Tagged: Max Tegmark Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:46 am on June 15, 2017 Permalink | Reply
    Tags: , , Max Tegmark, , When Neurology Becomes Theology, Wilder Penfield   

    From Nautilus: “When Neurology Becomes Theology” 

    Nautilus

    Nautilus

    June 15, 2017
    Robert A. Burton

    A neurologist’s perspective on research into consciousness.

    Early in my neurology residency, a 50-year-old woman insisted on being hospitalized for protection from the FBI spying on her via the TV set in her bedroom. The woman’s physical examination, lab tests, EEGs, scans, and formal neuropsychological testing revealed nothing unusual. Other than being visibly terrified of the TV monitor in the ward solarium, she had no other psychiatric symptoms or past psychiatric history. Neither did anyone else in her family, though she had no recollection of her mother, who had died when the patient was only 2.

    The psychiatry consultant favored the early childhood loss of her mother as a potential cause of a mid-life major depressive reaction. The attending neurologist was suspicious of an as yet undetectable degenerative brain disease, though he couldn’t be more specific. We residents were equally divided between the two possibilities.

    Fortunately an intern, a super-sleuth more interested in data than speculation, was able to locate her parents’ death certificates. The patient’s mother had died in a state hospital of Huntington’s disease—a genetic degenerative brain disease. (At that time such illnesses were often kept secret from the rest of the family.) Case solved. The patient was a textbook example of psychotic behavior preceding the cognitive decline and movement disorders characteristic of Huntington’s disease.

    1
    WHERE’S THE MIND?: Wilder Penfield spent decades studying how brains produce the experience of consciousness, but concluded “There is no good evidence, in spite of new methods, that the brain alone can carry out the work that the mind does.” Montreal Neurological Institute

    As a fledgling neurologist, I’d already seen a wide variety of strange mental states arising out of physical diseases. But on this particular day, I couldn’t wrap my mind around a gene mutation generating an isolated feeling of being spied on by the FBI. How could a localized excess of amino acids in a segment of DNA be transformed into paranoia?

    Though I didn’t know it at the time, I had run headlong into the “hard problem of consciousness,” the enigma of how physical brain mechanisms create purely subjective mental states. In the subsequent 50 years, what was once fodder for neurologists’ late night speculations has mushroomed into the pre-eminent question in the philosophy of mind. As an intellectual challenge, there is no equal to wondering how subatomic particles, mindless cells, synapses, and neurotransmitters create the experience of red, the beauty of a sunset, the euphoria of lust, the transcendence of music, or in this case, intractable paranoia.

    Neuroscientists have long known which general areas of the brain and their connections are necessary for the state of consciousness. By observing both the effects of localized and generalized brain insults such as anoxia and anesthesia, none of us seriously doubt that consciousness arises from discrete brain mechanisms. Because these mechanisms are consistent with general biological principles, it’s likely that, with further technical advances, we will uncover how the brain generates consciousness.

    However, such knowledge doesn’t translate into an explanation for the what of consciousness—that state of awareness of one’s surroundings and self, the experience of one’s feelings and thoughts. Imagine a hypothetical where you could mix nine parts oxytocin, 17 parts serotonin, and 11 parts dopamine into a solution that would make 100 percent of people feel a sense of infatuation 100 percent of the time. Knowing the precise chemical trigger for the sensation of infatuation (the how) tells you little about the nature of the resulting feeling (the what).

    Over my career, I’ve gathered a neurologist’s working knowledge of the physiology of sensations. I realize neuroscientists have identified neural correlates for emotional responses. Yet I remain ignorant of what sensations and responses are at the level of experience. I know the brain creates a sense of self, but that tells me little about the nature of the sensation of “I-ness.” If the self is a brain-generated construct, I’m still left wondering who or what is experiencing the illusion of being me. Similarly, if the feeling of agency is an illusion, as some philosophers of mind insist, that doesn’t help me understand the essence of my experience of willfully typing this sentence.

    Slowly, and with much resistance, it’s dawned on me that the pursuit of the nature of consciousness, no matter how cleverly couched in scientific language, is more like metaphysics and theology. It is driven by the same urges that made us dream up gods and demons, souls and afterlife. The human urge to understand ourselves is eternal, and how we frame our musings always depends upon prevailing cultural mythology. In a scientific era, we should expect philosophical and theological ruminations to be couched in the language of physical processes. We argue by inference and analogy, dragging explanations from other areas of science such as quantum physics, complexity, information theory, and math into a subjective domain. Theories of consciousness are how we wish to see ourselves in the world, and how we wish the world might be.

    My first hint of the interaction between religious feelings and theories of consciousness came from Montreal Neurological Institute neurosurgeon Wilder Penfield’s 1975 book, Mystery of the Mind: A Critical Study of Consciousness and the Human Brain. One of the great men of modern neuroscience, Penfield spent several decades stimulating the brains of conscious, non-anesthetized patients and noting their descriptions of the resulting mental states, including long-lost bits of memory, dreamy states, deju vu, feelings of strangeness, and otherworldliness. What was most startling about Penfield’s work was his demonstration that sensations that normally qualify how we feel about our thoughts can occur in the absence of any conscious thought. For example, he could elicit feelings of familiarity and strangeness without the patient thinking of anything to which the feeling might apply. His ability to spontaneously evoke pure mental states was proof positive that these states arise from basic brain mechanisms.

    And yet, here’s Penfield’s conclusion to his end-of-career magnum opus on the nature of the mind: “There is no good evidence, in spite of new methods, that the brain alone can carry out the work that the mind does.” How is this possible? How could a man who had single-handedly elicited so much of the fabric of subjective states of mind decide that there was something to the mind beyond what the brain did?

    In the last paragraph of his book, Penfield explains, “In ordinary conversation, the ‘mind’ and ‘the spirit of man’ are taken to be the same. I was brought up in a Christian family and I have always believed, since I first considered the matter … that there is a grand design in which all conscious individuals play a role … Since a final conclusion … is not likely to come before the youngest reader of this book dies, it behooves each one of us to adopt for himself a personal assumption (belief, religion), and a way of life without waiting for a final word from science on the nature of man’s mind.”

    Front and center is Penfield’s observation that, in ordinary conversation, the mind is synonymous with the spirit of man. Further, he admits that, in the absence of scientific evidence, all opinions about the mind are in the realm of belief and religion. If Penfield is even partially correct, we shouldn’t be surprised that any theory of the “what” of consciousness would be either intentionally or subliminally infused with one’s metaphysics and religious beliefs.

    To see how this might work, take a page from Penfield’s brain stimulation studies where he demonstrates that the mental sensations of consciousness can occur independently from any thought that they seem to qualify. For instance, conceptualize thought as a mental calculation and a visceral sense of the calculation. If you add 3 + 3, you compute 6, and simultaneously have the feeling that 6 is the correct answer. Thoughts feel right, wrong, strange, beautiful, wondrous, reasonable, far-fetched, brilliant, or stupid. Collectively these widely disparate mental sensations constitute much of the contents of consciousness. But we have no control over the mental sensations that color our thoughts. No one can will a sense of understanding or the joy of an a-ha! moment. We don’t tell ourselves to make an idea feel appealing; it just is. Yet these sensations determine the direction of our thoughts. If a thought feels irrelevant, we ignore it. If it feels promising, we pursue it. Our lines of reasoning are predicated upon how thoughts feel.

    2
    No image caption or credit.

    Shortly after reading Penfield’s book, I had the good fortune to spend a weekend with theoretical physicist David Bohm. Bohm took a great deal of time arguing for a deeper and interconnected hidden reality (his theory of implicate order). Though I had difficulty following his quantum theory-based explanations, I vividly remember him advising me that the present-day scientific approach of studying parts rather than the whole could never lead to any final answers about the nature of consciousness. According to him, all is inseparable and no part can be examined in isolation.

    In an interview in which he was asked to justify his unorthodox view of scientific method, Bohm responded, “My own interest in science is not entirely separate from what is behind an interest in religion or in philosophy—that is to understand the whole of the universe, the whole of matter, and how we originate.” If we were reading Bohm’s argument as a literary text, we would factor in his Jewish upbringing, his tragic mistreatment during the McCarthy era, the lack of general acceptance of his idiosyncratic take on quantum physics, his bouts of depression, and the close relationship between his scientific and religious interests.

    Many of today’s myriad explanations for how consciousness arises are compelling. But once we enter the arena of the nature of consciousness, there are no outright winners.

    Christof Koch, the chief scientific officer of the Allen Institute for Brain Science in Seattle, explains that a “system is conscious if there’s a certain type of complexity. And we live in a universe where certain systems have consciousness. It’s inherent in the design of the universe.”

    According to Daniel Dennett, professor of philosophy at Tufts University and author of Consciousness Explained and many other books on science and philosophy, consciousness is nothing more than a “user-illusion” arising out of underlying brain mechanisms. He argues that believing consciousness plays a major role in our thoughts and actions is the biological equivalent of being duped into believing that the icons of a smartphone app are doing the work of the underlying computer programs represented by the icons. He feels no need to postulate any additional physical component to explain the intrinsic qualities of our subjective experience.

    Meanwhile, Max Tegmark, a theoretical physicist at the Massachusetts Institute of Technology, tells us consciousness “is how information feels when it is being processed in certain very complex ways.” He writes that “external reality is completely described by mathematics. If everything is mathematical, then, in principle, everything is understandable.” Rudolph E. Tanzi, a professor of neurology at Harvard University, admits, “To me the primal basis of existence is awareness and everything including ourselves and our brains are products of awareness.” He adds, “As a responsible scientist, one hypothesis which should be tested is that memory is stored outside the brain in a sea of consciousness.”

    Each argument, taken in isolation, seems logical, internally consistent, yet is at odds with the others. For me, the thread that connects these disparate viewpoints isn’t logic and evidence, but their overall intent. Belief without evidence is Richard Dawkins’ idea of faith. “Faith is belief in spite of, even perhaps because of, the lack of evidence.” These arguments are best read as differing expressions of personal faith.

    For his part, Dennett is an outspoken atheist and fervent critic of the excesses of religion. “I have absolutely no doubt that secular and scientific vision is right and deserves to be endorsed by everybody, and as we have seen over the last few thousand years, superstitious and religious doctrines will just have to give way.” As the basic premise of atheism is to deny that for which there is no objective evidence, he is forced to avoid directly considering the nature of purely subjective phenomena. Instead he settles on describing the contents of consciousness as illusions, resulting in the circularity of using the definition of mental states (illusions) to describe the general nature of these states.

    The problem compounds itself. Dennett is fond of pointing out (correctly) that there is no physical manifestation of “I,” no ghost in the machine or little homunculus that witnesses and experiences the goings on in the brain. If so, we’re still faced with asking what/who, if anything, is experiencing consciousness? All roads lead back to the hard problem of consciousness.

    Though tacitly agreeing with those who contend that we don’t yet understand the nature of consciousness, Dennett argues that we are making progress. “We haven’t yet succeeded in fully conceiving how meaning could exist in a material world … or how consciousness works, but we’ve made progress: The questions we’re posing and addressing now are better than the questions of yesteryear. We’re hot on the trail of the answers.”

    By contrast, Koch is upfront in correlating his religious upbringing with his life-long pursuit of the nature of consciousness. Raised as a Catholic, he describes being torn between two contradictory views of the world—the Sunday view reflected by his family and church, and the weekday view as reflected in his work as a scientist (the sacred and the profane).

    In an interview with Nautilus, Koch said, “For reasons I don’t understand and don’t comprehend, I find myself in a universe that had to become conscious, reflecting upon itself.” He added, “The God I now believe in is closer to the God of Spinoza than it is to Michelangelo’s paintings or the God of the Old Testament, a god that resides in this mystical notion of all-nothingness.” Koch admitted, “I’m not a mystic. I’m a scientist, but this is a feeling I have.” In short, Koch exemplifies a truth seldom admitted—that mental states such as a mystical feeling shape how one thinks about and goes about studying the universe, including mental states such as consciousness.

    Both Dennett and Koch have spent a lifetime considering the problem of consciousness; though contradictory, each point of view has a separate appeal. And I appreciate much of Dennett and Koch’s explorations in the same way that I can mull over Aquinas and Spinoza without necessarily agreeing with them. One can enjoy the pursuit without believing in or expecting answers. After all these years without any personal progress, I remain moved by the essential nature of the quest, even if it translates into Sisyphus endlessly pushing his rock up the hill.

    The spectacular advances of modern science have generated a mindset that makes potential limits to scientific inquiry intuitively difficult to grasp. Again and again we are given examples of seemingly insurmountable problems that yield to previously unimaginable answers. Just as some physicists believe we will one day have a Theory of Everything, many cognitive scientists believe that consciousness, like any physical property, can be unraveled. Overlooked in this optimism is the ultimate barrier: The nature of consciousness is in the mind of the beholder, not in the eye of the observer.

    It is likely that science will tell us how consciousness occurs. But that’s it. Although the what of consciousness is beyond direct inquiry, the urge to explain will persist. It is who we are and what we do.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 12:39 pm on March 2, 2017 Permalink | Reply
    Tags: , Hugh Everett III, Max Tegmark,   

    From Nautilus: “Evil Triumphs in These Multiverses, and God Is Powerless” 

    Nautilus

    Nautilus

    March 2, 2017
    Dean Zimmerman

    The challenge that the multiverse poses for the idea of an all-good, all-powerful God is often focused on fine-tuning. If there are infinite universes, then we don’t need a fine tuner to explain why the conditions of our universe are perfect for life, so the argument goes. But some kinds of multiverse pose a more direct threat. The many-worlds interpretation of quantum physicist Hugh Everett III and the modal realism of cosmologist Max Tegmark include worlds that no sane, good God would ever tolerate. The theories are very different, but each predicts the existence of worlds filled with horror and misery.

    Of course, plenty of thoughtful people argue that the Earth alone contains too much pain and suffering to be the work of a good God. But many others have disagreed, finding fairly nuanced things to say about what might justify God’s creation of a world that includes a planet like ours. For example, there is no forgiveness, courage, or fortitude without at least the perception of wrongs, danger, and difficulty. The most impressive human moral achievements seem to require such obstacles.

    Still, many horrifying things happen with nothing seemingly gained from them. And, Everett’s many-worlds and Tegmark’s modal realism both seem to imply that there are huge numbers of horrific universes inhabited solely by such unfortunates. Someone like myself, who remains attracted to the traditional picture of God as loving creator, is bound to find such consequences shocking, and will wonder just how strong the evidence is for these theories.

    1
    Mathematical Multiverse: According to Tegmark, for every possible way in which mathematical models dictate that matter can be consistently arranged to fill a spacetime universe, there exists such a universe. platonicsolids.info

    The many-worlds interpretation arises from a problem in quantum mechanics. The Schrödinger equation, the fundamental law of quantum theory, is a description of the evolving states of particles. But some of the states it predicts are combinations—“superpositions”—of seemingly incompatible states, such as a coin landing both on heads and tails. We can wonder: What explains the fact that we don’t ever observe the combined incompatible states, but only observe coins that land on heads or tails? One answer many theorists provide is that there is more going on than the Schrödinger equation describes. They add a process called “the collapse of the wave function,” which results in a definite outcome of heads or tails.

    But in the 1950s, Everett proposed a bold alternative. His theory has no collapses, but instead holds that all the parts of these combined—or “superposed”—states occur as parts of equally real but relatively isolated worlds. There are some complete copies of the universe in which the coin lands heads, and in others tails. And this applies to all other physical states—not just flipping coins. There are some universes where you make the train and get to work on time, and others where you don’t, and so on. These slight differences create multiple overlapping universes, all branching off from some initial state in a great world-tree.

    Old-fashioned quantum theory assigns a tiny likelihood to things going really badly in the future. It also implies that, from any point in our actual past, things could have gone much worse than they actually did. Since the many worlds interpretation takes these possibilities as actual occurrences, it predicts that there are branching universes in which things do go as awfully as possible.

    For example, whenever there is a minute chance of a catastrophe that leaves all human beings utterly miserable but just barely healthy enough to reproduce, there is a branch in the world-tree in which this sorry state of affairs actually happens, generation after generation. So there are worlds in which the emergence of the human race proves to be an unmitigated tragedy—or so it seems.

    A religious Everettian might hope that God would just prune the tree, and leave only those branches where good triumphs over evil. But as the philosopher Jason Turner of the University of Arizona has pointed out, such pruning undermines the Schrödinger equation. If God prevents the worst universes from emerging on the world-tree, then the deterministic law would not truly describe the evolution of the multiverse. Not all the superposed states that it predicts would actually occur, but only those that God judges to be “good enough.”

    Even if the pruning argument doesn’t work, there is another reason to think that the many-worlds interpretation doesn’t pose a serious threat to belief in God. Everett’s multiverse is just a much expanded physical world like this one, and finding we were in it would be like finding we were in a world with many more inhabited planets, some the amplified versions of the worst parts of our planet and others the amplified versions of the best parts. And so, even the worst parts of an Everettian multiverse are just particularly ugly versions of planet Earth. If an afterlife helps to explain our seemingly pointless suffering, then it would help explain the seemingly pointless suffering in even the worst of these Everett worlds, if we suppose that everyone in every branch, shows up in an afterlife.

    A theist may also take comfort in the fact that the many-worlds interpretation is still far from scientific orthodoxy. Although beloved by Oxford philosophers and accepted by a growing number of theoretical physicists, the theory remains highly controversial, and there are fundamental problems still being hashed out by the experts.

    The Everettian multiverse contains worlds that are hard to reconcile with a good God, but Tegmark’s multiverse might contain the worst. His theory, from his 2014 book Our Mathematical Universe, isn’t anchored in quantum mechanics but in modal realism, the doctrine proposed by philosopher David Lewis that every possible way that things could have gone—every consistent, total history of a universe—is as real as our own universe.

    Most philosophers talk about possible worlds as abstract things, like numbers, located outside of space and time, and as if they are very different from the actual world, which is substantial and made out of good old-fashioned matter. Tegmark agrees that other merely possible universes are abstract like numbers. But he denies that this makes them less real than the physical world. He thinks our universe is itself fundamentally a mathematical structure. Every physicist agrees that there is a set of mathematical entities standing in relations that perfectly models the distribution of fields and particles which a perfect physics would ascribe to our world. But Tegmark argues that our universe is identical to those mathematical things.

    If the world we inhabit is a purely mathematical structure, then all the other possible worlds we can imagine are equally real, their existence a necessary result of slightly different mathematical structures. For every possible way in which mathematical models dictate that matter can be consistently arranged to fill a spacetime universe, there exists such a universe.

    These possible arrangements of matter are bound to include ones corresponding to miserable universes full of pointless suffering—universes like all of the worst branches in the Everettian world-tree, and infinitely many more just as bad. But there would also be worlds that are worse. Unlike Everett’s worlds that are generated by a physical theory, Tegmark’s worlds are generated by mere possibility, which he identifies with mathematical consistency.

    2
    Budding Universes: Everett’s many worlds interpretation holds that there are multiple overlapping universes, all branching off from some initial state in a great world-tree. Jacopo Werther

    According to Tegmark, every possible story about living creatures that can be told by means of a mathematical model of the underlying physical facts is a true story. This means that even if some of Tegmark’s universes last long enough to include episodes in which their inhabitants have an afterlife, the existence of mathematical structures with every possible shape and size requires shorter worlds, too. And, infinitely many of these worlds will not last long enough for their inhabitants to enjoy an afterlife.

    There is one way, then, in which Everett’s multiverse poses less of a challenge to the theist than Tegmark’s. Everett’s theory doesn’t predict that God won’t do anything for people with short, miserable lives, and it doesn’t predict that God won’t somehow compensate them in an afterlife. Rather, it only predicts that there will be many more short, miserable lives than just the ones in our universe; whereas Tegmark’s theory implies that there have to be worlds in which there are short miserable lives and no afterlife.

    Adding insult to injury, since the horrifying worlds are consequences of pure mathematics, they exist as a matter of absolute necessity—so there is nothing God can do about it! The resulting picture will remain offensive to pious ears: A God who loved all creatures, but was forced to watch infinitely many of them endure lives of inconsolable suffering, would be a God embroiled in a tragedy.

    But there is still hope for the theist.

    Unlike the Everettian many worlds, which issue from experimental theories in physics and so are harder to dismiss, Tegmark’s theory is based on frail philosophical arguments. Take, for example, his claim that the physical universe is a purely mathematical structure: Why should we accept this? Ordinarily, physicists use mathematical structures as models for how the physical world might work, but they do not identify the mathematical model with the world itself. Tegmark’s reason for taking the latter approach is his conviction that physics must be purged of anything but mathematical terms. Non-mathematical concepts, he says, are “anthropocentric baggage,” and must be eliminated for objectivity’s sake. But why think that the only objective descriptions that can truly apply to things as they are in themselves are mathematical descriptions? So far as I can see, he never justifies this assumption. And such a counterintuitive starting point isn’t enough to threaten one’s belief in a benevolent God.

    Apart from the threats posed by the awful worlds within the multiverses of Everett and Tegmark, the idea that we inhabit a multiverse doesn’t have to undermine a belief in God. Every theist should take seriously the possibility that there might exist more universes, simply on the grounds that God would have reason to create more good stuff. Indeed, an infinitely ingenious, resourceful, and creative Being might be expected to work on canvases the size of worlds—some filled with frenetic activity, others more like vast minimalist paintings, many maybe even featuring intelligent beings like ourselves. And the theories of physicists such as Alan Guth and Andrei Linde—whose multiverse is an eternally inflating field that spins off baby universes—or Paul Steinhardt and Neil Turok—whose multiverse amounts to an endless cyclical universe punctuated by big bangs and big crunches—are arguably compatible with this theological vision.

    It may turn out that our world is fairly middling, one among the many universes that were good enough for God to create. And the idea of a multiverse consisting of disconnected spacetime universes may make it easier to believe that our world—our universe—is a part of a larger one that is on balance very good and created by a perfectly benevolent deity.

    Dean Zimmerman is a professor of philosophy at Rutgers University. Follow him on Twitter @deanwallyz.

    Rutgers smaller

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: