Tagged: Majorana Demonstrator collaboration Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:54 pm on May 7, 2019 Permalink | Reply
    Tags: , , LEGEND-200 experiment, Majorana Demonstrator collaboration,   

    From Sanford Underground Research Facility: “MAJORANA preps copper for use in LEGEND-200” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    May 6, 2019
    Erin Broberg

    1
    A cut is made across a cylinder of copper by machinist Randy Hughes. Matthew Kapust

    For three years, the Majorana collaboration has sought to demonstrate it can shield a sensitive, scalable, 44-kilogram germanium detector array from background radioactivity.

    U Washington Majorana Demonstrator Experiment at SURF

    In the Apennine Mountains of Italy at Gran Sasso National Laboratory (LNGS), researchers employed a slightly different design for GERDA (GERmanium Detector Array). Together, these two experiments achieved the lowest backgrounds of any neutrinoless double-beta decay experiment in the world. Now, the two are teaming up to scale up.

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    MPG GERmanium Detector Array (GERDA) at Gran Sasso, Italy

    “The best things from GERDA and the best things from Majorana are now coming together for LEGEND-200,” said Cabot-Ann Christofferson, task leader of electroforming for LEGEND-200. LEGEND-200 (Large Enriched Germanium Experiment for Neutrinoless ββ Decay) will scale up the rare event search by using 200 kilograms of enriched germanium crystals and will be housed at LNGS at Gran Sasso.

    LEGEND Collaboration

    The best of Majorana includes detector resolution and ultra-pure copper shielding that surrounds the detectors, while GERDA demonstrated the benefit of an active shield—a tank of liquid argon—surrounding the detector.

    To prepare for the next phase in the search for this rare form of radioactive decay, Majorana brought back machinist Randy Hughes to prepare 110 pounds of ultra-pure electroformed copper. The copper, electroformed for the Majorana Demonstrator, is being cut in half and flattened to ½ inch-thick plates. Soon, it will be packed in a shielded container, trucked to Oak Ridge National Lab (ORNL) in Tennessee and shipped across the Atlantic Ocean. When it finally arrives in Europe, the copper will be machined into hundreds of parts for LEGEND-200.

    Christofferson said the shipment of electroformed copper is just one of Majorana’s contributions to the next-generation design and construction. Although GERDA will be decommissioned to make space at LNGS for the installation of LEGEND-200, Majorana will be used to test detectors built for the next-generation.

    “Majorana has proven itself fantastic for characterizing detectors,” said Christofferson. “When detectors are created for LEGEND-200, they will be placed in the Majorana experiment to be validated. This helps us figure out how they respond while LEGEND-200 is still being built, which is time well-spent before they go into the final experiment.”

    In addition to copper shielding and testing detectors,Majorana will also be contributing enriched germanium to LEGEND-200.

    “Of the forty-nine detectors in Majorana, some are enriched, and some are natural germanium,” said Christofferson. “The enriched detectors will leave Sanford Lab and eventually be placed in LEGEND-200.”

    John Wilkerson of ORNL and the University of North Carolina, Chapel Hill, said, “The LEGEND-200 experiment is moving forward at a very quick pace. Modifications of the GERDA infrastructure at LNGS to accommodate the LEGEND-200 detector array are scheduled to start toward the end of 2019. U.S. and European groups are working collaboratively on the front-end electronics, the fiber system for reading out the liquid argon scintillation light and on the data acquisitions systems. Enriched germanium-76 detectors are being fabricated at two different vendors, and we will start characterization tests at Sanford Lab this summer.”

    The collaboration expects the experiment to begin taking measurements in 2021.

    LNGS- Schematic showing the timing system used to measure neutrino arrival times at the OPERA detector

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.

    LBNL LZ project at SURF, Lead, SD, USA, will replace LUX at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    LUX’s mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.

    In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.

    SLAC physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.
    “LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”
    We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    FNAL LBNE/DUNE from FNAL to SURF, Lead, South Dakota, USA


    LBNE

    U Washington Majorana Demonstrator Experiment at SURF

    The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with GERDA for a future tonne-scale 76Ge 0νββ search.

    LBNL LZ project at SURF, Lead, SD, USA

    CASPAR at SURF


    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”

     
  • richardmitnick 1:05 pm on March 26, 2018 Permalink | Reply
    Tags: Gan Sasso Laboratory, , , Majorana Demonstrator collaboration, ,   

    From LBNL: “Underground Neutrino Experiment Could Provide Greater Clarity on Matter-Antimatter Imbalance” 

    Berkeley Logo

    Berkeley Lab

    March 26, 2018
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582

    1
    Stacks of lead bricks (gray) and a copper chamber make up the innermost layers of the MAJORANA DEMONSTRATOR’s multilayered shield. The shielding materials weigh about 57 tons. (Credit: Matthew Kapust/Sanford Underground Research Facility)

    By Dawn Levy

    If equal amounts of matter and antimatter had formed in the Big Bang more than 13 billion years ago, one would have annihilated the other upon meeting, and today’s universe would be full of energy – but no matter – to form stars, planets, and life.

    So the very existence of matter suggests something is wrong with Standard Model equations describing symmetry between subatomic particles and their antiparticles.

    In a study published March 26 in Physical Review Letters, nuclear physicists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and other institutions working on the MAJORANA DEMONSTRATOR experiment have shown that they can shield a sensitive, scalable, 44-kilogram germanium detector array from background radioactivity. The experiment is led by Oak Ridge National Laboratory (ORNL).

    This accomplishment is critical to developing and proposing a much larger future experiment – with approximately a ton of detectors – to study the nature of neutrinos. These electrically neutral particles interact only weakly with matter, making their detection exceedingly difficult.

    “We’re trying to figure out the really basic question: Are neutrinos their own antiparticles?” said Alan Poon, the detector group leader for the MAJORANA DEMONSTRATOR. “Another goal is to demonstrate that we can actually build a bigger detector.”

    John Wilkerson, a nuclear physicist from ORNL and the University of North Carolina at Chapel Hill who led the construction of the experiment, said, “The excess of matter over antimatter is one of the most compelling mysteries in science.” The collaboration involves 129 researchers from 27 institutions and 6 nations.

    The experiment seeks to observe a phenomenon in atomic nuclei called “neutrinoless double-beta decay.” This observation would prove that neutrinos are their own antiparticles. The existence of this type of decay would have “profound implications for our understanding of the universe,” Wilkerson added. These measurements could also provide a better understanding of neutrino mass.

    Berkeley Lab was responsible for fashioning a specially prepared form of germanium crystals into working detectors for the experiment, and building the detector array’s front-end electronics that sit very close to the detectors. Decades ago, Berkeley Lab pioneered the technique for making high-purity germanium detectors and invented the type of germanium detectors that were adapted for the MAJORANA DEMONSTRATOR experiment.

    Poon noted that the electronics and other components surrounding the detectors are made of ultrapure materials to reduce background “noise,” or unwanted signals from naturally occurring radiation. “They are the lowest-radioactivity front-end electronics in the world,” he said.

    3
    A researcher works on the delicate wiring of a MAJORANA cryostat, which is like a thermos under vacuum that chills the detectors at the heart of the experiment. The experiment’s two cryostats each house 29 germanium detectors. Berkeley Lab fashioned a specialized form of germanium crystals into working detectors for the experiment. (Credit: Matthew Kapust/Sanford Underground Research Facility)

    The collaboration also used Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to process and analyze data from the experiment. NERSC will be the principal site for data processing and analyses throughout the course of the experiment.

    NERSC Cray XC40 Cori II supercomputer

    LBL NERSC Cray XC30 Edison supercomputer


    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF


    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    In a 2015 report of the U.S. Nuclear Science Advisory Committee to the Department of Energy and the National Science Foundation, a U.S.-led ton-scale experiment to detect neutrinoless double-beta decay was deemed a top priority for the nuclear physics community. Nearly a dozen experiments have sought neutrinoless double-beta decay, and as many future experiments have been proposed. One of their keys to success depends on avoiding background radiation that could mimic the signal of neutrinoless double-beta decay.

    That was the key accomplishment of the MAJORANA DEMONSTRATOR. Its implementation was completed in South Dakota in September 2016, nearly a mile underground at the Sanford Underground Research Facility.

    SURF-Sanford Underground Research Facility


    SURF Above Ground

    SURF Out with the Old


    SURF An Empty Slate


    SURF Carving New Space


    SURF Shotcreting


    SURF Bolting and Wire Mesh


    SURF Outfitting Begins


    SURF circular wooden frame was built to form a concrete ring to hold the 72,000-gallon (272,549 liters) water tank that would house the LUX dark matter detector


    SURF LUX water tank was transported in pieces and welded together in the Davis Cavern


    SURF Ground Support


    SURF Dedicated to Science


    SURF Building a Ship in a Bottle


    SURF Tight Spaces


    SURF Ready for Science


    SURF Entrance Before Outfitting


    SURF Entrance After Outfitting


    SURF Common Corridior


    SURF Davis


    SURF Davis A World Class Site


    SURF Davis a Lab Site


    SURF DUNE LBNF Caverns at Sanford Lab


    FNAL DUNE Argon tank at SURF


    U Washington LUX Xenon experiment at SURF


    SURF Before Majorana


    U Washington Majorana Demonstrator Experiment at SURF

    Siting the experiment under nearly a mile of rock was the first of many steps collaborators took to reduce interference from background levels of radiation. Other steps included a cryostat made of the world’s purest copper and a complex six-layer shield to eliminate interference from cosmic rays, radon, dust, fingerprints, and naturally occurring radioactive isotopes.

    “If you’re going to search for neutrinoless double-beta decay, it’s critical to know that radioactive background is not going to overwhelm the signal you seek,” said ORNL’s David Radford, a lead scientist in the experiment.

    There are many ways for an atomic nucleus to fall apart. A common decay mode happens when a neutron inside the nucleus emits an electron (called a “beta”) and an antineutrino to become a proton. In two-neutrino double-beta decay, two neutrons decay simultaneously to produce two protons, two electrons, and two antineutrinos. This process has been observed. The MAJORANA Collaboration seeks evidence for a similar decay process that has never been observed, in which no neutrinos are emitted.

    Conservation of the number of leptons – subatomic particles such as electrons, muons, or neutrinos that do not take part in strong interactions – was written into the Standard Model of particle physics. “There is no really good reason for this, just the observation that it appears that’s the case,” said Radford. “But if lepton number is not conserved, when added to processes that we think happened during the very early universe, that could help explain why there is more matter than antimatter.”

    Many theorists believe that the lepton number is not conserved: that the neutrino and the antineutrino – which were assumed to have opposite lepton numbers – are really the same particle spinning in different ways. Italian physicist Ettore Majorana introduced that concept in 1937, predicting the existence of particles that are their own antiparticles.

    The MAJORANA DEMONSTRATOR uses germanium crystals as both the source of double-beta decay and the means to detect it. Germanium-76 (Ge-76) decays to become selenium-76, which has a smaller mass. When germanium decays, mass gets converted to energy that is carried away by the electrons and the antineutrinos. “If all that energy goes to the electrons, then none is left for neutrinos,” Radford said. “That’s a clear identifier that we found the event we’re looking for.”

    The scientists distinguish two-neutrino vs. neutrinoless decay modes by their energy signatures. “It’s a common misconception that our experiments detect neutrinos,” said Jason Detwiler of the University of Washington, who is a co-spokesperson for the MAJORANA Collaboration and a former Glenn T. Seaborg Postdoctoral Fellow at Berkeley Lab. “It’s almost comical to say it, but we are searching for the absence of neutrinos. In the neutrinoless decay, the released energy is always a particular value. In the two-neutrino version, the released energy varies but is always smaller than it is for neutrinoless double-beta decay.”

    The MAJORANA DEMONSTRATOR has shown that the neutrinoless double-beta decay half-life of Ge-76 is at least 1025 years – 15 orders of magnitude longer than the age of the universe. So it’s impossible to wait for a single germanium nucleus to decay. “We get around the impossibility of watching one nucleus for a long time by instead watching on the order of 1026 nuclei for a shorter amount of time,” explained co-spokesperson Vincente Guiseppe of the University of South Carolina.

    Chances of spotting a neutrinoless double-beta decay in Ge-76 are rare – no more than 1 for every 100,000 two-neutrino double-beta decays, Guiseppe said. Using detectors containing large amounts of germanium atoms increases the probability of spotting the rare decays. Between June 2015 and March 2017, the scientists observed no events with the energy profile of neutrinoless decay, the process that has not yet been observed. (This was expected given the small number of germanium nuclei in the detector). However, they were encouraged to see many events with the energy profile of two-neutrino decays, verifying the detector could spot the decay process that has been observed.

    4
    Strings of MAJORANA detectors are shown here. Each cylindrical “string” features stacks of germanium crystals separated by ultrapure copper components. (Credit: Matthew Kapust/Sanford Underground Research Facility).

    The MAJORANA Collaboration’s results coincide with new results from a competing experiment in Italy called GERDA (for GERmanium Detector Array), which takes a complementary approach to studying the same phenomenon.

    MPG GERmanium Detector Array (GERDA) at Gran Sasso, Italy

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in L’Aquila, Italy

    “The MAJORANA DEMONSTRATOR and GERDA together have the lowest background of any neutrinoless double-beta decay experiment,” said Radford.

    The DEMONSTRATOR was designed to lay the groundwork for a ton-scale experiment by demonstrating that backgrounds can be low enough to justify building a larger detector. Just as bigger telescopes collect more light and enable viewing of fainter objects, increasing the mass of germanium allows for a greater probability of observing the rare decay. With 30 times more germanium than the current experiment, the planned one-ton experiment would be able to spot the neutrinoless double-beta decay of just one germanium nucleus per year.

    The MAJORANA DEMONSTRATOR is planned to continue taking data for two or three years. Meanwhile, a merger with GERDA is in the works to develop a possible one-ton detector called LEGEND, planned to be built in stages at an as-yet-to-be-determined site.

    Poon said, “Our data demonstrates that the background signals are low enough that we can actually build a bigger detector.”

    LEGEND 200, the LEGEND demonstrator, represents a step toward a possible future ton-scale experiment that will be a combination of GERDA, MAJORANA, and new detectors. Scientists hope to start on the first stage of LEGEND 200 by 2021. A ton-scale experiment, LEGEND 1000, would be the next stage, if approved.

    “This merger leverages public investments in the MAJORANA DEMONSTRATOR and GERDA by combining the best technologies of each,” said LEGEND Collaboration co-spokesperson (and long-time MAJORANA spokesperson up until last year) Steve Elliott of Los Alamos National Laboratory.

    Funding came from the U.S. Department of Energy Office of Science and the U.S. National Science Foundation. The Russian Foundation for Basic Research and Laboratory Directed Research and Development programs of DOE’s Los Alamos, Lawrence Berkeley, and Pacific Northwest national laboratories provided support. The research used resources of the Oak Ridge Leadership Computing Facility and NERSC, which are DOE Office of Science User Facilities at ORNL and Berkeley Lab, respectively. Sanford Underground Research Facility hosted and collaborated on the experiment.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 11:07 am on January 3, 2018 Permalink | Reply
    Tags: Compact Accelerator System for Performing Astrophysical Research (CASPAR) collaboration, Facebook visit - watch the included video, , Lab Director looks back at 2017, , LBNL’s Enhanced Geothermal Systems Collaboration (EGS Collab), , , Majorana Demonstrator collaboration, Ross Shaft rehabilitation project,   

    From SURF: “Lab Director looks back at 2017” A Gigantic and Important Laboratory in The U.S. 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1.3.18
    Executive Director Mike Headley

    1

    2017 has been an exciting year at Sanford Lab. We’ve seen tremendous progress on current and future experiments, including dark matter and neutrino research; the ongoing efforts of the Black Hills Underground Campus; Education and Outreach; and the Ross Shaft rehabilitation project, which reached the 4850 Level in October. Underpinning the success of our projects is our continued commitment to safety at Sanford Lab. I am so proud of our staff, researchers and contractors for their focus on safety every day.

    The success of 2017 is directly related to our strong partnerships with many organizations, including the various science collaborations at Sanford Lab; Fermilab, which has oversight responsibilities for our operations activities for the Department of Energy and is the lead DOE laboratory for the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment (LBNF/DUNE) project; and Lawrence Berkeley National Laboratory. I also want to thank the State of South Dakota and the SDSTA Board of Directors for their strong support of the world-leading underground science at Sanford Lab.

    2
    LBNF/DUNE Groundbreaking

    On July 21, we celebrated the groundbreaking of the Long-Baseline Neutrino Facility, which officially kicked off a new era in particle physics. We’re proud to be one of the sites hosting this international mega-science project, which will be the largest in the United States, and to be working alongside Fermilab and the DUNE collaboration. LBNF/DUNE has the potential to unlock the mysteries of neutrinos, which could explain more about how the universe works and why matter exists at all. At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois. The experiment will take approximately 10 years to build and will operate for about 20 years.

    Read more

    3
    International support

    The LBNF/DUNE project garnered support from CERN in 2016, marking the first time the European-based science facility supported a major project outside of Europe. In another first, the United Kingdom signed an umbrella agreement with the United States on September 20 that commits $88 million toward the LBNF/DUNE project along with accelerator advancements at Fermilab. The $88 million in funding makes the UK the largest country investor in the project outside of the United States.

    Read more

    CM/GC selected: On Aug. 9, a new team officially signed on to help prepare for the excavation and construction of LBNF. Fermi Research Alliance LLC, which operates Fermilab, awarded Kiewit/Alberici Joint Venture (KAJV) a contract to begin laying the groundwork for the excavation for LBNF, the facility that will support DUNE. KAJV will help finalize design and excavation plans for LBNF and oversee the excavation and removal of more than 800,000 tons of rock, as well as the outfitting of the DUNE caverns.

    Read more

    4
    Dark Matter

    For several years, we hosted LUX, one of the world’s most sensitive dark matter experiments. Now, we’re gearing up for the next-generation experiment, LUX-ZEPLIN (LZ). The collaboration had a positive directors’ progress review in November and will begin surface assembly activities in early 2018. We are proud to have made major contributions to LZ, including investing in 80 percent of the xenon, which is being purified at SLAC National Accelerator Laboratory. We’ve also updated the Surface Lab cleanroom (pictured above) and built a radon reduction facility. The experiment is expected to begin operations in 2020 and run for five years.

    Read more

    5
    LUX on display

    Visitors to the Sanford Lab Homestake Visitor Center can now view the decommissioned Large Underground Xenon (LUX) experiment on display as an interactive exhibit. On July 18, researchers unveiled the new exhibit, which features a window that allows visitors to view the inside of the detector: copper grids, white Teflon plates and a depiction of the wire grids that were vital to the success of the experiment. Additionally, an interactive kiosk explains the history of the LUX detector and all of the associated parts that are shown in the exhibit, and an actual PMT, one of 120 used in the experiment.

    Read more

    6

    CASPAR Ribbon Cutting

    In a major step forward, the Compact Accelerator System for Performing Astrophysical Research (CASPAR) collaboration achieved first beam and celebrated with a ribbon-cutting ceremony on July 12. CASPAR’s 50-foot long accelerator uses radio-frequency energy to produce a beam of protons or alpha particles from hydrogen or helium gas. The ions enter the accelerating tube, which is kept at high vacuum, then are directed down the beamline using magnets. The particles crash into a target, releasing the same neutrons that fuel the nuclear reactions in stars and produce a large amount of the heavy elements. The collaboration will begin full operations this year.

    Read more

    7
    Majorana reports results

    After years of planning and building its experiment, the Majorana Demonstrator collaboration announced its initial physics results. The team is looking for a rare type of radioactive decay called neutrinoless double-beta decay, which could answer fundamental questions about the universe, including why there is an imbalance of matter and antimatter in the universe and why we even exist. The Majorana Demonstrator collaboration needed to show it could achieve the low backgrounds required to see this rare physics event. And the team surpassed its goals, reducing backgrounds to a level that shows promise for a next-generation experiment that will be much larger.

    Read more

    8
    SIGMA-V

    We’re excited to have a new geology collaboration at Sanford Lab: LBNL’s Enhanced Geothermal Systems Collaboration (EGS Collab), which is studying geothermal systems, a clean-energy technology that could power up to 100 million American homes. The SIGMA-V (Stimulation Investigations for Geothermal Modeling and Analysis) team has been collecting data that will inform better predictive and geomechanic models of the subsurface of the earth by drilling several 60-meter long boreholes on the 4850 Level. The data will be applied toward the Frontier Observatory for Research in Geothermal Energy (FORGE), a flagship DOE geothermal project.

    Read more

    9
    Community outreach

    Interest in what’s happening at Sanford Lab continues to grow. This year more than 2,000 people attended events hosted by Sanford Lab. During Neutrino Day 2017: Discovery, visitors to Lead participated in a practice eclipse balloon launch, hands-on education activities, video conferences from a mile underground and Fermilab, hoistroom tours and “wild science” and geology demonstrations, and learned all about 2017’s Nobel-winning physics experiment, LIGO, which discovered gravitational waves. We also hosted an Eclipse party and several Deep Talks presentations.

    10
    Facebook visit

    Everywhere we go lately, we get asked about Mark Zuckerberg’s July 12 visit to Sanford Lab. The Facebook founder visited South Dakota, where he had lunch with ranchers in Piedmont, discussed net neutrality in Sturgis and stopped by the Sanford Underground Research Facility—all in a single day. In a live-stream video from the 4850 Level, Mr. Zuckerberg talked with Sanford Lab’s Dan Regan and Jaret Heise, and Cabot-Ann Christofferson, a member of the Majorana Collabortion to learn more about the community of Lead and the world-leading science taking place nearly a mile below the earth’s surface. So far, more than 4 million people have viewed the video. We were honored to host him and his team and appreciate his efforts to help Facebook users better understand who we are.

    Watch the live post

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: