Tagged: Mars research Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:33 am on June 3, 2020 Permalink | Reply
    Tags: "Martian Moon’s Orbit Hints at an Ancient Ring of Mars", , , , , Mars research,   

    From SETI Institute: “Martian Moon’s Orbit Hints at an Ancient Ring of Mars” 


    SETI Logo new
    From SETI Institute

    1
    Photo credit: https://solarsystem.nasa.gov/moons/mars-moons/deimos/in-depth/

    Scientists from the SETI Institute and Purdue University have found that the only way to produce Deimos’s unusually tilted orbit is for Mars to have had a ring billions of years ago. While some of the more massive planets in our solar system have giant rings and numerous big moons, Mars only has two small, misshapen moons, Phobos and Deimos. Although these moons are small, their peculiar orbits hide important secrets about their past.

    For a long time, scientists believed that Mars’s two moons, discovered in 1877, were captured asteroids. However, since their orbits are almost in the same plane as Mars’s equator, that the moons must have formed at the same time as Mars. But the orbit of the smaller, more distant moon Deimos is tilted by two degrees.

    “The fact that Deimos’s orbit is not exactly in plane with Mars’s equator was considered unimportant, and nobody cared to try to explain it,” says lead author Matija Ćuk, a research scientist at the SETI Institute. “But once we had a big new idea and we looked at it with new eyes, Deimos’s orbital tilt revealed its big secret.”

    This significant new idea was put forward in 2017 by Ćuk’s co-author David Minton, professor at Purdue University and his then-graduate student Andrew Hesselbrock. Hesselbrock and Minton noted that Mars’s inner moon, Phobos, is losing height as its tiny gravity is interacting with the looming Martian globe. Soon, in astronomical terms, Phobos’s orbit will drop too low, and Mars’s gravity will pull it apart to make a ring around the planet. Hesselbrock and Minton proposed that over billions of years, generations of Martian moons were destroyed into rings. Each time, the ring would then give rise to a new, smaller moon to repeat the cycle over again.

    This cyclic Martian moon theory has one crucial element that makes Deimos’s tilt possible: a newborn moon would move away from the ring and Mars. Which is in the opposite direction from the inward spiral Phobos is experiencing due to gravitational interactions with Mars. An outward-migrating moon just outside the rings can encounter a so-called orbital resonance, in which Deimos’s orbital period is three times that of the other moon.

    These orbital resonances are picky but predictable about the direction in which they are crossed. We can tell that only an outward-moving moon could have strongly affected Deimos, which means that Mars must have had a ring pushing the inner moon outward. Ćuk and collaborators deduce that this moon may have been 20 times as massive as Phobos, and may have been its “grandparent” existing just over 3 billion years ago, which was followed by two more ring-moon cycles, with the latest moon being Phobos.

    This insight from a modest tilt of a humble moon’s orbit has some significant consequences for our understanding of Mars and its moons. The discovery of the past orbital resonance all but clinches the cyclic ring-moon theory for Mars. It implies that for much of its history, Mars possessed a prominent ring. While Deimos is billions of years old, Ćuk and collaborators believe Phobos is young as astronomical objects go, forming maybe only 200 million years ago, just in time for the dinosaurs.

    These theories may be up for some serious testing in a few years, as Japanese space agency JAXA plans to send a spacecraft to Phobos in 2024, which would collect samples from the moon’s surface and bring them back to Earth. Ćuk is hopeful that this will give us firm answers about the murky past of the Martian moons: “I do theoretical calculations for a living, and they are good, but getting them tested against the real world now and then is even better.”

    This research is presented at the 236th Meeting of the American Astronomical Society, held virtually on June 1-3, 2020, and is accepted for publication in The Astrophysical Journal Letters.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SETI Institute


    About the SETI Institute
    What is life? How does it begin? Are we alone? These are some of the questions we ask in our quest to learn about and share the wonders of the universe. At the SETI Institute we have a passion for discovery and for passing knowledge along as scientific ambassadors.

    The SETI Institute is a 501 (c)(3) nonprofit scientific research institute headquartered in Mountain View, California. We are a key research contractor to NASA and the National Science Foundation (NSF), and we collaborate with industry partners throughout Silicon Valley and beyond.

    Founded in 1984, the SETI Institute employs more than 130 scientists, educators, and administrative staff. Work at the SETI Institute is anchored by three centers: the Carl Sagan Center for the Study of Life in the Universe (research), the Center for Education and the Center for Outreach.

    The SETI Institute welcomes philanthropic support from individuals, private foundations, corporations and other groups to support our education and outreach initiatives, as well as unfunded scientific research and fieldwork.

    A Special Thank You to SETI Institute Partners and Collaborators
    • Campoalto, Chile, NASA Ames Research Center, NASA Headquarters, National Science Foundation, Aerojet Rocketdyne,SRI International

    Frontier Development Lab Partners
    • Breakthrough Prize Foundation, European Space Agency, Google Cloud, IBM, Intel, KBRwyle. Kx Lockheed Martin, NASA Ames Research Center, Nvidia, SpaceResources Luxembourg, XPrize

    In-kind Service Providers
    • Gunderson Dettmer – General legal services, Hello Pilgrim – Website Design and Development Steptoe & Johnson – IP legal services, Danielle Futselaar

    SETI/Allen Telescope Array situated at the Hat Creek Radio Observatory, 290 miles (470 km) northeast of San Francisco, California, USA, Altitude 986 m (3,235 ft)

    SETI Institute – 189 Bernardo Ave., Suite 100
    Mountain View, CA 94043
    Phone 650.961.6633 – Fax 650-961-7099
    Privacy PolicyQuestions and Comments

    Also in the hunt, but not a part of the SETI Institute


    SETI@home, a BOINC project originated in the Space Science Lab at UC Berkeley

    BOINCLarge

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

     
  • richardmitnick 12:29 pm on March 6, 2020 Permalink | Reply
    Tags: "Study finds organic molecules discovered by Curiosity Rover consistent with early life on Mars", ESA/Roscosmos Rosalind Franklin ExoMars rover will find more data., From Washington State University, Mars research, Organic compounds called thiophenes on Mars. Origins ?   

    From Washington State University: “Study finds organic molecules discovered by Curiosity Rover consistent with early life on Mars” 

    From Washington State University

    March 5, 2020
    Sara Zaske

    1
    Image: NASA/JPL-Caltech

    Organic compounds called thiophenes are found on Earth in coal, crude oil and oddly enough, in white truffles, the mushroom beloved by epicureans and wild pigs.

    Thiophenes were also recently discovered on Mars, and Washington State University astrobiologist Dirk Schulze‑Makuch thinks their presence would be consistent with the presence of early life on Mars.

    Schulze‑Makuch and Jacob Heinz with the Technische Universität in Berlin explore some of the possible pathways for thiophenes’ origins on the red planet in a new paper published in the journal Astrobiology. Their work suggests that a biological process, most likely involving bacteria rather than a truffle though, may have played a role in the organic compound’s existence in the Martian soil.

    “We identified several biological pathways for thiophenes that seem more likely than chemical ones, but we still need proof,” Dirk Schulze‑Makuch said. “If you find thiophenes on Earth, then you would think they are biological, but on Mars, of course, the bar to prove that has to be quite a bit higher.”

    Thiophene molecules have four carbon atoms and a sulfur atom arranged in a ring, and both carbon and sulfur, are bio‑essential elements. Yet Schulze‑Makuch and Heinz could not exclude non‑biological processes leading to the existence of these compounds on Mars.

    Meteor impacts provide one possible abiotic explanation. Thiophenes can also be created through thermochemical sulfate reduction, a process that involves a set of compounds being heated to 248 degrees Fahrenheit (120 degrees Celsius) or more.

    In the biological scenario, bacteria, which may have existed more than three billion years ago when Mars was warmer and wetter, could have facilitated a sulfate reduction process that results in thiophenes. There are also other pathways where the thiophenes themselves are broken down by bacteria.

    While the Mars Curiosity Rover has provided many clues, it uses techniques that break larger molecules up into components, so scientists can only look at the resulting fragments.

    NASA Mars Curiosity Rover

    Further evidence should come from the next rover, the Rosalind Franklin, which is expected to launch in July 2020.

    ESA/Roscosmos Rosalind Franklin ExoMars rover

    It will be carrying a Mars Organic Molecule Analyzer, or MOMA, which uses a less destructive analyzing method that will allow for the collection of larger molecules.

    Schulze‑Makuch and Heinz recommend using the data collected by the next rover to look at carbon and sulfur isotopes. Isotopes are variations of the chemical elements that have different numbers of neutrons than the typical form, resulting in differences in mass.

    “Organisms are ‘lazy.’ They would rather use the light isotope variations of the element because it costs them less energy,” he said.

    Organisms alter the ratios of heavy and light isotopes in the compounds they produce that are substantially different from the ratios found in their building blocks, which Schulze‑Makuch calls “a telltale signal for life.”

    Yet even if the next rover returns this isotopic evidence, it may still not be enough to prove definitively that there is, or once was, life on Mars.

    “As Carl Sagan said ‘extraordinary claims require extraordinary evidence,’” Schulze‑Makuch said. “I think the proof will really require that we actually send people there, and an astronaut looks through a microscope and sees a moving microbe.”

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Washington State University (Washington State, WSU, or Wazzu) is a public research university in Pullman, Washington. Founded in 1890, WSU is one of the oldest land-grant universities in the American West. With an undergraduate enrollment of 24,470 and a total enrollment of 29,686, it is the second largest institution for higher education in Washington state behind the University of Washington. The WSU Pullman campus is perched upon a hill, characterized by open spaces, views, deep green conifers, and a restrained red brick and basalt material palette—materials originally found on site. The university is nestled within the rolling topography of the Palouse in rural eastern Washington and remains intimately connected to the town, the region, and the landscape in which it sits.

    The university also operates campuses across Washington known as WSU Spokane, WSU Tri-Cities, and WSU Vancouver, all founded in 1989. In 2012, WSU launched an Internet-based Global Campus, which includes its online degree program, WSU Online. In 2015, WSU expanded to a sixth campus, known as WSU Everett. These campuses award primarily bachelor’s and master’s degrees. Freshmen and sophomores were first admitted to the Vancouver campus in 2006 and to the Tri-Cities campus in 2007. Enrollment for the four campuses and WSU Online exceeds 29,686 students. This includes 1,751 international students.

    WSU’s athletic teams are called the Cougars and the school colors are crimson and gray. Six men’s and nine women’s varsity teams compete in NCAA Division I in the Pac-12 Conference. Both men’s and women’s indoor track teams compete in the Mountain Pacific Sports Federation.

     
  • richardmitnick 12:42 pm on February 24, 2020 Permalink | Reply
    Tags: "First direct seismic measurements of Ьars reveal a geologically active planet", , , , , Mars research, ,   

    From University of Maryland via phys.org: “First direct seismic measurements of Ьars reveal a geologically active planet” 


    From University of Maryland

    via


    phys.org

    February 24, 2020

    1
    NASA’s InSight lander deployed its seismometer on the Martian surface on Dec. 19, 2018. This image, captured on Feb. 2, 2019 (Martian Sol 66) by the deployment camera on the lander’s robotic arm shows the protective wind and thermal shield which covers the seismometer. Credit: NASA/JPL-Caltech

    NASA/Mars InSight Lander

    The first reports of seismic activity and ground vibrations on Mars are in. The red planet has a moderate level of seismic activity, intermediate between Earth and the Moon.

    An international team that includes University of Maryland geologists released preliminary results from the InSight mission, which landed a probe on Mars on November 26, 2018. Data from the mission’s Seismic Experiment for Interior Structure (SEIS) provided the first direct seismic measurements of the Martian subsurface and upper crust—the rocky outermost layer of the planet. The results were published in a special issue of the journal Nature Geoscience on February 24, 2020.

    “This is the first mission focused on taking direct geophysical measurements of any planet besides Earth, and it’s given us our first real understanding of Mars’ interior structure and geological processes,” said Nicholas Schmerr, an assistant professor of geology at UMD and a co-author of the study. “These data are helping us understand how the planet works, its rate of seismicity, how active it is and where it’s active.”

    The seismic data acquired over 235 Martian days showed 174 seismic events, or marsquakes. Of those, 150 were high-frequency events that produce ground shaking similar to that recorded on the Moon by the Apollo program. Their waveforms show that seismic waves bounce around as they travel through the heterogeneous and fractured Martian crust. The other 24 quakes observed by SEIS were predominantly low-frequency events. Three showed two distinct wave patterns similar to quakes on Earth caused by the movement of tectonic plates.

    “These low-frequency events were really exciting, because we know how to analyze them and extract information about subsurface structure,” said Vedran Lekic, an associate professor of geology at UMD and a co-author of the study. “Based on how the different waves propagate through the crust, we can identify geologic layers within the planet and determine the distance and location to the source of the quakes.”

    The researchers identified the source location and magnitude of three of the low-frequency marsquakes, and believe that 10 more are strong enough to reveal their source and magnitude once they are analyzed.

    “Understanding these processes is part of a bigger question about the planet itself,” Schmerr said. “Can it support life, or did it ever? Life exists at the edge, where the equilibrium is off. Think of areas on Earth such as the thermal vents at the deep ocean ridges where chemistry provides the energy for life rather than the sun. If it turns out there is liquid magma on Mars, and if we can pinpoint where the planet is most geologically active, it might guide future missions searching for the potential for life.”

    Detecting signs of life was the primary mission of the earlier Mars probes, Viking 1 and Viking 2.

    NASA/Viking 1 Lander

    NASA Viking 2 Lander

    Each carried seismometers, but they were mounted directly on the landers and provided no useful data. The Viking 1 instrument did not unlock properly, and Viking 2 only picked up noise from wind buffeting the lander but no convincing marsquake signals.

    The InSight mission is dedicated specifically to geophysical exploration, so engineers worked to solve previous noise problems. A robotic arm on the lander placed the SEIS seismometer directly on the Martian ground some distance away to isolate it from the lander. The instrument is also housed in a vacuum chamber and covered by the aptly named Wind and Thermal Shield. The SEIS seismometer is sensitive enough to discern very faint ground vibrations, which on Mars are 500 times quieter than ground vibrations found in quietest locations on Earth.

    In addition, the seismometer provided important information about Martian weather. Low-pressure systems and swirling columns of wind and dust called dust devils lift the ground enough for the seismometer to register a tilt in the substrate. High winds flowing across the surface of the ground also create a distinct seismic signature. Combined with data from meteorological instruments, SEIS data help paint a picture of the daily cycles of surface activity near the InSight lander.

    The researchers found that the winds pick up from about midnight through early morning, as cooler air rolls down from highlands in the Southern Hemisphere onto the Elysium Planitia plains in the Northern Hemisphere where the lander is located. During the day, heating from the sun causes convective winds to build. Winds reach their peak in late afternoon when atmospheric pressure drops and dust devil activity occurs. By evening, the winds die down, and conditions around the lander become quiet. From late evening until about midnight, atmospheric conditions are so quiet, the seismometer is able to detect the rumblings from deeper inside the planet.

    All of the marsquakes have been detected during these quiet periods at night, but the geologic activity likely persists throughout the day.

    “What is so spectacular about this data is that it gives us this beautifully poetic picture of what a day is actually like on another planet,” Lekic said.

    The InSight mission is scheduled to continue collecting data through 2020.

    The research papers, “Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data,” P.Lognonné et al., and “Initial results from the InSight mission on Mars” by W. Banerdt et al., were published as part of a special issue of the journal Nature Geoscience released on February 24, 2020.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words

    Science X™ is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.
    Mission 12 reasons for reading daily news on Science X Organization Key editors and writersinclude 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    U Maryland Campus

    Driven by the pursuit of excellence, the University of Maryland has enjoyed a remarkable rise in accomplishment and reputation over the past two decades. By any measure, Maryland is now one of the nation’s preeminent public research universities and on a path to become one of the world’s best. To fulfill this promise, we must capitalize on our momentum, fully exploit our competitive advantages, and pursue ambitious goals with great discipline and entrepreneurial spirit. This promise is within reach. This strategic plan is our working agenda.

    The plan is comprehensive, bold, and action oriented. It sets forth a vision of the University as an institution unmatched in its capacity to attract talent, address the most important issues of our time, and produce the leaders of tomorrow. The plan will guide the investment of our human and material resources as we strengthen our undergraduate and graduate programs and expand research, outreach and partnerships, become a truly international center, and enhance our surrounding community.

    Our success will benefit Maryland in the near and long term, strengthen the State’s competitive capacity in a challenging and changing environment and enrich the economic, social and cultural life of the region. We will be a catalyst for progress, the State’s most valuable asset, and an indispensable contributor to the nation’s well-being. Achieving the goals of Transforming Maryland requires broad-based and sustained support from our extended community. We ask our stakeholders to join with us to make the University an institution of world-class quality with world-wide reach and unparalleled impact as it serves the people and the state of Maryland.

     
  • richardmitnick 5:16 pm on February 12, 2020 Permalink | Reply
    Tags: "SwRI models hint at longer timescale for Mars formation", , , , , Mars research,   

    From Southwest Research Institute: “SwRI models hint at longer timescale for Mars formation” 

    SwRI bloc

    From Southwest Research Institute

    2.12.20
    Deb Schmid
    +1 210 522 2254
    Communications Department

    1
    A Southwest Research Institute team performed high-resolution, smoothed-particle simulations of a large, differentiated projectile hitting early Mars after its core and mantle had formed. The projectile’s core and mantle particles are indicated by brown and green spheres respectively, showing local concentrations of the projectile materials assimilated into the Martian mantle. Courtesy of Southwest Research Institute

    2
    Scientists developed this illustration of how early Mars may have looked, showing signs of liquid water, large-scale volcanic activity and heavy bombardment from planetary projectiles. SwRI is modeling how these impacts may have affected early Mars to help answer questions about the planet’s evolutionary history. Courtesy of Southwest Research Institute/Marchi

    The early solar system was a chaotic place, with evidence indicating that Mars was likely struck by planetesimals, small protoplanets up to 1,200 miles in diameter, early in its history. Southwest Research Institute scientists modeled the mixing of materials associated with these impacts, revealing that the Red Planet may have formed over a longer timescale than previously thought.

    An important open issue in planetary science is to determine how Mars formed and to what extent its early evolution was affected by collisions. This question is difficult to answer given that billions of years of history have steadily erased evidence of early impact events. Luckily, some of this evolution is recorded in Martian meteorites. Of approximately 61,000 meteorites found on Earth, just 200 or so are thought to be of Martian origin, ejected from the Red Planet by more recent collisions.

    These meteorites exhibit large variations in iron-loving elements such as tungsten and platinum, which have a moderate to high affinity for iron. These elements tend to migrate from a planet’s mantle and into its central iron core during formation. Evidence of these elements in the Martian mantle as sampled by meteorites are important because they indicate that Mars was bombarded by planetesimals sometime after its primary core formation ended. Studying isotopes of particular elements produced locally in the mantle via radioactive decay processes helps scientists understand when planet formation was complete.

    “We knew Mars received elements such as platinum and gold from early, large collisions. To investigate this process, we performed smoothed-particle hydrodynamics impact simulations,” said SwRI’s Dr. Simone Marchi, lead author of a Science Advances paper outlining these results. “Based on our model, early collisions produce a heterogeneous, marble-cake-like Martian mantle. These results suggest that the prevailing view of Mars formation may be biased by the limited number of meteorites available for study.”

    Based on the ratio of tungsten isotopes in Martian meteorites, it has been argued that Mars grew rapidly within about 2–4 million years after the Solar System started to form. However, large, early collisions could have altered the tungsten isotopic balance, which could support a Mars formation timescale of up to 20 million years, as shown by the new model.

    “Collisions by projectiles large enough to have their own cores and mantles could result in a heterogeneous mixture of those materials in the early Martian mantle,” said co-author Dr. Robin Canup, assistant vice president of SwRI’s Space Science and Engineering Division. “This can lead to different interpretations on the timing of Mars’ formation than those that assume that all projectiles are small and homogenous.”

    The Martian meteorites that landed on Earth probably originated from just a few localities around the planet. The new research shows that the Martian mantle could have received varying additions of projectile materials, leading to variable concentrations of iron-loving elements. The next generation of Mars missions, including plans to return samples to Earth, will provide new information to better understand the variability of iron-loving elements in Martian rocks and the early evolution of the Red Planet.

    “To fully understand Mars, we need to understand the role the earliest and most energetic collisions played in its evolution and composition,” Marchi concluded.

    The paper, “A compositionally heterogeneous Martian mantle due to late accretion,” will be published in Science Advances on February 12, 2020.

    The research was partially funded by NASA’s Solar System Exploration Research Virtual Institute and a NASA Habitable Worlds grant.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 1:05 pm on February 8, 2020 Permalink | Reply
    Tags: "All About the Laser (and Microphone) Atop Mars 2020, , Mars research, , NASA's Next Rover", SuperCam   

    From NASA: “All About the Laser (and Microphone) Atop Mars 2020, NASA’s Next Rover” 


    From NASA

    Feb. 7, 2020

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-2433
    andrew.c.good@jpl.nasa.gov

    Josh Handal
    NASA Headquarters, Washington
    202-358-2307
    joshua.a.handal@nasa.gov

    1
    Mars 2020’s mast, or “head,” includes a laser instrument called SuperCam that can vaporize rock material and study the resulting plasma. Credits: NASA/JPL-Caltech

    NASA JPL


    NASA is sending a new laser-toting robot to Mars. But unlike the lasers of science fiction, this one is used for studying mineralogy and chemistry from up to about 20 feet (7 meters) away. It might help scientists find signs of fossilized microbial life on the Red Planet, too.

    NASA Mars 2020 Rover

    One of seven instruments aboard the Mars 2020 rover that launches this summer, SuperCam was built by a team of hundreds and packs what would typically require several sizable pieces of equipment into something no bigger than a cereal box. It fires a pulsed laser beam out of the rover’s mast, or “head,” to vaporize small portions of rock from a distance, providing information that will be essential to the mission’s success.

    Here’s a closer look at what makes the instrument so special:

    A Far Reach

    Using a laser beam will help researchers identify minerals that are beyond the reach of the rover’s robotic arm or in areas too steep for the rover to go. It will also enable them to analyze a target before deciding whether to guide the rover there for further analysis. Of particular interest: minerals that formed in the presence of liquid water, like clays, carbonates and sulfates. Liquid water is essential to the existence of life as we know it, including microbes, which could have survived on Mars billions of years ago.

    Scientists can also use the information from SuperCam to help decide whether to capture rock cores for the rover’s sample caching system. Mars 2020 will collect these core samples in metal tubes, eventually depositing them at a predetermined location for a future mission to retrieve and bring back to Earth.

    2
    The Mast Unit for Mars 2020’s SuperCam, shown being tested here, will use a laser to vaporize and study rock material on the Red Planet’s surface. Credits: LANL

    Laser Focus

    SuperCam is essentially a next-generation version of the Curiosity rover’s ChemCam. Like its predecessor, SuperCam can use an infrared laser beam to heat the material it impacts to around 18,000 degrees Fahrenheit (10,000 degrees Celsius) — a method called laser induced breakdown spectroscopy, or LIBS — and vaporizes it. A special camera can then determine the chemical makeup of these rocks from the plasma that is created.


    In a test shown here, the SuperCam Mast Unit — which sits in the mast, or “head,” of the Mars 2020 rover — zaps marks across a piece of metal.

    Just like ChemCam, SuperCam will use artificial intelligence to seek out rock targets worth zapping during and after drives, when humans are out of the loop. In addition, this upgraded A.I. lets SuperCam point very precisely at small rock features.

    Another new feature in SuperCam is a green laser that can determine the molecular composition of surface materials. This green beam excites the chemical bonds in a sample and produces a signal depending on which elements are bonded together — a technique called Raman spectroscopy. SuperCam also uses the green laser to cause some minerals and carbon-based chemicals to emit light, or fluoresce.

    Minerals and organic chemicals fluoresce at different rates, so SuperCam’s light sensor features a shutter that can close as quickly as 100 nanoseconds at a time — so fast that very few photons of light will enter it. Altering the shutter speed (a technique called time-resolved luminescence spectroscopy) will enable scientists to better determine the compounds present.

    Moreover, SuperCam can use visible and infrared (VISIR) light reflected from the Sun to study the mineral content of rocks and sediments. This VISIR technique complements the Raman spectroscopy; each technique is sensitive to different types of minerals.

    Laser With a Mic Check

    SuperCam includes a microphone so scientists can listen each time the laser hits a target. The popping sound created by the laser subtly changes depending on a rock’s material properties.

    “The microphone serves a practical purpose by telling us something about our rock targets from a distance. But we can also use it to directly record the sound of the Martian landscape or the rover’s mast swiveling,” said Sylvestre Maurice of the Institute for Research in Astrophysics and Planetary Science in Toulouse, France.

    The Mars 2020 rover marks the third time this particular microphone design will go to the Red Planet, Maurice said. In the late 1990s, the same design rode aboard the Mars Polar Lander, which crashed on the surface. In 2008, the Phoenix mission experienced electronics issues that prevented the microphone from being used.

    In the case of Mars 2020, SuperCam doesn’t have the only microphone aboard the rover: an entry, descent and landing microphone will capture all the sounds of the car-sized rover making its way to the surface. It will add audio to full-color video recorded by the rover’s cameras, capturing a Mars landing like never before.

    Teamwork

    SuperCam is led by Los Alamos National Laboratory in New Mexico, where the instrument’s Body Unit was developed. That part of the instrument includes several spectrometers, control electronics and software.

    The Mast Unit was developed and built by several laboratories of the CNRS (French research center) and French universities under the contracting authority of CNES (French space agency). Calibration targets on the rover deck are provided by Spain’s University of Valladolid.

    2

    JPL is building and will manage operations of the Mars 2020 rover for the NASA Science Mission Directorate at the agency’s headquarters in Washington.

    Read more about Mars 2020:

    https://mars.nasa.gov/mars2020/

    http://nasa.gov/mars2020

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    The National Aeronautics and Space Administration (NASA) is the agency of the United States government that is responsible for the nation’s civilian space program and for aeronautics and aerospace research.

    President Dwight D. Eisenhower established the National Aeronautics and Space Administration (NASA) in 1958 with a distinctly civilian (rather than military) orientation encouraging peaceful applications in space science. The National Aeronautics and Space Act was passed on July 29, 1958, disestablishing NASA’s predecessor, the National Advisory Committee for Aeronautics (NACA). The new agency became operational on October 1, 1958.

    Since that time, most U.S. space exploration efforts have been led by NASA, including the Apollo moon-landing missions, the Skylab space station, and later the Space Shuttle. Currently, NASA is supporting the International Space Station and is overseeing the development of the Orion Multi-Purpose Crew Vehicle and Commercial Crew vehicles. The agency is also responsible for the Launch Services Program (LSP) which provides oversight of launch operations and countdown management for unmanned NASA launches. Most recently, NASA announced a new Space Launch System that it said would take the agency’s astronauts farther into space than ever before and lay the cornerstone for future human space exploration efforts by the U.S.

    NASA science is focused on better understanding Earth through the Earth Observing System, advancing heliophysics through the efforts of the Science Mission Directorate’s Heliophysics Research Program, exploring bodies throughout the Solar System with advanced robotic missions such as New Horizons, and researching astrophysics topics, such as the Big Bang, through the Great Observatories [Hubble, Chandra, Spitzer, and associated programs. NASA shares data with various national and international organizations such as from the [JAXA]Greenhouse Gases Observing Satellite.

     
  • richardmitnick 1:55 pm on December 14, 2019 Permalink | Reply
    Tags: "Rosalind meets Rosalind", Dr Rosalind Franklin (1920-1958), ESA’s ExoMars rover, , Mars research, The lasting imprint Rosalind left on her family also inspired her younger brother to name his own daughter Rosalind.   

    From European Space Agency – United space in Europe: “Rosalind meets Rosalind” 

    ESA Space For Europe Banner

    From European Space Agency – United space in Europe

    United space in Europe

    13/12/2019

    1

    The work of Dr Rosalind Franklin (1920-1958) is well known for being central to the discovery of the iconic double-helix structure of DNA, the fabric of life as we know it on Earth. More than half a century later, she also inspired the name of ESA’s ExoMars rover, scheduled to launch in 2020 and start its exploration of the Red Planet in 2021. But the lasting imprint Rosalind left on her family also inspired her younger brother to name his own daughter Rosalind.

    After learning that the rover had been named in honour of her aunt – the result of a public competition led by the UK Space Agency – and also sharing the same name, Rosalind Franklin reached out to ESA, curious to learn more about the mission. Last month, she visited ESA’s technical centre in the Netherlands and is pictured here meeting the 1:1 scale model of the Rosalind Franklin ExoMars rover for the first time.

    Rosalind said: “I was overwhelmed to see the rover and to meet the extraordinary scientists that have dedicated years to the development of the project, bringing it from concept to reality, and recognising my Aunt Rosalind’s contribution to science by naming it after her. It was truly moving and filled me with pride and appreciation. It was an amazing day of learning and discovery and I know she would feel so honored and full of admiration towards everyone involved.”

    ExoMars mission experts were on hand to answer her questions and to explain more about how the rover will be driven across the martian surface, and the science experiments it will carry out. One of the unique aspects of the rover is its two metre long drill that will retrieve underground samples for analysis in its onboard laboratory, where it will be able to sniff out signatures of life past or present.

    Just as scientific discovery is in the soul of the ExoMars programme, Dr Rosalind Franklin knew from a young age that she wanted to be a scientist. Devoted and determined, she followed her dream, graduating with a Natural Sciences degree from Cambridge University, UK, in 1941, and earning a PhD in physical chemistry in 1945. She became an expert in X-ray diffraction imaging, applied to studying the physical chemistry of coals, and later revealing the hidden secrets of DNA, RNA and viruses.

    Her legacy lives on today in a number of ways: numerous scientific institutes carry her name – one example being in the Rosalind Franklin University of Medicine and Science in Chicago, U.S, that her niece is a trustee of. Next year her legacy will extend into space, and her adventurous spirit will be lived through the intrepid exploration of the Rosalind Franklin ExoMars rover as it discovers hidden secrets of the Red Planet.

    The ExoMars programme is a joint endeavour between ESA and Roscosmos and comprises two missions: the first – the Trace Gas Orbiter – launched in 2016 while the second, comprising the Rosalind Franklin rover and Kazachok surface platform, is planned for 2020. Together they will address the question of whether life has ever existed on Mars. The TGO is already delivering important scientific results and will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 8:41 am on October 16, 2019 Permalink | Reply
    Tags: "ExoMars parachute progress", , ESA/Roscosmos Rosalind Franklin ExoMars rover, Mars research   

    From European Space Agency: “ExoMars parachute progress” 

    ESA Space For Europe Banner

    From European Space Agency

    1
    ExoMars 2020 parachute deployment sequence

    15 October 2019

    Positive steps towards solving the problems discovered with the ExoMars mission parachutes have been taken in the last month to keep on track for the July-August 2020 launch window.

    ESA/Roscosmos ExoMars Rosalind Franklin in flight

    ESA/Roscosmos Rosalind Franklin ExoMars rover


    The mission needs two parachutes – each with its own pilot chute for extraction – to help slow the descent module prior to landing on Mars. Once the atmospheric drag has slowed the descent module from around 21 000 km/h to 1700 km/h, the first parachute will be deployed. Some 20 seconds later, at about 400 km/h, the second parachute will open. Following separation of the parachutes about 1 km above ground the braking engines will kick in to safely deliver a landing platform – with a rover encapsulated inside – onto the surface of Mars for its scientific mission. The entire sequence from atmospheric entry to landing takes just six minutes.


    ExoMars progress update

    While the deployment sequence of all four parachutes was successfully tested in high altitude drop tests earlier this year, damage to the 15 m-diameter primary parachute and 35 m-diameter secondary parachute canopy was observed. Despite precautionary design adaptations being introduced for a second test of the 35 m parachute, canopy damage occurred again.

    A thorough inspection of all the recovered hardware has since been completed, allowing the team to define dedicated design adaptations to both primary and secondary main parachutes. Some promising design changes will also be applied to the parachute bags to ease the lines and canopy exit from the bags, avoiding frictional damage.

    ESA has also requested support from NASA to benefit from their hands-on parachute experience. This cooperation gives access to special test equipment at NASA’s Jet Propulsion Laboratory that will enable ESA to conduct multiple dynamic extraction tests on the ground in order to validate any foreseen design adaptations prior to the upcoming high altitude drop tests.

    The next opportunities for high altitude drop tests are at a range in Oregon, US, January–March. ESA is working to complete the tests of both the 15 m and 35 m parachute prior to the ExoMars project’s ‘qualification acceptance review’, which is planned for the end of April in order to meet the mission launch window (26 July–11 Aug 2020).

    The qualified parachute assembly, inside its flight canister, should ideally be integrated into the spacecraft prior to shipment to Baikonur in April, but it is also possible to do so during the spacecraft preparation activities at the launch site in May.

    The mission will launch on a Proton rocket, and a carrier module will transport the composite descent module, Kazachok lander platform and Rosalind Franklin rover to Mars, arriving in March 2021. After driving off the surface platform, Rosalind Franklin rover will explore the surface of Mars, seeking out geologically interesting sites to drill below the surface, to determine if life ever existed on our neighbour planet.

    The rover is currently undergoing its environmental test campaign at Airbus Toulouse, France. At the same time, the flight carrier module containing the descent module and lander platform is completing its final round of testing at Thales Alenia Space, Cannes, France. The rover will be integrated into the spacecraft in early 2020.

    All parachute system qualification activities are managed and conducted by a joint team involving the ESA project (supported by Technical Directorate expertise), TASinI (prime contractor), TASinF (PAS lead), Vorticity (parachute design and test analysis) and Arescosmo (parachute and bags manufacturing).

    The ExoMars programme is a joint endeavour between ESA and Roscosmos. In addition to the 2020 mission, it also includes the Trace Gas Orbiter (TGO) launched in 2016.

    ESA ExoMars Trace Gas Orbiter CHASSIS

    ESA/ExoMars Trace Gas Orbiter

    The TGO is already both delivering important scientific results of its own and relaying data from NASA’s Curiosity Mars rover and InSight lander. It will also relay the data from the ExoMars 2020 mission once it arrives at Mars in March 2021.

    NASA Mars Curiosity Rover

    NASA/Mars InSight Lander

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The European Space Agency (ESA), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

    ESA50 Logo large

     
  • richardmitnick 1:01 pm on October 8, 2019 Permalink | Reply
    Tags: "NASA's Curiosity Rover Finds an Ancient Oasis on Mars", Gale Crater, Mars research,   

    From NASA JPL-Caltech: “NASA’s Curiosity Rover Finds an Ancient Oasis on Mars” 

    From NASA JPL-Caltech

    October 7, 2019

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-2433
    andrew.c.good@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-358-1501
    alana.r.johnson@nasa.gov

    1
    The network of cracks in this Martian rock slab called “Old Soaker” may have formed from the drying of a mud layer more than 3 billion years ago. The view spans about 3 feet (90 centimeters) left-to-right and combines three images taken by the MAHLI camera on the arm of NASA’s Curiosity Mars rover. Credit: NASA/JPL-Caltech/MSSS

    If you could travel back in time 3.5 billion years, what would Mars look like? The picture is evolving among scientists working with NASA’s Curiosity rover.

    Imagine ponds dotting the floor of Gale Crater, the 100-mile-wide (150-kilometer-wide) ancient basin that Curiosity is exploring. Streams might have laced the crater’s walls, running toward its base. Watch history in fast forward, and you’d see these waterways overflow then dry up, a cycle that probably repeated itself numerous times over millions of years.

    That is the landscape described by Curiosity scientists in a Nature Geoscience paper published today. The authors interpret rocks enriched in mineral salts discovered by the rover as evidence of shallow briny ponds that went through episodes of overflow and drying. The deposits serve as a watermark created by climate fluctuations as the Martian environment transitioned from a wetter one to the freezing desert it is today.

    Scientists would like to understand how long this transition took and when exactly it occurred. This latest clue may be a sign of findings to come as Curiosity heads toward a region called the “sulfate-bearing unit,” which is expected to have formed in an even drier environment. It represents a stark difference from lower down the mountain, where Curiosity discovered evidence of persistent freshwater lakes.

    Gale Crater is the ancient remnant of a massive impact. Sediment carried by water and wind eventually filled in the crater floor, layer by layer. After the sediment hardened, wind carved the layered rock into the towering Mount Sharp, which Curiosity is climbing today. Now exposed on the mountain’s slopes, each layer reveals a different era of Martian history and holds clues about the prevailing environment at the time.

    “We went to Gale Crater because it preserves this unique record of a changing Mars,” said lead author William Rapin of Caltech. “Understanding when and how the planet’s climate started evolving is a piece of another puzzle: When and how long was Mars capable of supporting microbial life at the surface?”

    He and his co-authors describe salts found across a 500-foot-tall (150-meter-tall) section of sedimentary rocks called “Sutton Island,” which Curiosity visited in 2017. Based on a series of mud cracks at a location named “Old Soaker,” the team already knew the area had intermittent drier periods. But the Sutton Island salts suggest the water also concentrated into brine.

    Typically, when a lake dries up entirely, it leaves piles of pure salt crystals behind. But the Sutton Island salts are different: For one thing, they’re mineral salts, not table salt. They’re also mixed with sediment, suggesting they crystallized in a wet environment – possibly just beneath evaporating shallow ponds filled with briny water.

    Given that Earth and Mars were similar in their early days, Rapin speculated that Sutton Island might have resembled saline lakes on South America’s Altiplano. Streams and rivers flowing from mountain ranges into this arid, high-altitude plateau lead to closed basins similar to Mars’ ancient Gale Crater. Lakes on the Altiplano are heavily influenced by climate in the same way as Gale.

    “During drier periods, the Altiplano lakes become shallower, and some can dry out completely,” Rapin said. “The fact that they’re vegetation-free even makes them look a little like Mars.”

    Signs of a Drying Mars

    Sutton Island’s salt-enriched rocks are just one clue among several the rover team is using to piece together how the Martian climate changed. Looking across the entirety of Curiosity’s journey, which began in 2012, the science team sees a cycle of wet to dry across long timescales on Mars.

    “As we climb Mount Sharp, we see an overall trend from a wet landscape to a drier one,” said Curiosity Project Scientist Ashwin Vasavada of NASA’s Jet Propulsion Laboratory in Pasadena, California. JPL leads the Mars Science Laboratory mission that Curiosity is a part of. “But that trend didn’t necessarily occur in a linear fashion. More likely, it was messy, including drier periods, like what we’re seeing at Sutton Island, followed by wetter periods, like what we’re seeing in the ‘clay-bearing unit’ that Curiosity is exploring today.”

    Up until now, the rover has encountered lots of flat sediment layers that had been gently deposited at the bottom of a lake. Team member Chris Fedo, who specializes in the study of sedimentary layers at the University of Tennessee, noted that Curiosity is currently running across large rock structures that could have formed only in a higher-energy environment such as a windswept area or flowing streams.

    Wind or flowing water piles sediment into layers that gradually incline. When they harden into rock, they become large structures similar to “Teal Ridge,” which Curiosity investigated this past summer.

    “Finding inclined layers represents a major change, where the landscape isn’t completely underwater anymore,” said Fedo. “We may have left the era of deep lakes behind.”

    Curiosity has already spied more inclined layers in the distant sulfate-bearing unit. The science team plans to drive there in the next couple years and investigate its many rock structures. If they formed in drier conditions that persisted for a long period, that might mean that the clay-bearing unit represents an in-between stage – a gateway to a different era in Gale Crater’s watery history.

    “We can’t say whether we’re seeing wind or river deposits yet in the clay-bearing unit, but we’re comfortable saying is it’s definitely not the same thing as what came before or what lies ahead,” Fedo said.

    For more about NASA’s Curiosity Mars rover mission, visit:

    https://mars.nasa.gov/msl/

    https://nasa.gov/msl

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge [1], on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

     
  • richardmitnick 10:35 am on June 5, 2019 Permalink | Reply
    Tags: Mars research, , the self-hammering "mole"   

    From JPL-Caltech: “InSight’s Team Tries New Strategy to Help the ‘Mole'” 

    NASA JPL Banner

    From JPL-Caltech

    June 5, 2019

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-2433
    andrew.c.good@jpl.nasa.gov

    Alana Johnson
    NASA Headquarters, Washington
    202-358-1501
    alana.r.johnson@nasa.gov

    NASA/Mars InSight Lander

    1
    Engineers in a Mars-like test area at NASA’s Jet Propulsion Laboratory try possible strategies to aid the Heat Flow and Physical Properties Package (HP3) on NASA’s InSight lander, using engineering models of the lander, robotic arm and instrument.

    In this image, the model’s robotic arm is lifting up part of HP3 to expose the self-hammering mole that is partially embedded in the testbed soil. Standing mid-ground are engineers Ashitey Trebi-Ollennu (left) and Troy Lee Hudson (right). Lights in the testbed intended to simulate Mars’ lighting conditions give the image an orange tint. Engineers at the German Aerospace Center (DLR), which provided HP3, have also been working on strategies to help the probe.

    A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

    For more information about the mission, go to https://mars.nasa.gov/insight.

    Scientists and engineers have a new plan for getting NASA InSight’s heat probe, also known as the “mole,” digging again on Mars. Part of an instrument called the Heat Flow and Physical Properties Package (HP3), the mole is a self-hammering spike designed to dig as much as 16 feet (5 meters) below the surface and record temperature.

    But the mole hasn’t been able to dig deeper than about 12 inches (30 centimeters) below the Martian surface since Feb. 28, 2019. The device’s support structure blocks the lander’s cameras from viewing the mole, so the team plans to use InSight’s robotic arm to lift the structure out of the way. Depending on what they see, the team might use InSight’s robotic arm to help the mole further later this summer.

    HP3 is one of InSight’s several experiments, all of which are designed to give scientists their first look at the deep interior of the Red Planet. InSight also includes a seismometer that recently recorded its first marsquake on April 6, 2019, followed by its largest seismic signal to date at 7:23 p.m. PDT (10:23 EDT) on May 22, 2019 – what is believed to be a marsquake of magnitude 3.0.

    For the last several months, testing and analysis have been conducted at NASA’s Jet Propulsion Laboratory in Pasadena, California, which leads the InSight mission, and the German Aerospace Center (DLR), which provided HP3, to understand what is preventing the mole from digging. Team members now believe the most likely cause is an unexpected lack of friction in the soil around InSight – something very different from soil seen on other parts of Mars. The mole is designed so that loose soil flows around it, adding friction that works against its recoil, allowing it to dig. Without enough friction, it will bounce in place.

    “Engineers at JPL and DLR have been working hard to assess the problem,” said Lori Glaze, director of NASA’s Planetary Science Division. “Moving the support structure will help them gather more information and try at least one possible solution.”

    The lifting sequence will begin in late June, with the arm grasping the support structure (InSight conducted some test movements recently). Over the course of a week, the arm will lift the structure in three steps, taking images and returning them so that engineers can make sure the mole isn’t being pulled out of the ground while the structure is moved. If removed from the soil, the mole can’t go back in.

    The procedure is not without risk. However, mission managers have determined that these next steps are necessary to get the instrument working again.

    “Moving the support structure will give the team a better idea of what’s happening. But it could also let us test a possible solution,” said HP3 Principal Investigator Tilman Spohn of DLR. “We plan to use InSight’s robotic arm to press on the ground. Our calculations have shown this should add friction to the soil near the mole.”

    A Q & A with team members about the mole and the effort to save it is at:

    https://mars.nasa.gov/news/8444/common-questions-about-insights-mole/?site=insight

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
  • richardmitnick 1:17 pm on May 6, 2019 Permalink | Reply
    Tags: , , , Before and after selfies reveals dust in the misson, , Mars research, , , The same winds that blanket Mars with dust can also blow that dust away.   

    From JPL-Caltech: “For InSight, Dust Cleanings Will Yield New Science” 

    NASA JPL Banner

    From JPL-Caltech

    May 6, 2019

    Andrew Good
    Jet Propulsion Laboratory, Pasadena, Calif.
    818-393-2433
    andrew.c.good@jpl.nasa.gov

    1
    This is NASA InSight’s second full selfie on Mars. Since taking its first selfie, the lander has removed its heat probe and seismometer from its deck, placing them on the Martian surface; a thin coating of dust now covers the spacecraft as well. NASA/JPL-Caltech

    2
    InSight’s first selfie. NASA/JPL-Caltech

    This selfie is a mosaic made up of 14 images taken on March 15 and April 11 – the 106th and 133rd Martian days, or sols, of the mission – by InSight’s Instrument Deployment Camera, located on its robotic arm.

    InSight’s first selfie showed its instruments still on the deck. Now that they’re removed, the viewer can see the spacecraft’s air pressure sensor (white object in center), the tether box for its seismometer and the tether for its heat probe running across the deck. Also visible is its robotic arm and grapple.

    JPL manages InSight for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

    A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

    The same winds that blanket Mars with dust can also blow that dust away. Catastrophic dust storms have the potential to end a mission, as with NASA’s Opportunity rover. But far more often, passing winds cleared off the rover’s solar panels and gave it an energy boost. Those dust clearings allowed Opportunity and its sister rover, Spirit, to survive for years beyond their 90-day expiration dates.

    Dust clearings are also expected for Mars’ newest inhabitant, the InSight lander. Because of the spacecraft’s weather sensors, each clearing can provide crucial science data on these events, as well – and the mission already has a glimpse at that.

    On Feb. 1, the 65th Martian day, or sol, of the mission, InSight detected a passing wind vortex (also known as a dust devil if it picks up dust and becomes visible; InSight’s cameras didn’t catch the vortex in this case). At the same time, the lander’s two large solar panels experienced very small bumps in power – about 0.7% on one panel and 2.7% on the other – suggesting a tiny amount of dust was lifted.

    For more information about InSight, visit:

    https://mars.nasa.gov/insight/

    For more information about Mars, visit:

    https://mars.nasa.gov

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NASA JPL Campus

    Jet Propulsion Laboratory (JPL)) is a federally funded research and development center and NASA field center located in the San Gabriel Valley area of Los Angeles County, California, United States. Although the facility has a Pasadena postal address, it is actually headquartered in the city of La Cañada Flintridge, on the northwest border of Pasadena. JPL is managed by the nearby California Institute of Technology (Caltech) for the National Aeronautics and Space Administration. The Laboratory’s primary function is the construction and operation of robotic planetary spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA’s Deep Space Network.

    Caltech Logo

    NASA image

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: