Tagged: Material Sciences Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:16 pm on June 30, 2022 Permalink | Reply
    Tags: "BerkSEL": Berkeley Surface Emitting Laser, "New single-mode semiconductor laser delivers power with scalability", A semiconductor membrane perforated with evenly spaced and same-sized holes functioned as a perfect scalable laser cavity., , Berkeley engineers have created a new type of semiconductor laser that meets an elusive goal in optics: the ability to emit a single mode of light with the ability to scale up in size and power., , , , Material Sciences, , , Scanning electron micrography, , The laser emits a consistent single wavelength regardless of the size of the cavity., The membrane in the study had about 3000 holes but theoretically it could have been 1 million or 1 billon holes., The study’s results are particularly relevant to vertical-cavity surface-emitting lasers [VCSELs], This new laser capability enables lasers to be more powerful and to cover longer distances for many applications.   

    From Berkeley Engineering: “New single-mode semiconductor laser delivers power with scalability” 

    From Berkeley Engineering

    At

    The University of California-Berkeley

    June 29, 2022
    Sarah Yang

    1
    Schematic of the Berkeley Surface Emitting Laser (BerkSEL) illustrating the pump beam (blue) and the lasing beam (red). The unconventional design of the semiconductor membrane synchronizes all unit-cells (or resonators) in phase so that they are all participating in the lasing mode. (Image courtesy of the Kanté group)

    Berkeley engineers have created a new type of semiconductor laser that accomplishes an elusive goal in the field of optics: the ability to emit a single mode of light while maintaining the ability to scale up in size and power. It is an achievement that means size does not have to come at the expense of coherence, enabling lasers to be more powerful and to cover longer distances for many applications.

    A research team led by Boubacar Kanté, Chenming Hu Associate Professor in UC Berkeley’s Department of Electrical Engineering and Computer Sciences (EECS) and faculty scientist at the Materials Sciences Division of the DOE’s Lawrence Berkeley National Laboratory, showed that a semiconductor membrane perforated with evenly spaced and same-sized holes functioned as a perfect scalable laser cavity. They demonstrated that the laser emits a consistent single wavelength regardless of the size of the cavity.

    2
    Top view of a scanning electron micrograph of the Berkeley Surface Emitting Laser (BerkSEL). The hexagonal lattice photonic crystal (PhC) forms an electromagnetic cavity. (Image courtesy of the Kanté group)

    The researchers described their invention, dubbed Berkeley Surface Emitting Lasers (BerkSELs), in a study published June 29, 2022 in the journal Nature.

    “Increasing both size and power of a single-mode laser has been a challenge in optics since the first laser was built in 1960,” said Kanté. “Six decades later, we show that it is possible to achieve both these qualities in a laser. I consider this the most important paper my group has published to date.”

    Despite the vast array of applications ushered in by the invention of the laser — from surgical tools to barcode scanners to precision etching — there has been a persistent limit that researchers in optics have had to contend with. The coherent, single-wavelength directional light that is a defining characteristic of a laser starts to break down as the size of the laser cavity increases. The standard workaround is to use external mechanisms, such as a waveguide, to amplify the beam.

    “Using another medium to amplify laser light takes up a lot of space,” said Kanté. “By eliminating the need for external amplification, we can shrink the size and increase the efficiency of computer chips and other components that rely upon lasers.”

    The study’s results are particularly relevant to vertical-cavity surface-emitting lasers, or VCSELs, in which laser light is emitted vertically out of the chip. Such lasers are used in a wide range of applications, including fiber optic communications, computer mice, laser printers and biometric identification systems.

    VCSELs are typically tiny, measuring a few microns wide. The current strategy used to boost their power is to cluster hundreds of individual VCSELs together. Because the lasers are independent, their phase and wavelength differ, so their power does not combine coherently.

    “This can be tolerated for applications like facial recognition, but it’s not acceptable when precision is critical, like in communications or for surgery,” said study co-lead author Rushin Contractor, an EECS Ph.D. student.

    Kanté compares the extra efficiency and power enabled by BerkSEL’s single-mode lasing to a crowd of people getting a stalled bus to move. Multi-mode lasing is akin to people pushing in different directions, he said. It would not only be less effective, but it could also be counterproductive if people are pushing in opposite directions. Single-mode lasing in BerkSELs is comparable to each person in the crowd pushing the bus in the same direction. This is far more efficient than what is done in existing lasers where, using the same analogy, only part of the crowd contributes to pushing the bus.

    3
    Schematic showing the “Dirac cones.” Light is emitted synchronously from the entire semiconductor cavity as a result of the Dirac point singularity. (Image courtesy of the Kanté group)

    The study found that the BerkSEL design enabled the single-mode light emission because of the physics of the light passing through the holes in the membrane, a 200-nanometer-thick layer of indium gallium arsenide phosphide, a semiconductor commonly used in fiber optics and telecommunications technology. The holes, which were etched using lithography, had to be a fixed size, shape and distance apart.

    The researchers explained that the periodic holes in the membrane became Dirac points, a topological feature of two-dimensional materials based on the linear dispersion of energy. They are named after English physicist and Nobel laureate Paul Dirac, known for his early contributions to quantum mechanics and quantum electrodynamics.

    The researchers point out that the phase of light that propagates from one point to the other is equal to the refractive index multiplied by the distance traveled. Because the refractive index is zero at the Dirac point, light emitted from different parts of the semiconductor are exactly in phase and thus optically the same.

    “The membrane in our study had about 3000 holes but theoretically it could have been 1 million or 1 billon holes, and the result would have been the same,” said study co-lead author, Walid Redjem, an EECS postdoctoral researcher.

    The researchers used a high-energy pulsed laser to optically pump and provide energy to the BerkSEL devices. They measured the emission from each aperture using a confocal microscope optimized for near-infrared spectroscopy.

    The semiconductor material and the dimensions of the structure used in this study were selected to enable lasing at telecommunications wavelength. Authors noted that BerkSELs can emit different target wavelengths by adapting the design specifications, such as hole size and semiconductor material.

    Other study authors are Wanwoo Noh, co-lead author who earned his Ph.D. degree in EECS in May 2022; Wayesh Qarony, Scott Dhuey and Adam Schwartzberg from Berkeley Lab; and Emma Martin, a Ph.D. student in EECS.

    The Office of Naval Research provided the primary support for this study. Additional funding came from the National Science Foundation, the Berkeley Lab, the Moore Inventor Fellows program and UC Berkeley’s Bakar Fellowship.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The College of Engineering, also known informally as Berkeley Engineering or CoE, is one of the fourteen schools and colleges at the University of California, Berkeley. Established in 1931, the college is considered among the most prestigious engineering schools in the world, ranked third by U.S. News & World Report and with an acceptance rate of 8%. Berkeley Engineering is particularly well known for producing many successful entrepreneurs; among its alumni are co-founders and CEOs of some of the largest companies in the world, including Apple, Boeing, Google, Intel, and Tesla.

    The college is currently situated in 14 buildings on the northeast side of the central campus, and also operates at the 150 acre (61 ha) Richmond Field Station. With the Haas School of Business, the college confers joint degrees and advises the university’s resident startup incubator, Berkeley SkyDeck.

    Departments

    Aerospace Engineering
    Bioengineering (BioE)
    Civil and Environmental Engineering (CEE)
    Development Engineering (DevEng)
    Electrical Engineering and Computer Sciences (EECS)
    Engineering Science
    Energy Engineering
    Engineering Mathematics and Statistics (EMS)
    Engineering Physics
    Environmental Engineering Science (EES)
    Industrial Engineering and Operations Research (IEOR)
    Materials Science and Engineering (MSE)
    Mechanical Engineering (ME)
    Nuclear Engineering (NE)

    The College of Letters and Science also offers a Bachelor of Arts in computer science, which requires many of the same courses as the College of Engineering’s Bachelor of Science in EECS, but has different admissions and graduation criteria. Berkeley’s chemical engineering department is under the College of Chemistry.

    Research units

    All research facilities are managed by one of five Organized Research Units (ORUs):

    Earthquake Engineering Research Center – research and public safety programs against the destructive effects of earthquakes
    Electronics Research Laboratory – the largest ORU; advanced research in novel areas within seven different university departments, organized into five main divisions:
    Berkeley Sensor & Actuator Center
    Berkeley Wireless Research Center
    Berkeley Northside Research Group
    Micro Systems Group
    Engineering Systems Research Center – focuses on manufacturing, mechatronics, and microelectro mechanical systems (MEMS)
    Institute for Environmental Science and Engineering – focuses on applying basic research to current and future environmental problems
    Institute of Transportation Studies – sponsors research in transportation planning, policy analysis, environmental concerns and transportation system performance

    Major research centers and programs

    Jacobs Institute for Design Innovation
    Berkeley Institute of Design
    Berkeley Multimedia Research Center
    Center for Information Technology Research in the Interest of Society (CITRIS)
    Center for Intelligent Systems – developing a unified theoretical foundation for intelligent systems.
    Consortium on Green Design and Manufacturing
    Digital Library Project
    UCSF/Berkeley Ergonomics Program
    International Computer Science Institute – basic research institute focusing on Internet architecture, speech and language processing, artificial intelligence, and cognitive and theoretical computer science
    Intel Research Laboratory @ Berkeley
    Integrated Materials Laboratory – facilities for research in nano-structure growth, processing, and characterization
    Microfabrication Laboratory
    The Millennium Project – developing a hierarchical campus-wide “cluster of clusters” to support advanced computational applications
    Nokia Research Center @ Berkeley
    Pacific Earthquake Engineering Research Center
    Partners for Advanced Transit & Highways – researching ways to improve the operation of California’s state highway system
    Power Systems Engineering Research Center

    The The University of California-Berkeley is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California system and a founding member of the Association of American Universities . Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at DOE’s Lawrence Berkeley National Laboratory, DOE’s Lawrence Livermore National Laboratory and DOE’s Los Alamos National Lab, and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, the University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California-Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California-Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now DOE’s Lawrence Berkeley National Laboratory (US)) and invented the cyclotron, which won him the Nobel physics prize in 1939. Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, Los Alamos National Laboratory (1943) and Lawrence Livermore National Laboratory (1952).

    By 1942, the American Council on Education ranked Berkeley second only to Harvard University in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, the Mathematical Sciences Research Institute (MSRI) was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, the Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for the California Institute for Quantitative Biosciences, opened. The next few years saw the dedication of the Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of the Center for Information Technology Research in the Interest of Society; and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, the Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, University of California-San Fransisco, established the Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and Massachusetts Institute of Technology among US universities; five Turing Awards, behind only MIT and Stanford University; and five Fields Medals, second only to Princeton University (US). According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berkeley Seal

     
  • richardmitnick 8:35 am on June 29, 2022 Permalink | Reply
    Tags: "John Fortner:: 'Fishing' for Toxic Contaminants using Superparamagnetic Nanoparticles", "PFAS": perfluoroalkyl contaminants which are fluorinated carbon structures found in numerous consumer products., "Superparamagnetic nanoparticles": Nanoparticles specially coated with sorbents., , “Buckyballs”: buckminsterfullerene (termed fullerenes) - a new carbon allotrope, , Bioremediation, , Improving public health through environmental-based pathways, It was clear that there were opportunities to apply ‘nano’ to critical environmental problems in sensing and treatment (pollution remediation)…to help make folks' lives healthier., John Fortner: associate professor of Chemical Engineering and Environmental Engineering, Material Sciences, , , Nanotechnology - nanomaterial research - nanoscience - nanoparticles - nanostructures, Once a water source is contaminated it can be costly and difficult to remediate.,   

    From The Yale School of Engineering and Applied Science: “John Fortner:: ‘Fishing’ for Toxic Contaminants using Superparamagnetic Nanoparticles” 

    Yale SEAS

    From The Yale School of Engineering and Applied Science

    at

    Yale University

    06/21/2022

    1
    Clean water

    Once a water source is contaminated it can be costly and difficult to remediate. Natural remedies can take hundreds of years and still may not successfully remove all the dangerous contaminants. When it comes to global public health issues such as this, the need for new and safe solutions is urgent. John Fortner is designing solutions from scratch to do just that.

    Fortner, associate professor of chemical and environmental engineering, leads one of the few labs in the U.S. investigating the intersection between materials science and environmental engineering. There, materials synthesized directly in the lab, whether magnetic nanoparticles, graphene-based composites, or hyperthermic catalysts, are carefully engineered to treat contaminants in water sources.

    Fortner has always been drawn towards improving public health through environmental-based pathways. He initially considered a career in medicine when he first discovered the field of environmental engineering.

    “I took a bioremediation course and I became fascinated with engineering biological systems to break down contaminants in situ,” Fortner said.

    At the time, traditional environmental engineering research focused on using microbes – biological organisms on the microscopic scale – to degrade contaminants within industrial wastewater streams. After taking courses that bridged his biological focus with applied engineering systems, Fortner found his ‘fit’ and soon switched to environmental engineering.

    Though ubiquitous today, nanomaterial research is a relatively new field. In the late 20th century, the development of advanced imaging technologies enabled scientists to study nanomaterials for the first time. In 1989, 15 years after the term “nanoscience” was coined, the first nanotechnology company began to commercialize nanostructures. By 2001, when Fortner entered graduate school, nanomaterials had been industrialized in computer science and biomedical engineering.

    Compared to their larger counterparts, nanomaterials have advantages, such as tunability and/or unique reactivity, stemming from their incredibly small sizes and novel properties. As Fortner puts it, “nanomaterials have the potential to do what traditional materials simply can’t.”

    In 1985, chemists at Rice discovered a new carbon allotrope – buckminsterfullerene (termed fullerenes or “buckyballs”) – leading them to a 1996 Nobel Prize in Chemistry and sparking a nanotechnology boom at Rice and beyond. Through this, the Center for Biological and Environmental Nanotechnology, an NSF-funded research center, was founded at Rice when Fortner started his graduate studies. There, he worked with collaborators to understand the behavior of nanomaterials in the environment, with his Ph.D. thesis focused on fullerenes in natural systems. At the time, very little was known about the matter that led to several exciting findings underpinning the emerging field of environmental nanotechnology.

    “At the time, there was so much to explore,” Fortner said. “Beyond understanding fundamental nanomaterial behavior in the environment, it was clear that there were fantastic opportunities to apply ‘nano’ to critical environmental problems in sensing and treatment (pollution remediation)…to help make folks’ lives healthier through a better, cleaner environment.”

    Soon after graduation, Fortner joined the faculty at Washington University in St. Louis where he studied the fundamental mechanisms involved with nanostructure synthesis and reactivity. He was particularly interested in understanding how nanoparticles degrade contaminants differently than traditional systems and if nanoparticles have applications beyond the water industry.

    During his time at Washington University, he was a Fellow within the International Center for Energy, Environment, and Sustainability, where he collaborated with other researchers to develop nanotechnologies for a range of applications including new water treatment membranes and sensing technologies.

    “It was a wonderful place to start an independent research career,” Fortner said. “I developed amazing collaborations there, which pushed me even more to the fundamental side of chemistry and material science.”

    Fortner joined the faculty of Yale’s Department of Chemical and Environmental Engineering in 2019. In the Fortner Lab, almost everything is created from scratch: researchers design and synthesize nanoparticles, multi-component composites, and associated functional coatings to address water-related environmental issues.

    One of his most recent collaborations centers around perfluoroalkyl contaminants (PFAS), which are fluorinated carbon structures found in numerous consumer products ranging from fast food wrappers to Teflon pans to firefighting foams. Because these products were engineered to be unreactive to most chemicals or high temperatures, PFAS contaminants cannot be treated using conventional biological treatment processes. To address these ‘forever chemicals,’ Fortner’s lab, working with Kurt Pennell from Brown University and Natalie Capiro from Auburn University, has engineered superparamagnetic nanoparticles, which are specially coated with sorbents. They discovered that when these engineered nanoparticles are dispersed in a polluted source, contaminants are attracted to specified functional groups on the molecule. The particles, along with the contaminants, can then be collected using a magnet field and the concentrated PFAS can be removed. This strategy allows for very large volumes of media to be managed in a targeted and energy-efficient manner.

    “It’s amazing,” Fortner said. “We can sorb a significant amount of PFAS onto one particle and simply use a magnet to remove it. It’s a nice way to go ‘fishing’ to remove PFAS, or other contaminants, from a polluted water source.”

    Compared with other research laboratories around Yale, the Fortner Lab is a small but mighty force. Currently six Ph.D. students are mentored by Fortner, in addition to two postdoctoral researchers. The small size of the group allows for him to work individually with the students, enabling them to take real ownership of research projects. Susanna Maisto, a first-year Environmental Engineering Ph.D. student, describes the research group as “supportive, welcoming, and collaborative.”

    “Dr. Fortner has a great mentorship style; always providing any support you need, but never overstepping.” Maisto said. “He checks in often to make sure that we are thriving in and out of the lab.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Yale School of Engineering and Applied Science Daniel L Malone Engineering Center
    The Yale School of Engineering & Applied Science is the engineering school of Yale University. When the first professor of civil engineering was hired in 1852, a Yale School of Engineering was established within the Yale Scientific School, and in 1932 the engineering faculty organized as a separate, constituent school of the university. The school currently offers undergraduate and graduate classes and degrees in electrical engineering, chemical engineering, computer science, applied physics, environmental engineering, biomedical engineering, and mechanical engineering and materials science.

    Yale University is a private Ivy League research university in New Haven, Connecticut. Founded in 1701 as the Collegiate School, it is the third-oldest institution of higher education in the United States and one of the nine Colonial Colleges chartered before the American Revolution. The Collegiate School was renamed Yale College in 1718 to honor the school’s largest private benefactor for the first century of its existence, Elihu Yale. Yale University is consistently ranked as one of the top universities and is considered one of the most prestigious in the nation.

    Chartered by Connecticut Colony, the Collegiate School was established in 1701 by clergy to educate Congregational ministers before moving to New Haven in 1716. Originally restricted to theology and sacred languages, the curriculum began to incorporate humanities and sciences by the time of the American Revolution. In the 19th century, the college expanded into graduate and professional instruction, awarding the first PhD in the United States in 1861 and organizing as a university in 1887. Yale’s faculty and student populations grew after 1890 with rapid expansion of the physical campus and scientific research.

    Yale is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. While the university is governed by the Yale Corporation, each school’s faculty oversees its curriculum and degree programs. In addition to a central campus in downtown New Haven, the university owns athletic facilities in western New Haven, a campus in West Haven, Connecticut, and forests and nature preserves throughout New England. As of June 2020, the university’s endowment was valued at $31.1 billion, the second largest of any educational institution. The Yale University Library, serving all constituent schools, holds more than 15 million volumes and is the third-largest academic library in the United States. Students compete in intercollegiate sports as the Yale Bulldogs in the NCAA Division I – Ivy League.

    As of October 2020, 65 Nobel laureates, five Fields Medalists, four Abel Prize laureates, and three Turing award winners have been affiliated with Yale University. In addition, Yale has graduated many notable alumni, including five U.S. Presidents, 19 U.S. Supreme Court Justices, 31 living billionaires, and many heads of state. Hundreds of members of Congress and many U.S. diplomats, 78 MacArthur Fellows, 252 Rhodes Scholars, 123 Marshall Scholars, and nine Mitchell Scholars have been affiliated with the university.

    Research

    Yale is a member of the Association of American Universities (AAU) and is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, Yale spent $990 million on research and development in 2018, ranking it 15th in the nation.

    Yale’s faculty include 61 members of the National Academy of Sciences , 7 members of the National Academy of Engineering and 49 members of the American Academy of Arts and Sciences. The college is, after normalization for institution size, the tenth-largest baccalaureate source of doctoral degree recipients in the United States, and the largest such source within the Ivy League.

    Yale’s English and Comparative Literature departments were part of the New Criticism movement. Of the New Critics, Robert Penn Warren, W.K. Wimsatt, and Cleanth Brooks were all Yale faculty. Later, the Yale Comparative literature department became a center of American deconstruction. Jacques Derrida, the father of deconstruction, taught at the Department of Comparative Literature from the late seventies to mid-1980s. Several other Yale faculty members were also associated with deconstruction, forming the so-called “Yale School”. These included Paul de Man who taught in the Departments of Comparative Literature and French, J. Hillis Miller, Geoffrey Hartman (both taught in the Departments of English and Comparative Literature), and Harold Bloom (English), whose theoretical position was always somewhat specific, and who ultimately took a very different path from the rest of this group. Yale’s history department has also originated important intellectual trends. Historians C. Vann Woodward and David Brion Davis are credited with beginning in the 1960s and 1970s an important stream of southern historians; likewise, David Montgomery, a labor historian, advised many of the current generation of labor historians in the country. Yale’s Music School and Department fostered the growth of Music Theory in the latter half of the 20th century. The Journal of Music Theory was founded there in 1957; Allen Forte and David Lewin were influential teachers and scholars.

    In addition to eminent faculty members, Yale research relies heavily on the presence of roughly 1200 Postdocs from various national and international origin working in the multiple laboratories in the sciences, social sciences, humanities, and professional schools of the university. The university progressively recognized this working force with the recent creation of the Office for Postdoctoral Affairs and the Yale Postdoctoral Association.

    Notable alumni

    Over its history, Yale has produced many distinguished alumni in a variety of fields, ranging from the public to private sector. According to 2020 data, around 71% of undergraduates join the workforce, while the next largest majority of 16.6% go on to attend graduate or professional schools. Yale graduates have been recipients of 252 Rhodes Scholarships, 123 Marshall Scholarships, 67 Truman Scholarships, 21 Churchill Scholarships, and 9 Mitchell Scholarships. The university is also the second largest producer of Fulbright Scholars, with a total of 1,199 in its history and has produced 89 MacArthur Fellows. The U.S. Department of State Bureau of Educational and Cultural Affairs ranked Yale fifth among research institutions producing the most 2020–2021 Fulbright Scholars. Additionally, 31 living billionaires are Yale alumni.

    At Yale, one of the most popular undergraduate majors among Juniors and Seniors is political science, with many students going on to serve careers in government and politics. Former presidents who attended Yale for undergrad include William Howard Taft, George H. W. Bush, and George W. Bush while former presidents Gerald Ford and Bill Clinton attended Yale Law School. Former vice-president and influential antebellum era politician John C. Calhoun also graduated from Yale. Former world leaders include Italian prime minister Mario Monti, Turkish prime minister Tansu Çiller, Mexican president Ernesto Zedillo, German president Karl Carstens, Philippine president José Paciano Laurel, Latvian president Valdis Zatlers, Taiwanese premier Jiang Yi-huah, and Malawian president Peter Mutharika, among others. Prominent royals who graduated are Crown Princess Victoria of Sweden, and Olympia Bonaparte, Princess Napoléon.

    Yale alumni have had considerable presence in U.S. government in all three branches. On the U.S. Supreme Court, 19 justices have been Yale alumni, including current Associate Justices Sonia Sotomayor, Samuel Alito, Clarence Thomas, and Brett Kavanaugh. Numerous Yale alumni have been U.S. Senators, including current Senators Michael Bennet, Richard Blumenthal, Cory Booker, Sherrod Brown, Chris Coons, Amy Klobuchar, Ben Sasse, and Sheldon Whitehouse. Current and former cabinet members include Secretaries of State John Kerry, Hillary Clinton, Cyrus Vance, and Dean Acheson; U.S. Secretaries of the Treasury Oliver Wolcott, Robert Rubin, Nicholas F. Brady, Steven Mnuchin, and Janet Yellen; U.S. Attorneys General Nicholas Katzenbach, John Ashcroft, and Edward H. Levi; and many others. Peace Corps founder and American diplomat Sargent Shriver and public official and urban planner Robert Moses are Yale alumni.

    Yale has produced numerous award-winning authors and influential writers, like Nobel Prize in Literature laureate Sinclair Lewis and Pulitzer Prize winners Stephen Vincent Benét, Thornton Wilder, Doug Wright, and David McCullough. Academy Award winning actors, actresses, and directors include Jodie Foster, Paul Newman, Meryl Streep, Elia Kazan, George Roy Hill, Lupita Nyong’o, Oliver Stone, and Frances McDormand. Alumni from Yale have also made notable contributions to both music and the arts. Leading American composer from the 20th century Charles Ives, Broadway composer Cole Porter, Grammy award winner David Lang, and award-winning jazz pianist and composer Vijay Iyer all hail from Yale. Hugo Boss Prize winner Matthew Barney, famed American sculptor Richard Serra, President Barack Obama presidential portrait painter Kehinde Wiley, MacArthur Fellow and contemporary artist Sarah Sze, Pulitzer Prize winning cartoonist Garry Trudeau, and National Medal of Arts photorealist painter Chuck Close all graduated from Yale. Additional alumni include architect and Presidential Medal of Freedom winner Maya Lin, Pritzker Prize winner Norman Foster, and Gateway Arch designer Eero Saarinen. Journalists and pundits include Dick Cavett, Chris Cuomo, Anderson Cooper, William F. Buckley, Jr., and Fareed Zakaria.

    In business, Yale has had numerous alumni and former students go on to become founders of influential business, like William Boeing (Boeing, United Airlines), Briton Hadden and Henry Luce (Time Magazine), Stephen A. Schwarzman (Blackstone Group), Frederick W. Smith (FedEx), Juan Trippe (Pan Am), Harold Stanley (Morgan Stanley), Bing Gordon (Electronic Arts), and Ben Silbermann (Pinterest). Other business people from Yale include former chairman and CEO of Sears Holdings Edward Lampert, former Time Warner president Jeffrey Bewkes, former PepsiCo chairperson and CEO Indra Nooyi, sports agent Donald Dell, and investor/philanthropist Sir John Templeton,

    Yale alumni distinguished in academia include literary critic and historian Henry Louis Gates, economists Irving Fischer, Mahbub ul Haq, and Nobel Prize laureate Paul Krugman; Nobel Prize in Physics laureates Ernest Lawrence and Murray Gell-Mann; Fields Medalist John G. Thompson; Human Genome Project leader and National Institutes of Health director Francis S. Collins; brain surgery pioneer Harvey Cushing; pioneering computer scientist Grace Hopper; influential mathematician and chemist Josiah Willard Gibbs; National Women’s Hall of Fame inductee and biochemist Florence B. Seibert; Turing Award recipient Ron Rivest; inventors Samuel F.B. Morse and Eli Whitney; Nobel Prize in Chemistry laureate John B. Goodenough; lexicographer Noah Webster; and theologians Jonathan Edwards and Reinhold Niebuhr.

    In the sporting arena, Yale alumni include baseball players Ron Darling and Craig Breslow and baseball executives Theo Epstein and George Weiss; football players Calvin Hill, Gary Fenick, Amos Alonzo Stagg, and “the Father of American Football” Walter Camp; ice hockey players Chris Higgins and Olympian Helen Resor; Olympic figure skaters Sarah Hughes and Nathan Chen; nine-time U.S. Squash men’s champion Julian Illingworth; Olympic swimmer Don Schollander; Olympic rowers Josh West and Rusty Wailes; Olympic sailor Stuart McNay; Olympic runner Frank Shorter; and others.

     
  • richardmitnick 10:34 am on June 22, 2022 Permalink | Reply
    Tags: "New Ultrathin Capacitor Could Enable Energy-Efficient Microchips", A team of researchers at Lawrence Berkeley National Laboratory and UC Berkeley identified an energy-efficient route-synthesizing a thin-layer version of a well-known material- barium titanate (BaTiO3), , Material Sciences, Researchers in the microelectronics and materials sciences communities are seeking ways to sustainably manage the global need for computing power., Scientists turn century-old material into a thin film for next-gen memory and logic devices., , The holy grail is to develop microelectronics that operate at much lower voltages.   

    From The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley: “New Ultrathin Capacitor Could Enable Energy-Efficient Microchips” 

    From The DOE’s Lawrence Berkeley National Laboratory

    and

    The University of California-Berkeley

    June 22, 2022

    Rachel Berkowitz

    Scientists turn century-old material into a thin film for next-gen memory and logic devices.

    1
    Electron microscope images show the precise atom-by-atom structure of a barium titanate (BaTiO3) thin film sandwiched between layers of strontium ruthenate (SrRuO3) metal to make a tiny capacitor. (Credit: Lane Martin/Berkeley Lab)

    The silicon-based computer chips that power our modern devices require vast amounts of energy to operate. Despite ever-improving computing efficiency, information technology is projected to consume around 25% of all primary energy produced by 2030. Researchers in the microelectronics and materials sciences communities are seeking ways to sustainably manage the global need for computing power.

    The holy grail for reducing this digital demand is to develop microelectronics that operate at much lower voltages, which would require less energy and is a primary goal of efforts to move beyond today’s state-of-the-art CMOS (complementary metal-oxide semiconductor) devices.

    Non-silicon materials with enticing properties for memory and logic devices exist; but their common bulk form still requires large voltages to manipulate, making them incompatible with modern electronics. Designing thin-film alternatives that not only perform well at low operating voltages but can also be packed into microelectronic devices remains a challenge.

    Now, a team of researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and The University of California-Berkeley have identified one energy-efficient route – by synthesizing a thin-layer version of a well-known material whose properties are exactly what’s needed for next-generation devices.

    First discovered more than 80 years ago, barium titanate (BaTiO3) found use in various capacitors for electronic circuits, ultrasonic generators, transducers, and even sonar.

    Crystals of the material respond quickly to a small electric field, flip-flopping the orientation of the charged atoms that make up the material in a reversible but permanent manner even if the applied field is removed. This provides a way to switch between the proverbial “0” and “1” states in logic and memory storage devices – but still requires voltages larger than 1,000 millivolts (mV) for doing so.

    Seeking to harness these properties for use in microchips, the Berkeley Lab-led team developed a pathway for creating films of BaTiO3 just 25 nanometers thin – less than a thousandth of a human hair’s width – whose orientation of charged atoms, or polarization, switches as quickly and efficiently as in the bulk version.

    “We’ve known about BaTiO3 for the better part of a century and we’ve known how to make thin films of this material for over 40 years. But until now, nobody could make a film that could get close to the structure or performance that could be achieved in bulk,” said Lane Martin, a faculty scientist in the Materials Sciences Division (MSD) at Berkeley Lab and professor of materials science and engineering at UC Berkeley who led the work.

    Historically, synthesis attempts have resulted in films that contain higher concentrations of “defects” – points where the structure differs from an idealized version of the material – as compared to bulk versions. Such a high concentration of defects negatively impacts the performance of thin films. Martin and colleagues developed an approach to growing the films that limits those defects. The findings were published in the journal Nature Materials.

    To understand what it takes to produce the best, low-defect BaTiO3 thin films, the researchers turned to a process called pulsed-laser deposition. Firing a powerful beam of an ultraviolet laser light onto a ceramic target of BaTiO3 causes the material to transform into a plasma, which then transmits atoms from the target onto a surface to grow the film. “It’s a versatile tool where we can tweak a lot of knobs in the film’s growth and see which are most important for controlling the properties,” said Martin.

    Martin and his colleagues showed that their method could achieve precise control over the deposited film’s structure, chemistry, thickness, and interfaces with metal electrodes. By chopping each deposited sample in half and looking at its structure atom by atom using tools at the National Center for Electron Microscopy at Berkeley Lab’s Molecular Foundry, the researchers revealed a version that precisely mimicked an extremely thin slice of the bulk.

    “It’s fun to think that we can take these classic materials that we thought we knew everything about, and flip them on their head with new approaches to making and characterizing them,” said Martin.

    Finally, by placing a film of BaTiO3 in between two metal layers, Martin and his team created tiny capacitors – the electronic components that rapidly store and release energy in a circuit. Applying voltages of 100 mV or less and measuring the current that emerges showed that the film’s polarization switched within two billionths of a second and could potentially be faster – competitive with what it takes for today’s computers to access memory or perform calculations.

    The work follows the bigger goal of creating materials with small switching voltages, and examining how interfaces with the metal components necessary for devices impact such materials. “This is a good early victory in our pursuit of low-power electronics that go beyond what is possible with silicon-based electronics today,” said Martin.

    “Unlike our new devices, the capacitors used in chips today don’t hold their data unless you keep applying a voltage,” said Martin. And current technologies generally work at 500 to 600 mV, while a thin film version could work at 50 to 100 mV or less. Together, these measurements demonstrate a successful optimization of voltage and polarization robustness – which tend to be a trade-off, especially in thin materials.

    Next, the team plans to shrink the material down even thinner to make it compatible with real devices in computers and study how it behaves at those tiny dimensions. At the same time, they will work with collaborators at companies such as Intel Corp. to test the feasibility in first-generation electronic devices. “If you could make each logic operation in a computer a million times more efficient, think how much energy you save. That’s why we’re doing this,” said Martin.

    This research was supported by the U.S. Department of Energy (DOE) Office of Science. The Molecular Foundry is a DOE Office of Science user facility at Berkeley Lab.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The The University of California-Berkeley is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California system and a founding member of the Association of American Universities . Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at DOE’s Lawrence Berkeley National Laboratory, DOE’s Lawrence Livermore National Laboratory and DOE’s Los Alamos National Lab, and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, the University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California-Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California-Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now DOE’s Lawrence Berkeley National Laboratory (US)) and invented the cyclotron, which won him the Nobel physics prize in 1939. Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, Los Alamos National Laboratory (1943) and Lawrence Livermore National Laboratory (1952).

    By 1942, the American Council on Education ranked Berkeley second only to Harvard University in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, the Mathematical Sciences Research Institute (MSRI) was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, the Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for the California Institute for Quantitative Biosciences, opened. The next few years saw the dedication of the Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of the Center for Information Technology Research in the Interest of Society; and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, the Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, University of California-San Fransisco, established the Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and Massachusetts Institute of Technology among US universities; five Turing Awards, behind only MIT and Stanford University; and five Fields Medals, second only to Princeton University (US). According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berkeley Seal

    LBNL campus

    LBNL Molecular Foundry

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory, and Robert Wilson founded Fermi National Accelerator Laborator.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    LBNL/ALS

    DOE’s Lawrence Berkeley National Laboratory Advanced Light Source .
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 7:27 pm on June 13, 2022 Permalink | Reply
    Tags: "Exploring New Materials Through Collaboration", Advanced microscopy, , , De Yoreo approaches science through a collaborative perspective., De Yoreo has worked with like-minded materials science researchers across Washington State., Developing new and increasingly complicated materials requires combining existing materials., , Interfaces-the place where two different materials meet, Jim De Yoreo, Many of these collaborations occur through university partnerships-particularly at the University of Washington., Material Sciences, , Natural mineral and biological systems,   

    From The DOE’s Pacific Northwest National Laboratory: “Exploring New Materials Through Collaboration” 

    From The DOE’s Pacific Northwest National Laboratory

    June 13, 2022
    Beth Mundy

    Jim De Yoreo’s career full of insights about materials will continue at the Energy Sciences Center.

    Scientists who study materials can be divided into three categories. “You have people who make things, people who make things do things, and people who try to understand why things do what they do,” said Jim De Yoreo, a Battelle fellow at Pacific Northwest National Laboratory (PNNL). He places himself into the third category.

    Through advanced microscopy techniques, De Yoreo has spent his career trying to understand and predict the behavior of materials. In 2022, he was elected to the National Academy of Engineering, citing his “advances in materials synthesis from nucleation to large-scale crystal growth.” De Yoreo’s work spans materials science, geochemistry, and biophysics, often focusing on natural mineral and biological systems.

    De Yoreo is particularly interested in interfaces, the place where two different materials meet. “Developing new and increasingly complicated materials requires combining existing materials,” said De Yoreo. “To effectively combine materials, we have to understand what happens at the interface.”

    De Yoreo’s research team has watched tiny crystals grow and attach together in real time, solving outstanding questions about crystal formation. The team also determined the patterns that proteins form on a mineral surface, laying the groundwork for new strategies for synthesizing semiconductor and metallic nanoparticle circuits for photovoltaic or energy storage applications.

    Some of De Yoreo’s most significant contributions occurred through his penchant for forging deep connections and collaborations. Since joining PNNL in 2012, he has worked with like-minded materials science researchers across Washington State.

    De Yoreo approaches science through a collaborative perspective [see the blog masthead about science and collaboration]. “I know that my own view is limited,” said De Yoreo. “So if I work with people who have different skills, we can start to really understand materials.”

    Many of these collaborations occur through university partnerships-particularly at the University of Washington. De Yoreo has embraced leadership roles at the Northwest Institute for Materials Physics, Chemistry, and Technology and the Center for the Science of Synthesis Across Scales, which bring together researchers from PNNL and UW.

    “I think Jim has set the stage for another decade of really fruitful materials science collaborations between UW and PNNL,” said Jim Pfaendtner, PNNL joint appointee, professor, and chair of the UW Department of Chemical Engineering. “His efforts have built bridges that didn’t exist before and led to new efforts, like CSSAS.”

    Pfaendtner isn’t the only one who noticed. The Department of Energy named De Yoreo a Distinguished Scientist Fellow in 2020, specifically citing his “leadership in National Laboratory-University partnerships.”

    Mentoring for collaboration

    1
    A transmission electron microscopy image of an assembly of nanomaterials. (Image by Madison Monahan | University of Washington)

    Through joint faculty appointments in the UW Chemistry and Materials Science and Engineering departments, De Yoreo co-mentors students like Madison Monahan. Monahan, a recent PhD graduate, helped start a collaboration among De Yoreo, PNNL materials scientist and UW joint appointee Chun-Long Chen, and UW Chemistry Professor Brandi Cossairt. Monahan’s work focuses on controlling the assembly of complex nanoscale materials.

    The different material components are like toy bricks. When assembled in a precise order, a stack of different pieces can become a car or a house. While standard toy bricks require direct human assembly, it isn’t strictly necessary at the nanoscale. It’s as if putting a set of bricks into a box and shaking it the right way produces a completed model house without extra effort.

    This is similar to what happens with assemblies at the nanoscale. However, creating a specific assembly isn’t as simple as adding all the components to a random box. Different conditions, including the overall temperature or type of materials, can change the final structure of the assembly. The goal of Monahan’s project, which is funded by CSSAS, is to understand design principles and key interactions between different building blocks. This will allow researchers to create predictable, functional materials, where final structure controls overall behavior, from a wide range of starting materials.

    The collaboration centers on combining carbon-based (organic) and non-carbon-based (inorganic) materials.

    “We want to try to fit these two different worlds together and find a place where they have complementary chemistry,” said Monahan.

    The Chen group designed peptide-like molecules, called peptoids, to serve as the organic component. Monahan created inorganic nanocrystals and used microscopy to study the forming of organic-inorganic assemblies and their final structures.

    The team explored whether starting assembly with either the organic or the inorganic components produced different results.

    The team found that order of operations matters. When the organic base gets assembled first, it controls the overall structure. When starting with the nanocrystals, the results become less clear. It turns out the size and composition of the nanocrystal also matter. With smaller nanocrystals, the organic structure and nanocrystal both affect the final material. When the nanocrystal is larger, it primarily determines the final structure.

    This work, recently published in ACS Nano, required expertise in developing biologically inspired molecules, synthesizing inorganic materials, and using advanced imaging techniques. It involved bringing together different perspectives to create and understand these complex material assemblies.

    “Jim has opened my eyes to these different ways to study nanomaterials,” said Cossairt. “There are things we’d just never consider being viable for our inorganic systems. He really is the dream collaborator.”

    Developing the next generation of scientific leaders

    Students who work with De Yoreo have ready access to advanced microscopes and other instruments at the new Energy Sciences Center (ESC). It’s more than the instruments, though. The ESC was designed as a collaborative environment for accelerated scientific discovery and features a combination of research laboratories, flexible-use open spaces, conference rooms, and offices.

    “Everyone in Jim’s group has such different backgrounds,” said Monahan. “It means that you constantly get great ideas and have access to so much knowledge. I get to hear from experienced physicists and materials scientists at PNNL as well as the chemists I work with at UW.”

    Monahan is just one of De Yoreo’s UW student mentees. While some stay based at UW for their full graduate career, others spend from months to years on the PNNL campus.

    “I always wanted to mentor graduate students jointly,” said De Yoreo. “Working with another mentor makes sure my students have a full lab experience no matter where they are. I also think if they can learn both synthesis and measurement, it makes their work more successful.”

    Jim’s collaborators echo that sentiment. “There’s no way a student advised just by me would have been able to develop such deep microscopy skills,” said Cossairt. “The joint approach gives a student the best of both worlds.”

    An adventurous approach to life and science

    Collaborators note that they never know what the background of De Yoreo’s video calls will be as he often features photos of previous travels that range from savannah wildlife to snowy slopes. These backgrounds often come with an anecdote about the corresponding trip.

    Once, he took instruments to explore a cave in Mexico where a unique set of crystals naturally formed. A sense of adventure permeates his personal and professional life. “You never know where he’s calling you from,” said Monahan.

    “Jim has an adventurous approach to life, and you can see it in his science,” said Monahan, describing her mentor. “He has these wildly ambitious ideas, but he’s practical enough to know they might not happen now. But he’s going to break it down to where in 10 years, he’ll be able to do it.”

    Others echo this sentiment. “Jim has a boundless intellectual energy and the ability to deeply think about numerous problems simultaneously,” said Pfaendtner. “It’s incredible.”

    Pfaendtner collaborates with De Yoreo on multiple projects. “My group does computational modeling and he does experimental characterization,” said Pfaendtner. “Our work fits nicely together.”

    Previously, a collaborative effort [Journal of the American Chemical Society] that included De Yoreo and Pfaendtner’s research groups explored how solid-binding peptides attach to a mineral surface. These biological molecules can potentially direct the formation of complex mineral-biological hybrid systems. The team used a combined approach of protein engineering, microscopy, computations, and surface bonding experiments to understand what controls peptide binding. They found that binding ability is substantially determined by a small section of the peptide structure. Using this core structure, researchers can create and identify new peptides to assemble materials.

    “Every time I meet with Jim, he has new ideas about whatever we’re working on,” said Pfaendtner. “I leave most of my conversations with him feeling energized.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Pacific Northwest National Laboratory is one of the United States Department of Energy National Laboratories, managed by the Department of Energy’s Office of Science. The main campus of the laboratory is in Richland, Washington.

    PNNL scientists conduct basic and applied research and development to strengthen U.S. scientific foundations for fundamental research and innovation; prevent and counter acts of terrorism through applied research in information analysis, cyber security, and the nonproliferation of weapons of mass destruction; increase the U.S. energy capacity and reduce dependence on imported oil; and reduce the effects of human activity on the environment. PNNL has been operated by Battelle Memorial Institute since 1965.

     
  • richardmitnick 8:53 am on June 11, 2022 Permalink | Reply
    Tags: "EOS": equation-of-state, "New target facility will help unlock plutonium’s secrets", "TARDIS": Target diffraction in-situ experiments, , , , Improving our understanding of the physical characteristics of plutonium as it ages is a vital aspect of maintaining the reliability of the U.S. nuclear deterrent in the absence of underground testing, Material Sciences, NIF EOS experiments use isotopically pure plutonium-242 (242Pu)-the second longest-lived isotope with a half-life of 373300 years (NIF does not test weapons-grade plutonium)., , Scientists have a pretty aggressive plan agreed upon by the tri-labs [LLNL; Los Alamos and Sandia] to address plutonium aging., ,   

    From The DOE Lawrence Livermore National Laboratory: “New target facility will help unlock plutonium’s secrets” 

    From The DOE Lawrence Livermore National Laboratory

    6.10.22
    Michael Padilla
    padilla37@llnl.gov
    925-341-8692

    Written by Charlie Osolin

    1

    Improving our understanding of the physical characteristics of plutonium as it ages is a vital aspect of maintaining the reliability of the U.S. nuclear deterrent in the absence of underground testing. The recent installation of a new plutonium target fabrication facility at Lawrence Livermore National Laboratory (LLNL) aims to further progress toward that goal.

    Researchers have developed a three-pronged program of experiments on the National Ignition Facility (NIF)[below] to help determine plutonium’s equation of state — the relationship between pressure, temperature and density — along with its strength and phase transitions. The results are integrated with data from related experiments at Los Alamos and Sandia national laboratories as part of the National Nuclear Security Administration’s (NNSA) science-based Stockpile Stewardship Program (SSP).

    “Our assessment of the physics of plutonium feeds into the weapons program and supports the safety, security and reliability of the nuclear deterrent,” said design physicist Heather Whitley, associate program director for high energy density science in the Weapons Physics and Design Program of LLNL’s Weapons and Complex Integration (WCI) directorate.“We can’t do any of these experiments without the contributions of every single person on these teams.”

    Plutonium “pits”— spherical shells of plutonium about the size of a bowling ball — are a key part of the nation’s nuclear warheads. “Understanding the baseline properties of plutonium has always been important,” Whitley said, ”but as time has gone on [since underground explosive nuclear testing was halted in 1992] plutonium aging has become more important, and that has expanded the need for fundamental data to constrain the material properties of plutonium.”

    But taking the measure of enigmatic plutonium, the element with the highest atomic number to occur in nature, is no easy task. The radioactive metal has 20 isotopes and six crystallographic phases with very similar energy levels, plus a seventh under pressure. Its dimensions change with temperature, pressure and impurities, and it has many different oxidation states. In addition, the material’s properties do not always change in linear fashion.

    Whitley said NIF , the world’s largest and highest-energy laser system, is especially valuable for exposing plutonium’s secrets because of its extremely reliable laser delivery, pulse-shaping ability and high laser power. NIF can create pressures on targets that are up to 5 terapascals (TPa), or 50 million times Earth’s ambient air pressure.

    These are “very interesting conditions that you couldn’t really access via other facilities,” she said. “Another strength of NIF,” she added, “is that we have exquisite diagnostics that enable us to make cutting-edge dynamic measurements of the properties of plutonium.” (For more, see NIF and Stockpile Stewardship.)

    Fabricating plutonium targets

    To take full advantage of NIF’s unique capabilities, teams from across LLNL have contributed to a five-year project to develop a new target fabrication facility dedicated to the production of plutonium targets — particularly targets for equation-of-state (EOS) experiments. Installation of the new resource in the Laboratory’s “superblock” plutonium research and development facility was completed last summer, and the first EOS target was shot on NIF in early October.

    1
    LLNL’s plutonium target fabrication facility includes two large gloveboxes. One houses a diamond turning capability that allows precision machining of samples, particularly for EOS targets. The second glovebox allows expanded sample preparation and assembly and also adds coating capability to deposit layers of interest directly on plutonium, eliminating glue bonds.

    “We have a pretty aggressive plan agreed upon by the tri-labs [LLNL; Los Alamos and Sandia] to address plutonium aging,” Whitley said. “Completing that body of work relies on our ability to make rapid-throughput targets; we need to be making about a target a month or maybe even more, then executing the shots over the next several years in order to meet the goals of the larger program.

    “The new target fabrication capabilities give us a state-of-the-art facility that supports the safety of the workers and the security of the enterprise.”

    Targets for plutonium EOS experiments require extremely accurate fabrication; the stepped, or multilayered, EOS targets must meet precise specifications for dimensions, surface finish and alignment. The small scale of the targets requires the part to be flat within a tolerance of better than 50 nanometers (billionths of a meter). If the stepped target were scaled to the size of a football field and had the same flatness specification, the top of every blade of grass would have to be cut within the thickness of a No. 2 pencil lead.

    2
    Left: A plutonium target mounted on a NIF target positioner. Right: Close-up of the stepped target seen through the VISAR (velocity interferometry system for any reflector) diagnostic cone.

    Designing, machining and assembling the parts for these targets requires an integrated team of highly skilled physicists, materials scientists, chemists, engineers, technicians and machinists.

    “To make an equation-of-state target, you need precision diamond-turning capability,” explained Abbas Nikroo, the former NIF Target Fabrication Program manager who led the development of the new facility. “And the diamond-turning capability needs to be housed inside a glovebox because plutonium is very moisture-sensitive. These boxes allow you to keep the part in a very dry environment while allowing it to be manipulated through the gloves.”

    The diamond-turning lathes are capable of nanometer precision and mirror-like surface finishes. The machines are temperature-controlled and isolated from vibration.

    The new facility also contains a second glovebox used to prepare the plutonium for diamond turning. “The material needs to be processed into planar pieces,” Nikroo said. “We have a laser cutting unit that allows you to cut the plutonium material into what we call ‘bricks.’ The bricks are the starting point for the final target.”

    The second glovebox also contains a target-coating capability that was developed in collaboration with LLNL’s Vapor Processing Laboratory.

    Nikroo noted that fabricating and assembling tiny targets for NIF experiments is challenging enough in open air; working in a glovebox adds “an extra level of complexity.”

    “The equation-of-state targets involve precision steps — one brick machined to several sub-millimeter thicknesses — that are cut into the material,” he said. “You have to do the diamond-turning operation through the gloves and then take these millimeter-sized parts of a few hundred microns thickness and do a precision assembly with these multiple layers.”

    To prepare for the work on plutonium — only milligrams of the material are used in the targets — the team first tested the gloveboxes by fabricating gold and aluminum targets, showing that they could “keep the same precision that we have outside the glovebox,” Nikroo said. They also took care to integrate the new facility’s ventilation system into the rest of the superblock.

    Plutonium EOS experiments

    In plutonium EOS ramp-compression experiments, a test sample is gradually pressurized over a few fractions of a second. This isentropic compression technique keeps the temperature lower than in instantaneous shock compression and allows the material to maintain a solid crystalline state at higher pressures.

    Along with high-precision targets, ramp compression requires meticulous sample preparation and tuning of the compression rate to ensure that strong shock waves don’t form within the sample. The technique enables researchers to measure unparalleled high-pressure and low-temperature EOS conditions.

    NIF EOS experiments use isotopically pure plutonium-242 (242Pu)-the second longest-lived isotope with a half-life of 373300 years (NIF does not test weapons-grade plutonium). The first 242Pu ramp-compression experiment was conducted on NIF in April 2019, marking the start of the current experimental campaign to better understand how the element compresses under extreme pressure.

    The first plutonium EOS shot using a stepped target in October, which met a milestone for the superblock target fabrication facility, “was successful and returned meaningful and important data,” said LLNL materials scientist Jim McNaney, who leads the NIF Materials Integrated Experimental Team. An accurate EOS is essential for generating and validating the computational models that underpin simulations critical to stockpile stewardship efforts such as life extension programs (LEPs), which aim to add 30 years of service life to aging nuclear warheads.

    Phase and strength targets

    Along with the EOS targets, the new facility fabricates targets designed to measure changes in plutonium’s phase, or crystal structure, as well as the material’s strength under pressure. McNaney noted that while these other campaigns generate vital data on their own, they also “help us to interpret EOS data.”

    Target diffraction in-situ (TARDIS) experiments use X-ray diffraction to determine the crystal structure of solids. Ramp-compressed samples are probed by diffraction of X rays generated by a laser-driven source foil. The resulting diffraction lines provide insights into phase changes, or structural transitions, that can occur in materials under extreme pressure. (For more, see “NIF’s TARDIS Aims to Conquer Time and Space”.)

    Familiar examples of phase changes include the transition of water to ice at low temperature and to steam at high temperature, and the creation of diamonds from carbon-containing minerals that undergo billions of years of intense temperatures and pressures far beneath the Earth’s surface.

    “Almost all material properties depend on phase,” McNaney said, “and modeling materials to construct equations of state depends on phase. So knowing the phase is actually a bedrock for being able to construct an equation-of-state experiment.”

    Strength experiments are designed to determine the extent to which a material deforms when it is stretched or compressed. In the plutonium strength campaign, samples are imprinted with two-dimensional sine-wave patterns, or “ripples.” The imprinted ripples grow when they experience compressive pressure from a shocked reservoir of materials as it pushes against the target. The higher the material’s strength, the more slowly the ripples grow.

    3
    Left: The target for a strength experiment features a 9-by-14-millimeter hohlraum. Positioned over a side hole in the hohlraum is a 2-millimeter-thick, multilayered physics package containing a reservoir of five different materials, gold and plastic x-ray shields and a sample of the metal of interest. Right: The metal sample is imprinted under a microscope with two-dimensional sine-wave patterns. The imprinted ripples grow when they experience the pressure wave generated in the experiment.

    Previous strength experiments employed a pressing technique used by the U.S. Mint to precisely stamp or “coin” the microscopic ripples into metals. “We would machine the ripples into a dye,” Nikroo said, “and that dye would be used to press onto the metal to form the ripples.

    “It was difficult to imprint the ripples fully into plutonium,” he said. “But we found that with the diamond turning instrument, we can directly machine the ripples into the plutonium and don’t have to go through the extra step of making a precision die.”

    Teamwork, safety are key

    Whitley praised the Target Fabrication Team and its collaborators for completing their work on time despite the constraints caused by the COVID-19 pandemic.

    “It took a long, long time to have these capabilities instituted in the superblock,” she said, “so we were really proud to see it come to fruition during the challenges of the pandemic. The fact that the team was able to maintain operations and the safety of the workers is a testament to the dedication of our staff and the Lab as a whole — to make sure that we execute on our mission while also keeping our workforce safe.

    “NIF was one of the first (NNSA facilities) to come back into operation after the pandemic shutdown,” she said, “and I think that’s something that we should be really, really proud of.

    “I do want to make sure that our folks feel appreciated and know what they’re contributing across the board,” Whitley added. “We understand how hard people work to do this. Oftentimes, the physicists end up in the limelight, but we can’t do any of these experiments without the contributions of every single person on these teams.”

    Along with Nikroo, McNaney, and Whitley, key contributors to the plutonium target fabrication facility effort and experiments were Monie Ethridge, Patrick Williams, David Lewis, Aaron Vingle, Jacqueline Meeker, Mike Wilson, Jeff Stanford, Jessee Welch, Alison Kuelz, Michael Stadermann, Todd Matz, Nam Nguyen Chinh Le, Matthew Arend, Rick Heredia, Jeremy Kroll, Jean Jensen, Thomas Marcotte, Suzanne Ali, Dave Braun, Dayne Fratanduono, Jon Eggert, Ray Smith, Travis Volz, Richard Kraus, Damian Swift, Peter Celliers, Elvin Monzon, Camelia Stan, Richard Briggs, Martin Gorman, Korbie Le Galloudec, Nicholas Orsi, Matt Cohen, Richard Beale, Shannon Sauers, Anthony Novello, Kerri Blobaum, Jeremiah Hunt, Joshua Winheim, Scott McBeath, Earl O’Bannon, Ken Kasper, Tom Kohut, Bradley Olson, Pascale Di Nicola, Anna Murphy, Jamison Jew and Adam Golder.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The National Ignition Facility, is a large laser-based inertial confinement fusion (ICF) research device, located at the DOE’s Lawrence Livermore National Laboratory in Livermore, California. NIF uses lasers to heat and compress a small amount of hydrogen fuel with the goal of inducing nuclear fusion reactions. NIF’s mission is to achieve fusion ignition with high energy gain, and to support nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear weapons. NIF is the largest and most energetic ICF device built to date, and the largest laser in the world.

    Construction on the NIF began in 1997 but management problems and technical delays slowed progress into the early 2000s. Progress after 2000 was smoother, but compared to initial estimates, NIF was completed five years behind schedule and was almost four times more expensive than originally budgeted. Construction was certified complete on 31 March 2009 by the U.S. Department of Energy, and a dedication ceremony took place on 29 May 2009. The first large-scale laser target experiments were performed in June 2009 and the first “integrated ignition experiments” (which tested the laser’s power) were declared completed in October 2010.

    Bringing the system to its full potential was a lengthy process that was carried out from 2009 to 2012. During this period a number of experiments were worked into the process under the National Ignition Campaign, with the goal of reaching ignition just after the laser reached full power, some time in the second half of 2012. The Campaign officially ended in September 2012, at about 1⁄10 the conditions needed for ignition. Experiments since then have pushed this closer to 1⁄3, but considerable theoretical and practical work is required if the system is ever to reach ignition. Since 2012, NIF has been used primarily for materials science and weapons research.

    National Igniton Facility- NIF at LLNL

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration


     
  • richardmitnick 10:51 am on June 10, 2022 Permalink | Reply
    Tags: "University of Illinois-Chicago Joins Brookhaven Lab's Quantum Center", , , , C^2QA is one of five U.S. Department of Energy (DOE) Office of Science National Quantum Information Science Research Centers (NQISRCs) established in support of the National Quantum Initiative Act., , , Material Sciences, , , , The University of Illinois-Chicago, Three research areas or thrusts: Software and Algorithms; Devices and Materials., University of Illinois Chicago (UIC) has joined the Brookhaven National Laboratory-led Co-design Center for Quantum Advantage (C^2QA) making the university the C^2QA’s 24th partner institution.   

    From The DOE’s Brookhaven National Laboratory and The University of Illinois-Chicago : “University of Illinois-Chicago Joins Brookhaven Lab’s Quantum Center” 

    From The DOE’s Brookhaven National Laboratory

    and

    The University of Illinois-Chicago

    June 9, 2022
    Written by Denise Yazak
    Contact:
    Peter Genzer
    genzer@bnl.gov
    (631) 344-3174

    1
    The University of Illinois Chicago’s Engineering Innovation Building in Chicago, September 5, 2019.

    University of Illinois Chicago (UIC) has joined the Brookhaven National Laboratory-led Co-design Center for Quantum Advantage (C^2QA), making the public research university C^2QA’s 24th partner institution.

    C^2QA is one of five U.S. Department of Energy (DOE) Office of Science National Quantum Information Science Research Centers (NQISRCs) established in support of the National Quantum Initiative Act, which aims to develop the full potential of quantum-based applications in computing, communication, and sensing to benefit national security, economic competitiveness, and leadership in scientific discovery. C^2QA’s primary focus is on building the tools necessary to create scalable, distributed, and fault-tolerant quantum computer systems.

    C^2QA consists of collaborative, multidisciplinary research teams that span across several domains to apply quantum co-design principles in three research areas or thrusts: Software and Algorithms; Devices and Materials. “The Center is fortunate to count Associate Professor of Electrical and Computer Engineering Thomas Searles among the principal investigators (PIs) from UIC helping to advance the mission of C^2QA in the Devices thrust,” remarked Jens Koch, Novel Qubits & Circuit Elements subthrust leader. “Professor Searles has been an active member since the very beginning of C^2QA at his former institution, and will continue his research.” Professor Searles’ lab is currently applying machine learning methods towards error mitigation in Noisy Intermediate Scale Quantum (NISQ) devices like the Quantum Processing Units (QPUs) offered by the IBM Quantum program, thanks to funding from C2QA. Searles is further looking forward to intensifying his work on quantum state tomography on the IBM machines and other platforms and increasing opportunities in his lab.

    “Quantum computing has the potential to completely revolutionize how we interact with the world around us and in particular, how we approach problem solving in scientific disciplines like physics, computer science, chemistry and engineering. We have a long way to go, however, in developing better quantum devices for practical application before this is a reality,” said UIC Associate Professor of Electrical and Computer Engineering Thomas Searles. “The co-design center and its affiliated researchers are leaders in advancing quantum-based technologies through scientific research – our partnership with the co-design center opens up incredible opportunities for our students and faculty to partner on innovative discoveries in quantum computing, network and participate in seminars and career fairs.”

    “There is some very exciting work involving data-centric models for Machine Learning in quantum information science,” said C^2QA director, Andrew Houck. “Using his access to the IBM cloud machines, Thomas Searles and UIC are really helping us figure out how to more efficiently use, train, and run interesting algorithms on real hardware that’s currently available.”

    Searles, formerly of Howard University, is widely recognized as an avid and active supporter of increasing participation of underrepresented minorities in quantum research. With UIC representing one of six minority serving institutions (MSI) in C^2QA, he is an invaluable asset to everyone in the Center seeking guidance on how attract, train, and mentor the next generation of diverse researchers and engineers joining the quantum workforce. “The [NQISRCs] serve as hubs for collaboration for the entire country. I think it’s important that these hubs be as inclusive as possible,” said Searles. “We are, as a whole, an MSI in the heart of Chicago. We have fantastic students within our Electrical and Computer Engineering Department. We’re not only a Hispanic-serving institution, but a Hispanic-serving department with greater than 25 percent of our students identifying as such. C^2QA and UIC are bringing opportunities in the field of quantum to underserved groups in Chicago that don’t exist.”

    UIC is Chicago’s only public research university and is an integral part of the educational, technological and cultural fabric of the city. Chicago is not only a diverse city full of fresh new talent in the field, but it is also the epicenter of Quantum Information Science in the Midwest. “It’s the right place, the right time, and the right people. With C2QA having a large concentration on the east coast, this partnership will broaden its reach. We’re bringing something to the Midwest that’s not there currently, so we’re very, very excited about that,” said Searles.

    Searles also acknowledged the support of C^2QA and Brookhaven Laboratory staff in facilitating this collaboration, “I wanted to thank C^2QA Director, Andrew Houck, former Director, Steve Girvin, and Operations Manager, Kimberly McGuire. I also wanted to highlight the work of Brookhaven Lab’s Diversity Equity, and Inclusion Officer Noel Blackburn, and National Synchrotron Light Source II (NSLS-II)[below] Director John Hill.”

    Besides Brookhaven Lab and UIC, the partnering institutions in C^2QA are The DOE’s Ames Laboratory, California Institute of Technology, City College of New York, Columbia University, Harvard University, Howard University, IBM, Johns Hopkins University, Massachusetts Institute of Technology, Montana State University, National Aeronautics and Space Administration’s Ames Research Center, Northwestern University, Pacific Northwest National Laboratory, Princeton University, State University of New York Polytechnic Institute, Stony Brook University, The DOE’s Thomas Jefferson National Accelerator Facility, University of California-Santa Barbara, University of Massachusetts-Amherst, University of Pittsburgh, University of Washington, Virginia Polytechnic Institute and State University, and Yale University. In addition to its 24 existing partners, C^2QA recently welcomed The DOE’s Princeton Plasma Physics Laboratory as its first unfunded affiliate. For more information on the U.S. DOE Office of Science Quantum Centers, visit https://science.osti.gov/Initiatives/QIS/QIS-Centers.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    More than a century of discovery and service

    The The University of Illinois at Chicago traces its origins to several private health colleges that were founded in Chicago during the 19th century.

    In the 20th century, new campuses were built in Chicago and later joined together to form a comprehensive learning community. In the last three decades, UIC has transformed itself into one of the top 65 research universities in the United States.

    As part of the University of Illinois, UIC grew to meet the needs of the people of Illinois, but its deepest roots are in health care. The Chicago College of Pharmacy, founded in 1859, predated the Civil War is the oldest unit in the university. Other early colleges were the College of Physicians and Surgeons and the Columbian College of Dentistry.

    These Chicago-based health colleges became fully incorporated in 1913 as the Colleges of Medicine, Dentistry and Pharmacy. The College of Pharmacy was the first pharmacy school west of the Alleghenies and emphasized laboratory instruction and research.

    Dentistry became the first American dental school fully equipped with electric drills. The College of Medicine developed the country’s first occupational therapy program and grew rapidly to become the largest medical school in the U.S.

    In the decades following incorporation, several other health science colleges were created. Together with the Colleges of Medicine, Dentistry and Pharmacy, they formed the Chicago Professional Colleges of the University of Illinois. In 1961, the professional colleges became the University of Illinois at the Medical Center.

    Following World War II, the University of Illinois increased its presence in Chicago by creating a temporary, two-year branch campus on Navy Pier. The Chicago Undergraduate Division primarily accommodated student veterans on the G.I. Bill. The program allowed all students to complete their first two years of study in Chicago before going downstate to finish their undergraduate degrees at Urbana-Champaign.

    The lakeside location earned the Navy Pier campus the name “Harvard on the rocks.” The university shared the 3,000-foot pier with other tenants that included the Chicago Police Department Traffic Division and several military detachments. At that time Navy Pier was not the bright, attractive venue it is today as Chicago’s leading tourist attraction. The pier was a dreary, functioning port facility. But because the pier had only a single corridor along its half-mile length, students were able to see their peers each day.

    Brookhaven Campus

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc.(AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] Large Hadron Collider(LHC).

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .


    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II.

    BNL NSLS II.

    BNL Relative Heavy Ion Collider Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

     
  • richardmitnick 9:53 am on June 7, 2022 Permalink | Reply
    Tags: "ETEM": Environmental Transmission Electron Microscopy, "Investment in Shared Research Platforms catalyzes discovery and accelerates solutions", , , Material Sciences,   

    From Stanford University: “Investment in Shared Research Platforms catalyzes discovery and accelerates solutions” 

    Stanford University Name

    From Stanford University

    June 6, 2022
    Adam Hadhazy

    New investments in shared instrumentation and data resources – encompassing equipment, hardware, facility, and critical staffing – will help Stanford researchers continue to explore the boundaries of knowledge and achieve transformative advances.

    1
    Material Sciences Professor Jennifer Dionne (top right) with researchers (from left to right) Pari Moradifar, Andrew Barnum, and Briley Bourgeois, interacting on Titan Environmental Transmission Electron Microscope (ETEM) in the Stanford Nano Shared Facilities (SNSF). (Image credit: Andrew Brodhead)

    Today’s cutting-edge research often requires sophisticated, expensive tools, as well as expertise in using and maintaining them. In many scientific fields, it has become impractical, uneconomical, and unproductive for researchers to continue going it alone.

    For this reason, Stanford has created dozens of distinct shared instrumentation facilities over the years, as well as new investments in shared resources for computing and data storage as part of the Long-Range Vision. In another important step toward supporting collaborative science, the university is announcing new funding to continue growing its Shared Research Platforms. The platforms seek to ensure easy, affordable access for faculty, researchers, and students campus-wide to capable instrumentation coupled with high-quality data computation and storage.

    For fiscal year 2023, the university budget that Provost Persis Drell recently presented at the Faculty Senate will invest over $15 million to address a list of instrumentation priorities identified in concert with Stanford community members. These priorities include upgrading lab equipment, boosting staffing, and increasing educational outreach to facility users. An additional $5 million or so will go towards improving data resources. The funds will secure key new hardware and software for the Stanford Research Computing Center, as well as hire staff dedicated to enhancing user experiences.

    “With this investment in world-class equipment and facilities, Stanford is boosting frontier innovation,” said Jennifer Dionne, an associate professor of material science and engineering and senior associate vice provost for research platforms/shared facilities. Dionne is also the leader of the instrumentation-focused arm of the Shared Research Platform initiative, called C-ShARP (The Community of Shared Research Platforms).

    The shared facilities are also meant to serve as interactive workspaces where the Stanford research community can come together. “The scale of challenges the world is facing demands a convergence of interdisciplinary ideas,” Dionne said. “Shared facilities can serve as a ‘watering hole’ where users not only benefit from the tools available but have opportunities to dynamically collaborate.”

    David Studdert, a professor of health policy and of law and acting vice provost for research, has been working alongside Dionne as the leader of the data-resources arm of the Shared Research Facilities initiative. “We’re looking at the full life cycle of a research project,” said Studdert, “from the time data comes in the door or is generated, through computation and storage, all the way through to archiving and efficiently sharing the data with collaborators around the world.”

    Studdert said that the newly announced investments respond to the paramount needs identified through a faculty survey and about 18 months of discussions with Stanford community users.

    “If you work with data, as thousands of researchers on campus do every day, you care about data acquisition, computation, and storage,” he added. “But you also want access to technical expertise and support, as well as efficient ways to obtain, move, share, and archive research data. The new investments in shared data resources are directed at these key areas.”

    Advancing research

    Georgios “Yiorgo” Skiniotis is one of many faculty whose research is poised to potentially benefit from enhanced investment in shared research platforms at Stanford. When Skiniotis joined Stanford in 2017, part of his recruitment included a commitment to building a cutting-edge platform for cryo-electron microscopy (cryo-EM). This resource soon evolved to be a service center for the university, now known as the Stanford cryo-Electron Microscopy center (cEMc) for which Skiniotis serves as the scientific director.

    2
    Stanford cryo-Electron Microscope. Credit: Stanford University/The DOE’s SLAC National Accelerator Laboratory.

    Cryo-EM is a groundbreaking microscopy technique that involves flash-freezing biomolecules or cells and using a beam of electrons to visualize their structure. “It had become clear that cryo-EM was going to be the next big thing, and its use has indeed exploded just in the last several years,” said Skiniotis, who is a professor of molecular & cellular physiology, of structural biology, and of photon science.

    His group uses cEMc to study the structure and function of G protein coupled receptors, the largest family of cell surface receptors in humans that represent outstanding drug targets for countless diseases. Improved understanding of this crucial class of receptors promises to lead to the development of highly efficacious drugs with minimal side effects.

    Thanks to its suite of sophisticated instrumentation and specialized staff trained to assist investigators with using the equipment, the cEMc has evolved into a shared facility supporting a community of researchers not just in biology, but also engineering, materials science, and myriad other fields. “The facility allows for the cross-fertilization of different disciplines, and that leads to innovation,” said Skiniotis. In the years ahead, maintaining the facility’s edge will require continued investment from the university.

    Another proponent of a shared research platform at Stanford is Srabanti Chowdhury, an associate professor of electrical engineering and a senior fellow at Stanford’s Precourt Institute for Energy. Her lab focuses on energy-efficient, compact system architectures for electronics.

    “We are in an era where we are extremely hungry for energy efficiency because our dependency on electronics is growing and shows no signs of saturation,” Chowdhury said. “The only way we can think about a roadmap forward is by developing electronics that are ultra-efficient in both energy and size and highly versatile.”

    Chowdhury and colleagues do much of their experimental work involving the fabrication and testing of gallium nitride semiconductors at the Stanford Nanofabrication Facility (SNF) and the Stanford Nano Shared Facilities (SNSF). Their research relies on custom-made and highly precise tools. “It is impossible for any single researcher to maintain these expensive tools by themselves,” said Chowdhury. “That is why a shared concept is so extremely important – it allows us to create a hub of excellence at Stanford.”
    ===
    Moving into the data vanguard

    Nigam Shah, a professor of medicine (biomedical informatics) and of biomedical data science, expects to benefit from the new investments to Stanford’s shared data resources. Shah’s research aims to leverage the tremendous amounts of data collected across millions of patients’ electronic health records (EHRs) to help guide better medical decisions.

    “The crux of the idea is, can we learn to treat the next patient better based on all the previous patients we’ve seen?” Shah said.

    One particular project involves pairing imaging data with EHRs to improve predictions of long-term complications of pulmonary embolisms, a common and serious medical condition where a blood clot lodges in the lungs. In collaboration with the Center for Artificial Intelligence in Medicine & Imaging (AIMI), which Shah co-directs, the effort trains algorithms to parse and analyze huge volumes of data. For their massive computing time needs, which cannot be met on campus, Shah and colleagues have had to turn to costly commercial cloud services. “Having a community-shared resource that is university-sponsored and is our hardware, where we’d not be running the meter by the minute, so to speak, to perform this research would be of tremendous value,” said Shah.

    Russell Poldrack, the Albert Ray Lang Professor of Psychology, hopes the enhancements to Stanford’s shared data resources will help reduce his team’s dependence on external sources for its computational needs. Poldrack’s research centers on understanding human behavior by using functional magnetic resonance imaging (fMRI) to decipher the brain’s activity patterns. Great quantities of data are generated in the process, which are then compared to data sets from other institutions to generate insights about the human mind. Both are very computationally intensive tasks.

    “Stanford is one of the leading institutions in the world for all sorts of computational science, so we should have world-leading computing infrastructure,” Poldrack said. “This new investment in shared data resources will help get us there.”

    Dionne hopes that the Shared Research Platforms initiative will be an asset for every researcher on campus and help their science flourish.

    “With the infrastructure we’re building in shared instrumentation and data resources,” she said, “we are catalyzing discovery and accelerating solutions.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 10:04 am on June 5, 2022 Permalink | Reply
    Tags: "Experts chip away at corrosion for the future of fusion", A promising strategy for producing tritium in a fusion reactor involves channeling liquid lead-lithium through the reactor “blanket”., , , Material Sciences, , , These isotopes are heated to Sun-like temperatures in a plasma where they collide to form helium and a neutron releasing energy in the form of kinetic energy., Tritium-a heavy hydrogen isotope that-along with its lighter cousin deuterium will serve as fuel for tomorrow’s fusion reactors.   

    From The DOE’s Oak Ridge National Laboratory: “Experts chip away at corrosion for the future of fusion” 

    From The DOE’s Oak Ridge National Laboratory

    June 3, 2022

    Lynne K Degitz
    degitzlk@ornl.gov
    865.576.2244

    1
    This steel specimen was used in corrosion studies. Credit: ORNL.

    2
    Bruce Pint and Marie Romedenne review experiment results. Credit: ORNL.

    Practical fusion energy is not just a dream at the Department of Energy’s Oak Ridge National Laboratory. Experts in fusion and material science are working together to develop solutions that will make a fusion pilot plant — and ultimately carbon-free, abundant fusion electricity — possible.

    As head of the lab’s Fusion Nuclear Science, Technology and Engineering Section, Chuck Kessel is familiar with the materials challenges that must be addressed to build a power plant. Kessel needed to look no further than Bruce Pint, head of ORNL’s Corrosion Science and Technology Group, for a collaborator.

    Pint has been studying corrosion-resistant, high-temperature materials for power generation applications for decades. His work has focused mostly on gas-metal or alloy corrosion and oxidation for coal, gas and nuclear power plants. Examining corrosive liquids in the context of fusion energy represents a different and tougher challenge.

    “It’s a little bit of science and a little bit of art that goes into the whole thing,” Pint said.

    One critical challenge for fusion is how to produce and recover tritium-a heavy hydrogen isotope that-along with its lighter cousin deuterium will serve as fuel for tomorrow’s fusion reactors.

    In a fusion reaction, these isotopes are heated to Sun-like temperatures in a plasma where they collide to form helium and a neutron releasing energy in the form of kinetic energy. By directing those speeding neutrons at the more common metal lithium, scientists can produce tritium within the reactor itself.

    A promising strategy for producing tritium in a fusion reactor involves channeling liquid lead-lithium through the reactor “blanket” — the inner walls that are made of specialized steel with silicon carbide flow channel inserts. However, there’s a catch: The ongoing flow of lead-lithium will gradually eat away at the steel. Minimizing that corrosion is a crucial step for a viable fusion power plant.

    “This type of blanket, with a liquid breeder flowing through it and corroding these materials, is fundamentally limited by this corrosion mechanism,” Kessel said.

    Marie Romedenne, who studied liquid metals for her doctorate and joined ORNL in 2019, is helping Pint and learning more about the ORNL liquid metal experimental methods that have been used since the 1950s.

    Many factors contribute to corrosion rates, including the composition of the exposed materials; how long it is exposed; how fast the liquid flows; the strong magnetic fields used to control and confine the plasma; the temperature; and impurities in the system. This corrosion challenge gave Pint and Romedenne the chance to chart out several experiments designed to detangle these factors while edging closer to the conditions of an actual fusion reactor.

    The team built a series of flow loops that tested materials under various conditions, including temperatures up to 700 degrees Celsius. Inside the loop, the scientists inserted specimens of a steel similar to what would be used for components in a fusion device, plus specimens of silicon carbide. According to current fusion designs, the silicon carbide reduces the pressure drop in the lead-lithium flow by electrically isolating the fluid from the steel walls. This approach supports the three materials coexisting and interacting, with the lead-lithium mediating between the steel and silicon carbide.

    After each 1,000-hour experiment, the specimens were tested to see if they had become brittle and how much mass had been lost to dissolution in the liquid lead lithium or, alternately, added by newly formed compounds.

    In the first experiment, Pint and Romedenne found that iron and chromium from the steel were dissolving in the liquid, which then reacted with the silicon carbide samples to form intermetallic compounds, silicides, and iron and chromium carbides. As these newly formed compounds flowed through the loop, they accumulated on the silicon carbide samples in the cooler end of the loop, resulting in a relatively thick layer.

    “It was actually pretty spectacular — a couple hundred microns thick,” Pint said. “I thought it might react a little bit. I didn’t expect it to react that much.”

    Pint and Romedenne also discovered that lowering the loop’s high temperature from 700 to 650 degrees Celsius resulted in a much slower buildup of the newly formed compounds.

    “If you just have silicon carbide and you don’t have a source of iron and chromium to put into the liquid, you won’t see this reaction,” Pint said. “No one had put all the pieces together before.”

    As iron and chromium reacted with the silicon carbide, the lead-lithium dramatically corroded the steel specimens. “They were barely there after the test was over,” he said.

    In the second experiment, the team coated the steel with a thin layer of aluminum to protect it from the corrosive liquid, the first time this has been done in a flowing experiment. The results, Pint said, were encouraging.

    “Corrosion is still happening, even when we tried to button up everything as much as possible,” Pint said. “But we got things down to a more manageable level. None of our coated steel specimens were degraded significantly.”

    In upcoming experiments, Pint and Romedenne plan to use a thinner layer of aluminum to minimize how much of that element ends up in the system. They also plan to double the length of experiments to 2,000 hours to better study the growth of the reactant layer on the cold side of the loop.

    To venture beyond the limits of their experimental loops, Romedenne is using models and simulations to predict the corrosion lifetimes of fusion materials at industrial durations — 50,000 hours or more. But continued experiments and new testing environments are needed to validate and improve these models.

    Kessel is laying the groundwork now for development of an advanced flow loop, which would feature magnets to help measure the impact of magnetic fields on corrosion rates.

    “We want to create as prototypical an environment as possible to allow us to identify, demonstrate and optimize actual solutions for a fusion pilot plant,” Kessel said.

    This research was funded by the DOE Fusion Energy Sciences program.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    Established in 1942, The DOE’s Oak Ridge National Laboratory is the largest science and energy national laboratory in the Department of Energy system (by size) and third largest by annual budget. It is located in the Roane County section of Oak Ridge, Tennessee. Its scientific programs focus on materials, neutron science, energy, high-performance computing, systems biology and national security, sometimes in partnership with the state of Tennessee, universities and other industries.

    ORNL has several of the world’s top supercomputers, including Summit, ranked by the TOP500 as Earth’s second-most powerful.

    ORNL OLCF IBM Q AC922 SUMMIT supercomputer, was No.1 on the TOP500..

    The lab is a leading neutron and nuclear power research facility that includes the Spallation Neutron Source and High Flux Isotope Reactor.

    ORNL Spallation Neutron Source annotated.

    It hosts the Center for Nanophase Materials Sciences, the BioEnergy Science Center, and the Consortium for Advanced Simulation of Light Water Nuclear Reactors.

    ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.

    Areas of research

    ORNL conducts research and development activities that span a wide range of scientific disciplines. Many research areas have a significant overlap with each other; researchers often work in two or more of the fields listed here. The laboratory’s major research areas are described briefly below.

    Chemical sciences – ORNL conducts both fundamental and applied research in a number of areas, including catalysis, surface science and interfacial chemistry; molecular transformations and fuel chemistry; heavy element chemistry and radioactive materials characterization; aqueous solution chemistry and geochemistry; mass spectrometry and laser spectroscopy; separations chemistry; materials chemistry including synthesis and characterization of polymers and other soft materials; chemical biosciences; and neutron science.
    Electron microscopy – ORNL’s electron microscopy program investigates key issues in condensed matter, materials, chemical and nanosciences.
    Nuclear medicine – The laboratory’s nuclear medicine research is focused on the development of improved reactor production and processing methods to provide medical radioisotopes, the development of new radionuclide generator systems, the design and evaluation of new radiopharmaceuticals for applications in nuclear medicine and oncology.
    Physics – Physics research at ORNL is focused primarily on studies of the fundamental properties of matter at the atomic, nuclear, and subnuclear levels and the development of experimental devices in support of these studies.
    Population – ORNL provides federal, state and international organizations with a gridded population database, called Landscan, for estimating ambient population. LandScan is a raster image, or grid, of population counts, which provides human population estimates every 30 x 30 arc seconds, which translates roughly to population estimates for 1 kilometer square windows or grid cells at the equator, with cell width decreasing at higher latitudes. Though many population datasets exist, LandScan is the best spatial population dataset, which also covers the globe. Updated annually (although data releases are generally one year behind the current year) offers continuous, updated values of population, based on the most recent information. Landscan data are accessible through GIS applications and a USAID public domain application called Population Explorer.

     
  • richardmitnick 8:01 pm on June 1, 2022 Permalink | Reply
    Tags: "Research paves the way for stronger alloys", , , Material Sciences, , , Scientists used high-speed synchrotron X-ray tomography to “photograph” the changing crystal structures in molten alloys as they cool.,   

    From The University of Birmingham (UK) : “Research paves the way for stronger alloys” 

    From The University of Birmingham (UK)

    6.1.22
    Dr Biao Cai

    Research shows how microscopic crystals grow in molten metals, and paves the way for improving the tensile strength of alloys used in casting and welding.

    1
    Casting molten metal.

    Scientists from the University of Birmingham have described how microscopic crystals grow and change shape in molten metals as they cool, in research that is breaking new ground in alloy research and paves the way for improving the tensile strength of alloys used in casting and welding.

    Their research, published today in Acta Materialia, used high-speed synchrotron X-ray tomography to ‘photograph’ the changing crystal structures in molten alloys as they cool.

    The study shows that as aluminium-copper alloy cools the solidification process starts with the formation of faceted dendrites, which are formed by a layer-by-layer stacking of basic units that are just micrometres in size. These units start out as L shaped and stack on top of each other like building blocks, but as they cool they change shape and transform into a U shape and finally a hollowed out cube, while some of them stacked together to form beautiful dendrites.

    The study was led by Dr Biao Cai, from the University of Birmingham’s School of Metallurgy and Materials, whose research has already demonstrated how magnetic fields influence crystal growth.

    Dr Cai commented: “The findings from this new study provide a real insight into what happens at a micro level when an alloy cools, and show the shape of the basic building blocks of crystals in molten alloys. Crystal shape determines the strength of the final alloy, and if we can make alloys with finer crystals, we can make stronger alloys.”

    He added: “The results are in direct contrast with the classical view of dendrite formation in cooling alloys, and open the door to developing new approaches that can predict and control the formation intermetallic crystals.”

    Dr Cai’s previous research has resulted in a novel technology to improve the quality of recycled aluminium by removing iron from molten alloy in a simple, inexpensive process that uses magnets and a temperature gradient.

    The technology is the subject of a patent application filed by University of Birmingham Enterprise. It has also attracted funding from the Midlands Innovation Commercialisation of Research Accelerator and the EPSRC-Impact Acceleration Account, which has enabled Biao to build a large-scale prototype that runs to 1000oC, and uses a 1 Tesla magnet.

    The prototype is currently being tested using ingots provided by the Tandom Metallurgical Group, which operates an international trading operation from its base in Congleton, Cheshire, where they produce aluminium alloys, master alloys and recycle aluminium products, scraps and drosses.

    Dr Cai expects to publish the results of the testing and showcase the demonstrator to industry before the end of the year, with the aim of finding industrial collaborators willing to run tests in foundry settings in combination with existing production lines.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Birmingham (UK) has been challenging and developing great minds for more than a century. Characterized by a tradition of innovation, research at the University has broken new ground, pushed forward the boundaries of knowledge and made an impact on people’s lives. We continue this tradition today and have ambitions for a future that will embed our work and recognition of the Birmingham name on the international stage.

    The University of Birmingham is a public research university located in Edgbaston, Birmingham, United Kingdom. It received its royal charter in 1900 as a successor to Queen’s College, Birmingham (founded in 1825 as the Birmingham School of Medicine and Surgery), and Mason Science College (established in 1875 by Sir Josiah Mason), making it the first English civic or ‘red brick’ university to receive its own royal charter. It is a founding member of both the Russell Group (UK) of British research universities and the international network of research universities, Universitas 21.

    The student population includes 23,155 undergraduate and 12,605 postgraduate students, which is the 7th largest in the UK (out of 169). The annual income of the institution for 2019–20 was £737.3 million of which £140.4 million was from research grants and contracts, with an expenditure of £667.4 million.

    The university is home to the Barber Institute of Fine Arts, housing works by Van Gogh, Picasso and Monet; the Shakespeare Institute; the Cadbury Research Library, home to the Mingana Collection of Middle Eastern manuscripts; the Lapworth Museum of Geology; and the 100-metre Joseph Chamberlain Memorial Clock Tower, which is a prominent landmark visible from many parts of the city. Academics and alumni of the university include former British Prime Ministers Neville Chamberlain and Stanley Baldwin, the British composer Sir Edward Elgar and eleven Nobel laureates.

    Scientific discoveries and inventions

    The university has been involved in many scientific breakthroughs and inventions. From 1925 until 1948, Sir Norman Haworth was Professor and Director of the Department of Chemistry. He was appointed Dean of the Faculty of Science and acted as Vice-Principal from 1947 until 1948. His research focused predominantly on carbohydrate chemistry in which he confirmed a number of structures of optically active sugars. By 1928, he had deduced and confirmed the structures of maltose, cellobiose, lactose, gentiobiose, melibiose, gentianose, raffinose, as well as the glucoside ring tautomeric structure of aldose sugars. His research helped to define the basic features of the starch, cellulose, glycogen, inulin and xylan molecules. He also contributed towards solving the problems with bacterial polysaccharides. He was a recipient of the Nobel Prize in Chemistry in 1937.

    The cavity magnetron was developed in the Department of Physics by Sir John Randall, Harry Boot and James Sayers. This was vital to the Allied victory in World War II. In 1940, the Frisch–Peierls memorandum, a document which demonstrated that the atomic bomb was more than simply theoretically possible, was written in the Physics Department by Sir Rudolf Peierls and Otto Frisch. The university also hosted early work on gaseous diffusion in the Chemistry department when it was located in the Hills building.

    Physicist Sir Mark Oliphant made a proposal for the construction of a proton-synchrotron in 1943, however he made no assertion that the machine would work. In 1945, phase stability was discovered; consequently, the proposal was revived, and construction of a machine that could surpass proton energies of 1 GeV began at the university. However, because of lack of funds, the machine did not start until 1953. The DOE’s Brookhaven National Laboratory (US) managed to beat them; they started their Cosmotron in 1952, and had it entirely working in 1953, before the University of Birmingham.

    In 1947, Sir Peter Medawar was appointed Mason Professor of Zoology at the university. His work involved investigating the phenomenon of tolerance and transplantation immunity. He collaborated with Rupert E. Billingham and they did research on problems of pigmentation and skin grafting in cattle. They used skin grafting to differentiate between monozygotic and dizygotic twins in cattle. Taking the earlier research of R. D. Owen into consideration, they concluded that actively acquired tolerance of homografts could be artificially reproduced. For this research, Medawar was elected a Fellow of the Royal Society. He left Birmingham in 1951 and joined the faculty at University College London (UK), where he continued his research on transplantation immunity. He was a recipient of the Nobel Prize in Physiology or Medicine in 1960.

     
  • richardmitnick 1:41 pm on May 28, 2022 Permalink | Reply
    Tags: "New route to build materials out of tiny particles", , , Material Sciences,   

    From The Technical University of Delft [Technische Universiteit Delft] (NL): “New route to build materials out of tiny particles” 

    From The Technical University of Delft [Technische Universiteit Delft] (NL)

    27 May 2022

    Researcher Laura Rossi and her group at TU Delft have found a new way to build synthetic materials out of tiny glass particles – so-called colloids. Together with their colleagues from Queen’s University and the University of Amsterdam, they showed that they can simply use the shape of these colloids to make interesting building blocks for new materials, regardless of other properties of the colloidal particles. Rossi: “This is striking, because it opens up a completely new way to think about materials design.” Their work is published in Science Advances today.

    1
    Four cubic colloids made from glass.

    Colloids are tiny particles, a few nanometres to a few microns in size. They consist of a collection of molecules and can have different properties depending on the material they are made of. “Under certain circumstances colloids can behave like atoms and molecules, but their interactions are less strong,” Rossi explains. “That makes them promising building blocks for new materials, for example for interactive materials that can adapt their properties to their environment.”

    New way of materials design

    If left alone, the cube-shaped colloids from this study, which are made from glass, will assemble themselves into simple structures like distorted cubic and hexagonal lattices. But instead of going immediately from the building block to the final structure, the researchers took small groups of colloids and combined them into bigger building blocks. When they assembled these clusters of colloids, they ended up with a different final structure with different material properties than the self-assembled structure.

    “From a chemistry point of view, we always focus on how we can produce a certain type of colloid,” Rossi says. “In this study, we’ve shifted our focus to: how can we use the colloids that are already available to make interesting building blocks?”

    A step forward

    According to Rossi and her collaborator Greg van Anders, one of the ultimate goals of their research community is to design complex colloidal structures on demand. Rossi: “What we found here is very important, because for possible applications, we need to have procedures that can be scaled up, which is something that will be hard to achieve with most currently available approaches.” “The basic ability to pre-assemble identical pieces from different building blocks, and have them make the same structure, or to take the same building block and pre-assemble different pieces that make different structures, are really the basic ‘chess moves’ for engineering complex structures,” adds Van Anders.

    Although Rossi studies the fundamental aspects rather than the applications of materials design, she can envision eventual applications for this specific work: “We found that the density of the structure that we prepared was much lower than the density of the structure you would obtain by using the starting building blocks. So you can think about strong but lightweight materials for transportation.”

    Teaming up

    After Rossi’s team built clusters of colloids in the lab, they relied on the team of Greg van Anders from Queen’s University to build the final structure out of pre-assembled clusters with a computer simulation. “With these kinds of projects, it’s great to be able to team up with others who can run simulations, not only to understand what’s happening in depth, but also to test how big the chance of a successful lab experiment will be,” Rossi explains. “And in this case, we got very convincing results that we were understanding the design process well and that the resulting material can be useful.”

    The next step will be to actually build the final structure made from the groups of colloids in the lab. “After seeing these results, I’m confident that it can be done,” says Rossi. “It would be great to have a physical version of this material and hold it in my hand.”

    Laura Rossi
    L.Rossi@tudelft.nl

    Greg van Anders
    gva@queensu.ca

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Technology [Technische Universiteit Delft] (NL), is the oldest and largest Dutch public technological university. It Delft University of Technology [Technische Universiteit Delft] (NL)is consistently ranked as the best university in the Netherlands. As of 2020, it is ranked by QS World University Rankings among the top 15 engineering and technology universities in the world.

    With eight faculties and numerous research institutes, it has more than 19,000 students (undergraduate and postgraduate), and employs more than 2,900 scientists and 2,100 support and management staff.

    The university was established on 8 January 1842 by William II of the Netherlands as a Royal Academy, with the primary purpose of training civil servants for work in the Dutch East Indies. The school expanded its research and education curriculum over time, becoming a polytechnic school in 1864 and an institute of technology (making it a full-fledged university) in 1905. It changed its name to Delft University of Technology in 1986.

    Dutch Nobel laureates Jacobus Henricus van ‘t Hoff, Heike Kamerlingh Onnes, and Simon van der Meer have been associated with TU Delft. TU Delft is a member of several university federations, including the IDEA League, CESAER, UNITECH International, and 4TU. 


    Research

    TU Delft has three officially recognized research institutes: Research Institute for the Built Environment; International Research Centre for Telecommunications-transmission and Radar; and Reactor Institute Delft. In addition to those three institutes, TU Delft hosts numerous smaller research institutes, including the Delft Institute of Microelectronics and Submicron Technology; Kavli Institute of Nanoscience; Materials innovation institute; Astrodynamics and Space Missions; Delft University Wind Energy Research Institute; TU Delft Safety and Security Institute; and the Delft Space Institute. Delft Institute of Applied Mathematics is also an important research institute which connects all engineering departments with respect to research and academia.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: