Tagged: Marine Microbiology Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:32 pm on August 11, 2022 Permalink | Reply
    Tags: "Cultivating Super Corals Alone Is Unlikely to Protect Coral Reefs From Climate Change", , Coral reef restoration techniques are widely applied throughout the world as a way to repopulate degraded coral reef areas., , Marine Microbiology, Restoration efforts need to be conducted at much greater spatial and temporal scales to have long-term benefits., Restoration practices carry a hefty price tag and require a lot of resources., Selectively breeding corals to be more heat tolerant only will lead to benefits if conducted at a very large scale over the course of centuries., The best chance of adapting to the effects of climate change-like warming ocean temperatures-if there is high genetic diversity and if habitat is protected from other local stressors., The Rutgers School of Environmental and Biological Sciences   

    From The Rutgers School of Environmental and Biological Sciences: “Cultivating Super Corals Alone Is Unlikely to Protect Coral Reefs From Climate Change” 

    From The Rutgers School of Environmental and Biological Sciences

    At

    Rutgers smaller
    Our Great Seal.

    Rutgers University

    8.9.22

    1
    Shutterstock.

    Restoration efforts need to be conducted at much greater spatial and temporal scales to have long-term benefits.

    A popular coral restoration technique is unlikely to protect coral reefs from climate change and is based on the assumption that local threats to reefs are managed effectively, according to a study co-authored by Rutgers, Coral Research Alliance and researchers at other institutions.

    The research, published in the journal Ecological Applications [below], explored the response of coral reefs to restoration projects that propagate corals and outplant them into the wild. Additionally, researchers evaluated the effects of outplanting corals genetically adapted to warmer temperatures, sometimes called “super corals,” to reefs experiencing climate change as a way to build resilience to warming.

    The study found neither approach was successful at preventing a decline in coral coverage in the next several hundred years because of climate change and that selectively breeding corals to be more heat tolerant only will lead to benefits if conducted at a very large scale over the course of centuries.

    Even then, the researchers said, the benefits won’t be realized for 200 years.

    Restoring areas with corals that haven’t been selected to be more heat tolerant was ineffective at helping corals survive climate change except at the largest supplementation levels.

    “Our previous research shows that corals have the best chance of adapting to the effects of climate change-like warming ocean temperatures-if there is high genetic diversity and if habitat is protected from other local stressors.” said Lisa McManus, who co-led the research and conducted the work as a postdoctoral researcher at Rutgers University and is now faculty at the Hawai‘i Institute of Marine Biology. “Repopulating a coral reef with corals that have similar genetic makeups could reduce an area’s natural genetic diversity, and therefore make it harder for all corals to adapt to climate change.”

    Coral reef restoration techniques are widely applied throughout the world as a way to repopulate degraded coral reef areas. Although the practice has some benefits, such as engaging and educating communities about reef ecosystems or replenishing a coral reef population after an area has been hit by a storm or suffered direct physical damage, more scientists are speaking up about the limitations of conservation approaches that focus solely on restoration.

    The authors said focusing solely on coral restoration and genetically engineering corals to be more tolerant of high temperatures is risky. Understanding of the genes that determine heat resistance remains limited and focusing on reproducing just one single trait could undermine a coral’s resilience to other stressors or its natural ability to adapt, they said.

    Restoration practices also carry a hefty price tag and require a lot of resources. The median cost of restoring just one hectare (or about 2.5 acres) of coral reef has been estimated at more than $350,000, which doesn’t factor in high mortality rates that often come with such projects and the cost of genetically modifying corals.

    “Coral restoration can be an important tool for conserving coral reefs, but restoration is expensive and hard. We can’t use restoration to replace the basics, like improving water quality, avoiding overfishing, and addressing climate change,” said Malin Pinsky, an associate professor in the Department of Ecology, Evolution, and Natural Resources at Rutgers University–New Brunswick.

    The study was co-authored by Rutgers professor Malin Pinsky, and researchers from Coral Reef Alliance, University of Washington, Stanford University, University of Queensland, University of Hawai’i and The Nature Conservancy. The research was funded by the Gordon and Betty Moore Foundation and The Nature Conservancy.

    Science paper:
    Ecological Applications

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The basis for what is today The Rutgers School of Environmental and Biological Sciences was formed in 1864 from an effort led by professor George H. Cook to designate Rutgers as New Jersey’s land-grant college, two years after Congress passed the 1862 Morrill Act creating public, land-grant institutions across the nation. The Rutgers Scientific School was the distinct unit established to carry out the land-grant mission.In 1880 the New Jersey Agricultural Experiment Station (NJAES)—the 3rd oldest in the U.S.—was set up to conduct applied agricultural research for the public interest. The school’s affiliation with NJAES reflected the nation and the state’s mission to extend knowledge to the predominant agricultural sector of the time. This was further facilitated by the Smith-Lever Act in 1914 that established the national Cooperative Extension system at each land-grant institution to disseminate information for the public good and the agricultural emphasis was reflected in 1917 when Rutgers Scientific School was renamed the College of Agriculture.

    As New Jersey grew into a more urban and suburban state indicating changing demands, in 1965 the College of Agriculture was re-titled the College of Agriculture and Environmental Science (CAES), the first land-grant institution to add a focus on the environment to its name. In 1971 the CAES changed its name to Cook College in honor of George H. Cook. Cook College was renamed the School of Environmental and Biological Sciences (SEBS) in 2007, as part of a university-wide reorganization of undergraduate education at Rutgers that also saw the adoption of the term “school” to designate all degree-granting units of the university.

    Throughout its long history, the school has been home to many firsts and historical innovations, with worldwide impact: In 1934 the world-renowned Rutgers tomato was released, serving as the leading commercial variety for decades; in 1938 Enos Perry established the first dairy cow artificial insemination program in the US; in 1943 Albert Schatz and Selman Waksman discovered the life-saving tuberculosis drug streptomycin; in 1965 William Roberts innovated the first air-inflated, double-layer polyethylene greenhouse, revolutionizing a worldwide industry; in 2016 the Rutgers Slocum Electric Underwater Glider completed the first crossing of the South Atlantic by an autonomous underwater vehicle.

    Today SEBS supports vibrant academic departments, research and outreach centers, and institutes addressing the scientific foundation of the pressing needs of the 21st century in the environment, climate, marine and coastal, agriculture, nutrition, plant biology, landscape design, food systems, and more.

    rutgers-campus

    Rutgers-The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    Rutgers University is a public land-grant research university based in New Brunswick, New Jersey. Chartered in 1766, Rutgers was originally called Queen’s College, and today it is the eighth-oldest college in the United States, the second-oldest in New Jersey (after Princeton University), and one of the nine U.S. colonial colleges that were chartered before the American War of Independence. In 1825, Queen’s College was renamed Rutgers College in honor of Colonel Henry Rutgers, whose substantial gift to the school had stabilized its finances during a period of uncertainty. For most of its existence, Rutgers was a private liberal arts college but it has evolved into a coeducational public research university after being designated The State University of New Jersey by the New Jersey Legislature via laws enacted in 1945 and 1956.

    Rutgers today has three distinct campuses, located in New Brunswick (including grounds in adjacent Piscataway), Newark, and Camden. The university has additional facilities elsewhere in the state, including oceanographic research facilities at the New Jersey shore. Rutgers is also a land-grant university, a sea-grant university, and the largest university in the state. Instruction is offered by 9,000 faculty members in 175 academic departments to over 45,000 undergraduate students and more than 20,000 graduate and professional students. The university is accredited by the Middle States Association of Colleges and Schools and is a member of the Big Ten Academic Alliance, the Association of American Universities and the Universities Research Association. Over the years, Rutgers has been considered a Public Ivy.

    Research

    Rutgers is home to the Rutgers University Center for Cognitive Science, also known as RUCCS. This research center hosts researchers in psychology, linguistics, computer science, philosophy, electrical engineering, and anthropology.

    It was at Rutgers that Selman Waksman (1888–1973) discovered several antibiotics, including actinomycin, clavacin, streptothricin, grisein, neomycin, fradicin, candicidin, candidin, and others. Waksman, along with graduate student Albert Schatz (1920–2005), discovered streptomycin—a versatile antibiotic that was to be the first applied to cure tuberculosis. For this discovery, Waksman received the Nobel Prize for Medicine in 1952.

    Rutgers developed water-soluble sustained release polymers, tetraploids, robotic hands, artificial bovine insemination, and the ceramic tiles for the heat shield on the Space Shuttle. In health related field, Rutgers has the Environmental & Occupational Health Science Institute (EOHSI).

    Rutgers is also home to the RCSB Protein Data bank, “…an information portal to Biological Macromolecular Structures’ cohosted with the San Diego Supercomputer Center. This database is the authoritative research tool for bioinformaticists using protein primary, secondary and tertiary structures worldwide….”

    Rutgers is home to the Rutgers Cooperative Research & Extension office, which is run by the Agricultural and Experiment Station with the support of local government. The institution provides research & education to the local farming and agro industrial community in 19 of the 21 counties of the state and educational outreach programs offered through the New Jersey Agricultural Experiment Station Office of Continuing Professional Education.

    Rutgers University Cell and DNA Repository (RUCDR) is the largest university based repository in the world and has received awards worth more than $57.8 million from the National Institutes of Health. One will fund genetic studies of mental disorders and the other will support investigations into the causes of digestive, liver and kidney diseases, and diabetes. RUCDR activities will enable gene discovery leading to diagnoses, treatments and, eventually, cures for these diseases. RUCDR assists researchers throughout the world by providing the highest quality biomaterials, technical consultation, and logistical support.

    Rutgers–Camden is home to the nation’s PhD granting Department of Childhood Studies. This department, in conjunction with the Center for Children and Childhood Studies, also on the Camden campus, conducts interdisciplinary research which combines methodologies and research practices of sociology, psychology, literature, anthropology and other disciplines into the study of childhoods internationally.

    Rutgers is home to several National Science Foundation IGERT fellowships that support interdisciplinary scientific research at the graduate-level. Highly selective fellowships are available in the following areas: Perceptual Science, Stem Cell Science and Engineering, Nanotechnology for Clean Energy, Renewable and Sustainable Fuels Solutions, and Nanopharmaceutical Engineering.

    Rutgers also maintains the Office of Research Alliances that focuses on working with companies to increase engagement with the university’s faculty members, staff and extensive resources on the four campuses.

    As a ’67 graduate of University College, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 8:00 am on June 23, 2022 Permalink | Reply
    Tags: "BGCs": biosynthetic gene clusters, "Tapping the ocean as a source of natural products", , , , , , Marine Microbiology, Ocean Microbiome, , , Using DNA data ETH researchers have examined seawater to find not only new species of bacteria but also previously unknown natural products that may one day prove beneficial.   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Tapping the ocean as a source of natural products” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    6.22.22
    Peter Rüegg

    Using DNA data ETH researchers have examined seawater to find not only new species of bacteria but also previously unknown natural products that may one day prove beneficial.

    1
    Marine bacteria are a significant reservoir of undiscovered chemical compounds that could be of interest to humans.
    Credit: Helena Klein.

    The oceans are teeming with countless forms of life, from the world’s largest creature – the blue whale – to miniscule microorganisms. In addition to their vast numbers, these microorganisms are also crucial for ensuring that the entire eco-​ and climate system work properly. For instance, there are photosynthetically active varieties such as cyanobacteria that produce around 50 percent of the oxygen in the atmosphere. Moreover, by removing carbon dioxide from the atmosphere, microorganisms help counter global warming.

    Despite this significant role, research into the diversity of microorganisms found in the ocean has thus far been only rudimentary. So, a group of researchers led by Shinichi Sunagawa, Professor of Microbiome Research, is working closely with Jörn Piel’s group to investigate this diversity. Both groups are at the Institute of Microbiology at ETH Zürich.

    To detect new natural products made by bacteria, Sunagawa and his team examined publicly available DNA data from 1,000 water samples collected at different depths from every ocean region in the world. The data came from such sources as ocean expeditions and observation platforms positioned out at sea.

    Thanks to modern technologies like environmental DNA (eDNA) analysis, it has become easier to search for new species and discover which known organisms can be found where. But what is hardly known at all is what special effects the marine microorganisms offer – in other words, what chemical compounds they make that are important for interactions between organisms. In the best-​case scenario, such compounds would benefit humans as well. Underpinning the research is the assumption that the ocean microbiome harbours great potential for natural products that could prove beneficial, for instance for their antibiotic properties.

    The extracted eDNA present in the samples was sequenced by the original researchers of the various expeditions. By reconstructing entire genomes on the computer, the scientists succeeded in decrypting the encoded information – the blueprints for proteins. Finally, they consolidated this new data together with the existing 8,500 genome data sets for marine microorganisms in a single database.

    This gave them 35,000 genomes to draw on when searching for new microbial species and, in particular, for promising biosynthetic gene clusters (BGCs). A BGC is a group of genes that provide the synthetic pathway for a natural product.

    New species and new molecules discovered

    In this genome data, the researchers detected not only many potentially useful BGCs – some 40,000 in all – but also previously undiscovered species of bacteria belonging to the phylum Eremiobacterota. This group of bacteria had been known to exist only in terrestrial environments and didn’t exhibit any special biosynthetic diversity.

    Sunagawa and his team named a new family of these bacteria as Eudoremicrobiaceae, and also were able to demonstrate that these bacteria are common and widespread: one species belonging to this family, Eudoremicrobium malaspinii, accounts for up to 6 percent of all bacteria present in certain areas of the ocean.

    “The relatives in the ocean possess what for bacteria is a giant genome. Fully decrypting it was technically challenging because the organisms had not been cultivated before,” Sunagawa says. Moreover, the new bacteria turned out to belong to the group of microorganisms that boasts the highest BGC diversity of all the samples examined. “As things stand, they are the most biosynthetically diverse family in the oceanic water column,” he says.

    The researchers looked at two Eudoremicrobiaceae BGCs in detail. One was a gene cluster containing the genetic code for enzymes that, according to Sunagawa, have never been found in this constellation in a bacterial BGC before. The other examined example was a bioactive natural product that inhibits a proteolytic enzyme.

    Validating experiments led to a surprise

    In collaboration with the group led by Jörn Piel, the researchers used experiments to validate the structure and function of both natural products. Since E. malaspinii could not be cultivated, Piel’s team had to graft genes into a model bacterium so they would act as blueprints for the natural products. This bacterium then produced the corresponding substances. Lastly, the researchers isolated the molecules from the cells, determined the structure and validated the biological activity.

    This was necessary because in one case, the enzymatic activity predicted by computer programs did not tally with the results of the experiments. “Computer predictions for what chemical reactions an enzyme will trigger have their limitations,” Sunagawa says. “This is why such predictions have to be validated in the lab if there’s any doubt.”

    Doing so is an expensive and time-​consuming endeavour that’s simply not viable for a database of 40,000 potential natural products. “However, our database has plenty to offer, and it’s accessible to all researchers who wish to use it,” Sunagawa says.

    Beyond the continued collaboration with Piel’s group to discover new natural products, Sunagawa wants to investigate unresolved questions in the evolution and ecology of oceanic microorganisms. These include how microorganisms are dispersed in the ocean given that they can spread over great distances only passively. He also wants to discover what ecological or evolutionary benefits certain genes create for microbes. Sunagawa suspects the BGCs may play a major role.

    Science paper:
    Nature

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology, Stanford University and University of Cambridge (UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology, Stanford University, California Institute of Technology, Princeton University, University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE Excellence Ranking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London (UK) and the University of Cambridge (UK), respectively.

     
  • richardmitnick 4:40 pm on June 21, 2022 Permalink | Reply
    Tags: "The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection", 3D print coral-inspired microscale structures, , , , Marine Microbiology, , ,   

    From The University of California-San Diego and Scripps Institution of Oceanography : “The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    Liezel Labios
    858-246-1124
    llabios@ucsd.edu

    Robert Monroe
    858-534-3624
    scrippsnews@ucsd.edu

    Images by Daniel Wangpraseurt.

    A team of researchers involving the University of California San Diego has received a $25 million award from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to build artificial coral reefs to protect coastal areas in Hawai’i against flooding, erosion and storm damage.

    The artificial reefs will be designed to work with local ecology to create a living, growing and self-healing system. The reefs will provide a natural defense that can keep pace with sea-level rise over time and slow down waves, dissipating their energy before they reach land. A big benefit of artificial reefs is that they can be rapidly deployed to provide immediate protection while promoting the growth of reef-supporting organisms. Natural reefs take decades to mature, but the artificial versions can reach full functionality in a matter of months to years.

    The project is an academic-industry partnership led by the University of Hawai’i, with other partners including UC San Diego, Florida Atlantic University and Makai Ocean Engineering.

    1
    Coral larvae crawling over a bioactive coating to look for a settlement habitat. Such a bioactive material can be rapidly fabricated via 3D printing.

    The UC San Diego team is working on two methods for attracting both corals and beneficial reef fish to the artificial structures. First, researchers at the UC San Diego Department of NanoEngineering will 3D print biomaterials that will be coated onto the artificial reefs. The biomaterials will be designed with special microstructures to enhance coral recruitment, the process in which tiny drifting coral larvae attach and establish themselves on a reef. The microstructures also aim to inhibit algal and bacterial fouling on the artificial reefs.

    Scientists at UC San Diego’s Scripps Institution of Oceanography will also test “acoustic enrichment,” a process where sounds from other healthy reef environments are broadcast to attract both algae-eating fish and coral larvae to the structures. Scripps Oceanography scientists will also conduct passive acoustic monitoring of the reef structure to help monitor what and how many organisms settle on the structure over time.

    Daniel Wangpraseurt, an assistant project scientist at the UC San Diego Jacobs School of Engineering, will lead the effort with co-investigators Shaochen Chen, professor and chair of nanoengineering at the UC San Diego Jacobs School of Engineering, and Aaron Thode, a research scientist at Scripps Oceanography. The UC San Diego effort will be funded with $4 million of the DARPA award.

    “This is an exciting opportunity for radical innovation, with the potential to be a game changer for the engineering of artificial coral reefs,” said Wangpraseurt. “Our team will develop new biomaterials that will kick-start the living reef by applying state-of-the-art medical tissue engineering approaches.”

    2
    3D printed skeletal microarchitecture that can be used as inspiration for new reef-like materials.

    To create the biomaterials, the UC San Diego team will use a rapid, 3D bioprinting technology developed in Chen’s lab. The technology can reproduce detailed microscale structures in mere seconds, mimicking the complex designs and functions of living tissues. Wangpraseurt and Chen have collaborated in recent years to 3D print coral-inspired microscale structures that are capable of growing dense populations of microscopic algae. The new DARPA-funded project takes their work to the next level, expanding their efforts to help create hybrid biological and engineered reef-mimicking structures for coastal defenses suited to a changing environment.

    “We are now scaling up our rapid bioprinting platform, which will be critical to manufacture biomaterials for large scale coral reef engineering,” said Chen.

    Thode, who recently participated in another recent DARPA-funded project on coral reef acoustics, will be adapting underwater sound playback technology initially developed to attract sperm whales away from fishing vessels to prevent the 70-foot animals from taking fish from their haul.

    “In addition to developing methods to encourage rapid ecosystem development on artificial reefs, I’m hoping in the future this research could also help accelerate efforts to recover degraded or dying natural reefs,” said Thode.

    3D printed corals provide more fertile ground for algae growth
    3
    Left: Close-up of coral reef microstructures consisting of a coral skeleton (white) and coral tissue (orange-yellow). Right: SEM image of 3D printed coral skeleton. Images courtesy of Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 10:42 am on June 16, 2022 Permalink | Reply
    Tags: "Soft corals more resilient than reef-building corals during a marine heatwave", , Coral bleaching involves the expelling of symbionts-the microscopic organisms that inhabit the coral's cells to impart colour and energy to the creature., , Knowing which groups and species of corals are likely to survive in our warming world is critical to conserving corals reefs., , Marine Microbiology, Scientists are examining which species of algae and bacteria survived the heatwaves and which were expelled from corals and which came in to fill the empty spaces., Soft corals at Lord Howe Island did better than hard corals during the bleaching event., , The variable response of soft and hard coral species to marine heatwaves emphasizes the importance of species-specific protection of reefs.   

    From The University of New South Wales (AU) : “Soft corals more resilient than reef-building corals during a marine heatwave” 

    U NSW bloc

    From The University of New South Wales (AU)

    16 Jun 2022
    Jesse Hawley

    Might soft corals withstand marine heatwaves better than their reef-building cousins?

    1
    Soft corals come in a variety of forms. Photo: Rosie Steinberg/UNSW Science.

    Soft corals, the penned, fanned and tentacled corals, of Lord Howe Island appear more resilient to coral bleaching than their hard coral cousins, a team of marine biologists led by UNSW Science finds.

    Hard, reef-building corals appear to be less resilient to coral bleaching than soft corals according to a survey at the world’s southern-most coral reef, around Lord Howe Island, during, immediately after, and then seven months after a marine heatwave in 2019.

    “Overall, soft corals at Lord Howe Island did better than hard corals during the bleaching event,” says Rosemary (Rosie) Steinberg, PhD student and lead author of the paper published in Frontiers in Physiology. “This suggests that if Lord Howe Island continues to bleach, the species of soft corals that did well might become more prevalent on these reefs in comparison to their hard cousins.”

    This in turn, says Ms Steinberg, “allows us to plan for the benefits and challenges that a soft-coral dominated reef might pose”.

    “Soft corals are different to hard corals – the ones we usually see in photos of reefs – because the vast majority of them don’t make a solid skeleton underneath their tissue. They are usually flexible, while hard corals are usually rigid and immovable.

    “The fact that some species not only survived bleaching but didn’t have any physical response to marine heatwaves is excellent news. It lets us know that while we may lose some species to future bleaching, there is a chance that the reef can recover, although with a different coral community.”

    The resistant species were “very common soft corals [meaning they] can hopefully maintain important reef habitat and function while more sensitive species recover,” according to Ms Steinberg.

    While, overall, soft corals survived better than hard corals, some species still showed signs of bleaching.

    “Each species of soft coral had a different response,” says Ms Steinberg. “One bleached, one seemed to do better than normal, and one didn’t have any response to the increased heat.”

    2
    “Some colonies of the bleached species, Cladiella sp., didn’t just bleach, but peeled off the reef during the heatwave. As far as I can tell, this is a world-first observation in the literature.” Photo: Rosie Steinberg/UNSW Science

    Coral bleaching involves the expelling of symbionts-the microscopic organisms that inhabit the coral’s cells to impart colour and energy to the creature. In this survey, the researchers found one species, Xenia sp., responded to the heatwave by acquiring more (not less, which is typical for coral bleaching) of these symbionts, theoretically able to generate more, not less, energy.

    “This really surprised me,” says Ms Steinberg, “Xenia is a very charismatic and beautiful species, and I’m not entirely sure what happened. Perhaps it was a unique stress response, or perhaps they thrive during heatwaves – or, at least, warmer water than the cooler Lord Howe Island temperatures.”

    The variable response of soft and hard coral species to marine heatwaves emphasizes the importance of species-specific protection of reefs.

    “Knowing which groups and species of corals are likely to survive in our warming world is critical to conserving corals reefs. This information can let us predict what future reefs will look like, what species of fish and invertebrates they will support, and what services they will be able to provide to the communities that rely on them.

    “For example, many communities, including those of Lord Howe Island and the northern coasts of Australia, rely on the rocky reef structure to break waves and protect shorelines. Most studies of coral bleaching focus on hard corals, and for one very obvious reason – hard corals actually build the rock structure of the reef. Without them, the reef starts to fall apart.

    “Since we are finding that soft corals may survive better in our warming world in eastern Australia, we really need to understand what role soft corals play in keeping this hard reef structure together.”

    Next, the team is delving deeper into understanding how soft corals, their symbiotic algae, and their bacterial communities dealt with the marine heatwaves.

    “We are examining which species of algae and bacteria survived the heatwaves, which were expelled from corals, and which came in to fill the empty spaces. This can help us understand if there are any interventions, like adding more heat-resistant symbionts to reefs, that might help corals at Lord Howe Island survive and recover from future marine heatwaves.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U NSW Campus

    The University of New South Wales is an Australian public university with its largest campus in the Sydney suburb of Kensington.

    Established in 1949, UNSW is a research university, ranked 44th in the world in the 2021 QS World University Rankings and 67th in the world in the 2021 Times Higher Education World University Rankings. UNSW is one of the founding members of the Group of Eight, a coalition of Australian research-intensive universities, and of Universitas 21, a global network of research universities. It has international exchange and research partnerships with over 200 universities around the world.

    According to the 2021 QS World University Rankings by Subject, UNSW is ranked top 20 in the world for Law, Accounting and Finance, and 1st in Australia for Mathematics, Engineering and Technology. UNSW also leads Australia in Medicine, where the median ATAR (Australian university entrance examination results) of its Medical School students is higher than any other Australian medical school. UNSW enrolls the highest number of Australia’s top 500 high school students academically, and produces more millionaire graduates than any other Australian university.

    The university comprises seven faculties, through which it offers bachelor’s, master’s and doctoral degrees. The main campus is in the Sydney suburb of Kensington, 7 kilometres (4.3 mi) from the Sydney CBD. The creative arts faculty, UNSW Art & Design, is located in Paddington, and subcampuses are located in the Sydney CBD as well as several other suburbs, including Randwick and Coogee. Research stations are located throughout the state of New South Wales.

    The university’s second largest campus, known as UNSW Canberra at ADFA (formerly known as UNSW at ADFA), is situated in Canberra, in the Australian Capital Territory (ACT). ADFA is the military academy of the Australian Defense Force, and UNSW Canberra is the only national academic institution with a defense focus.

    Research centres

    The university has a number of purpose-built research facilities, including:

    UNSW Lowy Cancer Research Centre is Australia’s first facility bringing together researchers in childhood and adult cancers, as well as one of the country’s largest cancer-research facilities, housing up to 400 researchers.
    The Mark Wainwright Analytical Centre is a centre for the faculties of science, medicine, and engineering. It is used to study the structure and composition of biological, chemical, and physical materials.
    UNSW Canberra Cyber is a cyber-security research and teaching centre.
    The Sino-Australian Research Centre for Coastal Management (SARCCM) has a multidisciplinary focus, and works collaboratively with the Ocean University of China [中國海洋大學](CN) in coastal management research.

     
  • richardmitnick 8:44 am on June 9, 2022 Permalink | Reply
    Tags: "Millions of Shipwrecks Lost to The Ocean Are Changing Life in The Deep Sea", , , , Deep sea microbes living on submerged shipwrecks are positioned at the bottom of the underwater food chain., , , , Marine Microbiology, , , Submerged wooden islands are proving a vibrant breeding ground for deep sea microbes., The team behind this latest study suggests that other human-made structures-such as oil rigs-could be having a similar impact on deep sea microbiomes., There are estimated to be around three million shipwrecks sitting on sea beds around the world.   

    From “Science Alert(AU)” : “Millions of Shipwrecks Lost to The Ocean Are Changing Life in The Deep Sea” 

    ScienceAlert

    From “Science Alert(AU)”

    9 JUNE 2022
    DAVID NIELD

    1
    (Rick Ayrton/iStock/Getty Images Plus)

    There are estimated to be around three million shipwrecks sitting on sea beds around the world, many of them made from wood – and these submerged wooden islands are proving a vibrant breeding ground for deep sea microbes, a new study reveals.

    Scientists say these human-made structures are having an important impact on the delicate ecosystems down at the bottom of the oceans, to an extent that hasn’t really been appreciated before.

    Deep sea microbes living on submerged shipwrecks are positioned at the bottom of the underwater food chain, so changes to them could have a knock-on effect on other marine life – and, ultimately, everything living on the land as well.

    “Microbial communities are important to be aware of and understand because they provide early and clear evidence of how human activities change life in the ocean,” says molecular microbial ecologist Leila Hamdan from the University of Southern Mississippi.

    Hamdan and fellow researchers picked two 19th century shipwreck sites in the Gulf Mexico for their study. They placed pine and oak blocks around the sites, from right next to the shipwrecks to up to 200 meters (656 feet) away, and left the wood there for four months.

    The wooden blocks were then recovered and measured for bacteria, archaea, and fungi. Microbial diversity varied depending on proximity to the wreck sites, peaking around 125 meters (410 feet) away. The type of wood made a difference as well, with oak more favorable to microbial biodiversity than pine.

    Natural hard habitats – trees that have fallen into rivers and the oceans – are already well known for influencing the biodiversity of the water they tumble into. What this study shows is that shipwrecks abandoned by humans affect microbial life under the sea too.

    “These biofilms are ultimately what enable hard habitats to transform into islands of biodiversity,” says Hamdan.

    Overall, across the two sites, the presence of the shipwrecks increased microbial richness in the surrounding water, and altered the composition and dispersal patterns of the biofilms holding microbes, the researchers found.

    As expected, additional factors influencing microbial life were water depth and the closeness to other nutrient sources, such as the Mississippi River delta.

    While further research is needed to investigate the phenomenon at a broader range of sites, these initial findings are enough to show that shipwrecks are an important consideration in underwater biodiversity.

    The team behind this latest study suggests that other human-made structures-such as oil rigs-could be having a similar impact on deep sea microbiomes, and again further research is justified in attempting to find out specifics.

    “While we are aware human impacts on the seabed are increasing through the multiple economic uses, scientific discovery is not keeping pace with how this shapes the biology and chemistry of natural under sea landscapes,” says Hamdan.

    “We hope this work will begin a dialogue that leads to research on how built habitats are already changing the deep sea.”

    The research has been published in Frontiers in Marine Science.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

     
  • richardmitnick 4:30 pm on May 5, 2022 Permalink | Reply
    Tags: "Understanding how sunscreens damage coral", A common component of many sunscreens worn by coral reef-exploring tourists may hasten the demise of endangered ecosystems., Anemones and corals metabolized oxybenzone in such a way that the resulting substance formed damaging radicals when exposed to sunlight., , , , Many sunscreens marketed as coral-safe are based on metals such as zinc and titanium rather than organic compounds., , Marine Microbiology, Oxybenzone-an organic compound found in many sunscreens-can damage corals., , The researchers found evidence for a coral defense mechanism. Symbiotic algae in corals appeared to protect their hosts by sequestering within themselves the toxins that corals produced from oxybenzon, Up to 6000 tons of sunscreen – more than the weight of 50 blue whales – wash through U.S. reef areas every year.   

    From Stanford Woods Institute for the Environment : “Understanding how sunscreens damage coral” 

    1

    From Stanford Woods Institute for the Environment

    at

    Stanford University Name

    Stanford University

    May 5, 2022
    Rob Jordan

    2
    Many places have banned sunscreens with certain chemicals in an attempt to help protect coral reefs. Credit: Westend61 via Getty Images.

    You can love something to death. That is one way of thinking about a new Stanford University study that reveals how a common component of many sunscreens worn by coral reef-exploring tourists may hasten the demise of these endangered ecosystems. The surprising findings, published May 6 in Science, could help guide the development and marketing of effective, coral-safe sunscreens.

    Also cited: Science

    1
    Reefs around the world – like the Great Barrier Reef seen here – are bleaching and dying because of stressors like increased water temperatures, and sunscreens may be exacerbating the issues. Credit: Amanda Tinoco, CC BY-ND

    “It would be a sad irony if ecotourism aimed at protecting coral reefs were actually exacerbating their decline,” said study lead author Djordje Vuckovic, a PhD student in civil and environmental engineering. “I hope that our research will help the development of sunscreens that are less likely to harm reefs.”

    3
    Corals – like the mushroom coral seen here – and sea anemones absorb oxybenzone and metabolize it, but in doing so, they turn it into a toxin. Credit: Christian Renicke, CC BY-ND.

    Up to 6000 tons of sunscreen – more than the weight of 50 blue whales – wash through U.S. reef areas every year, according to the National Park Service. Scientists have known for some time that oxybenzone, an organic compound found in many sunscreens, can damage corals. As a result, sunscreens with this compound have been banned in the U.S. Virgin Islands and Hawaii, the island nation of Palau, and Bonaire, an island municipality of the Netherlands, among other places.

    However, the mechanisms by which oxybenzone does harm have largely remained a mystery, making it difficult to ensure that sunscreen components proposed as alternatives are truly safer for corals.

    William Mitch, a professor of civil and environmental engineering at Stanford, became interested in the issue several years ago when he heard about Hawaii’s then-pending ban. With funding from the Stanford Woods Institute for the Environment, he and John Pringle, a professor of genetics in the Stanford School of Medicine, began work to characterize the chemical and biological mechanisms by which oxybenzone harms corals.

    Protection for humans, damage for corals

    In their new study, Mitch, Pringle, Vuckovic, and other Stanford researchers used anemones as surrogates for corals, which are harder to experiment with, as well as mushroom corals. Exposed to oxybenzone in artificial seawater under simulated sunshine, the anemones all died within 17 days, whereas anemones exposed to oxybenzone in the absence of simulated sunlight remained viable.

    “It was strange to see that oxybenzone made sunlight toxic for corals – the opposite of what it is supposed to do,” said Mitch. “The compound is good at absorbing light within the waveband we tested, which is why it’s so common in sunscreens.”

    After absorbing ultraviolet light, oxybenzone is designed to dissipate the light energy as heat, preventing sunburn. The anemones and corals, however, metabolized oxybenzone in such a way that the resulting substance formed damaging radicals when exposed to sunlight.

    In addition to this vulnerability, the researchers found evidence for a coral defense mechanism. Symbiotic algae in corals appeared to protect their hosts by sequestering within themselves the toxins that corals produced from oxybenzone.

    As ocean waters warm, stressed corals expel their algae partners, exposing bone-white coral skeletons. Thus, in addition to being more vulnerable to disease and environmental shocks, such “bleached” corals would be more vulnerable to the depredations of oxybenzone without their algae to protect them.

    Ensuring sunscreens are safe for corals and other marine species

    Oxybenzone may not be the only sunscreen ingredient of concern, the researchers warn. The same metabolic pathways that appear to convert oxybenzone into a potent toxin for corals may do something similar with other common sunscreen ingredients, many of which share similar chemical structures and so could form similar phototoxic metabolites.

    Many sunscreens marketed as coral-safe are based on metals such as zinc and titanium rather than organic compounds, such as oxybenzone. Although these sunscreens are fundamentally different in how they function, it is not clear whether they are actually safer for corals, according to the researchers, who are planning to investigate the matter further.

    “In environmental science, as in medicine, a sound understanding of basic mechanisms should provide the best guidance for the development of practical solutions,” said Pringle. “Our study also illustrates the enormous power of collaborations between scientists with very different backgrounds and expertise,” said Mitch.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    2

    Our Mission
    To produce breakthrough environmental knowledge and solutions that sustain people and planet today and for generations to come.

    Our Vision

    We can feed people, sustain communities and provide clean water while stewarding the environment.

    The Stanford Woods Institute for the Environment is working toward a future in which societies meet people’s needs for water, food, health and other vital services while sustaining the planet. As the university’s hub of interdisciplinary environment and sustainability research, the Stanford Woods Institute is the go-to place for Stanford faculty, researchers and students to collaborate on environmental research. Their interdisciplinary work crosses sectors and disciplines, advancing solutions to the most critical, complex environmental and sustainability challenges.

    Working on campus and around the globe, the Stanford Woods Institute community develops environmental leaders; informs decision-makers with unbiased scientific data; and convenes experts from all of Stanford’s seven schools, other leading academic institutions, government, NGOs, foundations and business. The Stanford Woods Institute is pursuing breakthrough knowledge and solutions that link knowledge to action and solve the environmental challenges of today and tomorrow.

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    https://www6.slac.stanford.edu/SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.

    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 3:40 pm on May 5, 2022 Permalink | Reply
    Tags: "In Antarctica scientists discover a vast salty groundwater system under the ice sheet – with implications for sea level rise", A new discovery deep beneath one of Antarctica’s rivers of ice could change scientists’ understanding of how the ice flows with important implications for estimating future sea level rise., , , , Marine Microbiology,   

    From The Conversation (AU): “In Antarctica scientists discover a vast salty groundwater system under the ice sheet – with implications for sea level rise” 

    From The Conversation (AU)

    May 5, 2022

    Matthew Siegfried
    Assistant Professor of Geophysics and Hydrologic Science and Engineering
    Colorado School of Mines

    Chloe Gustafson
    Postdoctoral Research Scientist in Geophysics
    Scripps Institution of Oceanography
    University of California-San Diego

    A new discovery deep beneath one of Antarctica’s rivers of ice could change scientists’ understanding of how the ice flows, with important implications for estimating future sea level rise.

    1
    Co-author Chloe Gustafson and mountaineer Meghan Seifert install measuring equipment on an ice stream. Credit: Kerry Key/The Columbia University Lamont-Doherty Earth Observatory.

    Glacier scientists Matthew Siegfried from Colorado School of Mines, Chloe Gustafson from Scripps Institution of Oceanography and their colleagues spent 61 days living in tents on an Antarctic ice stream to collect data about the land under half a mile of ice beneath their feet. They explain what the team discovered and what it says about the behavior of ice sheets in a warming world.

    What was the big takeaway from your research?

    First, it helps to understand that West Antarctic was an ocean before it was an ice sheet. If it disappeared today, it would be an ocean again with a bunch of islands. So, we know that the bedrock below the ice sheet is covered with a thick layer of sediments – the particles that accumulate onto ocean floors.

    What we didn’t know was what was in the tiny pore spaces among those sediments below the ice.

    We expected to find meltwater coming from the ice stream above, a fast-moving channel of ice that flows from the center of the ice sheet toward the ocean. What we didn’t expect, but we found in this thick layer of sediments, was a huge amount of groundwater – including saltwater from the ocean.

    Our findings [Science] suggest that this salty groundwater is the largest reservoir of liquid water below the ice stream we studied, and likely others, and it may be affecting how the ice flows on Antarctica.


    Antarctic Ice Flow Charted From Space.
    How Antarctica’s ice flows through ice streams and ice shelves to the ocean. Credit: The National Aeronautics and Space Agency.

    Liquid water is incredibly important to how fast an ice stream moves. If there’s liquid water at the base of an ice stream, it flows fast. If that water freezes or the base dries out, the ice screeches to a stop.

    Models of ice streams typically consider only [Paleoceanography and Paleoclimatology] whether ice at the base has reached the melting point or if water has flowed from upstream along the base of the ice. Scientists had never considered that more water was available under the ice sheet, let alone water that is much saltier, which keeps water from freezing at lower temperatures. (Think about why communities put salt on roads in winter.)

    Our observations suggest there is so much water there, if you took the 500 to 1,900 meters (1,600 to 6,200 feet) or so of sediments below the ice stream and squeezed them like a sponge, you’d have a column of water about 220 to 820 meters (700 to 2,700 feet) deep.

    2
    Illustrations of the Whillans ice stream show liquid water under the ice from subglacial lakes (left) and groundwater within the sediment. The ice stream moves at about 300 meters per year. Modified from Gustafson et al., 2022

    This water can move through the pores in the subglacial groundwater system, just like groundwater elsewhere, but in Antarctica, there is a dynamic ice sheet on top. When the ice sheet gets thicker, it exerts more pressure on the sediment below, so it could drive meltwater from the base of the ice sheet [Wiley] deeper into the sediment. When the ice gets thinner, however, it could draw water, now a little saltier, out of the sediments. That saltier water could affect how fast the ice flows.

    Knowing that there is a massive reservoir of water that may be linked to how fast-flowing regions of Antarctica behave means scientists need to rethink our understanding of ice streams.

    What does finding liquid water in the sediments tell scientists about Antarctica?

    The salty groundwater was a clear sign of how far inland the boundary between the ice sheet and the ocean once reached.

    This boundary, known as the grounding line, is incredibly important. When ice flows across the grounding line, it starts to float in the ocean. If you know how the grounding line is shifting, you have a good sense of how much ice is being contributed to the global ocean.

    The fact that there were marine waters beneath our feet meant that the grounding line was upstream of us at some point, at least 70 miles (110 kilometers) from where it is today.

    4
    The team’s survey points on the Whillan’s ice stream in 2018-2019 and the grounding line. Kerry Key/Lamont-Doherty Earth Observatory.

    Whillans ice stream is pretty remote. How did you determine what was happening a mile below you?

    Our site is about a two-hour flight from McMurdo Station, Antarctica. The plane lands on skis and drops off everything you need to live. Then it takes off, and it’s you, your field team, and a couple pallets of cargo.

    In all, we slept 61 days in a tent that season. Each day, we packed our snowmobiles, put in the coordinates for a site, and installed magnetotelluric stations.

    Each station has three magnetometers – pointing east-west, north-south and vertical – and two pairs of electrodes – aligned east-west and north-south. These instruments can detect the electromagnetic signatures of different Earth materials in the subsurface.


    Installing a magnetotelluric station on the Whillans ice stream.
    Time-lapse of installing a magnetotelluric station at Subglacial Lake Whillan in West Antarctica.

    Natural variations in the Earth’s magnetic and electric fields are created by events across the globe, such as solar wind interacting with the Earth’s ionosphere and lightning strikes. A change in the Earth’s magnetic and electric fields induces secondary electromagnetic fields in the subsurface, and the strength of those fields is related to how well the material there conducts electricity.

    So, by measuring electric and magnetic fields on the ice surface, we can figure out the conductivity of the subsurface materials, including water. It’s the same method the oil and gas industry used to find fossil fuels.

    We could see the groundwater, and since salt water has far greater conductivity than fresh water, we could estimate how salty it was.

    What else might be in the groundwater?

    Any time we’ve poked a hole through Antarctica, it’s been teeming with microbial life. There’s no reason to think microbes aren’t gnawing away at nutrients in the groundwater, too.

    When you have microbial ecosystems that are cut off for extended periods of time – in this case, seawater was likely deposited there 5,000-10,000 years ago – you start to have a pretty good analog for how life might exist on other planetary bodies, locked in the subsurface and buried underneath thick ice.

    Where there’s life, there is also the question of carbon.

    We know that there are microbes in subglacial lakes and rivers at the top of the sediment that are consuming carbon and transforming it into greenhouse gases like methane and carbon dioxide. We know all of this carbon ultimately gets transferred to the Southern Ocean. But we still don’t have great measurements of any of this.

    This is a new environment, and there’s a lot of research still to do. We have observations from one ice stream. It’s like sticking a straw in the groundwater system in Florida and saying, “Yeah, there’s something here” – but what does the rest of the continent look like?

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Conversation (AU) launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
    Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
    Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

     
  • richardmitnick 12:54 pm on May 2, 2022 Permalink | Reply
    Tags: "Sweet spots in the sea", , Marine Microbiology, Microbes love sugar: It is easy to digest and full of energy., , Scientists from the Max Planck Institute for Marine Microbiology in Bremen Germany have discovered that seagrasses release massive amounts of sugar into their soils-the so-called rhizosphere., Seagrass meadows are among the most threatened habitats on our planet., Seagrasses form lush green meadows in many coastal areas around the world. These marine plants are one of the most efficient global sinks of carbon dioxide on Earth., Sugar concentrations underneath the seagrass were at least 80 times higher than previously measured in marine environments.   

    From MPG Institute for Marine Microbiology [MPG Institut für Meeresmikrobiologie] (DE) : “Sweet spots in the sea” 

    From MPG Institute for Marine Microbiology [MPG Institut für Meeresmikrobiologie] (DE)

    May 02, 2022

    Contacts
    Dr. Manuel Liebeke
    Research Group Metabolic Interactions
    Max Planck Institute for Marine Microbiology, Bremen
    +49 421 2028-8220
    mliebeke@mpi-bremen.de

    Prof. Dr. Nicole Dubilier
    Director, Head of the Symbiosis Department
    Max Planck Institute for Marine Microbiology, Bremen
    +49 421 2028-9320
    ndubilier@mpi-bremen.de

    Dr. E. Maggie Sogin
    Assistant Professor
    +1 508 566-5933
    esogin@ucmerced.edu
    University of California-Merced

    Dr. Fanni Aspetsberger
    Press Officer
    Max Planck Institute for Marine Microbiology, Bremen
    +49 421 2028-9470
    faspetsb@mpi-bremen.de

    1
    Lush meadows of the seagrass Posidonia oceanica in the Mediterranean. Scientists at the Max Planck Institute of Marine Microbiology predict that their findings are relevant for many marine environments with plants, including other seagrass species, mangroves and saltmarshes. © HYDRA Marine Sciences GmbH.

    Seagrasses form lush green meadows in many coastal areas around the world. These marine plants are one of the most efficient global sinks of carbon dioxide on Earth: One square kilometer of seagrass stores almost twice as much carbon as forests on land, and 35 times as fast.

    Now scientists from the Max Planck Institute for Marine Microbiology in Bremen Germany have discovered that seagrasses release massive amounts of sugar into their soils-the so-called rhizosphere. Sugar concentrations underneath the seagrass were at least 80 times higher than previously measured in marine environments. “To put this into perspective: We estimate that worldwide there are between 0.6 and 1.3 million tons of sugar, mainly in the form of sucrose, in the seagrass rhizosphere”, explains Manuel Liebeke, head of the Research Group Metabolic Interactions at the Max Planck Institute for Marine Microbiology. “That is roughly comparable to the amount of sugar in 32 billion cans of coke!”

    Polyphenols keep microbes from eating the sugar
    2
    Beautiful to look at, hard to sample: Measuring metabolites like sucrose and polyphenols in seawater is difficult. The scientists from the Max Planck Institute for Marine Microbiology in Bremen had to develop a special method to deal with the large amounts of salt in seawater that make measurements of metabolites so difficult. © HYDRA Marine Sciences GmbH.

    Microbes love sugar: It is easy to digest and full of energy. So why isn’t the sucrose consumed by the large community of microorganisms in the seagrass rhizosphere? “We spent a long time trying to figure this out”, says first author Maggie Sogin, who led the research off the Italian island of Elba and at the Max Planck Institute for Marine Microbiology. “What we realized is that seagrass, like many other plants, release phenolic compounds to their sediments.”

    Red wine, coffee and fruits are full of phenolics, and many people take them as health supplements. What is less well known is that phenolics are antimicrobials and inhibit the metabolism of most microorganisms. “In our experiments we added phenolics isolated from seagrass to the microorganisms in the seagrass rhizosphere – and indeed, much less sucrose was consumed compared to when no phenolics were present.”

    Specialists thrive on sugars in the seagrass rhizosphere

    Why do seagrasses produce such large amounts of sugars, to then only dump them into their rhizosphere? Nicole Dubilier, Director at the Max Planck Institute for Marine Microbiology explains: “Seagrasses produce sugar during photosynthesis. Under average light conditions, these plants use most of the sugars they produce for their own metabolism and growth. But under high light conditions, for example at midday or during the summer, the plants produce more sugar than they can use or store. Then they release the excess sucrose into their rhizosphere. Think of it as an overflow valve”.

    Intriguingly, a small set of microbial specialists are able to thrive on the sucrose despite the challenging conditions. Sogin speculates that these sucrose specialists are not only able to digest sucrose and degrade phenolics, but might provide benefits for the seagrass by producing nutrients it needs to grow, such as nitrogen. “Such beneficial relationships between plants and rhizosphere microorganisms are well known in land plants, but we are only just beginning to understand the intimate and intricate interactions of seagrasses with microorganisms in the marine rhizosphere”, she adds.

    Endangered habitats
    4
    Manuel Liebeke and Nicole Dubilier in front of the Imaging mass spectrometer at the Max Planck Institute in Bremen, an instrument that was essential for the current research. © Achim Multhaupt.

    Seagrass meadows are among the most threatened habitats on our planet. “Looking at how much blue carbon – that is carbon captured by the world’s ocean and coastal ecosystems – is lost when seagrass communities are decimated, our research clearly shows: It is not only the seagrass itself, but also the large amounts of sucrose underneath live seagrasses that would result in a loss of stored carbon. Our calculations show that if the sucrose in the seagrass rhizosphere was degraded by microbes, at least 1,54 million tons of carbon dioxide would be released into the atmosphere worldwide”, says Liebeke. “That’s roughly equivalent to the amount of carbon dioxide emitted by 330,000 cars in a year.”

    Seagrasses are rapidly declining in all oceans, and annual losses are estimated to be as high as seven percent at some sites, comparable to the loss of coral reefs and tropical rainforests. Up to a third of the world’s seagrass might have been already lost. “We do not know as much about seagrass as we do about land-based habitats”, Sogin emphasizes. “Our study contributes to our understanding of one of the most critical coastal habitats on our planet, and highlights how important it is to preserve these blue carbon ecosystems.”

    Science paper:
    Nature Ecology & Evolution


    Miracle plant seagrass.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The MPG Institute for Marine Microbiology is located in Bremen, Germany. It was founded in 1992, almost a year after the foundation of its sister institute, the MPG Institute for Terrestrial Microbiology [Max-Planck-Institut für terrestrische Mikrobiologie] (DE) at Marburg. In 1996, the institute moved into new buildings at the campus of the University of Bremen. It is one of 80 institutes in the MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.].

    Currently, the institute consists of three departments with several associated research groups:

    Biogeochemistry
    Molecular Ecology
    Symbiosis

    Additionally, the following research groups reside in the institute.

    Microbial Physiology
    Greenhouse Gases
    Microbial Genomics and Bioinformatics
    Flow Cytometry
    Metabolic Interactions
    Microsensors
    HGF MPG Joint Research Group for Deep-Sea Ecology and Technology
    MARUM MPG Bridge Group Marine Glycobiology
    Max Planck Research Group Microbial Metabolism
    Marine Geochemistry Group (headed by Prof. Dr. Thorsten Dittmar)
    Max Planck Research Group for Marine Isotope Geochemistry (headed by Dr. Katharine Pahnke-May)

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.

    History

    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding
    • Max Planck Institute for Biology of Ageing

     
  • richardmitnick 4:18 pm on April 26, 2022 Permalink | Reply
    Tags: "Fluid Flow Stimulates Chemosynthesis in a Greek Salad of Hydrothermal Microbes", , , Carbon fixation: the conversion of carbon dioxide into biomass., Chemosynthesis: allows certain microorganisms such as sulfur-oxidizing bacteria to use chemical energy as photosynthetic plants or algae do to convert carbon dioxide into cell material., , , Marine Microbiology, Ocean Life, , Seafloor & Below, The study found a very active microbial community that is able to respond quickly to environmental changes.   

    From The Woods Hole Oceanographic Institution: “Fluid Flow Stimulates Chemosynthesis in a Greek Salad of Hydrothermal Microbes” 

    From The Woods Hole Oceanographic Institution

    April 22, 2022

    1
    WHOI’s Phil Arevalo (left) and Stefan Sievert remove one of the incubation devices used to measure the activities of the chemosynthetic microbes from the sediment. The incubation devices were originally built in the 1980’s by WHOI’s Carl Wirsen and Holger Jannasch and were part of a free-falling instrument to measure the activities of microorganisms breaking down organic matter in deep-sea sediments. For the present study, they were adapted to be used by scuba divers. (Photo credit: Dr. Costantino Vetriani, Rutgers University)

    New paper by Woods Hole Oceanographic Institution researchers studies shallow-water hydrothermal systems and the production of microbes.

    Most visitors to Paliochori Beach on the Greek island Milos may not be aware of the bay’s shallow-water hydrothermal community, a veritable Greek salad of microbes, that is within snorkeling distance from the shoreline.

    The hydrothermalism in the coastal sediments of Paliochori Bay strongly affects biogeochemical processes there and supports chemosynthesis, which allows certain microorganisms such as sulfur-oxidizing bacteria to use chemical energy rather than light, as photosynthetic plants or algae do, to convert carbon dioxide into cell material.

    However, the impact of fluid flow on the composition of the microbial community and the rates of chemosynthetic production have been unknown because it is challenging to measure microbial processes under natural conditions, particularly in hydrothermal systems.

    A new study uses an innovative approach to examine the bay’s shallow-water hydrothermal system and the production of microbes there in situ and near natural conditions as a model to assess the importance of hydrothermal fluid circulation on chemosynthesis.

    By examining microbial communities directly within the hydrothermally-impacted sandy sediments in the bay, the study demonstrates “the importance of fluid flow in shaping the composition and activity of microbial communities of shallow-water hydrothermal vents, identifying them as hotspots of microbial activity,” according to the paper published in Communications Earth & Environment, a Nature Portfolio journal.

    In addition, “the study shows how productive the shallow water hydrothermal vents actually are, and how quickly the microbes adapt to changing conditions,” says co-lead author Stefan Sievert, associate scientist in the Woods Hole Oceanographic Institution’s (WHOI’s) Biology Department.

    During the study, researchers carried out two sets of stable isotope probing experiments using carbon dioxide labelled with the stable carbon isotope 13C as a tracer to determine the microbes’ capability for carbon fixation, which is the conversion of carbon dioxide into biomass. The study deployed incubation devices along a transect at a vent in the bay and injected the tracer at different depths into the sediment, either in open or closed fluid flow modes, and left the devices in place for either 6 hours or 24 hours before picking them up again.

    The amount of carbon fixation was determined by measuring the incorporation of the labelled carbon dioxide into fatty acids, a key component making up the cell membrane, in combination with assessing the composition of the microbial community using DNA- and RNA-based approaches.

    The study “extends the current knowledge on dark carbon fixation in coastal sandy sediments to those areas that are impacted by hydrothermal activity,” according to the paper. The researchers’ data reveal that active fluid flow at this sandy sediment shallow-water hydrothermal vent site sustains carbon fixation rates that are among the highest determined for coastal margin sediments, highlighting the influence of hydrothermalism in supporting chemoautotrophic production by supplying the required chemicals in the form of electron donors such as hydrogen sulfide, and acceptors such as oxygen.

    Extrapolating the production at the studied vent site to the overall venting area in the bay of about 4 acres, 7 metric tons of carbon are produced there per year. “That is about the same annual production per area as a 4-acre corn field,” says Sievert.

    The study also found a very active microbial community that is able to respond quickly to environmental changes. The chemosynthetic production at Milos is mainly driven by Campylobacteria, which dominated the communities in the open incubations, but declined in the closed incubations. Other bacteria, in particular Gammaproteobacteria, also increased in open flow incubations, while others, such as Deltaproteobacteria and Thermodesulfobacteria increased in closed incubations. In general, the community switched from a community dominated by chemosynthetic microbes to one with a higher proportion of heterotrophic microbes, i.e., microbes that use organic carbon for food, just as people do. The study found that the microbial community changed in response to different conditions within a matter of hours, which is very fast and took the investigators by surprise.

    Making the microbe rate measurements and identifying the various microbes at the hydrothermal vent site was a collaborative effort. That collaboration included Sievert’s expertise in the use of the incubation device and identifying the microbes based on DNA- and RNA-based techniques. In addition, the lab of co-lead author Solveig Bühring, a researcher at the University of Bremen [Universität Bremen](DE), contributed data on the incorporation of the labelled carbon dioxide into the microbes’ fatty acids.

    “What drives me to do this research is my curiosity to understand how things work. I’m interested in knowing what the microbes are doing and how they are helping the ecosystem to function,” says Sievert.

    “Each individual microbe is so small, yet their combined impact is so immense,” he adds. “Microbes are kind of the engines of our planet, basically driving all of the biogeochemical cycles, such as the nitrogen and sulfur cycles.”

    This work was funded by the National Science Foundation (NSF, USA) through grant OCE-1124272 and by the Deutsche Forschungsgemeinschaft through the Emmy Noether-Program. In addition, Sievert received support from the WHOI Investment in Science Fund. The authors are also grateful to the General Directorate of Antiquities and Cultural Heritage in Athens for granting them permission for sample acquisition and processing.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Mission Statement

    The Woods Hole Oceanographic Institution is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology. WHOI is accredited by the New England Association of Schools and Colleges . WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution.

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 8:21 pm on April 7, 2022 Permalink | Reply
    Tags: "Ocean water samples yield treasure trove of RNA virus data", , Marine Microbiology, , The Ohio State University, Virology   

    From The Ohio State University: “Ocean water samples yield treasure trove of RNA virus data” 

    From The Ohio State University

    8.7.22

    Emily Caldwell
    Ohio State News
    caldwell.151@osu.edu

    Study of organisms in the sea identifies 5,500 new species.

    3
    Gamma phage, an example of a virus

    Ocean water samples collected around the world have yielded a treasure trove of new data about RNA viruses, expanding ecological research possibilities and reshaping our understanding of how these small but significant submicroscopic particles evolved.

    Combining machine-learning analyses with traditional evolutionary trees, an international team of researchers has identified 5,500 new RNA virus species that represent all five known RNA virus phyla and suggest there are at least five new RNA virus phyla needed to capture them.

    The most abundant collection of newly identified species belong to a proposed phylum researchers named Taraviricota, a nod to the source of the 35,000 water samples that enabled the analysis: the Tara Oceans Consortium, an ongoing global study onboard the schooner Tara of the impact of climate change on the world’s oceans.

    “There’s so much new diversity here – and an entire phylum, the Taraviricota, were found all over the oceans, which suggests they’re ecologically important,” said lead author Matthew Sullivan, professor of microbiology at The Ohio State University.

    “RNA viruses are clearly important in our world, but we usually only study a tiny slice of them – the few hundred that harm humans, plants and animals. We wanted to systematically study them on a very big scale and explore an environment no one had looked at deeply, and we got lucky because virtually every species was new, and many were really new.”

    The study appears online today (April 7, 2022) in Science.

    While microbes are essential contributors to all life on the planet, viruses that infect or interact with them have a variety of influences on microbial functions. These types of viruses are believed to have three main functions: killing cells, changing how infected cells manage energy, and transferring genes from one host to another.

    Knowing more about virus diversity and abundance in the world’s oceans will help explain marine microbes’ role in ocean adaptation to climate change, the researchers say. Oceans absorb half of the human-generated carbon dioxide from the atmosphere, and previous research [Nature] by this group has suggested that marine viruses are the “knob” on a biological pump affecting how carbon in the ocean is stored.

    By taking on the challenge of classifying RNA viruses, the team entered waters still rippling from earlier taxonomy categorization efforts that focused mostly on RNA viral pathogens. Within the biological kingdom Orthornavirae, five phyla were recently recognized by the International Committee on Taxonomy of Viruses (ICTV).

    Though the research team identified hundreds of new RNA virus species that fit into those existing divisions, their analysis identified thousands more species that they clustered into five new proposed phyla: Taraviricota, Pomiviricota, Paraxenoviricota, Wamoviricota and Arctiviricota, which, like Taraviricota, features highly abundant species – at least in climate-critical Arctic Ocean waters, the area of the world where warming conditions wreak the most havoc.

    Sullivan’s team has long cataloged DNA virus species in the oceans, growing the numbers from a few thousand in 2015 and 2016 to 200,000 in 2019. For those studies, scientists had access to viral particles to complete the analysis.

    In these current efforts to detect RNA viruses, there were no viral particles to study. Instead, researchers extracted sequences from genes expressed in organisms floating in the sea, and narrowed the analysis to RNA sequences that contained a signature gene, called RdRp, which has evolved for billions of years in RNA viruses, and is absent from other viruses or cells.

    2
    The schooner Tara is a floating laboratory enabling the collection of samples around the world that are being cataloged to better understand the unseen inhabitants of the ocean, from tiny animals to viruses and bacteria. © Maeva Bardy – Tara Ocean Foundation.

    Because RdRp’s existence dates to when life was first detected on Earth, its sequence position has diverged many times, meaning traditional phylogenetic tree relationships were impossible to describe with sequences alone. Instead, the team used machine learning to organize 44,000 new sequences in a way that could handle these billions of years of sequence divergence, and validated the method by showing the technique could accurately classify sequences of RNA viruses already identified.

    “We had to benchmark the known to study the unknown,” said Sullivan, also a professor of civil, environmental and geodetic engineering, founding director of Ohio State’s Center of Microbiome Science and a leadership team member in the EMERGE Biology Integration Institute.

    “We’ve created a computationally reproducible way to align those sequences to where we can be more confident that we are aligning positions that accurately reflect evolution.”

    Further analysis using 3D representations of sequence structures and alignment revealed that the cluster of 5,500 new species didn’t fit into the five existing phyla of RNA viruses categorized in the Orthornavirae kingdom.

    “We benchmarked our clusters against established, recognized phylogeny-based taxa, and that is how we found we have more clusters than those that existed,” said co-first author Ahmed Zayed, a research scientist in microbiology at Ohio State and a research lead in the EMERGE Institute.

    In all, the findings led the researchers to propose not only the five new phyla, but also at least 11 new orthornaviran classes of RNA viruses. The team is preparing a proposal to request formalization of the candidate phyla and classes by the ICTV.

    Zayed said the extent of new data on the RdRp gene’s divergence over time leads to a better understanding about how early life may have evolved on the planet.

    “RdRp is supposed to be one of the most ancient genes – it existed before there was a need for DNA,” he said. “So we’re not just tracing the origins of viruses, but also tracing the origins of life.”

    This research was supported by the National Science Foundation, the Gordon and Betty Moore Foundation, the Ohio Supercomputer Center, Ohio State’s Center of Microbiome Science, the EMERGE Biology Integration Institute, the Ramon-Areces Foundation and Laulima Government Solutions/NIAID. The work was also made possible by the unprecedented sampling and science of the Tara Oceans Consortium, the nonprofit Tara Ocean Foundation and its partners.

    Additional co-authors on the paper were co-lead authors James Wainaina and Guillermo Dominguez-Huerta, as well as Jiarong Guo, Mohamed Mohssen, Funing Tian, Adjie Pratama, Ben Bolduc, Olivier Zablocki, Dylan Cronin and Lindsay Solden, all of Sullivan’s lab; Ralf Bundschuh, Kurt Fredrick, Laura Kubatko and Elan Shatoff of Ohio State’s College of Arts and Sciences; Hans-Joachim Ruscheweyh, Guillem Salazar and Shinichi Sunagawa of the Institute of Microbiology and Swiss Institute of Bioinformatics; Jens Kuhn of the National Institute of Allergy and Infectious Diseases; Alexander Culley of the Université Laval; Erwan Delage and Samuel Chaffron of the Université de Nantes; and Eric Pelletier, Adriana Alberti, Jean-Marc Aury, Quentin Carradec, Corinne da Silva, Karine Labadie, Julie Poulain and Patrick Wincker of Genoscope

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Ohio State University is a public research university in Columbus, Ohio. Founded in 1870 as a land-grant university and the ninth university in Ohio with the Morrill Act of 1862, the university was originally known as the Ohio Agricultural and Mechanical College. The college originally focused on various agricultural and mechanical disciplines but it developed into a comprehensive university under the direction of then-Governor (later, U.S. President) Rutherford B. Hayes, and in 1878 the Ohio General Assembly passed a law changing the name to “The Ohio State University”. The main campus in Columbus, Ohio, has since grown into the third-largest university campus in the United States. The university also operates regional campuses in Lima, Mansfield, Marion, Newark, and Wooster.

    The university has an extensive student life program, with over 1,000 student organizations; intercollegiate, club and recreational sports programs; student media organizations and publications, fraternities and sororities; and three student governments. Ohio State athletic teams compete in Division I of the NCAA and are known as the Ohio State Buckeyes. As of the 2016 Summer Olympics, athletes from Ohio State have won 104 Olympic medals (46 gold, 35 silver, and 23 bronze). The university is a member of the Big Ten Conference for the majority of sports.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: