Tagged: Max Planck Institute of Quantum Optics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:22 pm on January 21, 2019 Permalink | Reply
    Tags: , , Max Planck Institute of Quantum Optics, , ,   

    From Max Planck Gesellschaft: “Flying optical cats for quantum communication” 

    MPG bloc

    From Max Planck Gesellschaft

    January 21, 2019

    An entangled atom-light state realizes a paradoxical thought experiment by Erwin Schrödinger.

    1
    Dead and alive: Schrödinger’s cat is entangled with an atom. If the atom is excited, the cat is alive. If it has decayed, the cat is dead. In the experiment, a light pulse represents the two states (peaks) and may be in a superposition of both, just like the cat. © Christoph Hohmann, Nanosystems Initiative Munich (NIM)

    An old thought experiment now appears in a new light. In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. A group of researchers led by Gerhard Rempe, Director of the Department of Quantum Dynamics at the Max Planck Institute of Quantum Optics, has now realized an optical version of Schrödinger’s thought experiment in the laboratory. In this instance, pulses of laser light play the role of the cat. The insights gained from the project open up new prospects for enhanced control of optical states, that can in the future be used for quantum communications.

    “According to Schrödinger‘s idea, it is possible for a microscopic particle, such as a single atom, to exist in two different states at once. This is called a superposition. Moreover, when such a particle interacts with a macroscopic object, they can become ‘entangled’, and the macroscopic object may end up in superposition state. Schrödinger proposed the example of a cat, which can be both dead and alive, depending on whether or not a radioactive atom has decayed – a notion which is in obvious conflict with our everyday experience,” Professor Rempe explains.

    In order to realize this philosophical gedanken experiment in the laboratory, physicists have turned to various model systems. The one implemented in this instance follows a scheme proposed by the theoreticians Wang and Duan in 2005. Here, the superposition of two states of an optical pulse serves as the cat. The experimental techniques required to implement this proposal – in particular an optical resonator – have been developed in Rempe’s group over the past few years.

    A test for the scope of quantum mechanics

    The researchers involved in the project were initially skeptical as to whether it would be possible to generate and reliably detect such quantum mechanically entangled cat states with the available technology. The major difficulty lay in the need to minimize optical losses in their experiment. Once this was achieved, all measurements were found to confirm Schrödinger’s prediction. The experiment allows the scientists to explore the scope of application of quantum mechanics and to develop new techniques for quantum communication.

    The laboratory at the Max Planck Institute in Garching is equipped with all the tools necessary to perform state-of-the-art experiments in quantum optics. A vacuum chamber and high-precision lasers are used to isolate a single atom and manipulate its state. At the core of the set-up is an optical resonator, consisting of two mirrors separated by a slit only 0.5 mm wide, where an atom can be trapped. A laser pulse is fed into the resonator and reflected, and thereby interacts with the atom. As a result, the reflected light gets entangled with the atom. By performing a suitable measurement on the atom, the optical pulse can be prepared in a superposition state, just like that of Schrödinger’s cat. One special feature of the experiment is that the entangled states can be generated deterministically. In other words, a cat state is produced in every trial.

    “We have succeeded in generating flying optical cat states, and demonstrated that they behave in accordance with the predictions of quantum mechanics. These findings prove that our method for creating cat states works, and allowed us to explore the essential parameters,” says PhD student Stephan Welte.

    A whole zoo of states for future quantum communication

    “In our experimental setup, we have succeeded not only in creating one specific cat state, but arbitrarily many such states with different superposition phases – a whole zoo, so to speak. This capability could in the future be utilized to encode quantum information,” adds Bastian Hacker.

    “Schrödinger‘s cat was originally enclosed in a box to avoid any interaction with the environment. Our optical cat states are not enclosed in a box. They propagate freely in space. Yet they remain isolated from the environment and retain their properties over long distances. In the future we could use this technology to construct quantum networks, in which flying optical cat states transmit information,” says Gerhard Rempe. This underlines the significance of his group’s latest achievement.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    MPG campus

    The Max Planck Society for the Advancement of Science (German: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e. V.; abbreviated MPG) is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the Max Planck Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014)[2] Max Planck Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The Max Planck Institutes focus on excellence in research. The Max Planck Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the Max Planck institutes fifth worldwide in terms of research published in Nature journals (after Harvard, MIT, Stanford and the US NIH). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by the Chinese Academy of Sciences, the Russian Academy of Sciences and Harvard University. The Thomson Reuters-Science Watch website placed the Max Planck Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

     
  • richardmitnick 9:06 pm on February 3, 2016 Permalink | Reply
    Tags: , , Max Planck Institute of Quantum Optics,   

    From New Scientist: “Shortest ever pulse of visible light spots photons fleeing atoms” 

    NewScientist

    New Scientist

    3 February 2016
    Colin Barras

    Light field synthesiser
    Got a light? Christian Hackenberger/Attoelectronics MPQ

    The ultimate high-speed flashbulb just measured how quickly electrons inside atoms respond to light. The work could speed the development of light-based electronics.

    At 380 attoseconds long – 380 x 10-18 seconds – the flashes are the shortest pulses of visible light ever created in the lab.

    Eleftherios Goulielmakis at the Max Planck Institute of Quantum Optics in Garching, Germany, and his colleagues achieved a similar feat in 2008 when they generated pulses of extreme ultraviolet (EUV) light that were just 80 attoseconds long.

    But making such short pulses of visible light is more challenging – and also more useful. EUV is energetic enough to strip electrons away from an atom altogether. Visible light makes a gentler probe: it energises electrons in an atom, encouraging them to emit light of their own, without actually removing them from the atom’s clutches.

    This time, Goulielmakis’s key tool was a light field synthesiser, which carefully combines several light pulses of known wavelengths to generate the incredibly short flashes. Those pulses are brought together with their wavelengths slightly out of phase, so some parts of the combined light cancel each other out and leave a super-short pulse behind (see video, below). The same principle explains why two ocean waves that are perfectly out of sync will destroy each other on contact and leave an apparently calm surface.

    Kicking out a photon

    Theory suggested that electrons take a few hundred attoseconds [1×10^−18 of a second, quintillionth of a second] to kick out a fresh photon after they’ve been hit by an incoming beam, but the precise figure was unknown. The 380-attosecond-long light pulses are ideal for testing this idea. Not only can the pulses energise the electrons, they can then act as a camera flash, illuminating the process just long enough for scientists to measure the time it takes the electrons to respond.

    Goulielmakis and his colleagues aimed their short pulses at gaseous krypton atoms in a vacuum, and found that the electrons in the krypton kicked out UV photons 115 attoseconds later.

    The atoms behaved a bit like an energy-saving light bulb, Goulielmakis says. “Turn on the switch and the lamp is a bit dim – it takes time to get bright,” he says. “An electron in an atom also needs time to respond and maximise its emission of radiation – it needs about 100 attoseconds.”

    “This work indeed represents a major step forward in the control of electrons,” says Peter Hommelhoff at the University of Erlangen-Nuremberg in Germany.

    Overtaking electrons

    Goulielmakis and his colleagues plan to extend the work to examine the way electrons behave in other materials – particularly solids.

    “[This] may lead to important new insights into the dynamics of electrons in a wide class of materials,” says Jon Marangos at Imperial College London. Those insights could help improve the design and efficiency of electronic devices.

    Many people predict that computer circuits will eventually use photons rather than electrons to ferry information, but for that to work, photons have to interact with each other inside physical matter – things like the semiconductors used in today’s computers. So exploring how rapidly semiconductors and other solids respond to incoming light will help determine exactly how fast such light-based electronics will be able to operate. “This is the bridge between photonics and electronics,” says Goulielmakis. “We have to make sure we understand it.”

    Journal reference: Nature, DOI: 10.1038/nature16528

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:57 pm on August 14, 2015 Permalink | Reply
    Tags: , Max Planck Institute of Quantum Optics   

    From MPG: “A novel source of X-rays for imaging purposes” 

    Max Planck Institute of Quantum Optics bloc

    Max Planck Institute of Quantum Optice

    June 16, 2015
    Thorsten Naeser

    Physicists at LMU Munich and the Max Planck Institute of Quantum Optics have validated a novel laser-driven means of generating bright and highly energetic X-ray beams. The method opens up new ways of imaging the fine structure of matter.

    For over a century, medical imaging has made use of X-rays produced in a specialized type of vacuum tube. The major disadvantage of this method lies in the poor quality of the emitted radiation. The source emits radiation from a large spot into all directions and over a broad energy range. These features are responsible for the relatively modest resolution attainable with this mode of imaging. X-rays generated in synchrotrons provide much higher resolution, but their dimensions and cost preclude their routine use in clinical settings. However, an alternative approach is now available, for two laser pulses can generate X-rays of similar quality to synchrotron radiation in devices with a far smaller footprint: One pulse accelerates electrons to very high energy and the other forces them into an undulating motion. Under these conditions, electrons emit X-radiation that is both highly energetic (‚hard‘) and highly intense, and is therefore ideal for probing the microscopic structure of matter. Now, physicists based at the Laboratory for Attosecond Physics (LAP) at LMU Munich and the Max Planck Institute of Quantum Optics (MPQ) have developed such a laser-driven X-ray source for the first time. With the aid of two laser pulses, the researchers have generated ultrashort bursts of X-rays with defined wavelengths tailored for different applications. The new source can image structures of varying composition with a resolution of less than 10 micrometers. This breakthrough opens up a range of promising perspectives in materials science, biology and – in particular – medicine.

    1
    The ATLAS Lasersystem based in the Laboratory for Extreme Photonics of the Ludwig-Maximilians University Munich, serves as a light source for the new brilliant X-ray radiation. (Photo: Thorsten Naeser)

    Imaging of microscopic structures in any sample of matter requires the use of a very brilliant beam of light with a very short wavelength. Brilliant radiation is able to concentrate a maximum amount of light quanta or photons of a single defined wavelength within the smallest area and shortest duration. Hard X-radiation is therefore ideal for this purpose, because it penetrates matter and exhibits wavelengths of a few hundredths of a nanometer (few-hundredths of a billionth of a meter, 10-11 m). Unfortunately, the only sources of high-intensity beams of hard X-rays so far available are particle accelerators, which are typically huge and highly expensive. But there is, in principle, a far more economical and compact way of doing the job – with optical light.

    A team at the Laboratory for Attosecond Physics, which is run jointly by LMU and the MPQ, has now taken an important step towards realizing this goal. Led by Prof. Stefan Karsch and Dr. Laszlo Veisz, the scientists have succeeded in generating bright beams of hard X-radiation by purely optical means. Moreover, the wavelength of the emitted radiation can be readily adjusted to cater for different applications.

    The physicists focused a laser pulse, lasting 25 femtoseconds and packing 60 terawatts (6×10^13 Watts) of power, onto a fine jet of hydrogen gas. Note here that the output of a nuclear power station – 1500 MW (1.5×109 Watts) – is very modest by comparison, but each pulse only lasts for 25 millionths of a billionth of a second. The strong electric field associated with each pulse knocks negatively charged electrons out of the gas, giving rise to a cloud of ionized particles, or ‘plasma’. The wavefront courses through the plasma like a snow-plow, sweeping the electrons aside and leaving behind the positively charged atoms (which are much heavier). The separation of oppositely charged particles generates very strong electrical fields, which cause the displaced electrons to whiplash back and forth. This in turn creates a wave-like pattern within the plasma, which propagates in the wake of the laser pulse, rather like the trailing wave caused by the keel of a speedboat racing on a lake. A fraction of the free electrons are caught up in this wave and can effectively ride on it like a surfer, directly behind the advancing laser pulse. Indeed, in this ‘wakefield’, the surfing electrons can be rapidly accelerated to velocities very near the speed of light.

    When the electrons have reached their maximal speed they are allowed to collide head-on with a counter-propagating laser pulse, creating a so-called optical undulator whose oscillating electric field causes the free electrons to oscillate along a direction perpendicular to their direction of propagation. Highly energetic electrons that are forced to oscillate in this way emit radiation in the form of X-ray photons with wavelengths as short as 0.03 nm. In addition, in these experiments, the higher harmonics (waves whose frequency is an integer multiple of the fundamental frequency) entrained on the electron motions by the light field could be detected directly in the X-ray spectrum – a feat that has been attempted many times on conventional particle accelerators without success.

    One of the great advantages of the new system in comparison with conventional X-ray sources is that the wavelength of the emitted light can be tuned over a wide range. This ability to alter the wavelength allows radiologists to analyze different types of tissue, for instance. By fine-tuning the incident beam, one can gain the maximum information about the sample one wishes to characterize.

    Not only is the laser-driven radiation tunable and extremely bright, it is produced in pulsed form. Each 25-fs laser pulse gives rise to X-ray flashes of a few fs duration. This makes it useful for applications such as time-resolved spectroscopy, which is used to investigate ultrafast processes at the level of atoms and electrons. The intensity of the pulses (i.e. the number of photons per pulse) generated by the new source is not yet high enough for this task, but the researchers hope to overcome this obstacle with the aid of the facilities at the new Centre for Advanced Laser Applications (CALA), now being built on the Garching Campus.

    The new optically generated radiation can also be combined with phase-contrast X-ray tomography, an imaging procedure that is being refined by Prof. Franz Pfeiffer of the Technical University of Munich (TUM). This technique extracts information from the light that is scattered (rather than that absorbed) by an object. “Using this method, we can already image structures as small as 10 micrometers in diameter in opaque materials,” Stefan Karsch explains. “With our new X-ray source, we will be able to obtain even more detailed information from living tissues and other materials,” he adds.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Max Planck Institute of Quantum Optics campus

    Research at the Max Planck Institute of Quantum Optics
    Light can behave as an electromagnetic wave or a shower of particles that have no mass, called photons, depending on the conditions under which it is studied or used. Matter, on the other hand, is composed of particles, but it can actually exhibit wave-like properties, giving rise to many astonishing phenomena in the microcosm.

    At our institute we explore the interaction of light and quantum systems, exploiting the two extreme regimes of the wave-particle duality of light and matter. On the one hand we handle light at the single photon level where wave-interference phenomena differ from those of intense light beams. On the other hand, when cooling ensembles of massive particles down to extremely low temperatures we suddenly observe phenomena that go back to their wave-like nature. Furthermore, when dealing with ultrashort and highly intense light pulses comprising trillions of photons we can completely neglect the particle properties of light. We take advantage of the large force that the rapidly oscillating electromagnetic field exerts on electrons to steer their motion within molecules or accelerate them to relativistic energies.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: