Tagged: Material Sciences Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:42 pm on January 22, 2022 Permalink | Reply
    Tags: "Advancing materials science with the help of biology and a dash of dish soap", , Bioscience, , , , Material Sciences, SACLA Free-Electron Laser at Riken [理研](JP), smSFX: serial femtosecond X-ray crystallography, The DOE's NERSC National Energy Research Scientific Computing Center (US), The University of Connecticut (US)   

    From DOE’s SLAC National Accelerator Laboratory (US): “Advancing materials science with the help of biology and a dash of dish soap” 

    From DOE’s SLAC National Accelerator Laboratory (US)

    January 19, 2022
    David Krause

    High-speed X-ray free-electron lasers have unlocked the crystal structures of small molecules relevant to chemistry and materials science, proving a new method that could advance semiconductor and solar cell development.

    Compounds that form tiny crystals hold secrets that could advance renewable energy generation and semiconductor development. Revealing the arrangement of their atoms has already allowed for breakthroughs in materials science and solar cells. However, existing techniques for determining these structures can damage sensitive microcrystals.

    Now scientists have a new tool in their tool belts: a system for investigating microcrystals by the thousands with ultrafast pulses from an X-ray free-electron laser (XFEL), which can collect structural information before damage sets in. This approach, developed over the past decade to study proteins and other large biological molecules at the Department of Energy’s SLAC National Accelerator Laboratory, has now been applied for the first time to small molecules that are of interest to chemistry and materials science.

    Researchers from The University of Connecticut (US), SLAC, DOE’s Lawrence Berkeley National Laboratory (US) and other institutions developed the new process, called small molecule serial femtosecond X-ray crystallography or smSFX, to determine the structures of three compounds that form microcrystal powders, including two that were previously unknown. The experiments took place at SLAC’s Linac Coherent Light Source (LCLS) XFEL [below] and the SACLA XFEL in Japan.

    SACLA Free-Electron Laser at Riken [理研](JP).

    The new approach is likely to have a big impact since it should be “broadly applicable across XFEL and synchrotron radiation facilities equipped for serial crystallography,” the research team wrote in a paper published today in Nature.

    This shows the experimental apparatus before the measurement. The orange yellow tape hanging off the clear injector pipe in the middle of the image marks the spot where the X-rays will meet the sample. Courtesy of Nate Hohman.

    Disentangling metal compounds

    Researchers used the method to determine the structures of two metal-organic materials, thiorene and tethrene, for the first time. Both are potential candidates for use in next-generation field effect transistors, energy storage devices, and solar cells and panels. Mapping thiorene and tethrene allowed researchers to better understand why some other metal-organic materials glow bright blue under ultraviolet light, which the scientists compared to Frodo’s magical sword, “Sting”, in The Lord of the Rings.

    “Determining the crystal structure of materials is the starting point to implementing them into devices and thinking about the engineering applications,” UConn researcher and paper co-author Elyse Schriber said.

    Yet many materials resist being formed into the large crystals needed for standard X-ray crystallography, said Nicholas Sauter, a computer scientist at Berkeley Lab. “Most substances instead form powders,” he said, “whose X-ray diffraction patterns are harder to disentangle.”

    Solving crystal structures with smSFX could accelerate modeling of other microcrystal structures and lead to discovery of new materials that are used for molecular machines, wear mechanisms in batteries, and fuels, LCLS Director Mike Dunne said: “It’s exciting research that takes LCLS in a new direction. This type of cross-over science, leveraging advances in bioscience into other areas such as advanced materials science, is a great example of how our DOE user facilities can bring together different areas of the research community.”

    Each new crystal structure is uploaded to a worldwide crystallographic database hosted by The University of Cambridge (UK), Schriber said, where scientists can use it to test theories and help find compounds that are useful for a specific task. In other crystal mapping methods, researchers often cherry-pick the best crystals in a set to model, she said, whereas with smSFX, “we are able to get a more holistic view of the crystals over the entire set, so it’s a better model of what a material looks like.”

    Duck sauce

    Artist’s rendition of the X-ray beam illuminating a solution of powdered metal-organic materials called chalcogenolates. Credit: Ella Maru Studios.

    The experiment did not go seamlessly, but a little ingenuity saved the day. For XFEL serial crystallography experiments, microcrystals need to be delivered to the X-ray beam through a liquid sample delivery system. The researchers tried to deliver the microcrystals using methanol but found it to be incompatible with the epoxy on a nozzle through which the liquid sample flowed. In some cases, it melted the nozzle.

    To add to their stress, they knew that they could not deliver their microcrystals using water because their crystals had waxy organic components that made them hydrophobic. Water would clog the system and stick crystals to the sides of delivery system piping.

    In a pickle with little beam time to spare, the team remembered that dish detergent had been used for remediation of oil spills. They quickly searched and found a bottle of detergent, mixed it with water, dubbed the combination “duck sauce,” and sent the mixture through the delivery system.

    “I never in my life thought I’d be singing the praises of dish soap, but it is a fantastic suspender for our materials,” Schriber said. “If we had not used the detergent-water mixture we would not have been able to complete our experiment at all.”

    The future of fragile crystals

    As for what’s next, researchers want to map the crystal structures of a large variety of materials because “any one of them could have an incredible property that we don’t know about,” Schriber said.

    “Having a structure all of a sudden opens up the opportunity to predict many other material properties,” she said.

    The research team also says that the XFEL-smSFX process could become faster, leading to the discovery of a vast number of unknown crystal structures, and they’re working on streamlining the method.

    In addition to LCLS, parts of this research were carried out at the SACLA XFEL in Japan, The DOE’s NERSC National Energy Research Scientific Computing Center (US) and LBNL Molecular Foundry(US) and supported by the DOE Office of Science. NERSC and LCLS are DOE Office of Science user facilities.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SLAC National Accelerator Laboratory (US) originally named Stanford Linear Accelerator Center, is a Department of Energy (US) National Laboratory operated by Stanford University (US) under the programmatic direction of the Department of Energy (US) Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector.

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.


    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.

    European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire](CH) LEP Collider

    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory(US)Large Detector


    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.


    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory(US) BaBar

    SLAC National Accelerator Laboratory(US)/SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration(US)/Fermi Large Area Telescope

    National Aeronautics and Space Administration(US)/Fermi Gamma Ray Space Telescope.



    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.


    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory(US) FACET

    SLAC National Accelerator Laboratory(US) FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator Laboratory(US) Next Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator Laboratory(US)/LCLS

    SLAC National Accelerator Laboratory(US)/LCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.Credit: SLAC National Accelerator Laboratory. \

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University (US)

    Leland and Jane Stanford founded Stanford University (US) to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(US)(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.


    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University(US), the University of Texas System(US), and Yale University(US) had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory(US)
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley(US) and UC San Francisco(US), Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and UC Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.


    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.


    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

  • richardmitnick 3:57 pm on January 22, 2022 Permalink | Reply
    Tags: "Impossible material made possible inside a graphene sandwich", , Atoms bind together by sharing electrons., , In two-dimensional (2D) materials such as graphene atoms join along a plane to form structures just one atom thick which leads to fascinating properties determined by quantum mechanics., Material Sciences, , The University of Antwerp [Universiteit Antwerpen](BE),   

    From The University of Vienna [Universität Wien] (AT): “Impossible material made possible inside a graphene sandwich” 

    From The University of Vienna [Universität Wien] (AT)

    20. January 2022

    Dr. Kimmo Mustonen
    Physik Nanostrukturierter Materialien
    Universität Wien
    1090 – Wien, Boltzmanngasse 5

    Mag. Alexandra Frey
    Pressebüro und stv. Pressesprecherin
    Universität Wien
    1010 – Wien, Universitätsring 1
    +43-1-4277-175 33
    +43-664-60277-175 33

    A single layer of cuprous iodide encapsulated in between two sheets of graphene (gray atoms). Credit: © 2021 Kimmo Mustonen, Christoph Hofer, and Viera Skákalov.

    New results in Advanced Materials

    Atoms bind together by sharing electrons. The way this happens depends on the atom types but also on conditions such as temperature and pressure. In two-dimensional (2D) materials such as graphene atoms join along a plane to form structures just one atom thick which leads to fascinating properties determined by quantum mechanics. Researchers at the University of Vienna in collaboration with The Eberhard Karl University of Tübingen [Eberhard Karls Universität Tübingen](DE), and The University of Antwerp [Universiteit Antwerpen](BE) and CY Cergy Paris, together with Danubia NanoTech, have produced a new 2D material made of copper and iodine atoms sandwiched between two graphene sheets. The results were published in the journal Advanced Materials.

    The design of new materials allows for either improved efficiency of known applications or totally new applications that were out of reach with the previously existing materials. Indeed, tens of thousands of conventional materials such as metals and their alloys have been identified over the last hundred years. A similar number of possible 2D materials have been predicted to exist, but as of now, only a fraction of them have been produced in experiments. One reason for this is the instability of many of these materials in laboratory conditions.

    In the recent study, the researchers synthesized 2D cuprous iodide that was stabilized in a graphene sandwich, as the first example of a material that does not otherwise exist in normal laboratory conditions. The synthesis utilizes the large interlayer spacing of oxidized graphene multilayers, which allows iodine and copper atoms to diffuse into the gap and to grow the new material. The graphene layers here have an important role imposing a high pressure on the sandwiched material that thus becomes stabilized. The resulting sandwich structure is shown in the illustration.

    “As so often, when we first saw the new material in our microscopy images, it was a surprise”, says Kimmo Mustonen, the lead author of the study. “It took us quite some time to figure out what the structure precisely was. This enabled us together with Danubia NanoTech company, headed by Viera Skákalová, to design a chemical process for producing it in large scale”, he continues. Understanding the structure was a joint effort of scientists from the Universities of Vienna, Tübingen, Antwerp and CY Cergy Paris. “We had to use several electron microscopy techniques to make sure that we were really seeing a monolayer of copper and iodine and to extract the exact atom positions in 3D, including the latest methods we have recently developed”, the second lead author Christoph Hofer adds.

    Following the 2D copper iodide, the researchers have already expanded the synthesis method to produce other new 2D materials. “The method seems to be truly universal, providing access to dozens of new 2D materials. These are truly exciting times!”, Kimmo Mustonen concludes.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Vienna [Universität Wien](AT) is a public university located in Vienna, Austria.It was founded by Duke Rudolph IV in 1365 and is the oldest university in the German-speaking world. With its long and rich history, the University of Vienna has developed into one of the largest universities in Europe, and also one of the most renowned, especially in the Humanities. It is associated with 21 Nobel prize winners and has been the academic home to many scholars of historical as well as of academic importance.

    From the Middle Ages to the Enlightenment

    The University was founded on 12 March 1365 by Rudolf IV, Duke of Austria, and his two brothers, Dukes Albert III and Leopold III, hence the additional name “Alma Mater Rudolphina”. After the Charles University in Prague [Univerzita Karlova](CZ) and Jagiellonian University [Uniwersytet Jagielloński](PL), the University of Vienna is the third oldest university in Central Europe and the oldest university in the contemporary German-speaking world; it remains a question of definition as the Charles University in Prague [Univerzita Karlova](CZ) was German-speaking when founded, too.

    The University of Vienna was modelled after the University of Paris [Université de Paris](FR). However, Pope Urban V did not ratify the deed of foundation that had been sanctioned by Rudolf IV, specifically in relation to the department of theology. This was presumably due to pressure exerted by Charles IV, Holy Roman Emperor, who wished to avoid competition for the Charles University in Prague. Approval was finally received from the Pope in 1384 and the University of Vienna was granted the status of a full university, including the Faculty of Catholic Theology. The first university building opened in 1385. It grew into the biggest university of the Holy Roman Empire, and during the advent of Humanism in the mid-15th century was home to more than 6,000 students.

    In its early years, the university had a partly hierarchical, partly cooperative structure, in which the Rector was at the top, while the students had little say and were settled at the bottom. The Magister and Doctors constituted the four faculties and elected the academic officials from amidst their ranks. The students, but also all other Supposita (university members), were divided into four Academic Nations. Their elected board members, mostly graduates themselves, had the right to elect the Rector. He presided over the Consistory which included procurators of each of the nations and the faculty deans, as well as over the University Assembly, in which all university teachers participated. Complaints or appeals against decisions of faculty by the students had to be brought forward by a Magister or Doctor.

    Being considered a Papal Institution, the university suffered quite a setback during the Reformation. In addition, the first Siege of Vienna by Ottoman forces had devastating effects on the city, leading to a sharp decline, with only 30 students enrolled at the lowest point. For King Ferdinand I, this meant that the university should be tied to the church to an even stronger degree, and in 1551 he installed the Jesuit Order there. With the enacting of the Sanctio Pragmatica edict by emperor Ferdinand II in 1623, the Jesuits took over teaching at the theological and philosophical faculty, and thus the university became a stronghold of Catholicism for over 150 years. It was only in the Mid-18th century that Empress Maria Theresa forced the university back under control of the monarchy. Her successor Joseph II helped in the further reform of the university, allowing both Protestants and Jews to enroll as well as introducing German as the compulsory language of instruction.

    From the 19th Century Onwards

    Big changes were instituted in the wake of the Revolution in 1848, with the Philosophical Faculty being upgraded into equal status as Theology, Law and Medicine. Led by the reforms of Leopold, Count von Thun und Hohenstein, the university was able to achieve a larger degree of academic freedom. The current main building on the Ringstraße was built between 1877 and 1884 by Heinrich von Ferstel. The previous main building was located close to the Stuben Gate (Stubentor) on Iganz Seipel Square, current home of the old University Church (Universitätskirche) and the Austrian Academy of Sciences [Österreichische Akademie der Wissenschaften(AT). Women were admitted as full students from 1897, although their studies were limited to Philosophy. The remaining departments gradually followed suit, although with considerable delay: Medicine in 1900, Law in 1919, Protestant Theology in 1923 and finally Roman Catholic Theology in 1946. Ten years after the admission of the first female students, Elise Richter became the first woman to receive habilitation, becoming professor of Romance Languages in 1907; she was also the first female distinguished professor.

    In the late 1920s, the university was in steady turmoil because of anti-democratic and anti-Semitic activity by parts of the student body. Professor Moritz Schlick was killed by a former student while ascending the steps of the University for a class. His murderer was later released by the Nazi Regime. Following the Anschluss, the annexation of Austria into Greater Germany by the Nazi regime, in 1938 the University of Vienna was reformed under political aspects and a huge number of teachers and students were dismissed for political and “racial” reasons. In April 1945, the then 22-year-old Kurt Schubert, later acknowledged doyen of Judaic Studies at the University of Vienna, was permitted by the Soviet occupation forces to open the university again for teaching, which is why he is regarded as the unofficial first rector in the post-war period. On 25 April 1945, however, the constitutional lawyer Ludwig Adamovich senior was elected as official rector of the University of Vienna. A large degree of participation by students and university staff was realized in 1975, however the University Reforms of 1993 and 2002 largely re-established the professors as the main decision makers. However, also as part of the last reform, the university after more than 250 years being largely under governmental control, finally regained its full legal capacity. The number of faculties and centers was increased to 18, and the whole of the medical faculty separated into the new Medical University of Vienna [Medizinische Universität Wien](AT).

  • richardmitnick 5:22 pm on January 19, 2022 Permalink | Reply
    Tags: "Crystallography for the Misfit Crystals", , , , , , Francis Crick-who famously co-discovered the shape of DNA- said: “If you want to understand function study structure.” This remains a tenet of biology; chemistry and materials science., , Linac Coherent Light Source [LCLS] at DOE's SLAC National Accelerator Laboratory (US)., Material Sciences, Molecular Foundry at Berkeley Lab, National Energy Research Scientific Computing Center [NERSC] at Berkeley Lab, Serial femtosecond X-ray crystallography process, smSFX uses an X-ray free electron laser (XFEL)., smSFX: small-molecule serial femtosecond X-ray crystallography, SPring-8 Angstrom Compact free electron LAser (SACLA) at Riken [理研](JP)., X-ray crystallography is most straightforward when the material can be grown into a large single crystal., X-ray crystallography: a technique that maps the density of electrons in a molecule based on how beams of X-ray radiation diffract through the spaces between atoms in the sample.   

    From DOE’s Lawrence Berkeley National Laboratory (US): “Crystallography for the Misfit Crystals” 

    From DOE’s Lawrence Berkeley National Laboratory (US)

    January 19, 2022
    Aliyah Kovner

    An illustration of the serial femtosecond X-ray crystallography process, showing a jet of liquid solvent combined with the sample particles being blasted with the laser beam to capture diffraction data. This action is completed in just a few femtoseconds – that is quadrillionths of a second, or a few millionths of one billionth of a second. Credit: Ella Maru Studio.

    Francis Crick-who famously co-discovered the shape of DNA-once said: “If you want to understand function study structure.” Many decades later, this remains a tenet of biology, chemistry, and materials science.

    A key breakthrough in the quest for DNA’s structure came from X-ray crystallography, a technique that maps the density of electrons in a molecule based on how beams of X-ray radiation diffract through the spaces between atoms in the sample. The diffraction patterns generated by crystallography can then be used to deduce the overall molecular structure. Thanks to a steady stream of advances over the decades, X-ray crystallography is now exponentially more powerful than it was in Crick’s time, and can even reveal the placement of individual atoms.

    Yet the process is not easy. As the name implies, it requires crystals – specifically, purified samples of the molecule of interest, coaxed into a crystal form. And not all molecules form picture-ready crystals.

    “X-ray crystallography is most straightforward when the material can be grown into a large single crystal,” said Nicholas Sauter, a computer senior scientist at Lawrence Berkeley National Laboratory (Berkeley Lab), in the Molecular Biophysics and Integrated Bioimaging (MBIB) division. “However, most substances instead form powders composed of small granules, whose X-ray diffraction patterns are harder to disentangle.”

    Sauter is co-leading a team working to provide a better way for scientists to study the structures of the many materials that don’t form tidy single crystals, such as solar absorbers and metal-organic frameworks: two diverse material groups with huge potential for combating climate change and producing renewable energy.

    Their new technique, called small-molecule serial femtosecond X-ray crystallography, or smSFX, supercharges traditional crystallography with the addition of custom-built image processing algorithms and an X-ray free electron laser (XFEL). The XFEL, built from a fusion of particle accelerator and laser-based physics, can point X-ray beams that are much more powerful, focused, and speedy than other X-ray sources for crystallography. The entire process, from X-ray pulse to diffraction image, is completed in a few quadrillionths of a second.

    “It’s diffraction before destruction,” said Daniel Paley, an MBIB project scientist and author on the team’s new paper, published today in Nature. “The idea is that the crystal is going to explode instantly when it’s hit by this beam of photons, but with a femtosecond pulse, you collect all the diffraction data before the damage occurs. It’s really cool.”

    Part of the XFEL where the sample is injected into the path of the X-ray beam. This XFEL facility, called the SPring-8 Angstrom Compact free electron LAser (SACLA) is in Japan. The team traveled there and performed their experiments in 2019. Credit: Nate Hohman/The University of Connecticut(US))

    SACLA Free-Electron – Laser Riken [理研](JP) Japan.

    Paley and co-leader Aaron Brewster, a research scientist in MBIB, developed the algorithms needed to convert XFEL data into high-quality diffraction patterns that can be analyzed to reveal the unit cell – the basic unit of a crystal that is repeated over and over in three dimensions – of each tiny crystalline grain within the sample.

    When you have a true powder, Paley explained, it’s like having a million crystals that are all jumbled together, full of imperfections, and scrambled in every possible orientation. Rather than diffracting the whole jumble together and getting a muddied readout of electron densities (which is what happens with existing powder diffraction techniques), smSFX is so precise that it can diffract individual granules, one at a time. “This gives it a special sharpening effect,” he said. “So that is actually the kind of secret sauce of this whole method. Normally you shoot all million at once, but now you shoot 10,000 all in sequence.”

    The cherry on top is that smSFX is performed without freezing the sample or exposing it to a vacuum – another benefit for the delicate materials studied by materials scientists. “No fancy vacuum chamber required,” said Sauter.

    (Left) The team, pictured in 2019, preparing for an XFEL session with their mascot. (Right) An image of the sample injection apparatus, full of a sample of mithrene, a metallic-organic material that glows blue when exposed to UV light. Credit: Nate Hohman/University of Connecticut.

    In the new study, the team demonstrated proof-of-principle for smSFX, then went one step further. They reported the previously unknown structures of two metal-organic materials known as chacogenolates. Nathan Hohman, a chemical physicist at University of Connecticut and the project’s third co-leader, studies chacogenolates for their semiconducting and light-interaction properties, which could make them ideal for next-generation transistors, photovoltaics (solar cells and panels), energy storage devices, and sensors.

    “Every single one of these is a special snowflake – growing them is really difficult,” said Hohman. With smSFX, he and graduate student Elyse Schriber were able to successfully diffract powder chacogenolates and examine the structures to learn why some of the silver-based materials glow bright blue under UV light, a phenomenon that the scientists affectionately compare to Frodo’s sword in The Lord of the Rings.

    “There is a huge array of fascinating physical and even chemical dynamics that occur at ultrafast timescales, and our experiment could help to connect the dots between a material’s structure and its function,” said Schriber, a Berkeley Lab affiliate and researcher in Hohman’s lab. “After further improvements are made to streamline the smSFX process, we can imagine programs to offer this technique to other researchers. These types of programs are integral for increasing access to light source facilities, especially for smaller universities and colleges.”

    An illustrated collage composed of all the diffraction data gathered at the SACLA. Credit: Nate Hohman/University of Connecticut.

    This work involved the use of the SACLA free-electron laser in Japan [above], the Linac Coherent Light Source at DOE’s SLAC National Accelerator Laboratory (US), and the National Energy Research Scientific Computing Center [below] and Molecular Foundry [below], two U.S. Department of Energy Office of Science user facilities located at Berkeley Lab.


    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    LBNL Molecular Foundry

    Bringing Science Solutions to the World

    In the world of science, Lawrence Berkeley National Laboratory (Berkeley Lab) (US) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences (US), one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering (US), and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California (US) and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley (US) physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.



    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California, Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded DOE’s Los Alamos Laboratory (US), and Robert Wilson founded Fermi National Accelerator Laboratory(US).


    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.


    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now Department of Energy (US). The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now the Lawrence Livermore National Laboratory (US)) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy (US), with management from the University of California (US). Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science (US):

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.


    DOE’s Lawrence Berkeley National Laboratory (US) Advanced Light Source .
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    The DOE Joint Genome Institute (US) supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory (US), DOE’s Oak Ridge National Laboratory (US)(ORNL), DOE’s Pacific Northwest National Laboratory (US) (PNNL), and the HudsonAlpha Institute for Biotechnology (US). The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    The LBNL Molecular Foundry (US) [above] is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center (US) is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center(US) at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center(US) at DOE’s Lawrence Berkeley National Laboratory(US), named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network (US) is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (US) (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory (US), the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science (US), and DOE’s Lawrence Livermore National Laboratory (US) (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology (US) and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory (US) leads JCESR and Berkeley Lab is a major partner.

    The University of California-Berkeley US) is a public land-grant research university in Berkeley, California. Established in 1868 as the state’s first land-grant university, it was the first campus of the University of California (US) system and a founding member of the Association of American Universities (US). Its 14 colleges and schools offer over 350 degree programs and enroll some 31,000 undergraduate and 12,000 graduate students. Berkeley is ranked among the world’s top universities by major educational publications.

    Berkeley hosts many leading research institutes, including the Mathematical Sciences Research Institute and the Space Sciences Laboratory. It founded and maintains close relationships with three national laboratories at DOE’s Lawrence Berkeley National Laboratory(US), DOE’s Lawrence Livermore National Laboratory(US) and DOE’s Los Alamos National Lab(US), and has played a prominent role in many scientific advances, from the Manhattan Project and the discovery of 16 chemical elements to breakthroughs in computer science and genomics. Berkeley is also known for student activism and the Free Speech Movement of the 1960s.

    Berkeley alumni and faculty count among their ranks 110 Nobel laureates (34 alumni), 25 Turing Award winners (11 alumni), 14 Fields Medalists, 28 Wolf Prize winners, 103 MacArthur “Genius Grant” recipients, 30 Pulitzer Prize winners, and 19 Academy Award winners. The university has produced seven heads of state or government; five chief justices, including Chief Justice of the United States Earl Warren; 21 cabinet-level officials; 11 governors; and 25 living billionaires. It is also a leading producer of Fulbright Scholars, MacArthur Fellows, and Marshall Scholars. Berkeley alumni, widely recognized for their entrepreneurship, have founded many notable companies.

    Berkeley’s athletic teams compete in Division I of the NCAA, primarily in the Pac-12 Conference, and are collectively known as the California Golden Bears. The university’s teams have won 107 national championships, and its students and alumni have won 207 Olympic medals.

    Made possible by President Lincoln’s signing of the Morrill Act in 1862, the University of California was founded in 1868 as the state’s first land-grant university by inheriting certain assets and objectives of the private College of California and the public Agricultural, Mining, and Mechanical Arts College. Although this process is often incorrectly mistaken for a merger, the Organic Act created a “completely new institution” and did not actually merge the two precursor entities into the new university. The Organic Act states that the “University shall have for its design, to provide instruction and thorough and complete education in all departments of science, literature and art, industrial and professional pursuits, and general education, and also special courses of instruction in preparation for the professions”.

    Ten faculty members and 40 students made up the fledgling university when it opened in Oakland in 1869. Frederick H. Billings, a trustee of the College of California, suggested that a new campus site north of Oakland be named in honor of Anglo-Irish philosopher George Berkeley. The university began admitting women the following year. In 1870, Henry Durant, founder of the College of California, became its first president. With the completion of North and South Halls in 1873, the university relocated to its Berkeley location with 167 male and 22 female students.

    Beginning in 1891, Phoebe Apperson Hearst made several large gifts to Berkeley, funding a number of programs and new buildings and sponsoring, in 1898, an international competition in Antwerp, Belgium, where French architect Émile Bénard submitted the winning design for a campus master plan.

    20th century

    In 1905, the University Farm was established near Sacramento, ultimately becoming the University of California-Davis. In 1919, Los Angeles State Normal School became the southern branch of the University, which ultimately became the University of California-Los Angeles. By 1920s, the number of campus buildings had grown substantially and included twenty structures designed by architect John Galen Howard.

    In 1917, one of the nation’s first ROTC programs was established at Berkeley and its School of Military Aeronautics began training pilots, including Gen. Jimmy Doolittle. Berkeley ROTC alumni include former Secretary of Defense Robert McNamara and Army Chief of Staff Frederick C. Weyand as well as 16 other generals. In 1926, future fleet admiral Chester W. Nimitz established the first Naval ROTC unit at Berkeley.

    In the 1930s, Ernest Lawrence helped establish the Radiation Laboratory (now DOE’s Lawrence Berkeley National Laboratory (US)) and invented the cyclotron, which won him the Nobel physics prize in 1939. Using the cyclotron, Berkeley professors and Berkeley Lab researchers went on to discover 16 chemical elements—more than any other university in the world. In particular, during World War II and following Glenn Seaborg’s then-secret discovery of plutonium, Ernest Orlando Lawrence’s Radiation Laboratory began to contract with the U.S. Army to develop the atomic bomb. Physics professor J. Robert Oppenheimer was named scientific head of the Manhattan Project in 1942. Along with the Lawrence Berkeley National Laboratory, Berkeley founded and was then a partner in managing two other labs, Los Alamos National Laboratory (1943) and Lawrence Livermore National Laboratory (1952).

    By 1942, the American Council on Education ranked Berkeley second only to Harvard University (US) in the number of distinguished departments.

    In 1952, the University of California reorganized itself into a system of semi-autonomous campuses, with each campus given its own chancellor, and Clark Kerr became Berkeley’s first Chancellor, while Sproul remained in place as the President of the University of California.

    Berkeley gained a worldwide reputation for political activism in the 1960s. In 1964, the Free Speech Movement organized student resistance to the university’s restrictions on political activities on campus—most conspicuously, student activities related to the Civil Rights Movement. The arrest in Sproul Plaza of Jack Weinberg, a recent Berkeley alumnus and chair of Campus CORE, in October 1964, prompted a series of student-led acts of formal remonstrance and civil disobedience that ultimately gave rise to the Free Speech Movement, which movement would prevail and serve as precedent for student opposition to America’s involvement in the Vietnam War.

    In 1982, the Mathematical Sciences Research Institute (MSRI) was established on campus with support from the National Science Foundation and at the request of three Berkeley mathematicians — Shiing-Shen Chern, Calvin Moore and Isadore M. Singer. The institute is now widely regarded as a leading center for collaborative mathematical research, drawing thousands of visiting researchers from around the world each year.

    21st century

    In the current century, Berkeley has become less politically active and more focused on entrepreneurship and fundraising, especially for STEM disciplines.

    Modern Berkeley students are less politically radical, with a greater percentage of moderates and conservatives than in the 1960s and 70s. Democrats outnumber Republicans on the faculty by a ratio of 9:1. On the whole, Democrats outnumber Republicans on American university campuses by a ratio of 10:1.

    In 2007, the Energy Biosciences Institute was established with funding from BP and Stanley Hall, a research facility and headquarters for the California Institute for Quantitative Biosciences, opened. The next few years saw the dedication of the Center for Biomedical and Health Sciences, funded by a lead gift from billionaire Li Ka-shing; the opening of Sutardja Dai Hall, home of the Center for Information Technology Research in the Interest of Society; and the unveiling of Blum Hall, housing the Blum Center for Developing Economies. Supported by a grant from alumnus James Simons, the Simons Institute for the Theory of Computing was established in 2012. In 2014, Berkeley and its sister campus, Univerity of California-San Fransisco (US), established the Innovative Genomics Institute, and, in 2020, an anonymous donor pledged $252 million to help fund a new center for computing and data science.

    Since 2000, Berkeley alumni and faculty have received 40 Nobel Prizes, behind only Harvard and Massachusetts Institute of Technology (US) among US universities; five Turing Awards, behind only MIT and Stanford; and five Fields Medals, second only to Princeton University (US). According to PitchBook, Berkeley ranks second, just behind Stanford University, in producing VC-backed entrepreneurs.

    UC Berkeley Seal

  • richardmitnick 10:57 am on January 19, 2022 Permalink | Reply
    Tags: "More than one way to make a qubit", A qubit is essentially a quantum state of matter that allows you to store more information and process more information than a traditional bit., Another approach employs flaws in diamonds., Another drawback is that superconducting circuits must stay frigid., Another upside of trapped ions is that they are stalwart defenders against a qubit’s greatest nemesis: loss of information., Because ions are electrically charged they are easily held in place by electromagnetic fields., Because of their robustness trapped ions exhibit some of the lowest error rates of any qubit technology., , , Enter the superconducting qubit, Ions are natural quantum objects: Two of the discrete energy levels of their remaining electrons can represent a 0 or 1., Ions-atoms that have lost one or more of their electrons-emerged as a promising qubit platform at the dawn of experimental quantum computing in the mid-1990s., Material Sciences, , Quantum entanglement (in which multiple qubits share a common quantum state), Quantum superposition (the ability to be in a mixed state-a weighted combination of 1 and 0), Researchers produced the first qubit implemented in a superconducting circuit in which an electric current oscillates back and forth around a microscopic circuit etched onto a chip., Superconducting circuits struggle against decoherence as well., , Taking advantage of techniques used to make computer chips a manufacturer can fabricate superconducting circuits on large wafers., The biggest quantum computer unveiled in November 2021 by IBM contains 127 qubits., The goal of building a quantum computer is to harness the quirks of quantum physics to solve certain problems far faster than a traditional computer can., The list of possible qubits goes on. Photons; semiconductors; molecules—these and other platforms have potential., The quantum bit-or qubit—the quantum equivalent of the 1s and 0s that underlie our digital lives., Two promising approaches currently in focus to implement qubits: superconducting circuits and trapped ions   

    From Symmetry: “More than one way to make a qubit” 

    Symmetry Mag

    From Symmetry

    Christopher Crockett

    Illustration by Sandbox Studio, Chicago with Ana Kova.

    Scientists are exploring a variety of ways to make quantum bits. We may not need to settle on a single one.

    The goal of building a quantum computer is to harness the quirks of quantum physics to solve certain problems far faster than a traditional computer can. And at the heart of a quantum computer is the quantum bit, or qubit—the quantum equivalent of the 1s and 0s that underlie our digital lives.

    “A qubit is the fundamental building block of quantum information science technology,” says Joseph Heremans, an electrical engineer at DOE’s Argonne National Laboratory(US).

    Traditional bits can be any sort of switch, anything that can flip from 0 to 1. But building a qubit takes something more.

    “A qubit is essentially a quantum state of matter,” Heremans says. “And it has weird properties that allow you to store more information and process more information” than a traditional bit.

    Those weird properties include superposition (the ability to be in a mixed state, a weighted combination of 1 and 0) and entanglement (in which multiple qubits share a common quantum state). Both might seem like they would be hard to come by. Fortunately, nature has provided lots of options, and engineers have cooked up a couple more.

    Researchers are exploring more than half a dozen ways to implement qubits, with two promising approaches currently in focus: superconducting circuits and trapped ions.

    Out in front

    Ions—atoms that have lost one or more of their electrons—emerged as a promising qubit platform at the dawn of experimental quantum computing in the mid-1990s. In fact, the first qubit ever built was fashioned out of a single beryllium ion.

    Ions are natural quantum objects: Two of the discrete energy levels of their remaining electrons can represent a 0 or 1; those energy levels are readily manipulated by lasers; and because ions are electrically charged they are easily held in place by electromagnetic fields. Not much new needed to be invented to produce trapped-ion qubits. Existing technology could handle it.

    Another upside of trapped ions is that they are stalwart defenders against a qubit’s greatest nemesis: loss of information. Quantum states are fragile, and superpositions stick around only if the qubits don’t interact with anything. A stray atom or an unexpected photon can collapse the quantum state. In physics speak, the qubit “decoheres.” And decoherence is the death knell to any quantum information technology.

    “We want a system where we can manipulate it, because we want to do calculations, but the environment doesn’t talk to it too much,” says Kenneth Brown, an electrical engineer at Duke University.

    Trapped ions check both boxes. Held safely in a darkened vacuum, they have a low interaction with the environment, he says.

    Because of their robustness trapped ions exhibit some of the lowest error rates of any qubit technology. But they struggle to grow beyond small-scale demos. Adding more ions to the mix makes it harder for the lasers that control them to single out which one of them to talk to. And scaling up to more qubits means getting lots of auxiliary tech, such as vacuum systems, lasers and electromagnetic traps, to play along.

    The largest trapped-ion quantum computer on the market is a 32-qubit machine built by IonQ, headquartered in College Park, Maryland.

    IonQ Releases A New 32-Qubit Trapped-Ion Quantum Computer With Massive Quantum Volume Claims. Credit: Forbes Magazine.

    But quantum engineers want machines with hundreds, if not thousands, of qubits.

    Enter the superconducting qubit

    Just a few years after the first trapped-ion qubit, researchers produced the first qubit implemented in a superconducting circuit, in which an electric current oscillates back and forth around a microscopic circuit etched onto a chip.

    When cooled to temperatures just a few hundredths of a degree above absolute zero, the oscillator circuit can behave as a quantum object: A flash of radio waves tuned to just the right frequency can put the circuit into one of two distinct energy levels, corresponding to a quantum 1 or 0. Follow-up zaps can steer it into a superposition of those two states.

    “They’re a really promising route to make quantum computers” because they can be made on microchips, says Paul Welander, a physicist at DOE’s SLAC National Accelerator Laboratory (US). “And microfabrication is something that we’ve been doing in the semiconductor industry for a long time.”

    Taking advantage of techniques used to make computer chips a manufacturer can fabricate superconducting circuits on large wafers.

    Another advantage of the superconducting circuit is “the ability to make a device that’s hundreds of micrometers across and yet, it behaves like an atom,” Welander says.

    Engineers get all the quantumness of an atom but with the ability to design and customize its properties by tuning circuit parameters.

    These circuits are also extremely fast, cranking through each step in a computation in mere nanoseconds. And because they are circuits, they can be designed to suit the needs of engineers.

    Superconducting qubits have found a home in the largest general-purpose quantum computers in operation. The biggest, unveiled in November 2021 by IBM, contains 127 qubits.

    IBM Unveils Breakthrough 127-Qubit Quantum Processor. Credit: IBM Corp.

    That chip is a step toward the company’s goal of creating a 433-qubit processor in 2022, followed by a 1,121-qubit machine by 2023.

    But superconducting circuits struggle against decoherence as well.

    “They are made of many, many atoms,” Welander says.

    That provides ample opportunity for something to go wrong—materials and fabrication processes present a particularly thorny challenge when attempting to mass-produce millions of qubits at a time.

    Material interfaces are especially problematic. Metal electrodes, for example, readily oxidize. “Now we have an uncontrolled state at the surface,” Welander says, which can lead to decoherence of the quantum state and loss of information.

    Another drawback is that superconducting circuits must stay frigid, hovering at temperatures just above absolute zero. That requires extreme refrigeration, which presents challenges for scaling superconducting quantum computers to thousands or millions of qubits.

    A menu of options

    While these two qubit technologies are perhaps the best known, they are not the only game in town.

    Another approach employs flaws in diamonds. These gemstones are made up of carbon atoms arranged in a rigid, repeating latticework. But sometimes, another type of atom gets in. For example, a nitrogen atom or a vacancy—the absence of an atom—can take the place of a carbon atom. Such nitrogen and vacancy impurities are “a bit a like a trapped molecule in the diamond crystal,” Heremans says.

    Here, electrons trapped in the crystaline flaw store information in a quantum property called spin, a type of intrinsic rotational momentum. When measured, the spin takes on only one of two options—perfect for encoding a 1 or 0. Those options can be toggled with laser light, radio waves or even mechanical strain.

    Researchers are also exploring making qubits out of electrically neutral atoms, trapped using lasers instead of electromagnetic fields. “Neutral atoms are the most natural qubit candidate,” says Mikhail Lukin, a physicist at Harvard University (US).

    Like ions, neutral atoms can be isolated from the environment and stay coherent for long stretches of time. But modern laser technology gives scientists more flexibility with neutral atoms than electromagnetic traps do with trapped ions. Neutral atoms can be organized into many different 2D patterns, providing more ways to connect the atoms and entangle them, leading to more efficient algorithms.

    Using neutral atoms, Lukin and colleagues recently unveiled a 256-qubit special-purpose quantum computer known as a quantum simulator, the largest of its kind, with plans to build a 1,000-qubit simulator in the next two years.

    The list of possible qubits goes on. Photons; semiconductors; molecules—these and other platforms have potential.

    But despite all these options, there’s no clear winner. It’s not yet obvious what can be scaled up to 1,000 qubits or beyond. It’s not even certain that there is just one best approach.

    “We’re still in hunting-and-finding mode,” Welander says. For quantum computing, “it may actually end up being something hybrid,” using multiple quantum materials and systems.

    Perhaps a single processor will employ superconducting qubits working alongside diamond-defect qubits, which might talk to other quantum processors using photon-based qubits.

    In the end, what makes the “best” qubit depends on how the qubit is being used: A good qubit for quantum computing might be different from a good qubit for quantum sensing or a good qubit for quantum communication, Heremans says.

    Beyond physics

    What is clear is that qubit progress isn’t just a physics problem. “It really requires expertise in a wide range of fields,” from materials science to chemical and electrical engineering, Welander says.

    And it’s not just the qubits themselves that need attention. Qubits require a lot of support technology—vacuum systems, cryogenics, lasers, microwave components, nests of cables—all working in sync to get the most out of any quantum processor.

    In many ways, quantum computers are where digital computers were in the 1950s and ’60s. Then too, researchers were searching for the right technology to represent 1s and 0s and perform the logic operations necessary for any calculation. Bulky vacuum tubes gave way to more compact transistors; germanium transistors yielded to better-performing ones made of silicon; integrated circuits let engineers cram many transistors and support electronics onto single wafers of silicon.

    For quantum computing to reach its full potential, qubits still need the right technology. “There’s a lot of areas where people who are interested and people who are intrigued can plug in and make an impact,” Welander says.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 5:22 pm on January 18, 2022 Permalink | Reply
    Tags: "A new way to perform 'general inverse design' with high accuracy", , Material Sciences, Researchers have discovered a novel way to perform “general inverse design” with reasonably high accuracy., The concept of inverse design reverses the conventional design process-reverse engineering by inputting a set of desired properties and characteristics using an optimization algorithm.,   

    From The Massachusetts Institute of Technology (US) and Singapore-MIT Alliance for Research and Technology: “A new way to perform ‘general inverse design’ with high accuracy” 

    MIT News

    From The Massachusetts Institute of Technology (US)


    Singapore-MIT Alliance for Research and Technology

    January 18, 2022
    Singapore-MIT Alliance for Research and Technology

    SMART researchers pioneer a new machine learning model able to design materials of various elements and structures from human-defined properties.
    Image: Singapore-MIT Alliance for Research and Technology.

    Researchers have discovered a novel way to perform “general inverse design” with reasonably high accuracy. This breakthrough paves the way for further development of a burgeoning and fast-moving field that could eventually enable the use of machine learning to accurately identify materials based on a desired set of user-defined properties. This could be revolutionary for materials science and have vast industrial benefits and use cases.

    The work was led by researchers from the Low Energy Electronic Systems (LEES) interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, together with collaborators at MIT, The National University of Singapore [சிங்கப்பூர் தேசிய பல்கலைக்கழகம்(Tamil)](SG), and The Nanyang Technological University [நன்யாங் தொழில்நுட்ப](SG).

    A key challenge in materials science and research has been the long-desired ability to create a material or compound with a specific set of characteristics and properties in order to suit a particular application or use case. To tackle this problem, researchers have traditionally employed materials screening via materials-property databases, which has led to the discovery of a limited number of compounds with user-defined functional properties. However, even with high-performance computing, the computational cost of the necessary calculations is high, prohibiting an exhaustive search of the theoretical materials space. Consequently, there is a pressing need for an alternative method that can make this process of “materials prospecting” more comprehensive and efficient.

    Enter inverse design. As the name suggests, the concept of inverse design reverses the conventional design process, allowing new materials and compounds to be “reverse-engineered” simply by inputting a set of desired properties and characteristics and then using an optimization algorithm to generate a predicted solution. The recent advent of inverse design has been of particular interest in the field of photonics, which is increasingly turning to unconventional technologies to circumvent inherent challenges associated with designing increasingly smaller yet more powerful devices. Current methods involve traditional design, in which a designer conceives of a fixed shape or structure as a starting point. This process is labor-intensive and excludes a wide range of other devices with different shapes or structures from consideration, some of which may have more potential than traditional shapes or structures.

    Inverse design eliminates this problem and instead allows for the fabrication of devices with the most optimal or effective shape, structure, chemical composition, or other characteristics or properties. While inverse design is not new, SMART researchers have taken the technology a step further by discovering a viable method of “general” inverse design, in which inverse design capability is not limited to a particular set of elements or crystal structure, but is able to access a diversity of elements and crystal structures.

    This breakthrough is outlined in a paper in the journal Matter. In the research, the team demonstrates a framework for general (both composition- and structure-varying) inverse design of inorganic crystals, called FTCP (Fourier-Transformed Crystal Properties), that allows for inverse design of crystals with user-specified properties through sampling, decoding, and post-processing. Even more promisingly, the researchers show that FTCP is able to design new crystalline materials that are dissimilar from known structures — a significant development in the exploration of this nascent technology with potentially revolutionary implications for materials science and industrial applications.

    The algorithm developed by SMART researchers trains on more than 50,000 compounds in a materials database, then learns and generalizes the complex relationships between chemistry, structure, and properties in order to predict novel compounds or materials that possess user-targeted characteristics. The algorithm predicts materials with target formation energies, bandgaps, and thermoelectric power factors, and validates these predictions with simulations through density functional theory, in turn demonstrating a reasonable degree of accuracy.

    “This is an incredibly exciting development for the field of materials research. Materials science researchers now have an effective and comprehensive tool that allows them to discover and create new compounds and materials by simply inputting the desired characteristics,” says Tonio Buonassisi, principal investigator at LEES and professor of mechanical engineering at MIT.

    S. Isaac P. Tian, NUS graduate student and co-first author on the paper, adds “In the next step of this journey, an important milestone will be to refine the algorithm to be able to better predict stability and manufacturability. These are exciting challenges that the SMART team is currently working on with collaborators in Singapore and globally.”

    Zekun Ren, lead author and postdoc at LEES, says “The aim of finding more effective and efficient ways to create materials or compounds with user-defined properties has long been the focus of materials science researchers. Our work demonstrates a viable solution that goes beyond specialized inverse design, allowing researchers to explore potential materials of varying composition and structure and thus enabling the creation of a much wider range of compounds. This is a pioneering example of successful general inverse design, and we hope to build on this success in further research efforts.”

    The research is carried out by SMART and supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) program.

    SMART’s LEES interdisciplinary research group is creating new integrated circuit technologies that result in increased functionality, lower power consumption, and higher performance for electronic systems. These integrated circuits of the future will impact applications in wireless communications, power electronics, LED lighting, and displays. LEES has a vertically-integrated research team possessing expertise in materials, devices, and circuits, comprising multiple individuals with professional experience within the semiconductor industry. This ensures that the research is targeted to meet the needs of the semiconductor industry, both within Singapore and globally.

    SMART was established by MIT and the NRF in 2007. SMART is the first entity in CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research in areas of interest to both parties. SMART currently comprises an Innovation Center and five interdisciplinary research groups: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and LEES.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    MIT Campus

    The Massachusetts Institute of Technology (US) is a private land-grant research university in Cambridge, Massachusetts. The institute has an urban campus that extends more than a mile (1.6 km) alongside the Charles River. The institute also encompasses a number of major off-campus facilities such as the MIT Lincoln Laboratory (US), the MIT Bates Research and Engineering Center (US), and the Haystack Observatory (US), as well as affiliated laboratories such as the Broad Institute of MIT and Harvard(US) and Whitehead Institute (US).

    Massachusettes Institute of Technology-Haystack Observatory(US) Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology (US) adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology (US) . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology (US) is a member of the Association of American Universities (AAU).

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia (US), wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after Massachusetts Institute of Technology (US) was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst (US)). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    Massachusetts Institute of Technology (US) was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology (US) faculty and alumni rebuffed Harvard University (US) president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, the Massachusetts Institute of Technology (US) administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology (US) catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities (US)in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at Massachusetts Institute of Technology (US) that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    Massachusetts Institute of Technology (US)‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology (US)’s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, Massachusetts Institute of Technology (US) became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected Massachusetts Institute of Technology (US) profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of Massachusetts Institute of Technology (US) between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, Massachusetts Institute of Technology (US) no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and Massachusetts Institute of Technology (US)’s defense research. In this period Massachusetts Institute of Technology (US)’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. Massachusetts Institute of Technology (US) ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT (US) Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology (US) students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at Massachusetts Institute of Technology (US) over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, Massachusetts Institute of Technology (US)’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    Massachusetts Institute of Technology (US) has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology (US) classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    Massachusetts Institute of Technology (US) was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, Massachusetts Institute of Technology (US) launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, Massachusetts Institute of Technology (US) announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology (US) faculty adopted an open-access policy to make its scholarship publicly accessible online.

    Massachusetts Institute of Technology (US) has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology (US) community with thousands of police officers from the New England region and Canada. On November 25, 2013, Massachusetts Institute of Technology (US) announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of the Massachusetts Institute of Technology (US) community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO (US) was designed and constructed by a team of scientists from California Institute of Technology (US), Massachusetts Institute of Technology (US), and industrial contractors, and funded by the National Science Foundation (US) .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology (US) physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also an Massachusetts Institute of Technology (US) graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of Massachusetts Institute of Technology (US) is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

  • richardmitnick 5:00 pm on January 16, 2022 Permalink | Reply
    Tags: "A treasure map for the realm of electrocatalysts", , , , , High entropy alloys (HEAs) are chemically complex materials made up of mixtures of five or more elements., Material Sciences, Millions of high-entropy systems are possible and each system involves tens of thousands of different compositions.,   

    From The Ruhr-Universität Bochum (DE): “A treasure map for the realm of electrocatalysts” 

    From The Ruhr-Universität Bochum (DE)

    13 January 2022

    Meike Drießen (md)
    Translated by
    Donata Zuber

    A view of the sputtering machine used to produce the material library counters. © Christian Nielinger.

    Research into promising materials is hampered by the sheer number of possible candidates. A German-Danish team has developed an efficient method to solve this problem.

    Efficient electrocatalysts, which are needed for the production of green hydrogen, for example, are hidden in materials composed of five or more elements. A team from Ruhr-Universität Bochum (RUB) and The University of Copenhagen [Københavns Universitet](DK) has developed an efficient method for identifying promising candidates in the myriad of possible materials. To this end, the researchers combined experiments and simulation. They published their report in the journal Advanced Energy Materials from 5 January 2022.

    Millions of systems are conceivable

    High entropy alloys (HEAs) are chemically complex materials made up of mixtures of five or more elements. What’s interesting about them is that they offer completely new possibilities for the development of electrocatalysts. Such catalysts are urgently needed to make energy conversion processes more efficient, for example for the production and use of green hydrogen. “The problem with HEAs is that, in principle, millions of high-entropy systems are possible and each system involves tens of thousands of different compositions,” explains Professor Alfred Ludwig, who heads the Materials Discovery and Interfaces Chair at RUB. It is almost impossible to tackle such complexity using conventional methods and traditional high-throughput procedures.

    Five sources, six constellations

    The researchers describe a new method in their paper that should help to find promising high entropy alloys for electrocatalysis. In the first step, the team developed a way to produce as many potential compositions as possible. For this purpose, they used a sputtering system that simultaneously applies the five base materials to a carrier. “You can imagine this as five spray cans directed at one point on the target,” explains RUB researcher Dr. Lars Banko. This produces a very specific composition of the five source materials on each point of the carrier, so-called materials libraries. Since this composition is also affected by the position of the sources of the source materials, the research team modified them in the experiment. The materials libraries from the manufacturing processes with six different constellations of the sources were subsequently characterized using high-throughput measurements.

    The RUB electrochemistry team then examined the materials libraries in this manner for their electrocatalytic activity.” This enables us to identify trends where possible promising candidates are located,” explains Dr. Olga Krysiak, who with Lars Banko is a lead author of the paper. The team matched this data from the experiment with a large simulation data set provided by the researchers at the University of Copenhagen in order to understand the composition of the materials in greater detail. The comparison between simulation and experiment enables the researchers to explore the atomic scale of electrocatalysts, to estimate the statistical arrangement of atoms on the material surface and to determine their influence on the catalytic activity.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Ruhr-Universität Bochum (DE) is a public university located in the southern hills of the central Ruhr area in Bochum. It was founded in 1962 as the first new public university in Germany after World War II. Instruction began in 1965.

    The Ruhr-University Bochum is one of the largest universities in Germany and part of the Deutsche Forschungsgemeinschaft, the most important German research funding organization.

    The RUB was very successful in the Excellence Initiative of the German Federal and State Governments (2007), a competition between Germany’s most prestigious universities. It was one of the few institutions left competing for the title of an “elite university”, but did not succeed in the last round of the competition. There are currently nine universities in Germany that hold this title.

    The University of Bochum was one of the first universities in Germany to introduce international bachelor’s and master’s degrees, which replaced the traditional German Diplom and Magister. Except for a few special cases (for example in Law) these degrees are offered by all faculties of the Ruhr-University. Currently, the university offers a total of 184 different study programs from all academic fields represented at the university.

  • richardmitnick 4:37 pm on January 16, 2022 Permalink | Reply
    Tags: "Nanostructures get complex with electron equivalents", , Colloidal crystals are a family of self-assembled arrays made by nanoparticles with potential applications in photonics., , Crystals that can transform light may be engineered for everything from light sensors and lasers to communications and computing., , Material Sciences, , Nanoparticles have the potential to enable new materials with properties that can be carefully designed but one of the big challenges is making these materials self-assemble., , , The symmetry-breaking method promises many more new structures., , This strategy for breaking symmetry rewrites the rules for material design and synthesis., Triple-double-gyroid-a new crystal structure discovered by the researchers at Northwestern University; The University of Michigan and Argonne National Laboratory. Never found in nature or synthesized   

    From The University of Michigan (US): “Nanostructures get complex with electron equivalents” 

    U Michigan bloc

    From The University of Michigan (US)

    January 13, 2022

    Kate McAlpine

    The structural illustration shows the triple-double-gyroid, a new crystal structure discovered by the researchers at Northwestern University (US), the University of Michigan (US) and Argonne National Laboratory (US). It has never been found in nature or synthesized before. The translucent balls in red, green and blue show the positions of large nanoparticles. Each color represents a double-gyroid structure. The dark grey balls and sticks show the locations of the smaller, electron-like particles in one of three types of sites in which those particles appear. The formation of this new crystal structure is a result of the way electron-like nanoparticles control the number of neighbors around the larger nanoparticles. Image credit: Sangmin Lee, Glotzer Group.

    Complex crystals that mimic metals—including a structure for which there is no natural equivalent—can be achieved with a new approach to guiding nanoparticle self-assembly.

    Rather than just nanoparticles that serve as “atom equivalents,” the crystals produced and interpreted by Northwestern University (US), University of Michigan and DOE’s Argonne National Laboratory(US) rely on even smaller particles that simulate electrons.

    “We’ve learned something fundamental about the system for making new materials,” said Northwestern’s Chad Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and a co-corresponding author of the paper in Nature Materials. “This strategy for breaking symmetry rewrites the rules for material design and synthesis.”

    Nanoparticles have the potential to enable new materials with properties that can be carefully designed, but one of the big challenges is making these materials self-assemble. Nanoparticles are too small and numerous to build brick by brick.

    Colloidal crystals are a family of self-assembled arrays made by nanoparticles, with potential applications in photonics. Crystals that can transform light may be engineered for everything from light sensors and lasers to communications and computing.

    “Using large and small nanoparticles, where the smaller ones move around like electrons in a crystal of metal atoms, is a whole new approach to building complex colloidal crystal structures,” said Sharon Glotzer, the Anthony C. Lembke Department Chair of Chemical Engineering at U-M and a co-corresponding author.

    Mirkin’s team created colloidal crystals by coating metal nanoparticles with DNA to make them stick to one another. The DNA strands are self-complementary, which means they bond to one another. By tuning parameters like the length of the DNA and how densely the nanoparticles are coated, the metal nanoparticles can be “programmed” to arrange themselves in specified ways. As a result, they are called programmable atom equivalents.

    However, the “atoms” in this crystal—spheres with an even coating of DNA—are the same in all directions, so they tend to build symmetric structures. To build less symmetric structures, they needed something to break the symmetry.

    “Building on Chad’s prior discovery of ‘electron equivalents’ with Northwestern’s Monica Olvera De La Cruz, we explored more complex structures where control over the number of neighbors around each particle produced further symmetry-breaking,” Glotzer said.

    Smaller metal spheres, with fewer DNA strands to make them less sticky, end up acting like electrons in an arrangement of larger nanoparticle “atoms.” They roved around the interior of the structure, stabilizing the lattice of large nanoparticles. Mirkin’s team varied the stickiness of the “electron” nanoparticles to get different structures, as well as changing the temperature and the ratio of nanoparticle “atoms” and “electrons.”

    They analyzed these structures aided by small-angle x-ray scattering studies carried out with Byeongdu Lee, a physicist at Argonne National Laboratory and a co-corresponding author. That data revealed three complex, low-symmetry structures. One, whose twisted tunnels are known as a triple double-gyroid structure, has no known natural equivalent.

    These new, low-symmetry colloidal crystals offer optical and catalytic properties that can’t be achieved with other crystals, and the symmetry-breaking method promises many more new structures. Glotzer’s team developed computer simulations to recreate the self-assembly results, helping to decipher the complicated patterns and revealing the mechanisms that enabled the nanoparticles to create them.

    “We’re in the midst of an unprecedented era for materials discovery,” Mirkin said. “This is another step forward in bringing new, unexplored materials out of the sketchbook and into applications that can harness their incredible properties.”

    The study was supported primarily by the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy and also by the Air Force Office of Scientific Research and the Sherman Fairchild Foundation.

    Mirkin is also a professor of chemical and biological engineering, biomedical engineering, and materials science and engineering at the McCormick School of Engineering; and a professor of medicine at the Feinberg School of Medicine. He also is the founding director of the International Institute for Nanotechnology. Glotzer is also the John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of material science and engineering, macromolecular science and engineering, and physics at U-M.

    See the full article here .


    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (US) is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities (US).

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.


    Michigan is one of the founding members (in the year 1900) of the Association of American Universities (US). With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation (US), Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences,[123] is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University (US) and Wayne State University (US), founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

  • richardmitnick 2:51 pm on January 11, 2022 Permalink | Reply
    Tags: "Catalyst surface analysed at atomic resolution", , Atomic Probe Tomography, , , Material Sciences, , ,   

    From The Ruhr-Universität Bochum (DE): “Catalyst surface analysed at atomic resolution” 

    From The Ruhr-Universität Bochum (DE)


    Members of the Bochum-based research team in the lab: Weikai Xiang, Chenglong Luan and Tong Li (from left to right) © Privat.

    Catalyst surfaces have rarely been imaged in such detail before. And yet, every single atom can play a decisive role in catalytic activity.

    A German-Chinese research team has visualised the three-dimensional structure of the surface of catalyst nanoparticles at atomic resolution. This structure plays a decisive role in the activity and stability of the particles. The detailed insights were achieved with a combination of atom probe tomography, spectroscopy and electron microscopy. Nanoparticle catalysts can be used, for example, in the production of hydrogen for the chemical industry. To optimise the performance of future catalysts, it is essential to understand how it is affected by the three-dimensional structure.

    Researchers from the Ruhr-Universität Bochum, The University of Duisburg-Essen [Universität Duisburg-Essen](DE) and The MPG Institute for Chemical Energy Conversion [Max-Planck-Institut für chemische Energieumwandlung](DE) cooperated on the project as part of the Collaborative Research Centre “Heterogeneous oxidation catalysis in the liquid phase”.

    At RUB, a team headed by Weikai Xiang and Professor Tong Li from Atomic-scale Characterisation worked together with the Chair of Electrochemistry and Nanoscale Materials and the Chair of Industrial Chemistry. Institutes in Shanghai, China, and Didcot, UK, were also involved. The team presents their findings in the journal Nature Communications, published online on 10 January 2022.

    Particles observed during the catalysis process

    The researchers studied two different types of nanoparticles made of cobalt iron oxide that were around ten nanometres. They analysed the particles during the catalysis of the so-called oxygen evolution reaction. This is a half reaction that occurs during water splitting for hydrogen production: hydrogen can be obtained by splitting water using electrical energy; hydrogen and oxygen are produced in the process. The bottleneck in the development of more efficient production processes is the partial reaction in which oxygen is formed, i.e. the oxygen evolution reaction. This reaction changes the catalyst surface that becomes inactive over time. The structural and compositional changes on the surface play a decisive role in the activity and stability of the electrocatalysts.

    For small nanoparticles with a size around ten nanometres, achieving detailed information about what happens on the catalyst surface during the reaction remains a challenge. Using atom probe tomography, the group successfully visualised the distribution of the different types of atoms in the cobalt iron oxide catalysts in three dimensions. By combining it with other methods, they showed how the structure and composition of the surface changed during the catalysis process – and how this change affected the catalytic performance.

    “Atom probe tomography has enormous potential to provide atomic insights into the compositional changes on the surface of catalyst nanoparticles during important catalytic reactions such as oxygen evolution reaction for hydrogen production or CO2 reduction,” concludes Tong Li.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Ruhr-Universität Bochum (DE) is a public university located in the southern hills of the central Ruhr area in Bochum. It was founded in 1962 as the first new public university in Germany after World War II. Instruction began in 1965.

    The Ruhr-University Bochum is one of the largest universities in Germany and part of the Deutsche Forschungsgemeinschaft, the most important German research funding organization.

    The RUB was very successful in the Excellence Initiative of the German Federal and State Governments (2007), a competition between Germany’s most prestigious universities. It was one of the few institutions left competing for the title of an “elite university”, but did not succeed in the last round of the competition. There are currently nine universities in Germany that hold this title.

    The University of Bochum was one of the first universities in Germany to introduce international bachelor’s and master’s degrees, which replaced the traditional German Diplom and Magister. Except for a few special cases (for example in Law) these degrees are offered by all faculties of the Ruhr-University. Currently, the university offers a total of 184 different study programs from all academic fields represented at the university.

  • richardmitnick 3:34 pm on January 8, 2022 Permalink | Reply
    Tags: "Materials theorist Yuan Ping wins NSF CAREER Award", , , , Critical properties of spin qubits include quantum coherence which determines how long the spin state will last., Material Sciences, Ping’s first-principles approach will eliminate the need for prior input parameters., Ping’s group has developed computational tools for predicting spin dynamics in solid-state materials which they will use to study the properties of spin qubits., , , The funding for this project also includes support for a range of education and outreach activities., , Understanding kinetics of excited states and spin qubit relaxation and decoherence is the core issue of spin-based quantum information science., Yuan Ping   

    From The University of California-Santa Cruz (US) : “Materials theorist Yuan Ping wins NSF CAREER Award” 

    From The University of California-Santa Cruz (US)

    January 05, 2022
    Tim Stephens

    Yuan Ping

    Yuan Ping, assistant professor of chemistry and biochemistry at UC Santa Cruz, has received a Faculty Early Career Development (CAREER) Award from The National Science Foundation (US) to support her work developing computational platforms to investigate the physics of new materials for quantum computers and other applications of quantum information science.

    In quantum computers, information is encoded in quantum bits, or qubits, which can be made from any quantum system that has two states. One promising approach is based on the spin states of electrons. Ping’s group has developed a theoretical framework and computational tools for predicting spin dynamics in solid-state materials which they will use to study the properties of spin qubits.

    Critical properties of spin qubits include quantum coherence which determines how long the spin state will last (or how long the encoded information will be intact); readout efficiency, which determines the fidelity with which information can be extracted from a qubit; and quantum transduction, which determines if quantum information can be transferred and communicated among qubits over a long range.

    “Understanding kinetics of excited states and spin qubit relaxation and decoherence is the core issue of spin-based quantum information science,” Ping said. “In this project, we will develop a computational platform to tackle these issues for spin qubits.”

    All of these properties are materials-specific, and previous efforts have relied mostly on simplified models which require inputs from prior experiments. Ping’s first-principles approach will eliminate the need for prior input parameters and will open the path for designing novel quantum materials with the potential to enable unprecedented performance for applications in quantum information science.

    “Stable, scalable, and reliable quantum information science has the potential to transform and advance knowledge across a large number of critical fields through next-generation technologies for sensing, computing, modeling, and communicating,” Ping said.

    The funding for this project also includes support for a range of education and outreach activities. These include strengthening undergraduate education in physical chemistry through a summer bootcamp; developing computational materials research through new courses and undergraduate research programs; and supporting women and underrepresented groups through UCSC’s Women in Science and Engineering program.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Santa Cruz (US) Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).
    UC Santa Cruz (US) campus.

    The University of California-Santa Cruz (US) , opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego (US) who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).

    Shelley Wright of UC San Diego with (US) NIROSETI, developed at U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley (US) researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    Frank Drake with his Drake Equation. Credit Frank Drake.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: