Tagged: Matter/Antimatter Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:03 pm on February 26, 2015 Permalink | Reply
    Tags: , Matter/Antimatter,   

    From UCLA: “UCLA physicists offer a solution to the puzzle of the origin of matter in the universe” 

    UCLA bloc

    UCLA

    February 24, 2015
    Stuart Wolpert

    1
    Alexander Kusenko

    Most of the laws of nature treat particles and antiparticles equally, but stars and planets are made of particles, or matter, and not antiparticles, or antimatter. That asymmetry, which favors matter to a very small degree, has puzzled scientists for many years.

    New research by UCLA physicists, published in the journal Physical Review Letters, offers a possible solution to the mystery of the origin of matter in the universe.

    Alexander Kusenko, a professor of physics and astronomy in the UCLA College, and colleagues propose that the matter-antimatter asymmetry could be related to the Higgs boson particle, which was the subject of prominent news coverage when it was discovered at Switzerland’s Large Hadron Collider in 2012.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Specifically, the UCLA researchers write, the asymmetry may have been produced as a result of the motion of the Higgs field, which is associated with the Higgs boson, and which could have made the masses of particles and antiparticles in the universe temporarily unequal, allowing for a small excess of matter particles over antiparticles.

    If a particle and an antiparticle meet, they disappear by emitting two photons or a pair of some other particles. In the “primordial soup” that existed after the Big Bang, there were almost equal amounts of particles of antiparticles, except for a tiny asymmetry: one particle per 10 billion. As the universe cooled, the particles and antiparticles annihilated each other in equal numbers, and only a tiny number of particles remained; this tiny amount is all the stars and planets, and gas in today’s universe, said Kusenko, who is also a senior scientist with the Kavli Institute for the Physics and Mathematics of the Universe.

    The research also is highlighted by Physical Review Letters in a commentary in the current issue.

    The 2012 discovery of the Higgs boson particle was hailed as one of the great scientific accomplishments of recent decades. The Higgs boson was first postulated some 50 years ago as a crucial element of the modern theory of the forces of nature, and is, physicists say, what gives everything in the universe mass. Physicists at the LHC measured the particle’s mass and found its value to be peculiar; it is consistent with the possibility that the Higgs field in the first moments of the Big Bang was much larger than its “equilibrium value” observed today.

    The Higgs field “had to descend to the equilibrium, in a process of ‘Higgs relaxation,’” said Kusenko, the lead author of the UCLA research.

    Two of Kusenko’s graduate students, Louis Yang of UCLA and Lauren Pearce of the University of Minnesota, Minneapolis, were co-authors of the study. The research was supported by the U.S. Department of Energy (DE-SC0009937), the World Premier International Research Center Initiative in Japan and the National Science Foundation (PHYS-1066293).

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC LA Campus

    For nearly 100 years, UCLA has been a pioneer, persevering through impossibility, turning the futile into the attainable.

    We doubt the critics, reject the status quo and see opportunity in dissatisfaction. Our campus, faculty and students are driven by optimism. It is not naïve; it is essential. And it has fueled every accomplishment, allowing us to redefine what’s possible, time after time.

    This can-do perspective has brought us 12 Nobel Prizes, 12 Rhodes Scholarships, more NCAA titles than any university and more Olympic medals than most nations. Our faculty and alumni helped create the Internet and pioneered reverse osmosis. And more than 100 companies have been created based on technology developed at UCLA.

     
  • richardmitnick 5:05 pm on February 23, 2015 Permalink | Reply
    Tags: , Matter/Antimatter, ,   

    From Scientific American: “Higgs Boson Could Explain Matter’s Dominance over Antimatter” 

    Scientific American

    Scientific American

    February 20, 2015
    Clara Moskowitz

    1
    Computer simulation of particle tracks from an LHC collision that produced a Higgs boson.
    CERN

    The stars, the planets and you and I could just as easily be made of antimatter as matter, but we are not. Something happened early in the universe’s history to give matter the upper hand, leaving a world of things built from atoms and little trace of the antimatter that was once as plentiful but is rare today. A new theory published February 11 in Physical Review Letters suggests the recently discovered Higgs boson particle may be responsible—more particularly, the Higgs field that is associated with the particle.

    The Higgs field is thought to pervade all of space and imbue particles that pass through it with mass, akin to the way liquid dye gives Easter eggs color when they are dunked in. If the Higgs field started off with a very high value in the early universe and decreased to its current lower value over time, it might have briefly differentiated the masses of particles from their antiparticles along the way—an anomaly, because antimatter today is characterized by having the same mass but opposite charge as its matter counterpart. This difference in mass, in turn, could have made matter particles more likely to form than antimatter in the cosmos’ early days, producing the excess of matter we see today. “It is a nice idea that deserves further study,” says physicist Kari Enqvist of the University of Helsinki, who was not involved in the new study but who has also researched the possibility that the Higgs field lowered over time. “There is a very high probability for the Higgs field to have a high initial value after inflation.”

    The inflation of the universe

    Inflation is a theorized early epoch of the universe in which spacetime rapidly ballooned. “Inflation has a very peculiar property; it allows fields to jump around,” says study leader Alexander Kusenko of the University of California, Los Angeles. During inflation, which radically altered the universe in a span much less than a second, the Higgs field might have hopped from one value to another due to quantum fluctuations and could have gotten stuck at a very high value when inflation ended. From there it would have settled down into its lower “equilibrium” value, but while it was changing its constantly varying value could have given matter particles different masses than their antimatter counterparts. Because lighter particles require less energy to form they arise more often. Thus, if matter was lighter, it could have quickly become more plentiful.

    The reason the Higgs field would have had such an easy time of jumping around during inflation is that the measured mass of the Higgs boson, the particle associated with the field, is relatively low. The boson appeared in 2012 inside the Large Hadron Collider (LHC) in Switzerland, revealing its mass to be about 126 GeV (giga-electron volts), or roughly 118 times the mass of the proton.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    That is somewhat lighter than it could have been, according to various theories. Think of the Higgs field as a valley between two cliffs. The value of the field is akin to the elevation of the valley, and the mass of the boson determines the slope of the cliff walls. “If you have a very curved valley then you probably have very steep sides,” Kusenko says. “That’s what we discovered. This value tells us that the walls are not very steep—that means the Higgs field could jump around and go very far” to other valleys at higher elevations. Enqvist agrees that the Higgs could very well have started off much higher than it is today. Whether or not this caused the matter to split from antimatter is “somewhat more speculative,” he says.

    A new particle

    Such splitting would depend on the presence of a theorized particle that has gone undetected so far: a so-called heavy Majorana neutrino. Neutrinos are fundamental particles that come in three flavors (electron, muon and tau). A fourth neutrino might also exist, however, that is expected to be much heavier than the others and thus more difficult to detect (because the heavier a particle is, the more energy a collider must produce to create it). This particle would have the strange virtue of being its own antimatter partner. Instead of a matter and antimatter version of the particle, the matter and antimatter Majorana neutrinos would be one and the same.

    This two-faced quality would have made neutrinos into a bridge that allowed matter particles to cross over into antimatter particles and vice versa in the early universe. Quantum laws allow particles to transform into other particles for brief moments of time. Normally they are forbidden from converting between matter and antimatter. But if an antimatter particle, say, an antielectron neutrino turned into a Majorana neutrino, it would cease to know whether it was matter or antimatter and could then just as easily convert to a regular electron neutrino as turn back into its original antielectron neutrino self. And if the neutrino happened to be lighter than the antineutrino back then, because of the varying Higgs field, then the neutrino would have been a more likely outcome—potentially giving matter a leg up on antimatter.

    “If true, this would solve a big mystery in particle physics,” says physicist Don Lincoln of the Fermi National Accelerator Laboratory in Illinois, who was not involved in the study. Yet the Majorana neutrino “is entirely speculative and has eluded discovery, even though the LHC experiments have a vigorous research program looking for it. Researchers will certainly keep this idea in mind as they dig through the new data the LHC will begin generating in the early summer this year.”

    Kusenko and his colleagues also have another hope for finding additional support for their theory. The Higgs field process they envision could have created magnetic fields with particular properties that would still inhabit the universe today—and if so, they might be detectable. If found, the existence of such fields would provide evidence that the Higgs field really did decrease in value long ago. The scientists are trying to calculate just what the magnetic field properties would be and whether experiments have a plausible hope of seeing them, but the option raises the tantalizing hope that their theory could have testable consequences—and maybe a chance to solve the antimatter mystery after all.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 10:05 am on October 31, 2013 Permalink | Reply
    Tags: , , , Matter/Antimatter   

    From Fermilab- “Frontier Science Result: DZero Muons, matter and mystery” 


    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, Oct. 31, 2013
    Mark Williams

    Experiments at particle colliders are often described as “recreating the big bang”: making new particles out of energy, and then watching to see what happens. In almost all such experiments, we find that matter and antimatter are produced in equal amounts, and this is consistent with our current model. However, if the big bang followed the same rules, all the matter and antimatter would have mutually annihilated, with nothing left to form stars, planets and life. The very fact that we exist, and observe a matter-dominated universe, shows that our picture of the particle interactions is not complete.

    At the DZero experiment, scientists have spent a decade studying this matter-antimatter asymmetry using muons produced in their detector, and last week they released their final results. The measurement counts the number of observed muons (negatively charged) and antimuons (positively charged) to compare the amount of matter and antimatter resulting from the originally symmetric proton-antiproton collisions.

    As an analogy, this is much like weighing the matter and antimatter with a set of scales. The challenge is that the scales themselves introduce their own asymmetry into the measurement. Because the detector is built out of matter, it responds slightly differently to matter and antimatter particles as they are detected. These “detector effects” must be precisely determined before the measurement can be made. Luckily, the DZero detector has some clever attributes that make it uniquely suited for this kind of analysis.

    scale
    The new measurement uses the DZero detector like a set of scales, weighing the amount of matter and antimatter. However, the scales are themselves asymmetric, and the main challenge is to understand and quantify the effect of this behavior.

    Intriguingly, after correcting for the detector effects, the results indicate a statistically significant asymmetry in the number of same-charge muon pairs, with around one part in 400 more pairs of negative muons than positive muons. This is much larger than can be accounted for by current theories, suggesting the presence of additional as-yet unknown processes that favor the production of matter over antimatter. Now, assuming that this isn’t a very unlikely statistical fluctuation, the big question is: What could be causing this asymmetry, and could it be the same process that helped shape the early universe? Future precision measurements of specific asymmetries, as well as theoretical developments, are needed to help understand this puzzle.

    See the full article here.

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 6:12 am on September 28, 2013 Permalink | Reply
    Tags: , , Matter/Antimatter   

    From Brookhaven Lab: “Supercomputers Help Solve a 50-Year Homework Assignment” 

    Brookhaven Lab

    Calculation related to question of why the universe is made of matter.

    September 26, 2013
    Karen McNulty Walsh

    Kids everywhere grumble about homework. But their complaints will hold no water with a group of theoretical physicists who’ve spent almost 50 years solving one homework problem—a calculation of one type of subatomic particle decay aimed at helping to answer the question of why the early universe ended up with an excess of matter.

    Without that excess, the matter and antimatter created in equal amounts in the Big Bang would have completely annihilated one another. Our universe would contain nothing but light—no homework, no schools…but also no people, or planets, or stars!

    bbe
    According to the Big Bang model, the Universe expanded from an extremely dense and hot state and continues to expand today. A common analogy explains that space itself is expanding, carrying galaxies with it, like spots on an inflating balloon. The graphic scheme above is an artist’s concept illustrating the expansion of a portion of a flat universe.

    Physicists long ago figured out something must have happened to explain the imbalance—and our very existence.

    “Our results will serve as a tough test for our current understanding of particle physics.”
    — Brookhaven theoretical physicist Taku Izubuchi

    “The fact that we have a universe made of matter strongly suggests that there is some violation of symmetry,” said Taku Izubuchi, a theoretical physicist at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory.

    team
    Members of Brookhaven Lab’s high-energy physics theory group who were involved in the kaon decay calculations Sitting, left to right: Christoph Lehner, Amarjit Soni, Taku Izubuchi, Christopher Kelly, Chulwoo Jung. Standing, left to right: Eigo Shintani, Hyung-Jin Kim, Ethan Neil, Taichi Kawanai, Tomomi Ishikawa

    The physicists call it charge conjugation-parity (CP) violation. Instead of everything in the universe behaving perfectly symmetrically, certain subatomic interactions happen differently if viewed in a mirror (violating parity) or when particles and their oppositely charged antiparticles swap each other (violating charge conjugation symmetry). Scientists at Brookhaven—James Cronin and Val Fitch—were the first to find evidence of such a symmetry “switch-up” in experiments conducted in 1964 at the Alternating Gradient Synchrotron, with additional evidence coming from experiments at CERN, the European Laboratory for Nuclear Research. Cronin and Fitch received the 1980 Nobel Prize in physics for this work.

    rack
    Theoretical physicists and kaon-decay calculators Norman Christ, Robert Mawhinney (both of Columbia University), and Taku Izubuchi (of Brookhaven), holding one rack of the QCDOC supercomputer at Brookhaven, which was used for many of the earlier kaon calculations. It was replaced by QCDCQ in 2012.

    What was observed was the decay of a subatomic particle known as a kaon into two other particles called pions. Kaons and pions (and many other particles as well) are composed of quarks. Understanding kaon decay in terms of its quark composition has posed a difficult problem for theoretical physicists.

    “That was the homework assignment handed to theoretical physicists, to develop a theory to explain this kaon decay process—a mathematical description we could use to calculate how frequently it happens and whether or how much it could account for the matter-antimatter imbalance in the universe. Our results will serve as a tough test for our current understanding of particle physics,” Izubuchi said.

    The mathematical equations of Quantum Chromodynamics, or QCD—the theory that describes how quarks and gluons interact—have a multitude of variables and possible values for those variables. So the scientists needed to wait for supercomputing capabilities to evolve before they could actually solve them. The physicists invented the complex algorithms and wrote nifty software packages that some of the world’s most powerful supercomputers used to describe the quarks’ behavior and solve the problem.

    The supercomputing resources used for this research included: QCDCQ, a pre-commercial version of the IBM Blue Gene supercomputers, located at the RIKEN/BNL Research Center—a center funded by the Japanese RIKEN laboratory in a cooperative agreement with Brookhaven Lab; a Blue Gene/Q supercomputer of the New York State Center for Computational Science, hosted by Brookhaven; half a rack of an additional Blue Gene/Q funded by DOE through the US based lattice QCD consortium, USQCD; a Blue Gene/Q machine at the Edinburgh Parallel Computing Centre; the large installation of BlueGene/P (Intrepid) and Blue Gene/Q (Mira) machines at Argonne National Laboratory funded by the DOE Office of Science; and PC cluster machines at Fermi National Accelerator Laboratory and at RIKEN.

    See the full article here.

    One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world.Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.
    i1


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 3:50 pm on August 16, 2013 Permalink | Reply
    Tags: , , Matter/Antimatter,   

    From Symmetry: "Antimatter experiment seeks help from the crowd" 

    After a successful trial run, a CERN antimatter experiment plans to use crowdsourcing to analyze its data.

    August 16, 2013
    Ashley WennersHerron and Kathryn Jepsen

    “Scientists investigating the effect of gravity on animatter recently conducted a different kind of experiment: They asked members of the public to help them analyze their data. Anyone with access to a computer and the Internet was welcome to take part in the trial run, which went off without a hitch. The scientists plan to do it again in the coming months.

    The AEgIS experiment at CERN examines beams of antimatter particles, recording the points at which they begin to deviate from their normal trajectories and the points at which they come into contact with matter and annihilate. Seeing how quickly—and in what direction—the particles fall will offer insight into just how the antimatter feels gravity’s pull.

    CERN AEGIA New
    AEgIS

    The experiment requires the scientists to match up pairs of dots to trace each particle’s path. They have a lot of dots to connect. ‘We have so much data that automation or many volunteers are the only options at this point,’ says CERN physicist Michael Doser, who leads the experiment. The scientists could try to create a program to do this job, Doser says, but people are just better than machines at this kind of pattern recognition. ‘So we brought the data to the people.’

    The scientists decided to release a small fraction of the data to the public as a test.

    dots
    The crowdsourcing software renders the particle tracks as a 3D image. Courtesy of: CERN

    Last month, a small group of students at CERN’s Summer Student Webfest designed a crowdsourcing program for AEgIS. Last week, the experiment put out the call for help. In the first hour, several hundred volunteers completed the task. ‘I expect a publication or two sometime in early 2014 on this analysis which directly benefits from help from the public,’ Doser says.

    Anyone interested in taking part in the next experiment in armchair physics can watch for the call on the AEgIS website. ”

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.



    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 4:57 pm on April 30, 2013 Permalink | Reply
    Tags: , , , , , Matter/Antimatter   

    From Symmetry: “Matter, antimatter, we all fall down—right?” 

    April 30, 2013
    Ashley WennersHerron

    Scientists perform the first direct investigation into how antimatter interacts with gravity.

    What goes up must come down, the saying goes. But things might work a little differently with antimatter.
    A CERN-based experiment has taken the first step in investigating exactly how antimatter interacts with gravity.

    men
    Photo: CERN

    Atimatter particles should mimic those of matter particles. If it turns out that there is a difference, it will be a sign of dramatically new physics.
    CERN ALPHA NewSo far, no one has been able to test directly how antimatter interacts with gravity—but the ALPHA experiment has begun to try.

    The ALPHA experiment’s main purpose is to trap and study antihydrogen atoms, the antimatter partners of hydrogen atoms. The antihydrogen atoms are held in place inside a tube by magnetic forces. Physicists on ALPHA have trapped more than 500 antiatoms since 2010. They keep them in their trap for up to about 16 minutes. When they turn off their magnets, the antiatoms fall out of the trap. A highly sensitive detector tracks the antiatoms and records where they first come in contact with matter and annihilate.”

    See the full article here.

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 12:22 pm on April 18, 2013 Permalink | Reply
    Tags: , , , , Matter/Antimatter, ,   

    From Fermilab- “Frontier Science Result: DZero Precise measure of matter preference 

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    Thursday, April 18, 2013
    Mike Cooke

    “We live in a universe filled with matter, with no detectable pockets of antimatter, but don’t fully understand why. In the very early universe, matter and antimatter were created in equal abundance. As the universe cooled, the matter and antimatter annihilated each other, but left behind the small excess of matter that accounts for all of the stars, planets and galaxies in the universe today. This difference is thought to result from the slightly different ways the particles and antiparticles decayed. However, the decay rate difference predicted by the Standard Model is not nearly enough to account for the amount of matter in the universe. By precisely measuring processes that show a difference between matter and antimatter, physicists attempt to understand what caused the imbalance that led to the universe today.

    scene
    Most matter and antimatter annihilated each other in the very early universe, but a small excess of matter remained to form the universe we live in today. To attempt to understand this imbalance, scientists measure particle decay processes that show a difference between matter and antimatter.

    A recent result at DZero studied this asymmetry in the decay of a charged B meson, made of a bottom quark and an up quark, into a J/Ψ meson and a charged K meson, which involves the bottom quark decaying into a strange quark and two charm quarks. To reduce the uncertainty on the measurement, the analysis exploited the fact that the magnetic polarities of magnets in the DZero detector were systematically flipped during the decade of data collecting for Run II. Each possible source of bias in the measurement of asymmetry between matter and antimatter was carefully studied and accounted for.

    The final result is the world’s most precise measurement of matter-antimatter asymmetry in charged B meson decays to a J/Ψ meson and a charged K meson. The measured asymmetry is consistent with the Standard Model. While it does not indicate the presence of new physics and explain the matter-antimatter asymmetry in the universe, it is an important step in exploring this mystery.”

    See the full article here.

    The final result is the world’s most precise measurement of matter-antimatter asymmetry in charged B meson decays to a J/Ψ meson and a charged K meson. The measured asymmetry is consistent with the Standard Model. While it does not indicate the presence of new physics and explain the matter-antimatter asymmetry in the universe, it is an important step in exploring this mystery.

    Fermilab campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 1:03 pm on March 25, 2013 Permalink | Reply
    Tags: , , , , Matter/Antimatter,   

    From CERN: “ATRAP: Never a dull moment for the antiproton” 

    CERN New Masthead

    March 25, 2013
    Katarina Anthony

    “In results published today in Physical Review Letters, the Antihydrogen TRAP (ATRAP) experiment at CERN’s Antiproton Decelerator reveals a new measurement of the antiproton magnetic moment made with an unprecedented uncertainty of only 4.4 parts per million. This is not just an impressive feat for the ATRAP team, but is also an important attempt to understand the matter-antimatter imbalance of the universe, one of the great mysteries of modern physics.

    apt
    Antihydrogen TRAP

    apd
    The Antiproton Decelerator

    ‘Precise comparisons of the properties of the antiproton and proton are intriguing and important,’ says ATRAP spokesperson Gerald Gabrielse of Harvard University, ‘given that the fundamental cause of the dramatic imbalance of antimatter and matter in the universe has yet to be discovered. By comparing the antiproton’s tiny magnet to that of the proton, we probe one of nature’s most fundamental symmetries, known as CPT, at a high precision.’

    The ATRAP team found that the magnets of the antiproton and proton are ‘exactly opposite’ – equal in strength but opposite in direction, consistent with the prediction of the Standard Model and its CPT theorem to 5 parts per million. However, the potential for much greater measurement precision puts ATRAP in position to test the Standard Model prediction much more stringently still.”

    Standard Model New

    See the full article here.

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 7:40 am on February 19, 2013 Permalink | Reply
    Tags: , , , , Matter/Antimatter, ,   

    From CERN: “Proton-lead run brings new physics reach to LHCb” 

    CERN New Masthead

    19 Feb 2013
    Antonella del Rosso

    During the recent lead-proton run at the Large Hadron Collider (LHC), the Large Hadron Collider beauty (LHCb) experiment took data from collisions between protons and ions for the first time.

    lhcb
    A proton-lead ion collision, as observed by the LHCb detector during the 2013 data-taking period (Image: LHCb/CERN)

    LHCb is an asymmetric detector designed to study matter-antimatter asymmetries and rare decays involving heavy quarks. Though LHCb is small compared to the multipurpose detectors CMS and ATLAS and the specialized heavy-ion detector ALICE, it has something special: the location of LHCb close to the collision point allows it to identify particles that scatter at very small angles from collisions.

    ‘The detector’s unique angular coverage will enable us to study strange, charm and also beauty quark production in regions not accessible to the other experiments,’ says LHCb spokesperson Pierluigi Campana.

    See the full article here.

    Read all about LHCb here.

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries


    ScienceSprings is powered by MAINGEAR computers

     
  • richardmitnick 11:38 am on February 12, 2013 Permalink | Reply
    Tags: , , , , Matter/Antimatter,   

    From CERN: “Fat antiatoms, laser beams and matter-antimatter asymmetry” 

    CERN New Masthead

    CERN

    Stephanie Hills
    12 Feb 2013

    Imagine being able to ‘inflate’ an atom with a laser, then slow it down, catch it or bend it around corners. At the AEGIS experiment at the Antiproton Decelerator, Stephen Hogan of University College London and an international team of collaborators are trying to do just that.

    ad
    Antiproton Decelerator

    AEGIS is designed to test whether antimatter complies with the weak equivalence principle (WEP), a mathematical concept that states that the acceleration experienced by a particle in a gravitational field is independent of its mass and composition. The principle has been tested with very high precision for matter, but never for antimatter. If results from AEGIS show that the gravitational acceleration of antimatter in the Earth’s gravitational field is different to that of matter, this could provide clues to why our universe is now dominated by matter, even though matter and antimatter were created in equal amounts during the big bang.

    aegis
    The AEGIS experiment in the antimatter hall at CERN aims to make the first direct measurement of Earth’s gravitational effect on antimatter (Image: CERN)

    ‘We know that in our observable universe there is an asymmetry between matter and antimatter, but there is no consensus among the theorists as to why this is,’ says Hogan. ‘If gravity is different for antimatter, this might give us a clue. The results of our experiment will help guide us toward an appropriate theory.’”

    See the full article here.

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New

    LHC particles

    Quantum Diaries


    ScienceSprings is powered by MAINGEAR computers

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
Follow

Get every new post delivered to your Inbox.

Join 455 other followers

%d bloggers like this: