the world’s most innovative companies.

    We have campuses in Pittsburgh, Qatar and Silicon Valley, and degree-granting programs around the world, including Africa, Asia, Australia, Europe and Latin America.

    The Carnegie Mellon University was established by Andrew Carnegie as the Carnegie Technical Schools, the university became the Carnegie Institute of Technology in 1912 and began granting four-year degrees. In 1967, the Carnegie Institute of Technology merged with the Mellon Institute of Industrial Research, formerly a part of the The University of Pittsburgh. Since then, the university has operated as a single institution.

    The Carnegie Mellon University has seven colleges and independent schools, including the College of Engineering, College of Fine Arts, Dietrich College of Humanities and Social Sciences, Mellon College of Science, Tepper School of Business, Heinz College of Information Systems and Public Policy, and the School of Computer Science. The Carnegie Mellon University has its main campus located 3 miles (5 km) from Downtown Pittsburgh, and the university also has over a dozen degree-granting locations in six continents, including degree-granting campuses in Qatar and Silicon Valley.

    Past and present faculty and alumni include 20 Nobel Prize laureates, 13 Turing Award winners, 23 Members of the American Academy of Arts and Sciences, 22 Fellows of the American Association for the Advancement of Science , 79 Members of the National Academies, 124 Emmy Award winners, 47 Tony Award laureates, and 10 Academy Award winners. Carnegie Mellon enrolls 14,799 students from 117 countries and employs 1,400 faculty members.

    Research

    Carnegie Mellon University is classified among “R1: Doctoral Universities – Very High Research Activity”. For the 2006 fiscal year, the Carnegie Mellon University spent $315 million on research. The primary recipients of this funding were the School of Computer Science ($100.3 million), the Software Engineering Institute ($71.7 million), the College of Engineering ($48.5 million), and the Mellon College of Science ($47.7 million). The research money comes largely from federal sources, with a federal investment of $277.6 million. The federal agencies that invest the most money are the National Science Foundation and the Department of Defense, which contribute 26% and 23.4% of the total Carnegie Mellon University research budget respectively.

    The recognition of Carnegie Mellon University as one of the best research facilities in the nation has a long history—as early as the 1987 Federal budget Carnegie Mellon University was ranked as third in the amount of research dollars with $41.5 million, with only Massachusetts Institute of Technology and Johns Hopkins University receiving more research funds from the Department of Defense.

    The Pittsburgh Supercomputing Center is a joint effort between Carnegie Mellon University, University of Pittsburgh, and Westinghouse Electric Company. Pittsburgh Supercomputing Center was founded in 1986 by its two scientific directors, Dr. Ralph Roskies of the University of Pittsburgh and Dr. Michael Levine of Carnegie Mellon. Pittsburgh Supercomputing Center is a leading partner in the TeraGrid, The National Science Foundation’s cyberinfrastructure program.

    Scarab lunar rover is being developed by the RI.

    The Robotics Institute (RI) is a division of the School of Computer Science and considered to be one of the leading centers of robotics research in the world. The Field Robotics Center (FRC) has developed a number of significant robots, including Sandstorm and H1ghlander, which finished second and third in the DARPA Grand Challenge, and Boss, which won the DARPA Urban Challenge. The Robotics Institute has partnered with a spinoff company, Astrobotic Technology Inc., to land a CMU robot on the moon by 2016 in pursuit of the Google Lunar XPrize. The robot, known as Andy, is designed to explore lunar pits, which might include entrances to caves. The RI is primarily sited at Carnegie Mellon University ‘s main campus in Newell-Simon hall.

    The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense and operated by Carnegie Mellon University, with offices in Pittsburgh, Pennsylvania, USA; Arlington, Virginia, and Frankfurt, Germany. The SEI publishes books on software engineering for industry, government and military applications and practices. The organization is known for its Capability Maturity Model (CMM) and Capability Maturity Model Integration (CMMI), which identify essential elements of effective system and software engineering processes and can be used to rate the level of an organization’s capability for producing quality systems. The SEI is also the home of CERT/CC, the federally funded computer security organization. The CERT Program’s primary goals are to ensure that appropriate technology and systems management practices are used to resist attacks on networked systems and to limit damage and ensure continuity of critical services subsequent to attacks, accidents, or failures.

    The Human–Computer Interaction Institute (HCII) is a division of the School of Computer Science and is considered one of the leading centers of human–computer interaction research, integrating computer science, design, social science, and learning science. Such interdisciplinary collaboration is the hallmark of research done throughout the university.

    The Language Technologies Institute (LTI) is another unit of the School of Computer Science and is famous for being one of the leading research centers in the area of language technologies. The primary research focus of the institute is on machine translation, speech recognition, speech synthesis, information retrieval, parsing and information extraction. Until 1996, the institute existed as the Center for Machine Translation that was established in 1986. From 1996 onwards, it started awarding graduate degrees and the name was changed to Language Technologies Institute.

    Carnegie Mellon is also home to the Carnegie School of management and economics. This intellectual school grew out of the Tepper School of Business in the 1950s and 1960s and focused on the intersection of behavioralism and management. Several management theories, most notably bounded rationality and the behavioral theory of the firm, were established by Carnegie School management scientists and economists.

    Carnegie Mellon also develops cross-disciplinary and university-wide institutes and initiatives to take advantage of strengths in various colleges and departments and develop solutions in critical social and technical problems. To date, these have included the Cylab Security and Privacy Institute, the Wilton E. Scott Institute for Energy Innovation, the Neuroscience Institute (formerly known as BrainHub), the Simon Initiative, and the Disruptive Healthcare Technology Institute.

    Carnegie Mellon has made a concerted effort to attract corporate research labs, offices, and partnerships to the Pittsburgh campus. Apple Inc., Intel, Google, Microsoft, Disney, Facebook, IBM, General Motors, Bombardier Inc., Yahoo!, Uber, Tata Consultancy Services, Ansys, Boeing, Robert Bosch GmbH, and the Rand Corporation have established a presence on or near campus. In collaboration with Intel, Carnegie Mellon has pioneered research into claytronics.

     
  • richardmitnick 12:01 pm on May 26, 2023 Permalink | Reply
    Tags: "Thought-controlled walking again after spinal cord injury", A digital bridge involving two electronic implants: one on the brain and the other on the spinal cord., , At this stage the digital bridge has only been tested in one person., , Mechanical Engineering, , Neuroscientists and neurosurgeons from EPFL/CHUV/UNIL and CEA/CHUGA/ have re-established the communication between the brain and spinal cord allowing a paralyzed person to walk naturally., Neurosurgery, Scientists have created a wireless interface between the brain and the spinal cord using brain-computer interface (BCI) technology that transforms thought into action., Thanks to algorithms based on adaptive artificial intelligence methods movement intentions are decoded in real time from brain recordings., The “WIMAGINE”® devices implanted above the region of the brain that is responsible for controlling leg movements., , This digital bridge operates wirelessly allowing the patient to move around independently.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Thought-controlled walking again after spinal cord injury” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.24.23
    Emmanuel Barraud

    1
    Neuroscientists and neurosurgeons from EPFL/CHUV/UNIL and CEA/CHUGA/UGA report in the journal Nature [below] that they have re-established the communication between the brain and spinal cord with a wireless digital bridge, allowing a paralyzed person to walk again naturally.

    “We have created a wireless interface between the brain and the spinal cord using brain-computer interface (BCI) technology that transforms thought into action.”, summarizes Grégoire Courtine, Professor of Neuroscience at EPFL, CHUV and UNIL. Published in the journal Nature [below], presents the situation of Gert-Jan, 40 years old, who suffered a spinal cord injury following a bicycle accident that left him paralyzed. The digital bridge enabled him to regain natural control over the movement of his paralyzed legs, allowing him to stand, walk, and even climb stairs. Gert-Jan explains that he has recovered the pleasure of being able to share a beer standing at a bar with friends : “This simple pleasure represents a significant change in my life”.

    A digital bridge involving two electronic implants: one on the brain, the other on the spinal cord

    To establish this digital bridge, two types of electronic implants are needed. Neurosurgeon Jocelyne Bloch, who is a professor at CHUV, UNIL and EPFL, explains: “We have implanted WIMAGINE® devices above the region of the brain that is responsible for controlling leg movements. These devices developed by the CEA allows to decode the electrical signals generated by the brain when we think about walking. We also positioned a neurostimulator connected to an electrode array over the region of the spinal cord that controls leg movement.

    Guillaume Charvet, head of the BCI program at CEA, adds: “Thanks to algorithms based on adaptive artificial intelligence methods, movement intentions are decoded in real time from brain recordings.” These intentions are then converted into sequences of electrical stimulation of the spinal cord, which in turn activate leg muscles to achieve the desired movement. This digital bridge operates wirelessly allowing the patient to move around independently.

    Recovery of neurological functions

    Rehabilitation supported by the digital bridge enabled Gert-Jan to recover neurological functions that he had lost since his accident. Researchers were able to quantify remarkable improvements in his sensory perceptions and motor skills, even when the digital bridge was switched off. This digital repair of the spinal cord suggests that new nerve connections have developed.

    At this stage, the digital bridge has only been tested in one person. Jocelyne Bloch and Grégoire Courtine explain that, in the future, a comparable strategy could be used to restore arm and hand functions. They add that the digital bridge could also be applied to other clinical indications, such as paralysis due to stroke. The company ONWARD Medical, along with CEA and EPFL has received support from the European Commission trough its European Innovation Council (EIC) to develop a commercial version of the digital bridge, with the goal of making the technology available worldwide.

    Nature

    Digital bridge from brain to spinal cord
    To establish this digital bridge, we integrated two fully implanted systems that enable recording of cortical activity and stimulation of the lumbosacral spinal cord wirelessly and in real time.

    Fig. 1: Design, technology and implantation of the BSI.
    2
    a) Two cortical implants composed of 64 electrodes are positioned epidurally over the sensorimotor cortex to collect ECoG signals. A processing unit predicts motor intentions and translates these predictions into the modulation of epidural electrical stimulation programs targeting the dorsal root entry zones of the lumbosacral spinal cord. Stimulations are delivered by an implantable pulse generator connected to a 16-electrode paddle lead. b) Images reporting the pre-operative planning of cortical implant locations, and postoperative confirmation. L, left; R, right. c) Personalized computational model predicting the optimal localization of the paddle lead to target the dorsal root entry zones associated with lower limb muscles, and postoperative confirmation.

    Fig. 2: Calibration of the BSI.
    3
    a) Identification of the spatial and spectral distributions of ECoG feature weights related to attempted left hip flexions. b) Calibration of anode/cathode configurations and stimulation parameters (frequency, range of amplitudes) to elicit left hip flexions, including electromyographic signals from lower limb muscles. The polar plot reports the relative amplitude of muscle responses for the optimal configuration to target left hip flexors over the range of functional stimulation amplitudes (300 µs, 40 Hz, 14–16 mA). c) Online calibration of the BSI to enable volitional hip flexion in a seated position. Representative sequence reporting spectrogram, decoding probability and proportional modulation of stimulation amplitudes together with the resulting muscle activity and torque. The plot reports the convergence of the model over time, reaching 97 ± 0.4% after 90 s. d) Similar representations after the calibration of the BSI to enable the control over hip, knee and ankle joints of the lower limbs. e, Confusion matrices reporting the decoding accuracy for each joint (74 ± 7% s.e.m.) and the accuracy of the stimulation for each targeted muscle group (83 ±  6% s.e.m.).

    More instructive images are available in the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:28 am on May 22, 2023 Permalink | Reply
    Tags: "Team uses 3D printing to strengthen a key material in aerospace and energy-generation applications", , , Mechanical Engineering, Nuclear Science & Engineering, ,   

    From The Materials Research Laboratory At The Massachusetts Institute of Technology: “Team uses 3D printing to strengthen a key material in aerospace and energy-generation applications” 

    From The Materials Research Laboratory

    At

    The Massachusetts Institute of Technology

    5.19.23
    Elizabeth A. Thomson | Materials Research Laboratory

    The approach could improve the performance of many other materials as well.

    1
    An MIT-led team reports a simple, inexpensive way to strengthen a material key to applications in aerospace and nuclear energy generation. The MIT beavers and other shapes in this photo were created using the new technique. Photo: Alexander O’Brien.

    2
    Co-first authors of a paper on the work are (from left to right): Jian Liu of the University of Massachusetts-Amherst, and Emre Tekoğlu and Alexander O’Brien, both of MIT.

    The materials key to many important applications in aerospace and energy generation must be able to withstand extreme conditions such as high temperatures and tensile stresses without failing. Now a team of MIT-led engineers reports a simple, inexpensive way to strengthen one of the key materials used today in such applications.

    Further, the team believes that their general approach, which involves the 3D printing of a metallic powder strengthened with ceramic nanowires, could be used to improve many other materials. “There is always a significant need for the development of more capable materials for extreme environments. We believe that this method has great potential for other materials in the future,” says Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and a professor in MIT’s Department of Materials Science and Engineering (DMSE).

    Li, who is also affiliated with the Materials Research Laboratory (MRL), is one of three corresponding authors of a paper on the work that appeared in the April 5 issue of Additive Manufacturing [below]. The other corresponding authors are Professor Wen Chen of the University of Massachusetts-Amherst and Professor A. John Hart of the MIT Department of Mechanical Engineering.

    Co-first authors of the paper are Emre Tekoğlu, an MIT postdoc in the Department of Nuclear Science and Engineering (NSE); Alexander D. O’Brien, an NSE graduate student; and Jian Liu of UMass-Amherst. Additional authors are Baoming Wang, an MIT postdoc in DMSE; Sina Kavak of Istanbul Technical University; Yong Zhang, a research specialist at the MRL; So Yeon Kim, a DMSE graduate student; Shitong Wang, an NSE graduate student; and Duygu Agaogullari of Istanbul Technical University.

    Toward better performance

    The team’s approach begins with Inconel 718, a popular “superalloy,” or metal capable of withstanding extreme conditions such as temperatures of 700 degrees Celsius (about 1,300 degrees Fahrenheit). They mill commercial Inconel 718 powders with a small amount of ceramic nanowires, resulting in “the homogeneous decoration of nano-ceramics on the surfaces of Inconel particles,” the team writes.

    The resulting powder is then used to create parts via laser powder bed fusion, a form of 3D printing. That process involves printing thin layers of powder that are each exposed to a laser that moves across the powder, melting it in a specific pattern. Then another layer of powder is spread on top, and the process repeats with the laser moving to melt the pattern for the new layer and bond it with the layer below. The overall process can produce complicated 3D parts.

    The researchers found that parts made this way with their new powder have significantly less porosity and fewer cracks than parts made of Inconel 718 alone. And that, in turn, leads to significantly stronger parts that also have a number of other advantages. For example, they are more ductile — or stretchable — and have much better resistance to radiation and high-temperature loading.

    Plus, the process itself is not expensive because “it works with existing 3D printing machines. Just use our powder and you get much better performance,” says Li.

    Xu Song, an assistant professor at the Chinese University of Hong Kong who was not involved in the work, comments: “In this paper, the authors propose a new method for printing metal matrix composites of Inconel 718 reinforced by [ceramic] nanowires. The in-situ dissolution of the ceramic that is induced by the laser melting process has enhanced the thermal resistance and strength of Inconel 718. Moreover, the in-situ reinforcements reduced the grain size and got rid of flaws. Future 3D printing of metal alloys, including modification for high-reflectivity copper and fracture suppression for superalloys, can clearly benefit from this technique.”

    A huge new space

    Li says the work “could open a huge new space for alloy design” because the cooling rate of ultrathin 3D-printed layers of metal alloys is much faster than the rate for bulk parts created using conventional melt-solidification processes. As a result, “many of the rules on chemical composition that apply to bulk casting don’t seem to apply to this kind of 3D printing. So we have a much bigger composition space to explore for the base metal with ceramic additions.”

    Emre Tekoğlu, one of the lead authors of the Additive Manufacturing paper, says, “This composition was one of the first ones we decided on, so it was very exciting to get these results in real life. There is still a vast exploration space. We will keep exploring new Inconel composite formulations to end up with materials that could withstand more extreme environments.”

    Alexander O’Brien, another lead author, says, “The precision and scalability that comes with 3D printing has opened up a world of new possibilities for materials design. Our results here are an exciting early step in a process that will surely have a major impact on design for nuclear, aerospace, and all energy generation in the future.”

    This work was supported by Eni S.p.A. through the MIT Energy Initiative, the National Science Foundation, and ARPA-E.

    Additive Manufacturing

    Graphical Abstract
    3

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT Materials Research Laboratory

    Merger of the Materials Processing Center and the Center for Materials Science and Engineering melds a rich history of materials science and engineering breakthroughs.

    The Materials Research Laboratory at MIT starts from a foundation of fundamental scientific research, practical engineering applications, educational outreach and shared experimental facilities laid by its merger partners, the Materials Processing Center and the Center for Materials Science and Engineering.

    “We’re bringing them together and that will make communication both inside and outside MIT easier and will make it clearer especially to people outside MIT that for interdisciplinary research on materials, this is the place to learn about it,” says MRL Director Carl V. Thompson.

    The Materials Research Laboratory serves interdisciplinary groups of faculty researchers, spanning the spectrum of basic scientific discovery through engineering applications and entrepreneurship to ensure that research breakthroughs have impact on society. The center engages with approximately 150 faculty members and scientists from across the Schools of Science and Engineering who are conducting materials science research. MRL will work with MIT.nano to enhance the toolset available for groundbreaking research as well as collaborate with the MIT Innovation Initiative and The Engine.

    MRL will benefit from the long history of research breakthroughs under MPC and CMSE such as “perfect mirror” technology developed through CMSE in 1998 that led to a new kind of fiber optic surgery and a spinout company, OmniGuide Surgical, and the first germanium laser operating at room temperature, which is used for optical communications, in 2012 through MPC’s affiliated Microphotonics Center.

    The Materials Processing Center brings to the partnership its wide diversity of materials research, funded by industry, foundations and government agencies, while the Center for Materials Science and Engineering brings its seed projects in basic science and Interdisciplinary Research Groups, educational outreach and shared experimental facilities, funded under the National Science Foundation Materials Research Science and Engineering Center program [NSF-MRSEC]. Combined research funding was $21.5 million for the fiscal year ended June 30, 2017.

    MPC’s research volume more than doubled during the past nine years under Thompson’s leadership. “We do have a higher profile in the community both internal as well as external. We developed over the years a close collaboration with CMSE, including outreach. That will be greatly amplified through the merger,” he says. Thompson is the Stavros Salapatas Professor of Materials Science and Engineering at MIT.

    Tackling energy problems

    With industrial support, MPC and CMSE launched the Substrate Engineering Lab in 2004. MPC affiliates include the AIM Photonics Academy, the Center for Integrated Quantum Materials and the MIT Skoltech Center for Electrochemical Energy Storage. Other research includes Professor ‪Harry L. Tuller’s‬‬‬‬ Chemomechanics of Far-From-Equilibrium Interfaces (COFFEI) project, which aims to produce better oxide-based semiconductor materials for fuel cells, and ‬‬‬‬‬‬‬Senior Research Scientist Jurgen Michel’s Micro-Scale Optimized Solar-Cell Arrays with Integrated Concentration (MOSAIC) project, which aims to achieve overall efficiency of greater than 30 percent. ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    The MPC kicked off the Singapore-MIT Alliance for Research and Technology Center’s program in Low Energy Electronic Systems [SMART-LEES] in January 2012, managing the MIT part of the budget. SMART-LEES, led by Eugene A. Fitzgerald, the Merton C. Flemings-SMA Professor of Materials Science and Engineering at MIT, was renewed for another five years in January 2017.

    Shared experimental facilities, including X-Ray diffraction, scanning and transmission electron microscopy, probe microscopy, and surface analytical capabilities, are used by more than 1,100 individuals each year. “The amount of investment that needs to be made to keep state-of-the-art shared facilities at a university like MIT is on the order of 1 to 2 million dollars per year in new investment and new tools. That kind of funding is very difficult to get. It certainly doesn’t come to us through just NSF funding,” says TDK Professor of Polymer Materials Science and Engineering Michael F. Rubner, who is retiring after 16 years as CMSE director. “MIT.nano, in concert with MRL, will be able to work together to look at new strategies for trying to maintain state-of-the-art equipment and to find funding sources and to figure out ways to not only get the equipment in, but to have highly trained professionals running that equipment.”

    Associate Professor of Materials Science and Engineering Geoffrey S.D. Beach succeeds Rubner as co-director of the MIT MRL and principal investigator for the NSF-MRSEC.

    Spinning out jobs

    NSF-MRSEC-funded research through CMSE has led to approximately 1,100 new jobs through spinouts such as American Superconductor [superconductivity], OmniGuide Surgical [optical fibers] and QD Vision [quantum dots], which Samsung acquired in 2016. Many of these innovations began with seed funding, CMSE’s earliest stage of support, and evolved through joint efforts with MPC, such as microphotonics research that began with a seed grant in 1993, followed by Interdisciplinary Research Group funding a year later. In 1997, MIT researchers published two key papers in Nature and Physical Review Letters, won a two-year, multi-university award through DARPA for Photonic Crystal Engineering, and formed the Microphotonics Center. Further research led to the spinout in 2002 of Luminus Devices, which specializes in solid-state lighting based on light emitting diodes [LEDs].

    “Our greatest legacy is bringing people together to produce fundamental new science, and then allowing those researchers to explore that new science in ways that may be beneficial to society, as well as to develop new technologies and launch companies,” Rubner says. He recalls that research in complex photonic crystal structures began with Francis Wright Davis Professor of Physics John D. Joannopoulos as leader. “They got funding through us, at first as seed funding and then IRG [interdisciplinary research group] funding, and over the years, they have continued to get funding from us because they evolved. They would seek a new direction, and one of the new directions they evolved into was this idea of making photonic fibers, so they went from photonic crystals to photonic fibers and that led to, for example, the launching of OmniGuide.” An outgrowth of basic CMSE research, the company’s founders included Professors Joannopolous, Yoel Fink, and Edwin L. [“Ned”] Thomas, who served as William and Stephanie Sick Dean of the George R. Brown School of Engineering at Rice University from 2011 to 2017.

    Under Fink’s leadership, that work evolved into Advanced Functional Fabrics of America [AFFOA], a public-private Manufacturing Innovation Institute devoted to creating and bringing to market revolutionary fibers and textiles. The institute, which is a separate nonprofit organization, is led by Fink, while MIT on-campus research is led by Lammot du Pont Professor of Chemical Engineering Gregory C. Rutledge.

    Susan D. Dalton, NSF-MRSEC Assistant Director, recalls the evolution of perfect mirror technology into life-saving new fiber optic surgery. “From an administrator’s point of view,” Dalton says, “it’s really exciting because day to day, things happen that you don’t know are going to happen. When you think about saving people’s lives, that’s amazing, and that’s just one example,” she says.

    Government, industry partners

    Through its Collegium and close partnership with the MIT‪ Industrial Liaison Program (‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬ILP), MPC has a long history of government and industrial partnerships as well as individual faculty research projects. Merton C. Flemings, who is MPC’s founding director [1980-82], and a retired Toyota Professor of Materials Processing, recalls that the early focus was primarily on metallurgy, but ceramics work also was important. “It’s gone way beyond that, and it’s a delight to see what’s going on,” he notes.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    “From the time of initiation of the MPC, we had interdepartmental participation, and quite soon after its formation, we initiated an industrial collegium to share in research formulation and participate in research partnerships. I believe our collegium was the first to work collaboratively with the Industrial Liaison Program. It was also at a period in MIT history when working directly with the commercial sector was rare,” Flemings says.

    Founded in February 1980, the Materials Processing Center won early support from NASA, which was interested in processing materials in space. A question being asked then was: “What would it be like when you’re in zero gravity and you try and purify a metal or make anything out there? Dr. John R. Carruthers headed this zero gravity materials processing activity in NASA, and as he considered the problem, he realized we didn’t really have much of a science base of materials processing on earth, let alone in space. With that in mind, at Carruthers’ instigation, NASA provided a very generous continuing grant to MIT that was essential to us starting in those early years,” Flemings explains.

    Carruthers went on to become director of research with Intel and is now Distinguished Professor of Physics, at Portland [Oregon] State University. The two men – Flemings at MIT and Carruthers at the University of Toronto – had been familiar with each other’s work in the study of how metals solidify, before Carruthers joined NASA as director of its materials processing in space program in 1977. Both Flemings and Carruthers wanted to understand how the effects of gravitationally driven convection influenced the segregation processes during metals solidification.

    “In molten metal baths, as the metal solidifies into ingots, the solidification process is never uniform. And so the distribution of the components being solidified is very much affected by fluid flow or convection in the molten metal,” Carruthers explains. “We were both interested in what would happen if you could actually turn gravity down because most of the convective effects were influenced by density gradients in the metal due to thermal and compositional effects. So, we were quite interested in what would happen given that those density gradients existed, if you could actually turn the effects of gravity down.”

    “When the NASA program came around, they wanted to try to use the low gravity environment of space to actually fabricate materials,” Carruthers recalls. “After a couple of years at NASA, I was able to secure some block grant funding for the center. It subsequently, of course, has developed its own legs and outgrown any of the initial funding that we provided, which is really great to see, and it’s a tribute to the MIT way of doing research, of course, as well. I was really quite proud to be part of the early development of the center,” Carruthers says. “Many of the things we learned in those days are relevant to other areas. I’m finding a lot of knowledge and way of doing things is transferrable to the biomedical sciences, for example, so I’ve become quiet interested in helping to develop things like nanomonitors, you know, more materials science-oriented approaches for the biomedical sciences.”

    Expanding research portfolio

    From its beginnings in metals processing with NASA support, MPC evolved into a multi-faceted center with diverse sponsors of research in energy harvesting, conversion and storage; fuel cells; quantum materials and spintronics; materials integration for microsystems; photonic devices and systems; materials systems and sustainability; solid-state ionics; as well as metals processing, an old topic that is hot again.

    MRL-affiliated MIT condensed matter physicists include experimentalists Raymond C. Ashoori, Joseph G. Checkelsky, Nuh Gedik, and Pablo Jarillo-Herrero, who are exploring quantum materials for next-generation electronics, such as spintronics and valleytronics, new forms of nanoscale magnetism, and graphene-based optoelectronic devices. Riccardo Comin explores electronic phases in quantum materials. Theorists Liang Fu and Senthil Todadri envision new forms of random access memory, Majorana fermions for quantum computing, and unusual magnetic materials such as quantum spin liquids.

    In the realm of biophysics, Associate Professor Jeff Gore tests fundamental ideas of theoretical ecology and evolutionary dynamics through experimental studies of microbial communities. Class of 1922 Career Development Assistant Professor Ibrahim Cissé uses physical techniques that visualize weak and transient biological interactions to study emergent phenomena in live cells with single molecule sensitivity. On the theoretical front, Professor Thomas D. & Virginia W. Cabot Career Development Associate Professor of Physics Jeremy England focuses on structure, function, and evolution in the sub-cellular biophysical realm.

    Alan Taub, Professor of Materials Science and Engineering at the University of Michigan, has become a member of the new Materials Research Laboratory External Advisory Board. Taub previously served in senior materials science management roles with General Motors, Ford Motor Co. and General Electric and served as chairman of the Materials Processing Center Advisory Board from 2001-2006. He notes that under Director Lionel Kimerling [1993-2008], MPC embraced the new area of photonics. “That transition was really well done,” Taub says. The MRL-affiliated Microphotonics Center has produced collaborative roadmapping reports since 2007 to guide manufacturing research and address systems requirements for networks that fully exploit the power of photonics. Taub also is chief technical officer of LIFT Manufacturing Innovation Institute, in which MIT Assistant Professor of Materials Science and Engineering Elsa Olivetti and senior research scientist Randolph E. [Randy] Kirchain are engaged in cost modeling.

    From its founding, Taub notes, MPC engaged the faculty with industry. Advisory board members often sponsored research as well as offering advice. “So it was really the way to guide the general direction, you know, teach them that there are things industry needs. And remember, this was the era well before entrepreneurism. It really was the interface to the Fortune 500’s and guiding and transitioning the technology out of MIT. That’s why I think it survived changes in technology focus, because at its core, it was interfacing industry needs with the research capabilities at the Institute,” Taub says.

    Broadening participation

    Susan Rosevear, who is the Education Officer for the NSF-MRSEC, is responsible for an extensive array of programs, including the Summer Scholars program, which is primarily funded through NSF’s Research Experience for Undergraduates (REU) program. Each summer a dozen or so top undergraduates from across the country spend about two months at MIT as lab interns working with professors, postdocs and graduate students on cutting edge research.

    CMSE also conducts summer programs for community college students and teachers, middle and high school teachers, and participates in the Women’s Technology Program and Boston Area Girls’ STEM Collaborative. “Because diversity is also part of our mission, part of what our mission from NSF is, in all we do, we try to broaden participation in science and engineering,” Rosevear says.

    Teachers who participate in these programs often note how collaborative the research enterprise is at MIT, Rosevear notes. Several have replaced cookbook-style labs with open-ended projects that let students experience original research.

    Confidence to test ideas

    Merrimack [N.H.] High School chemistry teacher Sean Müller first participated in the Research Experience for Teachers program in 2000. “Through my experiences with the RET program, I have learned how to ‘run a research group’ consisting of my students. Without this experience, I would not have had the confidence to allow my students to research, develop, and test their original ideas. This has also allowed me to coach our school’s Science Olympiad team to six consecutive state titles, to mentor a set of students that developed a mini bio-diesel processor that they sold to Turner Biodiesel, and to mentor another set of students that took second place in Embedded Systems at I.S.E.F. [Intel International Science and Engineering Fair] last year for their ChemiCube chemical dispensing system,” Müller says.

    Müller says he is always looking for new ideas and researching older ideas to develop lab activities in his classroom. “One year my students made light emitting thin films. We have grown beautiful bismuth crystals in our test furnace, and currently I am working out how to make glow-in-the-dark zinc sulfide electroluminescent by doping it with copper so that we can make our own electroluminescent panels,” he says. “Next year we are going to try to make the clear see-through wood that was in the news earlier this year. I am also bringing in new materials that they have not seen before such as gallium-indium eutectic. These novel materials and activities generate a very high level of enthusiasm and interest in my students, and students that are excited, interested, and motivated learn more efficiently and more effectively.”

    Müller developed a relationship with Prof. Steve Leeb that has brought Müller back to MIT during past summers to present a brief background in polymer chemistry, supplemented by hands-on demonstrations and activities, for the Science Teacher Enrichment Program (STEP) and Women’s Technology program. “Last year I showed them how they could use their cell phone and a polarized film to see the different areas of crystallization in polymers when they are stressed,” Müller says. “I enjoy the presentation because it is more of a conversation with all of the teachers, myself included, asking questions about different activities and methods and discussing what has worked and what has not worked in the past.”

    Conducive environment

    Looking back on his nine years as MPC director, Thompson says, “The MPC served a broad community, but many people at MIT didn’t know about it because it was in the basement of Building 12. So one of the things that I wanted to do was raise the profile of MPC so people better understood what the MPC did in order to better serve the community.” MPC rolled out a new logo and developed a higher profile Web page, for example. “I think that was successful. I think many more people understand who we are and what we do and that enables us to do more,” Thompson says. In 2014 MPC moved to Building 24 as the old Building 12 was razed to make way for MIT.nano. The new MRL is consolidating its offices in Building 13.

    “Research breakthroughs by their very nature are hard to predict, but what we can do is we can create an environment that leads to research breakthroughs,” Thompson says. “The successful model in both MPC and CMSE is to bring together people interested in materials, but with different disciplinary backgrounds. We’ve done that separately, we’ll do it together, and the expectation is that we’ll do it even more effectively.”

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 12:56 pm on May 16, 2023 Permalink | Reply
    Tags: "Adventures in the Pappalardo Lab", “I thought I had something to offer the undergrads here” says Daniel Braunstein., Braunstein took over the leadership of the Pappalardo Undergraduate Teaching Laboratories., Daniel Braunstein, Mechanical Engineering, Technology entrepreneur and founder of Meditech Neil Pappalardo ’64, Technology entrepreneur and founder of Meditech Neil Pappalardo ’64 donated money to remake a cluttered steam lab into a sophisticated design studio in the mid-1990s., The lab’s podcast — named “Lock the Quill” has attracted listeners on every continent except Antarctica (and Braunstein says he plans to contact the research station there)., ,   

    From The School of Engineering At The Massachusetts Institute of Technology: “Adventures in the Pappalardo Lab” Daniel Braunstein 

    From The School of Engineering

    At

    The Massachusetts Institute of Technology

    5.11.23
    Michaela Jarvis | Department of Mechanical Engineering

    Daniel Braunstein, director of the Pappalardo Undergraduate Teaching Laboratories, found his calling at MIT’s hands-on mechanical engineering space.

    1
    Danny Braunstein has helped create a space where students can enjoy the creative learning processes. Photo: Tony Pulsone.

    2
    Danny Braunstein interviewed Professor Maria Yang for his podcast, Lock the Quill. The pair discussed topics including design at MIT and Stanford, AI and design, the Morningside Academy for Design, and more. Photo: Tony Pulsone.

    In about 2010, working as a principal and director of mechanical engineering at Continuum, a global innovation firm, Daniel Braunstein says he felt that what he was providing wasn’t as meaningful as he would like. Luckily for MIT’s Department of Mechanical Engineering (MechE), he found an ideal next step.

    “I’m kind of cautious about telling this part, but I had been in professional services at that point for 15 years, and I reached a point where I felt like I was not giving everything that I could give,” Braunstein says. “I felt like I could apply myself in a different capacity that might be more profound, that might have a little bit more legs than just, say, the next product development cycle.”

    So he headed back to MIT, where he had earned his PhD in 1997.

    With his academic background and his experience in industry — where he says he felt job candidates who had just graduated lacked the the gritty, hands-on experience that the industry needed — “I thought I had something to offer the undergrads here.”

    Braunstein found his context, and his opportunity to apply MIT’s motto of “mens et manus” (“mind and hand”), when he took over the leadership of the Pappalardo Undergraduate Teaching Laboratories. The Pappalardo Lab is used by students in some of the largest, most important classes in MIT’s MechE department, including 2.007 (Design and Manufacturing 1) and 2.009 (Product Engineering Processes).

    Exuberantly praised by many in MechE, the Pappalardo Lab is described as “one of the greatest facilities that has ever existed on the MIT campus” by Steven Leeb, professor of electrical engineering and mechanical engineering.

    “It is the gold standard for how to work with engineering students,” Leeb says, adding that the lab teaches students “to take the passion and desire they have to build and actually turn that into reality.”

    Leeb credits Braunstein with maintaining and growing the lab’s creative ethos that began when technology entrepreneur and founder of Meditech, Neil Pappalardo ’64, donated money to remake a cluttered steam lab into a sophisticated design studio in the mid-1990s. Much of the physical transformation fell to Braunstein’s predecessor, Richard Fenner. According to Leeb, Fenner also assembled a team of “artists, engineers and humanists — all three in each person, which you don’t usually find.” Braunstein was one of them, and was tapped by Fenner and the department to run the lab, starting in 2011.

    Not only Braunstein’s background in academia and industry, but his personality and humor helped encourage a positive atmosphere — and abundant learning — at the lab, his colleagues say.

    “One of the best ways to teach is for the student to experience a surprise — to see something they didn’t think was possible or to design something new,” said Leeb. “Danny has an endless bag of tricks to create wonder for the students — and always something funny that goes with it.”

    Amos Winter, associate professor of mechanical engineering, agrees that the fertility of the lab environment is Braunstein’s creation.

    “He’s no-nonsense when he teaches his lab sections, but he’s so kind and caring, and he’s such an accomplished engineer. He draws students to him and really sets the tone for the lab in his own demeanor and behavior,” Winter says, adding that the Pappalardo Lab is where, “so many students undergo a rite of passage of becoming a mechanical engineer by physically realizing something of their own conception.”

    Winter says Braunstein uses creative approaches to classes taught at the lab, such as designing a 12-by-12-foot game board each year for the 2.007 end-of-semester robotics competition with a yearly theme “that’s fun and exciting for the students, but where the challenges stress sound mechanical engineering principles.”

    “He doesn’t have to do that,” Winter says. “The details that he’s able to execute add so much color and richness to our program.”

    MechE PhD candidate Georgia Van de Zande ’15, SM ’18, who has been part of the teaching staff at the Pappalardo Lab for eight years, also talks glowingly of the lab and Braunstein.

    “I have loved seeing how Danny has helped create a space where students can really enjoy the creative learning processes,” she says. “As for the impact on me, Danny is one of many people who have made me feel like Pappalardo is my home on MIT’s campus. At any time of day, students are busy with their projects, and the staff are looking for new ways to engage.”

    MechE alumnus Tom Frejowski ’19, SM ’21, who landed a job as a mechanical engineer at Frog Design in New York soon after he earned his master’s degree, says, “Pappalardo was one of the most important places on campus for me during my time at MIT, and that was in large part because of the environment that Danny and the shop staff cultivated. … Moving a design off of paper and into the field is a skill that you can only get better at the more times you do it, and I was very lucky to have a place like Pappalardo to start practicing that skill early.”

    One of Braunstein’s most important innovations for making ideas reality is the Pappalardo Apprentice seminar (2.S994), which he refers to as “my biggest mission in recent years.”

    Third- and fourth-year undergraduates take the class, and spend half of their time working with sophomores in the robotics design class — in what Braunstein refers to as “community service,” adding that the arrangement reinforces the learning of the older students as it builds community. “There’s no downside to it,” Braunstein says. “And the practical side is we need the help with the sophomores.”

    The juniors and seniors spend the other half of the class time in weekly seminars specially designed for them to go deeper into projects with academic lectures focused on metallurgy and fabrication, plus hands-on work in the lab. The juniors build thermal engines as their projects. The seniors, working alongside lab technicians and instructors, take on even more ambitious projects — using advanced computer-aided design and computer-aided manufacturing, making patterns, casting iron and bronzes, machining the parts, and assembling them — actually building devices such as engines from scratch. Braunstein, a sailor with an interest in antique marine equipment, often draws projects from the archives at MIT’s Hart Nautical Collections, allowing students to reverse-engineer marine devices like engines and winches from the late 19th century.

    Braunstein says he called the seminar an apprenticeship to emphasize MIT’s relationship with the art — and industrial character — of engineering.

    “I did want to borrow from the language of the trades,” Braunstein says. “MIT has a strong heritage in industrial work; that’s why we were founded. It was not a science institution. It was about the mechanical arts. And I think the blend of the industrial, plus the academic, is what makes this lab particularly meaningful.”

    Braunstein, frequently described as being wary of the spotlight, is quick to point out that the creativity-inducing atmosphere in the Pappalardo Lab is on account not only of himself, the other instructors, professors, and the students, but also the staff.

    “We have a staff that’s made of people who have come up through academic channels, as well as through industrial or vocational channels,” he says. “The lab is effective because of the team we have in place. We work so closely together, and are so aligned, that we can finish each other’s sentences. We are a family, brothers-in-arms, so to speak. I have deep admiration and affection for the team and our chemistry.”

    Around Halloween of last year, the “banter among the staff, the practical jokes, ribbing and shop talk” led a student to jokingly suggest that the lab should do a podcast, Braunstein says.

    Eleven episodes later, the podcast — named “Lock the Quill” because workers in machine shops often shout that phrase when they hear a whining sound coming from a cutting tool, indicating that the step has been forgotten — has attracted listeners on every continent except Antarctica (and Braunstein says he plans to contact the research station there). The humor and personality of the people in the lab and the interviewees come through, as does the inventively zany sprit of MIT. The episodes are interesting and entertaining even to non-MechE types, perhaps somewhat in the same way that NPR’s “Car Talk” audience extended way beyond car buffs.

    Braunstein is an easy-going interviewer — a natural, really — and professors expound on such topics as the design of their latest cardiovascular device, as well as their favorite bands or their intimate knowledge of “the nerd movie canon of the 1980s.”

    In addition to their entertainment value, the episodes offer valuable insights and practical information, such as that offered in an interview with a MechE alumna who described her post-graduation path to a great job.

    The podcast’s most recent, and illustrious, interviewee was Sally Kornbluth, the new president of MIT. Braunstein and she discussed everything from her bossy chihuahua mix to Carolina barbecue to consolidating MIT initiatives aimed at combating climate change. Kornbluth emphasized that the idea of transforming great ideas into reality, which could be Braunstein’s mantra, is one of things that drew her to MIT.

    “MIT is like the pinnacle of that in academia — conceiving of great ideas, and actually making them happen,” Kornbluth says.

    Nearly everything occurring at the Pappalardo Lab has to do with the value of creating, Braunstein says.

    “I hope the lab is inspiring students to understand at a profound level how creating helps their learning, and how learning helps their creating,” he says. “An outsider’s view is, ‘Oh, you’re teaching them how to fabricate.’ It’s true we’re doing that, but our primary motivation is to instill a profound understanding of creating.

    “There are plenty of people who can come up with great ideas. There are far fewer who can come up with the ideas and have the understanding and the skills to be able to convert them into something real. It’s the combination of the two that is going to make our graduates particularly effective.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MIT School of Engineering is one of the five schools of the Massachusetts Institute of Technology, located in Cambridge, Massachusetts. The School of Engineering has eight academic departments and two interdisciplinary institutes. The School grants SB, MEng, SM, engineer’s degrees, and PhD or ScD degrees. The school is the largest at MIT as measured by undergraduate and graduate enrollments and faculty members.

    Departments and initiatives:

    Departments:

    Aeronautics and Astronautics (Course 16)
    Biological Engineering (Course 20)
    Chemical Engineering (Course 10)
    Civil and Environmental Engineering (Course 1)
    Electrical Engineering and Computer Science (Course 6, joint department with MIT Schwarzman College of Computing)
    Materials Science and Engineering (Course 3)
    Mechanical Engineering (Course 2)
    Nuclear Science and Engineering (Course 22)

    Institutes:

    Institute for Medical Engineering and Science
    Health Sciences and Technology program (joint MIT-Harvard, “HST” in the course catalog)

    (Departments and degree programs are commonly referred to by course catalog numbers on campus.)

    Laboratories and research centers

    Abdul Latif Jameel Water and Food Systems Lab
    Center for Advanced Nuclear Energy Systems
    Center for Computational Engineering
    Center for Materials Science and Engineering
    Center for Ocean Engineering
    Center for Transportation and Logistics
    Industrial Performance Center
    Institute for Soldier Nanotechnologies
    Koch Institute for Integrative Cancer Research
    Laboratory for Information and Decision Systems
    Laboratory for Manufacturing and Productivity
    Materials Processing Center
    Microsystems Technology Laboratories
    MIT Lincoln Laboratory Beaver Works Center
    Novartis-MIT Center for Continuous Manufacturing
    Ocean Engineering Design Laboratory
    Research Laboratory of Electronics
    SMART Center
    Sociotechnical Systems Research Center
    Tata Center for Technology and Design

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory , the MIT Bates Research and Engineering Center , and the Haystack Observatory , as well as affiliated laboratories such as the Broad Institute of MIT and Harvard and Whitehead Institute.

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology. The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However, six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched “OpenCourseWare” to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 7:13 am on May 10, 2023 Permalink | Reply
    Tags: "Shifting gears - How data science led Madeleine Bonsma-Fisher from studying germ models to bike lanes", A cycling activist Bonsma-Fisher is studying traffic patterns as part of her post-doctoral research at the University of Toronto’s Data Sciences Institute, , CRISPR - the subject of both her master’s and doctoral studies., Mechanical Engineering, , ,   

    From The Faculty of Applied Science & Engineering At The University of Toronto (CA): “Shifting gears – How data science led Madeleine Bonsma-Fisher from studying germ models to bike lanes” 

    From The Faculty of Applied Science & Engineering

    At

    The University of Toronto (CA)

    5.9.23
    Adina Bresge

    1
    Madeleine Bonsma-Fisher, a post-doctoral researcher at U of T’s Data Sciences Institute, is studying traffic “stress” in Toronto in order to pinpoint where more cycling infrastructure is needed (Photo by Johnny Guatto)

    When Madeleine Bonsma-Fisher bikes through Toronto, she sees where her research meets the road.

    Each street she pedals down presents as a series of data points: She’ll count 15 people weaving past one another on the sidewalk, while three cars cruise down a road that takes up 80 per cent of the space.

    A cycling activist, Bonsma-Fisher is studying traffic patterns as part of her post-doctoral research at the University of Toronto’s Data Sciences Institute, an institutional strategic initiative that is a tri-campus hub for number crunchers across disciplines. Before that, she modelled evolutionary interactions between microbes.

    The common thread? Data and data analysis.

    “I don’t want to say that data science is the answer to everything, but I am finding that there is so much you can do,” Bonsma-Fisher says. “It gave me a lot of freedom to really just do whatever I wanted.”

    Her current research focuses on what might seem like a simple question: At any point in Toronto, can you cycle to essential destinations – grocery stores, health care and schools – within 30 minutes, using only bike lanes and traffic-calmed roads?

    The answer, she says, is far from straightforward. It requires sophisticated data analysis to make a map of the entire city and rate each road according to traffic stress, which accounts for factors such as traffic volume, speed limits and physical separation.

    The next step, Bonsma-Fisher says, is to pinpoint places where infrastructure could improve access to cycling as a comfortable and convenient mode of transportation, such as dedicated bike lanes and physical separation from car traffic.

    As she searches for active transportation solutions, Bonsma-Fisher is working with two advisers at the Data Sciences Institute: Shoshanna Saxe, an associate professor in the department of civil and mineral engineering, and Timothy Chan, a professor of mechanical and industrial engineering – both in the Faculty of Applied Science & Engineering.

    “What’s cool about the Data Sciences Institute is that the vision is to bring people together with different experience and allow people to make that jump to a different field.”

    The winding road of Bonsma-Fisher’s research career – and the data focus that underpins it – began when she arrived at U of T’s School of Graduate Studies in 2014 with a physics degree and an interest in using the field’s principles to solve biological problems.

    Her supervisor, Sidhartha Goyal, an associate professor in the department of physics in the Faculty of Arts & Science, suggested she look into CRISPR – a term she hadn’t heard before, but one that would become the subject of both her master’s and doctoral studies.

    You may have heard of CRISPR in the context of genome editing, but the technology is derived from a bacterial defense mechanism that is analogous to adaptive immunity in humans. Many bacteria have an immune system called CRISPR that allows them to store memories of viruses in their own DNA – like a genetic gallery of viral “mug shots,” Bonsma-Fisher explains.

    As part of her PhD research, Bonsma-Fisher built a simple mathematical model to explore how computer-simulated interactions between populations of bacteria and viruses shape CRISPR immune memories.

    The paper, published in the journal eLife [below] earlier this year, provides fresh insight into the evolutionary “arms race” between viruses and bacteria – with viruses mutating to evade immune recognition, while CRISPR builds bacteria’s DNA database of previous attackers. The simplicity of the model helped narrow down the most prominent processes in a complicated system, Bonsma-Fisher says.

    Down the road, Bonsma-Fisher says the model could contribute to our understanding of immunity in more complex organisms, including humans.

    “Some of the conclusions we think are going to apply to any type of immune system-virus interaction.”

    While she was chipping away at her microbial models, Bonsma-Fisher made another discovery: data analysis skills were in short supply – and high demand – among her fellow graduate students. So, she co-founded the U of T Coders group to give researchers across all disciplines a chance to learn the basics of programming and teach each other new techniques through hands-on, member-led tutorials.

    “A lot of people would try to learn by themselves,” she says, “and there would be a lot of struggle and tears. U of T coders was a place for people to support each other through all of that.”

    eLife

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Faculty of Applied Science and Engineering is an academic division of the University of Toronto devoted to study and research in engineering. Founded in 1873 as the School of Practical Science, it is still known today by the longtime nickname of Skule. The faculty is based primarily across 16 buildings on the southern side of the university campus in Downtown Toronto, in addition to operating the Institute for Aerospace Studies facility. The faculty administers undergraduate, master’s and doctoral degree programs, as well as a dual-degree program with the Rotman School of Management.

    Departments

    Department of Chemical Engineering & Applied Chemistry (Chem)
    Department of Civil and Mineral Engineering (Civ/Min)
    The Edward S. Rogers Sr. Department of Electrical & Computer Engineering (ECE)
    Department of Materials Science & Engineering (MSE)
    Department of Mechanical & Industrial Engineering (MIE)

    Divisions

    Division of Engineering Science (EngSci)
    Division of Environmental Engineering & Energy Systems (DEEES)

    Specialized institutes

    University of Toronto Institute for Aerospace Studies (UTIAS)
    Institute of Biomedical Engineering (BME)

    Affiliated research institutes and centres

    BioZone
    Centre for Advanced Coating Technologies (CACT)
    Centre for Advanced Diffusion-Wave Technologies (CADIFT)
    Centre for Advanced Nanotechnology Centre for Global Engineering (CGEN)
    Centre for Maintenance Optimization & Reliability Engineering (C-MORE)
    Centre for Management of Technology & Entrepreneurship (CMTE)
    Centre for Research in Healthcare Engineering (CRHE)
    Centre for the Resilience of Critical Infrastructure (RCI)
    Centre for Technology & Social Development Emerging Communications Technology Institute (ECTI)
    Identity, Privacy & Security Institute (IPSI)
    Institute for Leadership Education in Engineering (ILead)
    Institute for Multidisciplinary Design & Innovation (UT-IMDI)
    Institute for Optical Sciences Institute for Robotics & Mechatronics (IRM)
    Institute for Sustainable Energy (ISE)
    Intelligent Transportation Systems (ITS) Centre & Test Bed
    Lassonde Institute of Mining
    Pulp & Paper Centre
    Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR)
    Terrence Donnelly Centre for Cellular & Biomolecular Research
    Ontario Centre for the Characterization of Advanced Materials (OCCAM)

    The University of Toronto (CA) is a public research university in Toronto, Ontario, Canada, located on the grounds that surround Queen’s Park. It was founded by royal charter in 1827 as King’s College, the oldest university in the province of Ontario.

    Originally controlled by the Church of England, the university assumed its present name in 1850 upon becoming a secular institution.

    As a collegiate university, it comprises eleven colleges each with substantial autonomy on financial and institutional affairs and significant differences in character and history. The university also operates two satellite campuses located in Scarborough and Mississauga.

    University of Toronto has evolved into Canada’s leading institution of learning, discovery and knowledge creation. We are proud to be one of the world’s top research-intensive universities, driven to invent and innovate.

    Our students have the opportunity to learn from and work with preeminent thought leaders through our multidisciplinary network of teaching and research faculty, alumni and partners.

    The ideas, innovations and actions of more than 560,000 graduates continue to have a positive impact on the world.

    Academically, the University of Toronto is noted for movements and curricula in literary criticism and communication theory, known collectively as the Toronto School.

    The university was the birthplace of insulin and stem cell research, and was the site of the first electron microscope in North America; the identification of the first black hole Cygnus X-1; multi-touch technology, and the development of the theory of NP-completeness.

    The university was one of several universities involved in early research of deep learning. It receives the most annual scientific research funding of any Canadian university and is one of two members of the Association of American Universities outside the United States, the other being McGill(CA).

    The Varsity Blues are the athletic teams that represent the university in intercollegiate league matches, with ties to gridiron football, rowing and ice hockey. The earliest recorded instance of gridiron football occurred at University of Toronto’s University College in November 1861.

    The university’s Hart House is an early example of the North American student centre, simultaneously serving cultural, intellectual, and recreational interests within its large Gothic-revival complex.

    The University of Toronto has educated three Governors General of Canada, four Prime Ministers of Canada, three foreign leaders, and fourteen Justices of the Supreme Court. As of March 2019, ten Nobel laureates, five Turing Award winners, 94 Rhodes Scholars, and one Fields Medalist have been affiliated with the university.

    Early history

    The founding of a colonial college had long been the desire of John Graves Simcoe, the first Lieutenant-Governor of Upper Canada and founder of York, the colonial capital. As an University of Oxford (UK)-educated military commander who had fought in the American Revolutionary War, Simcoe believed a college was needed to counter the spread of republicanism from the United States. The Upper Canada Executive Committee recommended in 1798 that a college be established in York.

    On March 15, 1827, a royal charter was formally issued by King George IV, proclaiming “from this time one College, with the style and privileges of a University … for the education of youth in the principles of the Christian Religion, and for their instruction in the various branches of Science and Literature … to continue for ever, to be called King’s College.” The granting of the charter was largely the result of intense lobbying by John Strachan, the influential Anglican Bishop of Toronto who took office as the college’s first president. The original three-storey Greek Revival school building was built on the present site of Queen’s Park.

    Under Strachan’s stewardship, King’s College was a religious institution closely aligned with the Church of England and the British colonial elite, known as the Family Compact. Reformist politicians opposed the clergy’s control over colonial institutions and fought to have the college secularized. In 1849, after a lengthy and heated debate, the newly elected responsible government of the Province of Canada voted to rename King’s College as the University of Toronto and severed the school’s ties with the church. Having anticipated this decision, the enraged Strachan had resigned a year earlier to open Trinity College as a private Anglican seminary. University College was created as the nondenominational teaching branch of the University of Toronto. During the American Civil War the threat of Union blockade on British North America prompted the creation of the University Rifle Corps which saw battle in resisting the Fenian raids on the Niagara border in 1866. The Corps was part of the Reserve Militia lead by Professor Henry Croft.

    Established in 1878, the School of Practical Science was the precursor to the Faculty of Applied Science and Engineering which has been nicknamed Skule since its earliest days. While the Faculty of Medicine opened in 1843 medical teaching was conducted by proprietary schools from 1853 until 1887 when the faculty absorbed the Toronto School of Medicine. Meanwhile the university continued to set examinations and confer medical degrees. The university opened the Faculty of Law in 1887, followed by the Faculty of Dentistry in 1888 when the Royal College of Dental Surgeons became an affiliate. Women were first admitted to the university in 1884.

    A devastating fire in 1890 gutted the interior of University College and destroyed 33,000 volumes from the library but the university restored the building and replenished its library within two years. Over the next two decades a collegiate system took shape as the university arranged federation with several ecclesiastical colleges including Strachan’s Trinity College in 1904. The university operated the Royal Conservatory of Music from 1896 to 1991 and the Royal Ontario Museum from 1912 to 1968; both still retain close ties with the university as independent institutions. The University of Toronto Press was founded in 1901 as Canada’s first academic publishing house. The Faculty of Forestry founded in 1907 with Bernhard Fernow as dean was Canada’s first university faculty devoted to forest science. In 1910, the Faculty of Education opened its laboratory school, the University of Toronto Schools.

    World wars and post-war years

    The First and Second World Wars curtailed some university activities as undergraduate and graduate men eagerly enlisted. Intercollegiate athletic competitions and the Hart House Debates were suspended although exhibition and interfaculty games were still held. The David Dunlap Observatory in Richmond Hill opened in 1935 followed by the University of Toronto Institute for Aerospace Studies in 1949. The university opened satellite campuses in Scarborough in 1964 and in Mississauga in 1967. The university’s former affiliated schools at the Ontario Agricultural College and Glendon Hall became fully independent of the University of Toronto and became part of University of Guelph (CA) in 1964 and York University (CA) in 1965 respectively. Beginning in the 1980s reductions in government funding prompted more rigorous fundraising efforts.

    Since 2000

    In 2000 Kin-Yip Chun was reinstated as a professor of the university after he launched an unsuccessful lawsuit against the university alleging racial discrimination. In 2017 a human rights application was filed against the University by one of its students for allegedly delaying the investigation of sexual assault and being dismissive of their concerns. In 2018 the university cleared one of its professors of allegations of discrimination and antisemitism in an internal investigation after a complaint was filed by one of its students.

    The University of Toronto was the first Canadian university to amass a financial endowment greater than c. $1 billion in 2007. On September 24, 2020 the university announced a $250 million gift to the Faculty of Medicine from businessman and philanthropist James C. Temerty- the largest single philanthropic donation in Canadian history. This broke the previous record for the school set in 2019 when Gerry Schwartz and Heather Reisman jointly donated $100 million for the creation of a 750,000-square foot innovation and artificial intelligence centre.

    Research

    Since 1926 the University of Toronto has been a member of the Association of American Universities a consortium of the leading North American research universities. The university manages by far the largest annual research budget of any university in Canada with sponsored direct-cost expenditures of $878 million in 2010. In 2018 the University of Toronto was named the top research university in Canada by Research Infosource with a sponsored research income (external sources of funding) of $1,147.584 million in 2017. In the same year the university’s faculty averaged a sponsored research income of $428,200 while graduate students averaged a sponsored research income of $63,700. The federal government was the largest source of funding with grants from the Canadian Institutes of Health Research; the Natural Sciences and Engineering Research Council; and the Social Sciences and Humanities Research Council amounting to about one-third of the research budget. About eight percent of research funding came from corporations- mostly in the healthcare industry.

    The first practical electron microscope was built by the physics department in 1938. During World War II the university developed the G-suit- a life-saving garment worn by Allied fighter plane pilots later adopted for use by astronauts.Development of the infrared chemiluminescence technique improved analyses of energy behaviours in chemical reactions. In 1963 the asteroid 2104 Toronto was discovered in the David Dunlap Observatory (CA) in Richmond Hill and is named after the university. In 1972 studies on Cygnus X-1 led to the publication of the first observational evidence proving the existence of black holes. Toronto astronomers have also discovered the Uranian moons of Caliban and Sycorax; the dwarf galaxies of Andromeda I, II and III; and the supernova SN 1987A. A pioneer in computing technology the university designed and built UTEC- one of the world’s first operational computers- and later purchased Ferut- the second commercial computer after UNIVAC I. Multi-touch technology was developed at Toronto with applications ranging from handheld devices to collaboration walls. The AeroVelo Atlas which won the Igor I. Sikorsky Human Powered Helicopter Competition in 2013 was developed by the university’s team of students and graduates and was tested in Vaughan.

    The discovery of insulin at the University of Toronto in 1921 is considered among the most significant events in the history of medicine. The stem cell was discovered at the university in 1963 forming the basis for bone marrow transplantation and all subsequent research on adult and embryonic stem cells. This was the first of many findings at Toronto relating to stem cells including the identification of pancreatic and retinal stem cells. The cancer stem cell was first identified in 1997 by Toronto researchers who have since found stem cell associations in leukemia; brain tumors; and colorectal cancer. Medical inventions developed at Toronto include the glycaemic index; the infant cereal Pablum; the use of protective hypothermia in open heart surgery; and the first artificial cardiac pacemaker. The first successful single-lung transplant was performed at Toronto in 1981 followed by the first nerve transplant in 1988; and the first double-lung transplant in 1989. Researchers identified the maturation promoting factor that regulates cell division and discovered the T-cell receptor which triggers responses of the immune system. The university is credited with isolating the genes that cause Fanconi anemia; cystic fibrosis; and early-onset Alzheimer’s disease among numerous other diseases. Between 1914 and 1972 the university operated the Connaught Medical Research Laboratories- now part of the pharmaceutical corporation Sanofi-Aventis. Among the research conducted at the laboratory was the development of gel electrophoresis.

    The University of Toronto is the primary research presence that supports one of the world’s largest concentrations of biotechnology firms. More than 5,000 principal investigators reside within 2 kilometres (1.2 mi) from the university grounds in Toronto’s Discovery District conducting $1 billion of medical research annually. MaRS Discovery District is a research park that serves commercial enterprises and the university’s technology transfer ventures. In 2008, the university disclosed 159 inventions and had 114 active start-up companies. Its SciNet Consortium operates the most powerful supercomputer in Canada.

     
  • richardmitnick 1:49 pm on May 9, 2023 Permalink | Reply
    Tags: "JPL’s Snake-Like EELS Slithers Into New Robotics Terrain", A versatile robot that would autonomously map and traverse and explore previously inaccessible destinations., , Called "EELS" - short for Exobiology Extant Life Surveyor, EELS creates a 3D map of its surroundings using four pairs of stereo cameras and lidar., EELS is designed to autonomously sense its environment and calculate risk and travel and gather data with yet-to-be-determined science instruments., In its final form the robot will contain 48 actuators – little motors – that give it the flexibility to assume multiple configurations but add complexity for both the hardware and software teams., Mechanical Engineering, , , The project team began building the first prototype in 2019 and has been making continual revisions., The robot has been put to the test in sandy and snowy and icy environments., When you’re going places where you don’t know what you’ll find you want to send a versatile and risk-aware robot that’s prepared for uncertainty – and can make decisions on its own.   

    From NASA JPL-Caltech: “JPL’s Snake-Like EELS Slithers Into New Robotics Terrain” 

    From NASA JPL-Caltech

    5.8.23
    Melissa Pamer
    Jet Propulsion Laboratory, Pasadena, Calif
    626-314-4928
    melissa.pamer@jpl.nasa.gov

    1
    Snake robot called EELSs. EELS in snow with team. JPL.

    null
    Tests in sandy terrain. EELS in Mars Yard curled. JPL.

    A versatile robot that would autonomously map, traverse, and explore previously inaccessible destinations is being put to the test at NASA’s Jet Propulsion Laboratory.

    How do you create a robot that can go places no one has ever seen before – on its own, without real-time human input? A team at NASA’s Jet Propulsion Laboratory that’s creating a snake-like robot for traversing extreme terrain is taking on the challenge with the mentality of a startup: Build quickly, test often, learn, adjust, repeat.

    Called “EELS” (short for Exobiology Extant Life Surveyor), the self-propelled, autonomous robot was inspired by a desire to look for signs of life in the ocean hiding below the icy crust of Saturn’s moon Enceladus by descending narrow vents in the surface that spew geysers into space. Although testing and development continue, designing for such a challenging destination has resulted in a highly adaptable robot. EELS could pick a safe course through a wide variety of terrain on Earth, the Moon, and far beyond, including undulating sand and ice, cliff walls, craters too steep for rovers, underground lava tubes, and labyrinthine spaces within glaciers.

    “It has the capability to go to locations where other robots can’t go. Though some robots are better at one particular type of terrain or other, the idea for EELS is the ability to do it all,” said JPL’s Matthew Robinson, EELS project manager. “When you’re going places where you don’t know what you’ll find, you want to send a versatile, risk-aware robot that’s prepared for uncertainty – and can make decisions on its own.”


    Testing Out JPL’s New Snake Robot. JPL.

    The project team began building the first prototype in 2019 and has been making continual revisions. Since last year, they’ve been conducting monthly field tests and refining both the hardware and the software that allows EELS to operate autonomously. In its current form, dubbed EELS 1.0, the robot weighs about 220 pounds (100 kilograms) and is 13 feet (4 meters) long. It’s composed of 10 identical segments that rotate, using screw threads for propulsion, traction, and grip. The team has been trying out a variety of screws: white, 8-inch-diameter (20-centimeter-diameter) 3D-printed plastic screws for testing on looser terrain, and narrower, sharper black metal screws for ice.

    The robot has been put to the test in sandy, snowy, and icy environments, from the Mars Yard at JPL to a “robot playground” created at a ski resort in the snowy mountains of Southern California, even at a local indoor ice rink.

    “We have a different philosophy of robot development than traditional spacecraft, with many quick cycles of testing and correcting,” said Hiro Ono, EELS principal investigator at JPL. “There are dozens of textbooks about how to design a four-wheel vehicle, but there is no textbook about how to design an autonomous snake robot to boldly go where no robot has gone before. We have to write our own. That’s what we’re doing now.”

    How EELS Thinks and Moves

    Because of the communications lag time between Earth and deep space, EELS is designed to autonomously sense its environment, calculate risk, travel, and gather data with yet-to-be-determined science instruments. When something goes wrong, the goal is for the robot to recover on its own, without human assistance.

    3
    EELS lowering head on Athabasca glacier. JPL.

    4
    EELS screw examples. JPL.

    “Imagine a car driving autonomously, but there are no stop signs, no traffic signals, not even any roads. The robot has to figure out what the road is and try to follow it,” said the project’s autonomy lead, Rohan Thakker. “Then it needs to go down a 100-foot drop and not fall.”

    EELS creates a 3D map of its surroundings using four pairs of stereo cameras and lidar, which is similar to radar but employs short laser pulses instead of radio waves. With the data from those sensors, navigation algorithms figure out the safest path forward. The goal has been to create library of “gaits,” or ways the robot can move in response to terrain challenges, from sidewinding to curling in on itself, a move the team calls “banana.”

    In its final form, the robot will contain 48 actuators – essentially little motors – that give it the flexibility to assume multiple configurations but add complexity for both the hardware and software teams. Thakker compares the actuators to “48 steering wheels.” Many of them have built-in force-torque sensing, working like a kind of skin so EELS can feel how much force it’s exerting on terrain. That helps it to move vertically in narrow chutes with uneven surfaces, configuring itself to push against opposing walls at the same time like a rock climber.

    Last year, the EELS team got to experience those kinds of challenging spaces when they lowered the robot’s perception head – the segment with the cameras and lidar – into a vertical shaft called a moulin at Athabasca Glacier in the Canadian Rockies. In September, they’re returning to the location, which is in many ways an analog for icy moons in our solar system, with a version of the robot designed to test subsurface mobility. The team will drop a small sensor suite – to monitor glacier chemical and physical properties – that EELS will eventually be able to deploy to remote sites.

    “Our focus so far has been on autonomous capability and mobility, but eventually we’ll look at what science instruments we can integrate with EELS,” Robinson said. “Scientists tell us where they want to go, what they’re most excited about, and we’ll provide a robot that will get them there. How? Like a startup, we just have to build it.”

    More About the Project

    EELS is funded by the Office of Technology Infusion and Strategy at NASA’s Jet Propulsion Laboratory in Southern California through a technology accelerator program called JPL Next. JPL is managed for NASA by Caltech in Pasadena, California. The EELS team has worked with a number of university partners on the project, including Arizona State University, Carnegie Mellon University, and University of California, San Diego. The robot is not currently part of any NASA mission.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL-Caltech Campus

    NASA JPL-Caltech is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    NASA Deep Space Network. Credit: NASA.

    NASA Deep Space Network Station 56 Madrid Spain added in early 2021.

    NASA Deep Space Network Station 14 at Goldstone Deep Space Communications Complex in California

    NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: NASA

    NASA Deep Space Network Madrid Spain. Credit: NASA.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs.] NASA shares data with various national and international organizations such as from the[JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 11:18 am on May 8, 2023 Permalink | Reply
    Tags: "Communication theory" : demonstrating how to reliably transmit signals over distance, "Scurrying Centipedes Inspire Many-Legged Robots That Can Traverse Difficult Landscapes", Adding leg pairs to the robot increases its ability to move robustly over challenging surfaces — a concept they call “spatial redundancy”., , , , , Mechanical Engineering, , With communication theory ensuring a message gets from point A to point B breaks it into discrete digital units and repeast these units with an appropriate code.   

    From The Georgia Institute of Technology: “Scurrying Centipedes Inspire Many-Legged Robots That Can Traverse Difficult Landscapes” 

    From The Georgia Institute of Technology

    5.5.23
    Tess Malone

    1
    Centipedes are known for their wiggly walk. With tens to hundreds of legs, they can traverse any terrain without stopping.

    “When you see a scurrying centipede, you’re basically seeing an animal that inhabits a world that is very different than our world of movement,” said Daniel Goldman, the Dunn Family Professor in the School of Physics. “Our movement is largely dominated by inertia. If I swing my leg, I land on my foot and I move forward. But in the world of centipedes, if they stop wiggling their body parts and limbs, they basically stop moving instantly.”

    Intrigued to see if the many limbs could be helpful for locomotion in this world, a team of physicists, engineers, and mathematicians at the Georgia Institute of Technology are using this style of movement to their advantage. They developed a new theory of multilegged locomotion and created many-legged robotic models, discovering the robot with redundant legs could move across uneven surfaces without any additional sensing or control technology as the theory predicted.

    These robots can move over complex, bumpy terrain — and there is potential to use them for agriculture, space exploration, and even search and rescue.

    The researchers presented their work in the papers in Science [below] in May and PNAS [below] in March.

    2

    A Leg Up

    For the Science paper, the researchers were motivated by mathematician Claude Shannon’s “communication theory”, which demonstrates how to reliably transmit signals over distance, to understand why a multilegged robot was so successful at locomotion. The theory of communication suggests that one way to ensure a message gets from point A to point B on a noisy line isn’t to send it as an analog signal, but to break it into discrete digital units and repeat these units with an appropriate code.

    “We were inspired by this theory, and we tried to see if redundancy could be helpful in matter transportation,” said Baxi Chong, a physics postdoctoral researcher. “So, we started this project to see what would happen if we had more legs on the robot: four, six, eight legs, and even 16 legs.”

    A team led by Chong, including School of Mathematics postdoctoral fellow Daniel Irvine and Professor Greg Blekherman, developed a theory that proposes that adding leg pairs to the robot increases its ability to move robustly over challenging surfaces — a concept they call “spatial redundancy”. This redundancy makes the robot’s legs successful on their own without the need for sensors to interpret the environment. If one leg falters, the abundance of legs keeps it moving regardless. In effect, the robot becomes a reliable system to transport itself and even a load from A to B on difficult or “noisy” landscapes. The concept is comparable to how punctuality can be guaranteed on wheeled transport if the track or rail is smooth enough but without having to engineer the environment to create this punctuality.

    “With an advanced bipedal robot, many sensors are typically required to control it in real time,” Chong said. “But in applications such as search and rescue, exploring Mars, or even micro robots, there is a need to drive a robot with limited sensing. There are many reasons for such sensor-free initiative. The sensors can be expensive and fragile, or the environments can change so fast that it doesn’t allow enough sensor-controller response time.”

    To test this, Juntao He, a Ph.D. student in robotics, conducted a series of experiments where he and Daniel Soto, a master’s student in the George W. Woodruff School of Mechanical Engineering, built terrains to mimic an inconsistent natural environment. He then tested the robot by increasing its number of legs by two each time, starting with six and eventually expanding to 16. As the leg count increased, the robot could more agilely move across the terrain, even without sensors, as the theory predicted. Eventually, they tested the robot outdoors on real terrain, where it was able to traverse in a variety of environments.

    “It’s truly impressive to witness the multilegged robot’s proficiency in navigating both lab-based terrains and outdoor environments,” Juntao said. “While bipedal and quadrupedal robots heavily rely on sensors to traverse complex terrain, our multilegged robot utilizes leg redundancy and can accomplish similar tasks with open-loop control.”

    Science

    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The Georgia Institute of Technology is a public research university and institute of technology located in the Midtown neighborhood of Atlanta, Georgia. It is a part of the University System of Georgia and has satellite campuses in Savannah, Georgia; Metz, France; Athlone, Ireland; Shenzhen, China; and Singapore.

    The school was founded in 1885 as the Georgia School of Technology as part of Reconstruction plans to build an industrial economy in the post-Civil War Southern United States. Initially, it offered only a degree in mechanical engineering. By 1901, its curriculum had expanded to include electrical, civil, and chemical engineering. In 1948, the school changed its name to reflect its evolution from a trade school to a larger and more capable technical institute and research university.

    Today, The Georgia Institute of Technology is organized into six colleges and contains 31 departments/units, with emphasis on science and technology. It is well recognized for its degree programs in engineering, computing, industrial administration, the sciences and design. Georgia Tech is ranked 8th among all public national universities in the United States, 35th among all colleges and universities in the United States by U.S. News & World Report rankings, and 34th among global universities in the world by Times Higher Education rankings. Georgia Tech has been ranked as the “smartest” public college in America (based on average standardized test scores).

    Student athletics, both organized and intramural, are a part of student and alumni life. The school’s intercollegiate competitive sports teams, the four-time football national champion Yellow Jackets, and the nationally recognized fight song “Ramblin’ Wreck from Georgia Tech”, have helped keep Georgia Tech in the national spotlight. Georgia Tech fields eight men’s and seven women’s teams that compete in the NCAA Division I athletics and the Football Bowl Subdivision. Georgia Tech is a member of the Coastal Division in the Atlantic Coast Conference.

     
  • richardmitnick 7:03 am on May 8, 2023 Permalink | Reply
    Tags: "Wonders never cease", Almost anything that you’d like a robot to do in the world an animal already does very well., , , , , Henry Cerbone, If one looks at the structure of a bird’s wing and at the structure of an airfoil one thinks about them very similarly and they have similar design principles., Mechanical Engineering, , There’ is a way of thinking about design and problem-solving that animals can show us that the scientist thinks is really important.   

    From “The Gazette” At Harvard University: “Wonders never cease” Henry Cerbone 

    From “The Gazette”

    At

    Harvard University

    5.4.23
    Alvin Powell

    1
    For his senior thesis, Henry Cerbone created a robotic model of a basilisk lizard’s broad foot, which holds the secret to its ability to run on the water’s surface. Credit:Jon Chase/Harvard Staff Photographer.

    Senior Henry Cerbone melded philosophy, robotics, engineering, biology, math into undergrad degree, but computer science spilled over to master’s.

    To Henry Cerbone, Central America’s water-running basilisk lizard isn’t that far afield from the dogs, cats, bees, chickens, and snakes on his parents’ 13-acre farm in rural West Virginia.

    Cerbone, graduating this spring from Harvard with both a bachelor’s and a master’s degree, has been fascinated by all of them. Since an early age, his amazement at their capabilities — whether a bird in flight or a lizard that runs across water — inspired an evolution of pursuits from hunting tadpoles as a kid to creating a robotic model of a lizard foot in Robert Wood’s Harvard lab.

    “I think that much of my life and my academic career at Harvard has been trying to take seriously — or to realize academically — this childlike intuition that animals are important, and we should pay attention to them,” said Cerbone. “And I think that one arrives at that through the sense of wonder that one gets from looking at them as a child.”

    Cerbone, an Adams House resident, is the son of a philosophy professor from West Virginia University and a nurse midwife, both members of the Harvard Class of 1988. And he thinks that we can learn a thing or two from the living world as we design more sophisticated robots and that, in turn, robot design has a few things to teach us about the natural world.

    “Almost anything that you’d like a robot to do in the world, an animal already does very well,” Cerbone said. “A refutation of that is that ‘Birds fly, and airplanes fly, and they have nothing to do with one another.’ But if you look at the structure of a bird’s wing and you look at the structure of an airfoil, you think about them very similarly, and they have similar design principles. So it’s not always straightforward — a copycat — but there’s a way of thinking about design and problem-solving that animals can show us that I think is really important.”

    Sean Kelly, the Teresa G. and Ferdinand F. Martignetti Professor of Philosophy, is Cerbone’s adviser for a special concentration called the ontology of autonomous systems, which Cerbone created. It combines elements of philosophy, robotics, engineering, biology, and mathematics. Cerbone also earned a master’s degree in computer science along the way.

    “He’s fantastic. He has a huge range of interests, but they’re focused in this really great way,” said Kelly. “He’s interested in these famously difficult philosophers, but at the same time, he’s a very serious mathematician.”

    In designing the concentration, Cerbone spoke to 17 faculty members, asking their opinions on the disciplines needed to fully explore his interests. Since starting the work, he’s delved deeply enough in the various fields to have published papers in three of them. He also tackled a project for his senior thesis to create a robotic model of a basilisk lizard’s broad foot, which holds the secret to its ability to run on the water’s surface.

    “He’s driven, very creative, very intelligent, and willing to take risks in terms of things to pursue, and combining things in interesting ways,” said Perrin Schiebel, a fellow in Wood’s lab who also advised Cerbone. “What he did was very challenging and he was willing to take it on even though it was going to be difficult and probably wouldn’t get completed to the level he would have liked. I was impressed that he was willing to pursue that anyway, with the understanding that we would learn something, we would make progress, and it would be successful even if it wasn’t successful.”

    Outside of class, Cerbone worked as a photographer on campus and also had a column in The Crimson. Both Kelly and Schiebel said Cerbone’s passion for academics doesn’t preclude having a social life. In fact, Kelly said, conversation is part of how Cerbone does his work.

    “He loves being around people. He loves talking with people,” Kelly said. “He does a lot of his intellectual work in conversation with others, is very generous helping others, is also super interested in learning from others. He brings people together around projects that he thinks are interesting or that he thinks other people will think are interesting.”

    Though he did take part in several activities, Cerbone said his main extracurricular was working in the lab of roboticist Wood, the Harry Lewis and Marlyn McGrath Professor of Engineering and Applied Sciences. And, though Cerbone said he spent a lot of time there, he also said he might have spent more, if he could have found any.

    “I have this deep conviction that doing this kind of work is important and that these ways of thinking are important, important in the sense that they can help us interface with and enact various kinds of changes in the world,” Cerbone said. “But, as much as it frustrates me, I need to sleep and stuff, and one can only work on so many things in four years of undergrad.”

    Cerbone will carry on his intellectual journey this summer, studying ants of the Pacific rim with a Japanese biologist and ecologist. In the fall, he will begin a Rhodes Scholarship at Oxford University, studying for a D.Phil. in biology, the result of evolving interests that have come to focus more squarely on the natural world.

    Cerbone said he’s looking forward to being part of the Rhodes community, getting to know and work with bright people with an array of backgrounds and interests who are asking and answering potentially world-changing questions.

    “I didn’t spend that much time, for better or for worse, doing deep analyses of where change and what kind of change should be enacted in the world,” he said. “But there are so many brilliant people, many of whom have been awarded things like the Rhodes Scholarship. That’s why I wanted to be a part of that community: to be around people who are asking those kinds of questions, but also answering those kinds of questions.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Harvard University campus

    Harvard University is the oldest institution of higher education in the United States, established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. It was named after the College’s first benefactor, the young minister John Harvard of Charlestown, who upon his death in 1638 left his library and half his estate to the institution. A statue of John Harvard stands today in front of University Hall in Harvard Yard, and is perhaps the University’s best-known landmark.

    Harvard University has 12 degree-granting Schools in addition to the Radcliffe Institute for Advanced Study. The University has grown from nine students with a single master to an enrollment of more than 20,000 degree candidates including undergraduate, graduate, and professional students. There are more than 360,000 living alumni in the U.S. and over 190 other countries.

    The Massachusetts colonial legislature, the General Court, authorized Harvard University’s founding. In its early years, Harvard College primarily trained Congregational and Unitarian clergy, although it has never been formally affiliated with any denomination. Its curriculum and student body were gradually secularized during the 18th century, and by the 19th century, Harvard University (US) had emerged as the central cultural establishment among the Boston elite. Following the American Civil War, President Charles William Eliot’s long tenure (1869–1909) transformed the college and affiliated professional schools into a modern research university; Harvard became a founding member of the Association of American Universities in 1900. James B. Conant led the university through the Great Depression and World War II; he liberalized admissions after the war.

    The university is composed of ten academic faculties plus the Radcliffe Institute for Advanced Study. Arts and Sciences offers study in a wide range of academic disciplines for undergraduates and for graduates, while the other faculties offer only graduate degrees, mostly professional. Harvard has three main campuses: the 209-acre (85 ha) Cambridge campus centered on Harvard Yard; an adjoining campus immediately across the Charles River in the Allston neighborhood of Boston; and the medical campus in Boston’s Longwood Medical Area. Harvard University’s endowment is valued at $41.9 billion, making it the largest of any academic institution. Endowment income helps enable the undergraduate college to admit students regardless of financial need and provide generous financial aid with no loans The Harvard Library is the world’s largest academic library system, comprising 79 individual libraries holding about 20.4 million items.

    Harvard University has more alumni, faculty, and researchers who have won Nobel Prizes (161) and Fields Medals (18) than any other university in the world and more alumni who have been members of the U.S. Congress, MacArthur Fellows, Rhodes Scholars (375), and Marshall Scholars (255) than any other university in the United States. Its alumni also include eight U.S. presidents and 188 living billionaires, the most of any university. Fourteen Turing Award laureates have been Harvard affiliates. Students and alumni have also won 10 Academy Awards, 48 Pulitzer Prizes, and 108 Olympic medals (46 gold), and they have founded many notable companies.

    Colonial

    Harvard University was established in 1636 by vote of the Great and General Court of the Massachusetts Bay Colony. In 1638, it acquired British North America’s first known printing press. In 1639, it was named Harvard College after deceased clergyman John Harvard, an alumnus of the University of Cambridge(UK) who had left the school £779 and his library of some 400 volumes. The charter creating the Harvard Corporation was granted in 1650.

    A 1643 publication gave the school’s purpose as “to advance learning and perpetuate it to posterity, dreading to leave an illiterate ministry to the churches when our present ministers shall lie in the dust.” It trained many Puritan ministers in its early years and offered a classic curriculum based on the English university model—many leaders in the colony had attended the University of Cambridge—but conformed to the tenets of Puritanism. Harvard University has never affiliated with any particular denomination, though many of its earliest graduates went on to become clergymen in Congregational and Unitarian churches.

    Increase Mather served as president from 1681 to 1701. In 1708, John Leverett became the first president who was not also a clergyman, marking a turning of the college away from Puritanism and toward intellectual independence.

    19th century

    In the 19th century, Enlightenment ideas of reason and free will were widespread among Congregational ministers, putting those ministers and their congregations in tension with more traditionalist, Calvinist parties. When Hollis Professor of Divinity David Tappan died in 1803 and President Joseph Willard died a year later, a struggle broke out over their replacements. Henry Ware was elected to the Hollis chair in 1805, and the liberal Samuel Webber was appointed to the presidency two years later, signaling the shift from the dominance of traditional ideas at Harvard to the dominance of liberal, Arminian ideas.

    Charles William Eliot, president 1869–1909, eliminated the favored position of Christianity from the curriculum while opening it to student self-direction. Though Eliot was the crucial figure in the secularization of American higher education, he was motivated not by a desire to secularize education but by Transcendentalist Unitarian convictions influenced by William Ellery Channing and Ralph Waldo Emerson.

    20th century

    In the 20th century, Harvard University’s reputation grew as a burgeoning endowment and prominent professors expanded the university’s scope. Rapid enrollment growth continued as new graduate schools were begun and the undergraduate college expanded. Radcliffe College, established in 1879 as the female counterpart of Harvard College, became one of the most prominent schools for women in the United States. Harvard University became a founding member of the Association of American Universities in 1900.

    The student body in the early decades of the century was predominantly “old-stock, high-status Protestants, especially Episcopalians, Congregationalists, and Presbyterians.” A 1923 proposal by President A. Lawrence Lowell that Jews be limited to 15% of undergraduates was rejected, but Lowell did ban blacks from freshman dormitories.

    President James B. Conant reinvigorated creative scholarship to guarantee Harvard University’s preeminence among research institutions. He saw higher education as a vehicle of opportunity for the talented rather than an entitlement for the wealthy, so Conant devised programs to identify, recruit, and support talented youth. In 1943, he asked the faculty to make a definitive statement about what general education ought to be, at the secondary as well as at the college level. The resulting Report, published in 1945, was one of the most influential manifestos in 20th century American education.

    Between 1945 and 1960, admissions were opened up to bring in a more diverse group of students. No longer drawing mostly from select New England prep schools, the undergraduate college became accessible to striving middle class students from public schools; many more Jews and Catholics were admitted, but few blacks, Hispanics, or Asians. Throughout the rest of the 20th century, Harvard became more diverse.

    Harvard University’s graduate schools began admitting women in small numbers in the late 19th century. During World War II, students at Radcliffe College (which since 1879 had been paying Harvard University professors to repeat their lectures for women) began attending Harvard University classes alongside men. Women were first admitted to the medical school in 1945. Since 1971, Harvard University has controlled essentially all aspects of undergraduate admission, instruction, and housing for Radcliffe women. In 1999, Radcliffe was formally merged into Harvard University.

    21st century

    Drew Gilpin Faust, previously the dean of the Radcliffe Institute for Advanced Study, became Harvard University’s first woman president on July 1, 2007. She was succeeded by Lawrence Bacow on July 1, 2018.

     
  • richardmitnick 1:21 pm on May 5, 2023 Permalink | Reply
    Tags: "When Robots Touch the World", , , , Mechanical Engineering, Robotics in the age of Artificial Intelligence, Robots will also need to navigate the unknown and unexpected in their environments., , , Why is it important to have robots that can touch the world the way humans do?, Why is it so difficult to get a robot to walk or hold things?   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “When Robots Touch the World” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    4.25.23
    Devorah Fischler

    1
    Penn Engineering Today spoke with Michael Posa about robotics in the age of artificial intelligence, the ambulatory genius of toddlers, navigating the unfamiliar and the elegance of not learning everything.

    Posa is an Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics and the recipient of an April 2023 grant renewal from the Toyota Research Institute (TRI). His work with TRI untangles the complexities of legged locomotion — refining the still-limited ability of robots to walk and run — and streamlines manipulation, producing simulations that simplify the way robots grasp unknown contexts and objects.
    ________________________________________________________________________________________________
    Let’s start with the basics. Why is it so difficult to get a robot to walk or hold things?

    Right now, robots are burdened by a mismatch between the complex computerized instructions we give them and the level of simplicity required to be effective. Humans have an intuition for touching the world that doesn’t mesh with the type of algorithms designed to get robots to do the same. If you were to look at the physics of a problem — say, the dexterous manipulation of an object — and you were trying to simulate it on your computer, you would have some complicated geometries of the object, some complicated geometries of the hand and the interaction between these two geometries. This is where the bulk of computation would be done, and it would be inexact, energy-intensive and time-consuming. But, if you think about how a human might pick up and manipulate an object, that level of complexity seems unnecessary. If I pick up a mug, I’m using very complicated movements, yes, but I’m not reasoning about every possible spot I can put my fingers.

    If humans had to compute every level of complexity available to us, wouldn’t we also be too overloaded to function?

    Pretty much! You have around 20 different axes of motion in your hand. But if I ask you to hold something, there’s more like three independent movements that you’ll use. The human hand is complex, but in practice, it doesn’t often use its full complexity. Humans have found a way of simplifying the problem of planning, control and manipulation that we haven’t found the right equivalent for in computation. Same for walking. Toddlers have intuitive understanding of getting around and balancing that outstrips what most robots can achieve.

    Why is it important to have robots that can touch the world the way humans do?

    Some tasks are naturally suited to robots. It really comes down to work that is unsafe or undesirable for humans to do. In robotics, we talk about the three Ds: dirty, dangerous and dull. These are tasks that humans do with some risk that robots could alleviate, but it’s important to also realize that robots can do more than just take over the dirty work, they can also provide and enhance a social function. For example, we could imagine robots that help people maintain their autonomy at home as they age. Some people might prefer the comfort of a human helper. Others may favor the assistance of a reliable machine so they can keep a sense of independence.

    Will robots need anything else besides the ability to handle objects and walk in order to reliably fulfill these roles?

    Yes. These robots will also need to navigate the unknown and unexpected in their environments. Right now, there are a lot of reliable robots on the manufacturing floor. They are fast and accurate, but only in their preprogrammed environments. Once these robots leave those environments, they lose speed and precision. With TRI, we are confronting this roadblock by creating algorithms that give robots simplified instructions, reducing the data necessary to learn and act. We need robots that can not only move quickly and deftly, but also negotiate novelty and uncertainty.

    Could you give another example of how we might benefit from this future generation of data-efficient robotics?

    Disaster recovery is a big one. When the Fukushima disaster occurred in 2011, it became clear to the world, and the robotics community specifically, how unready robots were for emergency response. It inspired, in part, the DARPA Robotics Challenge, which I was a part of during my Ph.D. That year became a stake in the ground for robotics, forcing us to be realistic about how far along we were and how much farther we needed to go. In 2011, robots could spend half an hour opening a door and crossing a handful of steps and that was about it.

    How far have we come since then?

    Very far. We’ve seen more and more capable hardware platforms. The Agility Robotics Cassie, which we use in our lab, is something that didn’t exist in 2011. It came about a few years after that. We’ve seen the rise of a climate of commercialized robots, which wasn’t a thing at all back then and is now flourishing. With advances in hardware, software, and the rise of machine learning, robots are far more capable than they were in 2011. However, if Fukushima happened again today, there are still no robots that could go in there and make a real difference beyond survey or search. Nothing will be able to clear rubble and turn valves, fix wiring or press buttons that need to be pressed. But we are a lot closer.

    All your work with TRI seems driven by an ethos of simplification. Can you tell us what you’ve been able to achieve?

    In some ways, we are re-simplifying robotics for the age of machine learning. There is already a simplified model of walking that has been active in robotics for decades: the inverted pendulum. This model boiled down the complexity of walking to a minimum and got robots impressively far. But inevitably, if you take all of the natural complexity of walking and reduce it back down to a pendulum, you’ve given away a bit too much. You’ve restricted your robot to do things that only pendulums can do, which isn’t that many things. My research asks: How do we get the benefits of the simplicity while also bringing back some of the performance we gave away? In the legged locomotion work, we’ve kept the simplicity of the pendulum model, but we’ve expanded the set of tasks — walking and turning faster, getting up steeper slopes, for example — and significantly lowered energy consumption. In the manipulation work, we are doing simulation, creating simplicity from the ground up. We have robotic hands interacting with an object, collecting data and then coming up with a plan that its algorithm forces to be as simple as possible. It interacts, fumbles, learns and corrects itself until it gets it right. It can do this in four to five minutes, which is an achievement.

    Four to five minutes as opposed to what?

    If you don’t have any structure and you use reinforcement learning, it can take hours or days. Is that a fair comparison? Sort of. We enforce some minimal structure. But people do write papers about robots learning to manipulate and navigate unfamiliar environments where it takes hours or days. It’s all trial and error, but it depends on how much trial and error you are willing to accept. These other papers aren’t interested in the physical system, they treat it as a big black box. But what we’ve shown is that learning everything is very data inefficient.

    So, the incredible progress we’re seeing in artificial intelligence doesn’t translate as neatly into robotics as some people seem to think?

    Exactly. At this point, people have used ChatGPT and have seen robots learning. And they have become enamored with the idea that machine learning is going to solve all problems. The key in our lab is to contribute our domain expertise — our understanding of physics and dynamics — and mesh that with algorithms because there are overlaps and efficiencies to exploit. I think there’s a lot of value in deep learning and automation. Robots are going to have to learn things from their environment. It’s not all going to be models and physics. But we are also insisting on the value of techniques people have been thinking about for hundreds of years — physics, control, optimization — and showing that they are not going to go the way of the dinosaur with artificial intelligence taking over.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: