Tagged: Magnetospheres Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:12 pm on June 22, 2021 Permalink | Reply
    Tags: "Nightside radio could help reveal exoplanet details", A given planet’s magnetosphere indicates how well it would be protected from the solar wind that radiates from its star., , , Detection of signals from exoplanets will require either a complex of satellites or an installation on the far side of the moon., , Magnetospheres, Planets that orbit within a star’s Goldilocks zone where conditions may otherwise give rise to life could be deemed uninhabitable without evidence of a strong enough magnetosphere., , While radio emissions from the daysides of exoplanets appear to max out during high solar activity those that emerge from the nightside are likely to add significantly to the signal.   

    From Rice University (US) : “Nightside radio could help reveal exoplanet details” 

    From Rice University (US)

    June 22, 2021
    Mike Williams

    Rice team enhances models that will detect magnetospheres in distant solar systems.

    We can’t detect them yet, but radio signals from distant solar systems could provide valuable information about the characteristics of their planets.

    A paper by Rice University scientists describes a way to better determine which exoplanets are most likely to produce detectable signals based on magnetosphere activity on exoplanets’ previously discounted nightsides.

    The study by Rice alumnus Anthony Sciola, who earned his Ph.D. this spring and was mentored by co-author and space plasma physicist Frank Toffoletto, shows that while radio emissions from the daysides of exoplanets appear to max out during high solar activity those that emerge from the nightside are likely to add significantly to the signal.

    Rice University scientists have enhanced models that could detect magnetosphere activity on exoplanets. The models add data from nightside activity that could increase signals by at least an order of magnitude. In this illustration, the planet’s star is at top left, and the rainbow patches are the radio emission intensities, most coming from the nightside. The white lines are magnetic field lines. Illustration by Anthony Sciola.

    This interests the exoplanet community because the strength of a given planet’s magnetosphere indicates how well it would be protected from the solar wind that radiates from its star, the same way Earth’s magnetic field protects us.

    Planets that orbit within a star’s Goldilocks zone where conditions may otherwise give rise to life could be deemed uninhabitable without evidence of a strong enough magnetosphere. Magnetic field strength data would also help to model planetary interiors and understand how planets form, Sciola said.

    The study appears in The Astrophysical Journal.

    Earth’s magnetosphere isn’t exactly a sphere; it’s a comet-shaped set of field lines that compress against the planet’s day side and tail off into space on the night side, leaving eddies in their wake, especially during solar events like coronal mass ejections. The magnetosphere around every planet emits what we interpret as radio waves, and the closer to the sun a planet orbits, the stronger the emissions.

    Astrophysicists have a pretty good understanding of our own system’s planetary magnetospheres based on the Radiometric Bode’s Law, an analytical tool used to establish a linear relationship between the solar wind and radio emissions from the planets in its path. In recent years, researchers have attempted to apply the law to exoplanetary systems with limited success.

    “The community has used these rule-of-thumb empirical models based on what we know about the solar system, but it’s kind of averaged and smoothed out,” Toffoletto said. “A dynamic model that includes all this spiky behavior could imply the signal is actually much larger than these old models suggest. Anthony is taking this and pushing it to its limits to understand how signals from exoplanets could be detected.”

    Sciola said the current analytic model relies primarily on emissions expected to emerge from an exoplanet’s polar region, what we see on Earth as an aurora. The new study appends a numerical model to those that estimate polar region emissions to provide a more complete picture of emissions around an entire exoplanet.

    “We’re adding in features that only show up in lower regions during really high solar activity,” he said.

    It turns out, he said, that nightside emissions don’t necessarily come from one large spot, like auroras around the north pole, but from various parts of the magnetosphere. In the presence of strong solar activity, the sum of these nightside spots could raise the planet’s total emissions by at least an order of magnitude.

    “They’re very small-scale and occur sporadically, but when you sum them all up, they can have a great effect,” said Sciola, who is continuing the work at Johns Hopkins University’s Applied Physics Laboratory (US). “You need a numerical model to resolve those events. For this study, Sciola used the Multiscale Atmosphere Geospace Environment (MAGE) developed by the Center for Geospace Storms (CGS) based at the Applied Physics Laboratory in collaboration which the Rice space plasma physics group.

    “We’re essentially confirming the analytic model for more extreme exoplanet simulations, but adding extra detail,” he said. “The takeaway is that we’re bringing further attention to the current model’s limiting factors but saying that under certain situations, you can get more emissions than that limiting factor suggests.”

    He noted the new model works best on exoplanetary systems. “You need to be really far away to see the effect,” he said. It’s hard to tell what’s going on at the global scale on Earth; it’s like trying to watch a movie by sitting right next to the screen. You’re only getting a little patch of it.”

    Also, radio signals from an Earth-like exoplanet may never be detectable from Earth’s surface, Sciola said. “Earth’s ionosphere blocks them,” he said. “That means we can’t even see Earth’s own radio emission from the ground, even though it’s so close.”

    Detection of signals from exoplanets will require either a complex of satellites or an installation on the far side of the moon. “That would be a nice, quiet place to make an array that won’t be limited by Earth’s ionosphere and atmosphere,” Sciola said.

    He said the observer’s position in relation to the exoplanet is also important. “The emission is ‘beamed,’” Sciola said. “It’s like a lighthouse: You can see the light if you are in line with the beam, but not if you are directly above the lighthouse. So having a better understanding of the expected angle of the signal will help observers determine if they are in line to observe it for a particular exoplanet.”

    Co-authors of the paper are Rice graduate student Alison Farrish and David Alexander, a professor of physics and astronomy and director of the Rice Space Institute, and computational physicist Kareem Sorathia and physicist Viacheslav Merkin at the Johns Hopkins Applied Physics Laboratory.

    The National Science Foundation (US) and National Aeronautics Space Agency (US) supported the research.

    See the full article here .


    Stem Education Coalition

    Rice University (US) [formally William Marsh Rice University] is a private research university in Houston, Texas. It is situated on a 300-acre campus near the Houston Museum District and is adjacent to the Texas Medical Center.

    Opened in 1912 after the murder of its namesake William Marsh Rice, Rice is a research university with an undergraduate focus. Its emphasis on education is demonstrated by a small student body and 6:1 student-faculty ratio. The university has a very high level of research activity. Rice is noted for its applied science programs in the fields of artificial heart research, structural chemical analysis, signal processing, space science, and nanotechnology. Rice has been a member of the Association of American Universities (US) since 1985 and is classified among “R1: Doctoral Universities – Very high research activity”.

    The university is organized into eleven residential colleges and eight schools of academic study, including the Wiess School of Natural Sciences, the George R. Brown School of Engineering, the School of Social Sciences, School of Architecture, Shepherd School of Music and the School of Humanities. Rice’s undergraduate program offers more than fifty majors and two dozen minors, and allows a high level of flexibility in pursuing multiple degree programs. Additional graduate programs are offered through the Jesse H. Jones Graduate School of Business and the Susanne M. Glasscock School of Continuing Studies. Rice students are bound by the strict Honor Code, which is enforced by a student-run Honor Council.

    Rice competes in 14 NCAA Division I varsity sports and is a part of Conference USA, often competing with its cross-town rival the University of Houston. Intramural and club sports are offered in a wide variety of activities such as jiu jitsu, water polo, and crew.

    The university’s alumni include more than two dozen Marshall Scholars and a dozen Rhodes Scholars. Given the university’s close links to National Aeronautics Space Agency (US), it has produced a significant number of astronauts and space scientists. In business, Rice graduates include CEOs and founders of Fortune 500 companies; in politics, alumni include congressmen, cabinet secretaries, judges, and mayors. Two alumni have won the Nobel Prize.


    Rice University’s history began with the demise of Massachusetts businessman William Marsh Rice, who had made his fortune in real estate, railroad development and cotton trading in the state of Texas. In 1891, Rice decided to charter a free-tuition educational institute in Houston, bearing his name, to be created upon his death, earmarking most of his estate towards funding the project. Rice’s will specified the institution was to be “a competitive institution of the highest grade” and that only white students would be permitted to attend. On the morning of September 23, 1900, Rice, age 84, was found dead by his valet, Charles F. Jones, and was presumed to have died in his sleep. Shortly thereafter, a large check made out to Rice’s New York City lawyer, signed by the late Rice, aroused the suspicion of a bank teller, due to the misspelling of the recipient’s name. The lawyer, Albert T. Patrick, then announced that Rice had changed his will to leave the bulk of his fortune to Patrick, rather than to the creation of Rice’s educational institute. A subsequent investigation led by the District Attorney of New York resulted in the arrests of Patrick and of Rice’s butler and valet Charles F. Jones, who had been persuaded to administer chloroform to Rice while he slept. Rice’s friend and personal lawyer in Houston, Captain James A. Baker, aided in the discovery of what turned out to be a fake will with a forged signature. Jones was not prosecuted since he cooperated with the district attorney, and testified against Patrick. Patrick was found guilty of conspiring to steal Rice’s fortune and he was convicted of murder in 1901 (he was pardoned in 1912 due to conflicting medical testimony). Baker helped Rice’s estate direct the fortune, worth $4.6 million in 1904 ($131 million today), towards the founding of what was to be called the Rice Institute, later to become Rice University. The board took control of the assets on April 29 of that year.

    In 1907, the Board of Trustees selected the head of the Department of Mathematics and Astronomy at Princeton University, Edgar Odell Lovett, to head the Institute, which was still in the planning stages. He came recommended by Princeton University (US)‘s president, Woodrow Wilson. In 1908, Lovett accepted the challenge, and was formally inaugurated as the Institute’s first president on October 12, 1912. Lovett undertook extensive research before formalizing plans for the new Institute, including visits to 78 institutions of higher learning across the world on a long tour between 1908 and 1909. Lovett was impressed by such things as the aesthetic beauty of the uniformity of the architecture at the University of Pennsylvania, a theme which was adopted by the Institute, as well as the residential college system at Cambridge University in England, which was added to the Institute several decades later. Lovett called for the establishment of a university “of the highest grade,” “an institution of liberal and technical learning” devoted “quite as much to investigation as to instruction.” [We must] “keep the standards up and the numbers down,” declared Lovett. “The most distinguished teachers must take their part in undergraduate teaching, and their spirit should dominate it all.”

    Establishment and growth

    In 1911, the cornerstone was laid for the Institute’s first building, the Administration Building, now known as Lovett Hall in honor of the founding president. On September 23, 1912, the 12th anniversary of William Marsh Rice’s murder, the William Marsh Rice Institute for the Advancement of Letters, Science, and Art began course work with 59 enrolled students, who were known as the “59 immortals,” and about a dozen faculty. After 18 additional students joined later, Rice’s initial class numbered 77, 48 male and 29 female. Unusual for the time, Rice accepted coeducational admissions from its beginning, but on-campus housing would not become co-ed until 1957.

    Three weeks after opening, a spectacular international academic festival was held, bringing Rice to the attention of the entire academic world.

    Per William Marsh Rice’s will and Rice Institute’s initial charter, the students paid no tuition. Classes were difficult, however, and about half of Rice’s students had failed after the first 1912 term. At its first commencement ceremony, held on June 12, 1916, Rice awarded 35 bachelor’s degrees and one master’s degree. That year, the student body also voted to adopt the Honor System, which still exists today. Rice’s first doctorate was conferred in 1918 on mathematician Hubert Evelyn Bray.

    The Founder’s Memorial Statue, a bronze statue of a seated William Marsh Rice, holding the original plans for the campus, was dedicated in 1930, and installed in the central academic quad, facing Lovett Hall. The statue was crafted by John Angel. In 2020, Rice students petitioned the university to take down the statue due to the founder’s history as slave owner.

    During World War II, Rice Institute was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program, which offered students a path to a Navy commission.

    The residential college system proposed by President Lovett was adopted in 1958, with the East Hall residence becoming Baker College, South Hall residence becoming Will Rice College, West Hall becoming Hanszen College, and the temporary Wiess Hall becoming Wiess College.

    In 1959, the Rice Institute Computer went online. 1960 saw Rice Institute formally renamed William Marsh Rice University. Rice acted as a temporary intermediary in the transfer of land between Humble Oil and Refining Company and NASA, for the creation of NASA’s Manned Spacecraft Center (now called Johnson Space Center) in 1962. President John F. Kennedy then made a speech at Rice Stadium reiterating that the United States intended to reach the moon before the end of the decade of the 1960s, and “to become the world’s leading space-faring nation”. The relationship of NASA with Rice University and the city of Houston has remained strong to the present day.

    The original charter of Rice Institute dictated that the university admit and educate, tuition-free, “the white inhabitants of Houston, and the state of Texas”. In 1963, the governing board of Rice University filed a lawsuit to allow the university to modify its charter to admit students of all races and to charge tuition. Ph.D. student Raymond Johnson became the first black Rice student when he was admitted that year. In 1964, Rice officially amended the university charter to desegregate its graduate and undergraduate divisions. The Trustees of Rice University prevailed in a lawsuit to void the racial language in the trust in 1966. Rice began charging tuition for the first time in 1965. In the same year, Rice launched a $33 million ($268 million) development campaign. $43 million ($283 million) was raised by its conclusion in 1970. In 1974, two new schools were founded at Rice, the Jesse H. Jones Graduate School of Management and the Shepherd School of Music. The Brown Foundation Challenge, a fund-raising program designed to encourage annual gifts, was launched in 1976 and ended in 1996 having raised $185 million. The Rice School of Social Sciences was founded in 1979.

    On-campus housing was exclusively for men for the first forty years, until 1957. Jones College was the first women’s residence on the Rice campus, followed by Brown College. According to legend, the women’s colleges were purposefully situated at the opposite end of campus from the existing men’s colleges as a way of preserving campus propriety, which was greatly valued by Edgar Odell Lovett, who did not even allow benches to be installed on campus, fearing that they “might lead to co-fraternization of the sexes”. The path linking the north colleges to the center of campus was given the tongue-in-cheek name of “Virgin’s Walk”. Individual colleges became coeducational between 1973 and 1987, with the single-sex floors of colleges that had them becoming co-ed by 2006. By then, several new residential colleges had been built on campus to handle the university’s growth, including Lovett College, Sid Richardson College, and Martel College.

    Late twentieth and early twenty-first century

    The Economic Summit of Industrialized Nations was held at Rice in 1990. Three years later, in 1993, the James A. Baker III Institute for Public Policy was created. In 1997, the Edythe Bates Old Grand Organ and Recital Hall and the Center for Nanoscale Science and Technology, renamed in 2005 for the late Nobel Prize winner and Rice professor Richard E. Smalley, were dedicated at Rice. In 1999, the Center for Biological and Environmental Nanotechnology was created. The Rice Owls baseball team was ranked #1 in the nation for the first time in that year (1999), holding the top spot for eight weeks.

    In 2003, the Owls won their first national championship in baseball, which was the first for the university in any team sport, beating Southwest Missouri State (US) in the opening game and then the University of Texas and Stanford University twice each en route to the title. In 2008, President David Leebron issued a ten-point plan titled “Vision for the Second Century” outlining plans to increase research funding, strengthen existing programs, and increase collaboration. The plan has brought about another wave of campus constructions, including the erection the newly renamed BioScience Research Collaborative building (intended to foster collaboration with the adjacent Texas Medical Center), a new recreational center and the renovated Autry Court basketball stadium, and the addition of two new residential colleges, Duncan College and McMurtry College.

    Beginning in late 2008, the university considered a merger with Baylor College of Medicine, though the merger was ultimately rejected in 2010. Rice undergraduates are currently guaranteed admission to Baylor College of Medicine upon graduation as part of the Rice/Baylor Medical Scholars program. According to History Professor John Boles’ recent book University Builder: Edgar Odell Lovett and the Founding of the Rice Institute, the first president’s original vision for the university included hopes for future medical and law schools.

    In 2018, the university added an online MBA program, MBA@Rice.

    In June 2019, the university’s president announced plans for a task force on Rice’s “past in relation to slave history and racial injustice”, stating that “Rice has some historical connections to that terrible part of American history and the segregation and racial disparities that resulted directly from it”.


    Rice’s campus is a heavily wooded 285-acre (115-hectare) tract of land in the museum district of Houston, located close to the city of West University Place.

    Five streets demarcate the campus: Greenbriar Street, Rice Boulevard, Sunset Boulevard, Main Street, and University Boulevard. For most of its history, all of Rice’s buildings have been contained within this “outer loop”. In recent years, new facilities have been built close to campus, but the bulk of administrative, academic, and residential buildings are still located within the original pentagonal plot of land. The new Collaborative Research Center, all graduate student housing, the Greenbriar building, and the Wiess President’s House are located off-campus.

    Rice prides itself on the amount of green space available on campus; there are only about 50 buildings spread between the main entrance at its easternmost corner, and the parking lots and Rice Stadium at the West end. The Lynn R. Lowrey Arboretum, consisting of more than 4000 trees and shrubs (giving birth to the legend that Rice has a tree for every student), is spread throughout the campus.

    The university’s first president, Edgar Odell Lovett, intended for the campus to have a uniform architecture style to improve its aesthetic appeal. To that end, nearly every building on campus is noticeably Byzantine in style, with sand and pink-colored bricks, large archways and columns being a common theme among many campus buildings. Noteworthy exceptions include the glass-walled Brochstein Pavilion, Lovett College with its Brutalist-style concrete gratings, Moody Center for the Arts with its contemporary design, and the eclectic-Mediterranean Duncan Hall. In September 2011, Travel+Leisure listed Rice’s campus as one of the most beautiful in the United States.

    Lovett Hall, named for Rice’s first president, is the university’s most iconic campus building. Through its Sallyport arch, new students symbolically enter the university during matriculation and depart as graduates at commencement. Duncan Hall, Rice’s computational engineering building, was designed to encourage collaboration between the four different departments situated there. The building’s foyer, drawn from many world cultures, was designed by the architect to symbolically express this collaborative purpose.

    The campus is organized in a number of quadrangles. The Academic Quad, anchored by a statue of founder William Marsh Rice, includes Ralph Adams Cram’s masterpiece, the asymmetrical Lovett Hall, the original administrative building; Fondren Library; Herzstein Hall; the original physics building and home to the largest amphitheater on campus; Sewall Hall for the social sciences and arts; Rayzor Hall for the languages; and Anderson Hall of the Architecture department. The Humanities Building winner of several architectural awards is immediately adjacent to the main quad. Further west lies a quad surrounded by McNair Hall of the Jones Business School; the Baker Institute; and Alice Pratt Brown Hall of the Shepherd School of Music. These two quads are surrounded by the university’s main access road, a one-way loop referred to as the “inner loop”. In the Engineering Quad, a trinity of sculptures by Michael Heizer, collectively entitled 45 Degrees; 90 Degrees; 180 Degrees are flanked by Abercrombie Laboratory; the Cox Building; and the Mechanical Laboratory housing the Electrical; Mechanical; and Earth Science/Civil Engineering departments respectively. Duncan Hall is the latest addition to this quad providing new offices for the Computer Science; Computational and Applied Math; Electrical and Computer Engineering; and Statistics departments.

    Roughly three-quarters of Rice’s undergraduate population lives on campus. Housing is divided among eleven residential colleges which form an integral part of student life at the university The colleges are named for university historical figures and benefactors.While there is wide variation in their appearance; facilities; and dates of founding are an important source of identity for Rice students functioning as dining halls; residence halls; sports teams among other roles. Rice does not have or endorse a Greek system with the residential college system taking its place. Five colleges: McMurtry; Duncan; Martel; Jones; and Brown are located on the north side of campus across from the “South Colleges”; Baker; Will Rice; Lovett, Hanszen; Sid Richardson; and Wiess on the other side of the Academic Quadrangle. Of the eleven colleges Baker is the oldest originally built in 1912 and the twin Duncan and McMurtry colleges are the newest and opened for the first time for the 2009–10 school year. Will Rice; Baker; and Lovett colleges are undergoing renovation to expand their dining facilities as well as the number of rooms available for students.

    The on-campus football facility-Rice Stadium opened in 1950 with a capacity of 70000 seats. After improvements in 2006 the stadium is currently configured to seat 47,000 for football but can readily be reconfigured to its original capacity of 70000, more than the total number of Rice alumni living and deceased. The stadium was the site of Super Bowl VIII and a speech by John F. Kennedy on September 12 1962 in which he challenged the nation to send a man to the moon by the end of the decade. The recently renovated Tudor Fieldhouse formerly known as Autry Court is home to the basketball and volleyball teams. Other stadia include the Rice Track/Soccer Stadium and the Jake Hess Tennis Stadium. A new Rec Center now houses the intramural sports offices and provide an outdoor pool and training and exercise facilities for all Rice students while athletics training will solely be held at Tudor Fieldhouse and the Rice Football Stadium.

    The university and Houston Independent School District jointly established The Rice School-a kindergarten through 8th grade public magnet school in Houston. The school opened in August 1994. Through Cy-Fair ISD Rice University offers a credit course based summer school for grades 8 through 12. They also have skills based classes during the summer in the Rice Summer School.

    Innovation District

    In early 2019 Rice announced the site where the abandoned Sears building in Midtown Houston stood along with its surrounding area would be transformed into the “The Ion” the hub of the 16-acre South Main Innovation District. President of Rice David Leebron stated “We chose the name Ion because it’s from the Greek ienai, which means ‘go’. We see it as embodying the ever-forward motion of discovery, the spark at the center of a truly original idea.”

    Students of Rice and other Houston-area colleges and universities making up the Student Coalition for a Just and Equitable Innovation Corridor are advocating for a Community Benefits Agreement (CBA)-a contractual agreement between a developer and a community coalition. Residents of neighboring Third Ward and other members of the Houston Coalition for Equitable Development Without Displacement (HCEDD) have faced consistent opposition from the City of Houston and Rice Management Company to a CBA as traditionally defined in favor of an agreement between the latter two entities without a community coalition signatory.


    Rice University is chartered as a non-profit organization and is governed by a privately appointed board of trustees. The board consists of a maximum of 25 voting members who serve four-year terms. The trustees serve without compensation and a simple majority of trustees must reside in Texas including at least four within the greater Houston area. The board of trustees delegates its power by appointing a president to serve as the chief executive of the university. David W. Leebron was appointed president in 2004 and succeeded Malcolm Gillis who served since 1993. The provost six vice presidents and other university officials report to the president. The president is advised by a University Council composed of the provost, eight members of the Faculty Council, two staff members, one graduate student, and two undergraduate students. The president presides over a Faculty Council which has the authority to alter curricular requirements, establish new degree programs, and approve candidates for degrees.

    The university’s academics are organized into several schools. Schools that have undergraduate and graduate programs include:

    The Rice University School of Architecture
    The George R. Brown School of Engineering
    The School of Humanities
    The Shepherd School of Music
    The Wiess School of Natural Sciences
    The Rice University School of Social Sciences

    Two schools have only graduate programs:

    The Jesse H. Jones Graduate School of Management
    The Susanne M. Glasscock School of Continuing Studies

    Rice’s undergraduate students benefit from a centralized admissions process which admits new students to the university as a whole, rather than a specific school (the schools of Music and Architecture are decentralized). Students are encouraged to select the major path that best suits their desires; a student can later decide that they would rather pursue study in another field or continue their current coursework and add a second or third major. These transitions are designed to be simple at Rice with students not required to decide on a specific major until their sophomore year of study.

    Rice’s academics are organized into six schools which offer courses of study at the graduate and undergraduate level, with two more being primarily focused on graduate education, while offering select opportunities for undergraduate students. Rice offers 360 degrees in over 60 departments. There are 40 undergraduate degree programs, 51 masters programs, and 29 doctoral programs.

    Faculty members of each of the departments elect chairs to represent the department to each School’s dean and the deans report to the Provost who serves as the chief officer for academic affairs.

    Rice Management Company

    The Rice Management Company manages the $6.5 billion Rice University endowment (June 2019) and $957 million debt. The endowment provides 40% of Rice’s operating revenues. Allison Thacker is the President and Chief Investment Officer of the Rice Management Company, having joined the university in 2011.


    Rice is a medium-sized highly residential research university. The majority of enrollments are in the full-time four-year undergraduate program emphasizing arts & sciences and professions. There is a high graduate coexistence with the comprehensive graduate program and a very high level of research activity. It is accredited by the Southern Association of Colleges and Schools Commission on Colleges (US) as well as the professional accreditation agencies for engineering, management, and architecture.

    Each of Rice’s departments is organized into one of three distribution groups, and students whose major lies within the scope of one group must take at least 3 courses of at least 3 credit hours each of approved distribution classes in each of the other two groups, as well as completing one physical education course as part of the LPAP (Lifetime Physical Activity Program) requirement. All new students must take a Freshman Writing Intensive Seminar (FWIS) class, and for students who do not pass the university’s writing composition examination (administered during the summer before matriculation), FWIS 100, a writing class, becomes an additional requirement.

    The majority of Rice’s undergraduate degree programs grant B.S. or B.A. degrees. Rice has recently begun to offer minors in areas such as business, energy and water sustainability, and global health.

    Student body

    As of fall 2014, men make up 52% of the undergraduate body and 64% of the professional and post-graduate student body. The student body consists of students from all 50 states, including the District of Columbia, two U.S. Territories, and 83 foreign countries. Forty percent of degree-seeking students are from Texas.

    Research centers and resources

    Rice is noted for its applied science programs in the fields of nanotechnology, artificial heart research, structural chemical analysis, signal processing and space science.

    Rice Alliance for Technology and Entrepreneurship – supports entrepreneurs and early-stage technology ventures in Houston and Texas through education, collaboration, and research, ranked No. 1 among university business incubators.
    Baker Institute for Public Policy – a leading nonpartisan public policy think-tank
    BioScience Research Collaborative (BRC) – interdisciplinary, cross-campus, and inter-institutional resource between Rice University and Texas Medical Center
    Boniuk Institute – dedicated to religious tolerance and advancing religious literacy, respect and mutual understanding
    Center for African and African American Studies – fosters conversations on topics such as critical approaches to race and racism, the nature of diasporic histories and identities, and the complexity of Africa’s past, present and future
    Chao Center for Asian Studies – research hub for faculty, students and post-doctoral scholars working in Asian studies
    Center for the Study of Women, Gender, and Sexuality (CSWGS) – interdisciplinary academic programs and research opportunities, including the journal Feminist Economics
    Data to Knowledge Lab (D2K) – campus hub for experiential learning in data science
    Digital Signal Processing (DSP) – center for education and research in the field of digital signal processing
    Ethernest Hackerspace – student-run hackerspace for undergraduate engineering students sponsored by the ECE department and the IEEE student chapter
    Humanities Research Center (HRC) – identifies, encourages, and funds innovative research projects by faculty, visiting scholars, graduate, and undergraduate students in the School of Humanities and beyond
    Institute of Biosciences and Bioengineering (IBB) – facilitates the translation of interdisciplinary research and education in biosciences and bioengineering
    Ken Kennedy Institute for Information Technology – advances applied interdisciplinary research in the areas of computation and information technology
    Kinder Institute for Urban Research – conducts the Houston Area Survey, “the nation’s longest running study of any metropolitan region’s economy, population, life experiences, beliefs and attitudes”
    Laboratory for Nanophotonics (LANP) – a resource for education and research breakthroughs and advances in the broad, multidisciplinary field of nanophotonics
    Moody Center for the Arts – experimental arts space featuring studio classrooms, maker space, audiovisual editing booths, and a gallery and office space for visiting national and international artists
    OpenStax CNX (formerly Connexions) and OpenStax – an open source platform and open access publisher, respectively, of open educational resources
    Oshman Engineering Design Kitchen (OEDK) – space for undergraduate students to design, prototype and deploy solutions to real-world engineering challenges
    Rice Cinema – an independent theater run by the Visual and Dramatic Arts department at Rice which screens documentaries, foreign films, and experimental cinema and hosts film festivals and lectures since 1970
    Rice Center for Engineering Leadership (RCEL) – inspires, educates, and develops ethical leaders in technology who will excel in research, industry, non-engineering career paths, or entrepreneurship
    Religion and Public Life Program (RPLP) – a research, training and outreach program working to advance understandings of the role of religion in public life
    Rice Design Alliance (RDA) – outreach and public programs of the Rice School of Architecture
    Rice Center for Quantum Materials (RCQM) – organization dedicated to research and higher education in areas relating to quantum phenomena
    Rice Neuroengineering Initiative (NEI) – fosters research collaborations in neural engineering topics
    Rice Space Institute (RSI) – fosters programs in all areas of space research
    Smalley-Curl Institute for Nanoscale Science and Technology (SCI) – the nation’s first nanotechnology center
    Welch Institute for Advanced Materials – collaborative research institute to support the foundational research for discoveries in materials science, similar to the model of Salk Institute and Broad Institute
    Woodson Research Center Special Collections & Archives – publisher of print and web-based materials highlighting the department’s primary source collections such as the Houston African American, Asian American, and Jewish History Archives, University Archives, rare books, and hip hop/rap music-related materials from the Swishahouse record label and Houston Folk Music Archive, etc.

    Student life

    Situated on nearly 300 acres (120 ha) in the center of Houston’s Museum District and across the street from the city’s Hermann Park, Rice is a green and leafy refuge; an oasis of learning convenient to the amenities of the nation’s fourth-largest city. Rice’s campus adjoins Hermann Park, the Texas Medical Center, and a neighborhood commercial center called Rice Village. Hermann Park includes the Houston Museum of Natural Science, the Houston Zoo, Miller Outdoor Theatre and an 18-hole municipal golf course. NRG Park, home of NRG Stadium and the Astrodome, is two miles (3 km) south of the campus. Among the dozen or so museums in the Museum District was (until May 14, 2017) the Rice University Art Gallery, open during the school year from 1995 until it closed in 2017. Easy access to downtown’s theater and nightlife district and to Reliant Park is provided by the Houston METRORail system, with a station adjacent to the campus’s main gate. The campus recently joined the Zipcar program with two vehicles to increase the transportation options for students and staff who need but currently don’t utilize a vehicle.

    Residential colleges

    In 1957, Rice University implemented a residential college system, which was proposed by the university’s first president, Edgar Odell Lovett. The system was inspired by existing systems in place at University of Oxford (UK) and University of Cambridge (UK) and at several other universities in the United States, most notably Yale University (US). The existing residences known as East, South, West, and Wiess Halls became Baker, Will Rice, Hanszen, and Wiess Colleges, respectively.

    List of residential colleges:

    Baker College, named in honor of Captain James A. Baker, friend and attorney of William Marsh Rice, and first chair of the Rice Board of Governors.
    Will Rice College, named for William M. Rice, Jr., the nephew of the university’s founder, William Marsh Rice.
    Hanszen College, named for Harry Clay Hanszen, benefactor to the university and chairman of the Rice Board of Governors from 1946 to 1950.
    Wiess College, named for Harry Carothers Wiess (1887–1948), one of the founders and one-time president of Humble Oil, now ExxonMobil.
    Jones College, named for Mary Gibbs Jones, wife of prominent Houston philanthropist Jesse Holman Jones.
    Brown College, named for Margaret Root Brown by her in-laws, George R. Brown.
    Lovett College, named after the university’s first president, Edgar Odell Lovett.
    Sid Richardson College, named for the Sid Richardson Foundation, which was established by Texas oilman, cattleman, and philanthropist Sid W. Richardson.
    Martel College, named for Marian and Speros P. Martel, was built in 2002.
    McMurtry College, named for Rice alumni Burt and Deedee McMurtry, Silicon Valley venture capitalists.
    Duncan College, named for Charles Duncan, Jr., Secretary of Energy.

    Much of the social and academic life as an undergraduate student at Rice is centered around residential colleges. Each residential college has its own cafeteria (serveries) and each residential college has study groups and its own social practices.

    Although each college is composed of a full cross-section of students at Rice, they have over time developed their own traditions and “personalities”. When students matriculate they are randomly assigned to one of the eleven colleges, although “legacy” exceptions are made for students whose siblings or parents have attended Rice. Students generally remain members of the college that they are assigned to for the duration of their undergraduate careers, even if they move off-campus at any point. Students are guaranteed on-campus housing for freshman year and two of the next three years; each college has its own system for determining allocation of the remaining spaces, collectively known as “Room Jacking”. Students develop strong loyalties to their college and maintain friendly rivalry with other colleges, especially during events such as Beer Bike Race and O-Week. Colleges keep their rivalries alive by performing “jacks,” or pranks, on each other, especially during O-Week and Willy Week. During Matriculation, Commencement, and other formal academic ceremonies, the colleges process in the order in which they were established.

    Student-run media

    Rice has a weekly student newspaper (The Rice Thresher), a yearbook (The Campanile), college radio station (KTRU Rice Radio), and now defunct, campus-wide student television station (RTV5). They are based out of the RMC student center. In addition, Rice hosts several student magazines dedicated to a range of different topics; in fact, the spring semester of 2008 saw the birth of two such magazines, a literary sex journal called Open and an undergraduate science research magazine entitled Catalyst.

    The Rice Thresher is published every Wednesday and is ranked by Princeton Review as one of the top campus newspapers nationally for student readership. It is distributed around campus, and at a few other local businesses and has a website. The Thresher has a small, dedicated staff and is known for its coverage of campus news, open submission opinion page, and the satirical Backpage, which has often been the center of controversy. The newspaper has won several awards from the College Media Association, Associated Collegiate Press and Texas Intercollegiate Press Association.

    The Rice Campanile was first published in 1916 celebrating Rice’s first graduating class. It has published continuously since then, publishing two volumes in 1944 since the university had two graduating classes due to World War II. The website was created sometime in the early to mid 2000s. The 2015 won the first place Pinnacle for best yearbook from College Media Association.

    KTRU Rice Radio is the student-run radio station. Though most DJs are Rice students, anyone is allowed to apply. It is known for playing genres and artists of music and sound unavailable on other radio stations in Houston, and often, the US. The station takes requests over the phone or online. In 2000 and 2006, KTRU won Houston Press’ Best Radio Station in Houston. In 2003, Rice alum and active KTRU DJ DL’s hip-hip show won Houston PressBest Hip-hop Radio Show. On August 17, 2010, it was announced that Rice University had been in negotiations to sell the station’s broadcast tower, FM frequency and license to the University of Houston System to become a full-time classical music and fine arts programming station. The new station, KUHA, would be operated as a not-for-profit outlet with listener supporters. The FCC approved the sale and granted the transfer of license to the University of Houston System on April 15, 2011, however, KUHA proved to be an even larger failure and so after four and a half years of operation, The University of Houston System announced that KUHA’s broadcast tower, FM frequency and license were once again up for sale in August 2015. KTRU continued to operate much as it did previously, streaming live on the Internet, via apps, and on HD2 radio using the 90.1 signal. Under student leadership, KTRU explored the possibility of returning to FM radio for a number of years. In spring 2015, KTRU was granted permission by the FCC to begin development of a new broadcast signal via LPFM radio. On October 1, 2015, KTRU made its official return to FM radio on the 96.1 signal. While broadcasting on HD2 radio has been discontinued, KTRU continues to broadcast via internet in addition to its LPFM signal.

    RTV5 is a student-run television network available as channel 5 on campus. RTV5 was created initially as Rice Broadcast Television in 1997; RBT began to broadcast the following year in 1998, and aired its first live show across campus in 1999. It experienced much growth and exposure over the years with successful programs like Drinking with Phil, The Meg & Maggie Show, which was a variety and call-in show, a weekly news show, and extensive live coverage in December 2000 of the shut down of KTRU by the administration. In spring 2001, the Rice undergraduate community voted in the general elections to support RBT as a blanket tax organization, effectively providing a yearly income of $10,000 to purchase new equipment and provide the campus with a variety of new programming. In the spring of 2005, RBT members decided the station needed a new image and a new name: Rice Television 5. One of RTV5’s most popular shows was the 24-hour show, where a camera and couch placed in the RMC stayed on air for 24 hours. One such show is held in fall and another in spring, usually during a weekend allocated for visits by prospective students. RTV5 has a video on demand site at rtv5.rice.edu. The station went off the air in 2014 and changed its name to Rice Video Productions. In 2015 the group’s funding was threatened, but ultimately maintained. In 2016 the small student staff requested to no longer be a blanket-tax organization. In the fall of 2017, the club did not register as a club.

    The Rice Review, also known as R2, is a yearly student-run literary journal at Rice University that publishes prose, poetry, and creative nonfiction written by undergraduate students, as well as interviews. The journal was founded in 2004 by creative writing professor and author Justin Cronin.

    The Rice Standard was an independent, student-run variety magazine modeled after such publications as The New Yorker and Harper’s. Prior to fall 2009, it was regularly published three times a semester with a wide array of content, running from analyses of current events and philosophical pieces to personal essays, short fiction and poetry. In August 2009, The Standard transitioned to a completely online format with the launch of their redesigned website, http://www.ricestandard.org. The first website of its kind on Rice’s campus, The Standard featured blog-style content written by and for Rice students. The Rice Standard had around 20 regular contributors, and the site features new content every day (including holidays). In 2017 no one registered The Rice Standard as a club within the university.

    Open, a magazine dedicated to “literary sex content,” predictably caused a stir on campus with its initial publication in spring 2008. A mixture of essays, editorials, stories and artistic photography brought Open attention both on campus and in the Houston Chronicle. The third and last annual edition of Open was released in spring of 2010.

    Vahalla is the Graduate Student Association on-campus bar under the steps of the chemistry building.


    Rice plays in NCAA Division I athletics and is part of Conference USA. Rice was a member of the Western Athletic Conference before joining Conference USA in 2005. Rice is the second-smallest school, measured by undergraduate enrollment, competing in NCAA Division I FBS football, only ahead of Tulsa.

    The Rice baseball team won the 2003 College World Series, defeating Stanford, giving Rice its only national championship in a team sport. The victory made Rice University the smallest school in 51 years to win a national championship at the highest collegiate level of the sport. The Rice baseball team has played on campus at Reckling Park since the 2000 season. As of 2010, the baseball team has won 14 consecutive conference championships in three different conferences: the final championship of the defunct Southwest Conference, all nine championships while a member of the Western Athletic Conference, and five more championships in its first five years as a member of Conference USA. Additionally, Rice’s baseball team has finished third in both the 2006 and 2007 College World Series tournaments. Rice now has made six trips to Omaha for the CWS. In 2004, Rice became the first school ever to have three players selected in the first eight picks of the MLB draft when Philip Humber, Jeff Niemann, and Wade Townsend were selected third, fourth, and eighth, respectively. In 2007, Joe Savery was selected as the 19th overall pick.

    Rice has been very successful in women’s sports in recent years. In 2004–05, Rice sent its women’s volleyball, soccer, and basketball teams to their respective NCAA tournaments. The women’s swim team has consistently brought at least one member of their team to the NCAA championships since 2013. In 2005–06, the women’s soccer, basketball, and tennis teams advanced, with five individuals competing in track and field. In 2006–07, the Rice women’s basketball team made the NCAA tournament, while again five Rice track and field athletes received individual NCAA berths. In 2008, the women’s volleyball team again made the NCAA tournament. In 2011 the Women’s Swim team won their first conference championship in the history of the university. This was an impressive feat considering they won without having a diving team. The team repeated their C-USA success in 2013 and 2014. In 2017, the women’s basketball team, led by second-year head coach Tina Langley, won the Women’s Basketball Invitational, defeating UNC-Greensboro 74–62 in the championship game at Tudor Fieldhouse. Though not a varsity sport, Rice’s ultimate frisbee women’s team, named Torque, won consecutive Division III national championships in 2014 and 2015.

    In 2006, the football team qualified for its first bowl game since 1961, ending the second-longest bowl drought in the country at the time. On December 22, 2006, Rice played in the New Orleans Bowl in New Orleans, Louisiana against the Sun Belt Conference champion, Troy. The Owls lost 41–17. The bowl appearance came after Rice had a 14-game losing streak from 2004–05 and went 1–10 in 2005. The streak followed an internally authorized 2003 McKinsey report that stated football alone was responsible for a $4 million deficit in 2002. Tensions remained high between the athletic department and faculty, as a few professors who chose to voice their opinion were in favor of abandoning the football program. The program success in 2006, the Rice Renaissance, proved to be a revival of the Owl football program, quelling those tensions. David Bailiff took over the program in 2007 and has remained head coach. Jarett Dillard set an NCAA record in 2006 by catching a touchdown pass in 13 consecutive games and took a 15-game overall streak into the 2007 season.

    In 2008, the football team posted a 9-3 regular season, capping off the year with a 38–14 victory over Western Michigan University (US) in the Texas Bowl. The win over Western Michigan marked the Owls’ first bowl win in 45 years.

    Rice Stadium also serves as the performance venue for the university’s Marching Owl Band, or “MOB.” Despite its name, the MOB is a scatter band that focuses on performing humorous skits and routines rather than traditional formation marching.

    Rice Owls men’s basketball won 10 conference titles in the former Southwest Conference (1918, 1935*, 1940, 1942*, 1943*, 1944*, 1945, 1949*, 1954*, 1970; * denotes shared title). Most recently, guard Morris Almond was drafted in the first round of the 2007 NBA Draft by the Utah Jazz. Rice named former Cal Bears head coach Ben Braun as head basketball coach to succeed Willis Wilson, fired after Rice finished the 2007–2008 season with a winless (0-16) conference record and overall record of 3-27.

    Rice’s mascot is Sammy the Owl. In previous decades, the university kept several live owls on campus in front of Lovett College, but this practice has been discontinued, due to public pressure over the welfare of the owls.

    Rice also has a 12-member coed cheerleading squad and a coed dance team, both of which perform at football and basketball games throughout the year.

  • richardmitnick 11:10 am on December 25, 2020 Permalink | Reply
    Tags: "40 years after Voyager scientists push for new missions to Uranus and Neptune", A new mission proposal named Trident [a mission to Neptune’s moon Triton] has been selected as one of four semifinalists for NASA’s Discovery Program., , , , , Beneath the atmospheres of both planets the mantles are mostly super-hot high-pressure global oceans of water; ammonia; and methane — essentially a liquid electrical conductor., , In 1781 Uranus became the first planet ever discovered using a telescope., Magnetospheres, More than a dozen proposals have been offered for return missions to one or both ice giants., Neptune and Uranus are each encircled by a set of rings., Neptune is approximately 17 times Earth’s mass and has a core weighing only 1.2 Earth masses., , The planetary research community has been giving the ice giants the cold shoulder., The solid core of both planets is made of iron; nickel; and silicates., Uranus’ core is small- only 0.55 Earth masses- while the planet’s overall mass is around 14 Earth masses.   

    From Astronomy Magazine: “40 years after Voyager scientists push for new missions to Uranus and Neptune” 

    From Astronomy Magazine

    December 17, 2020 [Catching up.]
    Joel Davis

    Voyager 2 visited the mysterious and majestic ice giants almost a half-century ago. And the clock is ticking on a return visit.

    In 1781, Uranus became the first planet ever discovered using a telescope. Nearly 200 years later, Voyager 2 became the first spacecraft to visit Uranus and Neptune, in 1986 and 1989 respectively.
    Credit: NASA/JPL.

    NASA/Voyager 2.

    The Space Age Blasted off when the Soviet Union launched the world’s first artificial satellite in 1957. Since then, humanity has explored our cosmic backyard with vigor — and yet two planets have fallen to the planetary probe wayside.

    In the 63 years since Sputnik, humanity has only visited Neptune and Uranus once — when Voyager 2 flew past Uranus in January 1986 and Neptune in August 1989 — and even that wasn’t entirely pre-planned. The unmitigated success of Voyager 1 and 2 on their original mission to explore Jupiter and Saturn earned the twin spacecrafts further missions in our solar system and beyond, with Neptune and Uranus acting as the last stops on a Grand Tour of the outer solar system.

    In the 31 years since Voyager 2 left the Neptune system in 1989 and began its interstellar mission, more than a dozen proposals have been offered for return missions to one or both ice giants.

    Heliosphere-heliopause showing positions of two Voyager spacecraft. Credit: NASA.

    So far, none have made it past the proposal stage due to lack of substantial scientific interest. Effectively, the planetary research community has been giving the ice giants the cold shoulder.

    But recently, exoplanet data began revealing the abundance of icy exoplanets in our galaxy “and new questions about solar system formation are bringing focus back to Uranus and Neptune,” says astronomer Candace Hansen.

    And it just so happens to be the perfect time to consider a return trip.

    A new mission proposal, named Trident, has been selected as one of four semifinalists for NASA’s Discovery Program. The proposed trajectory of the spacecraft would take advantage of a gravitational “kick” from Jupiter to reach Neptune and its moon, Triton. Credit: Astronomy: Roen Kelly.

    Time to return

    The decision to aim Voyager 2 at the ice giants was made in 1981, and took advantage of a rare planetary alignment of the outer planets. During its flyby of Jupiter, Voyager 2 received a “kick” from the planet, slingshotting it onto the right path to Uranus and eventually Neptune. A similar gravity assist from Jupiter will be possible between 2029 and 2034.

    Voyager 2’s flyby of the ice giants returned a wealth of new knowledge about these frigid behemoths, succeeding beyond everyone’s wildest dreams. The spacecraft discovered new rings and new moons around both planets, found wild winds on Neptune when none were expected, and revealed that Neptune’s moon Triton was truly spectacular, hinting at the possibility of a subsurface ocean that could potentially support microbial life.

    Hansen, a member of the Voyager imaging team during the flybys of Uranus and Neptune, recently recalled two of Voyager’s many highlights: “the images of plumes or clouds (we don’t know which) on Triton. And of course, seeing Neptune’s Great Dark Spot for the first time.”

    But countless questions remain, such as how the planets formed around the early Sun and the cause of their extreme axial tilts compared to the rest of the planets in the solar system. For decades, scientists have clamored for a return to these majestic planets. And now might be the perfect time to plan a return visit, as key planetary alignments approach at the end of the decade. If we can beat the clock, an ice giant mission could help us unravel the lingering mysteries of these planets and provide new insight into their chilling beauty.

    At a distance of only 175,000 miles (280,000 km), Voyager 2 captured these long-exposure images of Neptune’s faint rings.
    Credit: NASA/JPL.

    Migrating planets and screwy magnetospheres

    Uranus and Neptune are called ice giants, and rightly so. The planets circle the Sun at such great distances, receiving so little external heat, that their average temperatures are hundreds of degrees below freezing.

    As it turns out, ice giants are some of the most prevalent planets currently found in the universe, too. As some of the largest planets in a star system, they tend to be easier to spot when they transit their host star. However, current models say that ice giants should be an anomaly, as the window for them to form is narrow. The solar nebula — the cloud of gas and dust left over after the formation of a star from which planets are born — needs to be almost entirely dissipated for ice giants to snatch up the available gas and ice. They also first need to have substantial cores before they can accrete any that lingering gas and ice.

    Figuring out exactly how and where Neptune and Uranus formed could help scientists better understand the abundance of ice giants lurking in the universe. Computer simulations suggest that the low density of planetesimals and the weak solar gravity in the primordial outer solar system would have made it very difficult for the ice giants to form where they are today.

    And perhaps they didn’t. Like Jupiter and Saturn, Uranus and Neptune may have formed closer to the early Sun before, via gravitational processes, eventually migrating outward to their present positions.
    But how they formed isn’t the only strange aspect about our ice giants.

    With a rotation axis tilted more than 90 degrees compared to its orbital plane, as well as a large magnetic axis tilt, Uranus also has a variable magnetic field (traced here in gold) and magnetosphere. Credit: NASA’s Scientific Visualization Studio/JPL NAIF.

    Uranus rolls. Really. It’s tilted at 97.8 degrees from vertical, greater than any planet except Venus (177.4 degrees). For one-quarter of its 84-year orbit, each pole on Uranus is in continuous sunlight. Current theories suggest a large planetesimal may have struck a glancing blow, flipping the planet on its side. This would also explain other mysteries, too, such as its strange magnetic field.

    A basic view of the Uranian magnetosphere when the rotation axis is perpendicular to the Uranus-Sun line and days and nights are of equal duration. Credit: NASA’s Scientific Visualization Studio/JPL NAIF.

    Magnetospheres are typically in line with a planet’s rotation, but Uranus’ is tipped at 59 degrees from the planet’s rotational axis and offset from its center by one-third the planet’s radius. The result is a magnetosphere that wobbles in a complex pattern as Uranus spins on its axis.

    Neptune likewise has a highly tilted rotation axis and tilted magnetic axis. As a result, Neptune has a lopsided magnetic field (traced in gold) that twists and turns in complex patterns as the planet spins. Credit: NASA’s Scientific Visualization Studio/JPL NAIF.

    Similarly, Neptune’s magnetic field is tilted at 47 degrees from its axis and shifted away from the planet’s center by more than half the planet’s radius. Its magnetosphere traces a wild-looking corkscrew shape as the planet rotates.

    A basic view of the Neptunian magnetosphere when the southern side of the rotation axis is directed sunward (southern summer).
    Credit: NASA’s Scientific Visualization Studio/JPL NAIF.

    Scientists still don’t entirely understand these anomalous magnetospheres. They know that planetary magnetic fields are generated by internal dynamos, or conductive global mantle oceans. But with magnetic poles so skewed off-center, the exact cause of Uranus’ and Neptune’s screwy magnetospheres is, like their formation, still unknown.

    Magnificent blue marbles

    Though the planet’s strange magnetic fields and uncertain formation may have scientists scratching their heads, when Voyager 2 revealed the first images of the planets’ atmospheres, it took our collective breath away. The valuable flyby revealed some unexpected puzzles about the atmospheres and internal mechanics of both planets.

    Theories suggest that deep within the mantles of both Neptune and Uranus, diamonds may fall to the planets’ rocky cores. Besides raining diamonds, the planets have some of the most extreme orbital tilts in the solar system, with Uranus essentially spinning on its side. Credit: Lunar and Planetary Institute.

    Their cloud tops are among the coldest places in the solar system, too: –371 degrees Fahrenheit (–224 degrees Celsius) for Uranus and about –361 F (–218 C) for Neptune. Only the surface of Pluto is colder.

    But despite receiving so little light from the Sun, Neptune has weather — and what weather! Wispy white clouds scoot above the planet, and in 1989, Voyager 2 clocked winds near a strange, previously unseen dark spot on Neptune, reaching 1,000 mph (1,609 km/h) — the strongest of any in the solar system. This spot, dubbed the Great Dark Spot, was a massive spinning storm the size of Earth. Since its discovery, the storm has faded, but new ones have appeared elsewhere on the planet. By studying these dark spots, scientist might find a window to Neptune’s lower atmosphere.

    Both ice giants have atmospheres made of mostly hydrogen and helium, with small amounts of methane. It is the methane gases, however, that give Uranus its beautiful aquamarine color, as methane absorbs red light. Neptune’s color, on the other hand, is a more vivid blue. While methane contributes to that, another elementary component is likely the cause of such an intense blue — but exactly which one remains uncertain.

    Beneath the atmospheres of both planets, the mantles are mostly super-hot, high-pressure global oceans of water, ammonia, and methane — essentially a liquid electrical conductor. Inside their mantles, there may exist a deep layer where water is broken down into a soup of hydrogen and oxygen ions. Thousands of miles beneath their surfaces, the pressure is so great that methane splits apart and hardens its carbon compound into diamond crystals that sink to the planets’ cores. Yes: It could be raining diamonds.

    The solid core of both planets is made of iron, nickel, and silicates. Neptune is approximately 17 times Earth’s mass and has a core weighing only 1.2 Earth masses. Uranus’ core is small, only 0.55 Earth masses, while the planet’s overall mass is around 14 Earth masses.

    While these facts are all well known, the internal heat of both planets presents much more of a conundrum. Uranus hardly radiates any heat at all compared to other planets in the solar system. Neptune, on the other hand, despite being 10 astronomical units (AU; where 1 AU is the average distance between Earth and the Sun) beyond Uranus, radiates 2.61 times as much energy as it receives from the Sun. The explanation for this could have to do with an ancient impact from a protoplanet which expelled most of Uranus’ heat. This would also explain the planet’s extreme tilt. But astronomers still don’t know if internal heat released by Neptune (or Uranus) varies seasonally. Another visiting spacecraft could provide more data.

    This Hubble Space Telescope image showcases the four major rings surrounding Uranus, along with ten of its known satellites.
    Credit: NASA/JPL/STSCI.

    Rings: Thin, icy, and dusty

    When Voyager 2 flew by Uranus and Neptune, it didn’t just shine a light on the icy worlds; it gave us the first glimpses of their rings.

    Like all the giant planets in our solar system, Neptune and Uranus are each encircled by a set of rings. In 1977, James L. Elliot discovered five of Uranus’ rings, the first found around a planet other than Saturn. Further observations from Earth revealed four more and, when Voyager 2 reached the planet in 1986, a 10th ring was discovered. In total, 13 known rings circle the planet, varying in both thickness and opacity.

    Several of Uranus’ small moons appear to keep its rings constrained, acting as gravitational shepherds. Most of the rings are made of particles ranging in size from 8 inches to 66 feet (20 centimeters to 20 meters) in diameter, likely composed of water-ice mixed with radiation-produced organic matter. The rings are probably no more than 600 million years old, based on observations made by Voyager 2 of the planet’s exosphere, and they may be the remains from collisions of ancient moons.

    After discovering rings around Uranus, astronomers were eager to spy rings around its twin. While several claims were put forth, including the detection of incomplete arcs, it wasn’t until Voyager 2 reached Neptune that definitive rings were discovered. The planet’s five rings — Galle, Le Verrier, Lassell, Arago, and Adams — are named after astronomers who made important discoveries regarding the planet: Johann Gottfried Galle, Urbain Jean Joseph Le Verrier, and John Couch Adams all independently discovered the planet in 1846 using mathematics, making it the first planet found with calculations. François Arago suggested Le Verrier investigate the anomalies in Uranus’ motion, which hinted at Neptune’s existence, while William Lassell discovered Triton.

    As it turned out, the incomplete arcs previously detected were the densest parts of the Adams ring. The rings themselves have more dust-sized grains than Uranus’, such that much of the system resembles the faint rings of Jupiter. To even see the rings clearly, light from Neptune must be blocked.

    The lone flyby of the planets revealed rings previously unseen; a future mission could uncover even more about the fine structural detail of the ice giants’ ring systems and help pin down their age.

    Uranus is host to 13 known rings and 27 moons. Miranda and Ariel are notable due to their unusual surfaces. Neptune has just five rings and 14 moons, the most famous of which is Triton. This distant moon circles Neptune in a retrograde orbit, or counter to the planet’s spin. Credit: Astronomy/Roen Kelly.

    Moons small and large

    The planets aren’t just surrounded by rings; over a dozen moons circle both Neptune and Uranus, and one moon may just give scientists reason to return to the ice giants.

    Uranus’ 27 moons include a generous sampling of mystery and marvel. For example, the surface of Miranda, a moon over seven times smaller than our Moon, looks like a cosmic patchwork quilt and includes a gorge 12 times deeper than the Grand Canyon. Meanwhile, Ariel may have the youngest surface of Uranus’ moons, possibly redone by recent low-impact collisions. Ariel is over twice the size of Miranda.

    Miranda is the innermost of Uranus’ spherical moons and has one of the most extreme topographies of any object in the solar system. The only close-up images of Miranda are from the Voyager 2 flyby of Uranus in January 1986. Credit: NASA/JPL/USGS.

    Neptune, on the other hand, has 14 known moons. The two outermost, Neso and Psamathe, are incredible because of their miniscule size. Neso is a mere 37 miles (60 km) in diameter, 60 times smaller than the Moon. Psamathe is even tinier with a diameter of 25 miles (40 km). While not the smallest moons in the solar system (that position is currently held by Mars’ moon Deimos, which is just 7.6 miles [12.4 km] in diameter), Neso orbits the furthest from its host planet, at a little over 30 million miles (49 million km). It takes little Neso a whopping 27 years to make a single orbit around Neptune. Psamathe, on the other hand, orbits just shy of 30 million miles (48 million km) from the ice giant.

    Triton has the coldest known surface in the solar system and is the only known satellite with a surface made of mostly nitrogen ice. This global color mosaic of the moon, taken by Voyager 2, indicates that it has a vast southern polar cap believed to contain methane, which was stained pink by sunlight. Credit: NASA/JPL/USGS.

    Neptune’s largest moon, Triton, is the planet’s standout satellite. The moon is bigger than Pluto and the only one of the solar system’s large moons with a retrograde orbit, meaning it circles Neptune in the opposite direction from the planet’s spin. Voyager 2 discovered that Triton is scattered with relatively young surface features, hosts active geysers, and even shows hints of a subsurface ocean. Scientists suspect that Triton is a captured Kuiper Belt object due to its strange orbit and surface, although an alternative method of capture during the early solar system when planets passed each other near enough to steal moons has been recently suggested.

    Triton has one of the more substantial atmospheres of the solar system moons, but it is still significantly thinner than Earth’s. Consisting of nitrogen, methane, and carbon monoxide, this atmosphere likely originated from volcanic activity. Besides Earth, Triton is only one of three solar system bodies known to currently be volcanically active. Evidence of ongoing geological activity points to the possibility of a subsurface ocean. As such, Triton was identified as one of the highest priority candidate ocean worlds for future missions by the NASA Outer Planets Assessment Group Roadmaps to Ocean World (ROW) group in the recent “NASA Roadmap to Ocean Worlds” report, which summarizes their findings. ROW provides a framework to guide the future of ocean world exploration over the next several decades.

    Triton earning this high priority may just be what it takes to get us back to the outer solar system so we can explore the ice giants once more.

    Fittingly named after the son of Poseidon, Triton may be hiding an ocean world beneath its icy crust. The moon is also one of only four bodies in the solar system to be volcanically active. Credit: NASA/JPL-Caltech.

    Trident: A mission to Triton

    Under NASA’s Discovery Program, a new mission to the ice giants may be within reach. Started in 1992, the program provides scientists a chance to imagine innovative, low-cost ways to unlock the mysteries of the solar system.

    In August 2017, a Discovery proposal period began and a small group at JPL convened a two-day brainstorming session. The group produced the Trident proposal — a flyby mission to Triton. “The whole process went from concept to a real project remarkably quickly,” recalls co-author Karl Mitchell.

    The proposed Trident mission will pass within 310 miles (500 km) of the giant moon, close enough to move through its atmosphere. Trident plans to map Triton, characterize its active processes, and determine whether the moon has a magnetic field — which would strengthen the argument that the moon is hiding an ocean beneath its surface. To accomplish these tasks, Trident will need a host of instruments, including a magnetometer, both a narrow-angle and wide-angle camera, and a plasma spectrometer.

    In February, NASA selected the Trident proposal as one of four Discovery-class semifinalists.

    The team will visit NASA in February or March 2021 for an intensive review before the agency makes their final selection of which missions will fly.

    Hopefully Trident is one of them, as it’s time to return to the majestic ice giants and take the next steps in unraveling the mysteries of these enigmatic goliaths.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Astronomy is a magazine about the science and hobby of astronomy. Based near Milwaukee in Waukesha, Wisconsin, it is produced by Kalmbach Publishing. Astronomy’s readers include those interested in astronomy and those who want to know about sky events, observing techniques, astrophotography, and amateur astronomy in general.

    Astronomy was founded in 1973 by Stephen A. Walther, a graduate of the University of Wisconsin–Stevens Point and amateur astronomer. The first issue, August 1973, consisted of 48 pages with five feature articles and information about what to see in the sky that month. Issues contained astrophotos and illustrations created by astronomical artists. Walther had worked part time as a planetarium lecturer at the University of Wisconsin–Milwaukee and developed an interest in photographing constellations at an early age. Although even in childhood he was interested to obsession in Astronomy, he did so poorly in mathematics that his mother despaired that he would ever be able to earn a living. However he graduated in Journalism from the University of Wisconsin Stevens Point, and as a senior class project he created a business plan for a magazine for amateur astronomers. With the help of his brother David, he was able to bring the magazine to fruition. He died in 1977.

  • richardmitnick 12:24 pm on July 12, 2019 Permalink | Reply
    Tags: EMIC-electromagnetic ion cyclotron waves, Eun-Hwa Kim, Magnetospheres, Plasma particles, ,   

    From PPPL: Women in STEM-“Scientists deepen understanding of the magnetic fields that surround the Earth and other planets” Eun-Hwa Kim 

    From PPPL

    July 12, 2019
    Raphael Rosen

    PPPL physicist Eun-Hwa Kim (Photo by Elle Starkman)

    Vast rings of electrically charged particles encircle the Earth and other planets. Now, a team of scientists has completed research into waves that travel through this magnetic, electrically charged environment, known as the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.

    Magnetosphere of Earth, original bitmap from NASA. SVG rendering by Aaron Kaase

    The scientists, led by Eun-Hwa Kim, physicist at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL), examined a type of wave that travels through the magnetosphere. These waves, called electromagnetic ion cyclotron (EMIC) waves, reveal the temperature and the density of the plasma particles within the magnetosphere, among other qualities.

    “Waves are a kind of signal from the plasma,” said Kim, lead author of a paper that reported the findings in JGR Space Physics. “Therefore, the EMIC waves can be used as diagnostic tools to reveal some of the plasma’s characteristics.”

    Kim and researchers from Andrews University in Michigan and Kyung Hee University in South Korea focused their research on mode conversion, the way in which some EMIC waves form. During this process, other waves that compress along the direction they travel from outer space collide with Earth’s magnetosphere and trigger the formation of EMIC waves, which then zoom off at a particular angle and polarization — the direction in which all of the light waves are vibrating.

    Using PPPL computers, the scientists performed simulations showing that these mode-converted EMIC waves can propagate through the magnetosphere along magnetic field lines at a normal angle that is less than 90 degrees, in relation to the border of the region with space. Knowing such characteristics enables physicists to identify EMIC waves and gather information about the magnetosphere with limited initial information.

    A better understanding of the magnetosphere could provide detailed information about how Earth and other planets interact with their space environment. For instance, the waves could allow scientists to determine the density of elements like helium and oxygen in the magnetosphere, as well as learn more about the flow of charged particles from the sun that produces the aurora borealis.

    Moreover, engineers employ waves similar to EMIC waves to aid the heating of plasma in doughnut-shaped magnetic fusion devices known as tokamaks. So, studying the behavior of the waves in the magnetosphere could deepen insight into the creation of fusion energy, which takes place when plasma particles collide to form heavier particles. Scientists around the world seek to replicate fusion on Earth for a virtually inexhaustible supply of power to generate electricity.

    Knowledge of EMIC waves could thus provide wide-ranging benefits. “We are really eager to understand the magnetosphere and how it mediates the effect that space weather has on our planet,” said Kim. “Being able to use EMIC waves as diagnostics would be very helpful.”

    This research was supported by the DOE’s Office of Science (Fusion Energy Sciences), the National Science Foundation, and the National Aeronautics and Space Administration.

    See the full article here .

    Please help promote STEM in your local schools.

    Stem Education Coalition

    PPPL campus

    Princeton Plasma Physics Laboratory is a U.S. Department of Energy national laboratory managed by Princeton University. PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. Results of PPPL research have ranged from a portable nuclear materials detector for anti-terrorist use to universally employed computer codes for analyzing and predicting the outcome of fusion experiments. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

  • richardmitnick 7:48 am on July 9, 2019 Permalink | Reply
    Tags: "How Venus Reacts when the Sun Strikes", , , , , , Magnetospheres   

    From AAS NOVA: “How Venus Reacts when the Sun Strikes” 


    From AAS NOVA

    8 July 2019
    Susanna Kohler

    Artist’s impression of the Venus Express spacecraft in orbit around Venus. [ESA]

    What happens to Venus when an enormous solar eruption slams into the planet? In 2011, the Venus Express spacecraft was on site to find out!

    Schematic illustration of the Earth’s global magnetic field. Venus does not have an intrinsic field. [NASA / Peter Reid / The University of Edinburgh]

    Benefits of a Field

    The Earth’s magnetic field does an excellent job of protecting us from the damaging influence of the solar wind. Energetic particles emitted by the Sun are deflected around our planet and channeled to the poles, where they harmlessly light up the sky in haunting aurorae. Even the danger of sporadic solar eruptions — like flares and coronal mass ejections — is largely mitigated by our protective shield.

    But our sister planet, Venus, is less fortunate: though similar to Earth in many ways, Venus lacks its own global magnetic field to protect it from the Sun’s onslaught.

    What happens to this clouded planet when the Sun sends an enormous interplanetary coronal mass ejection its way?

    The interaction of Venus with the magnetized solar wind produces an induced magnetosphere. [Ruslik0]

    With a Little Help from the Sun

    Venus has a trick up its sleeve: though it doesn’t carry its own magnetic field, it boasts an induced magnetosphere.

    As extreme ultraviolet radiation from the Sun lights up Venus’s dayside, it ionizes the planet’s upper atmosphere, forming a plasma known as the ionosphere. When the solar wind — which carries the Sun’s magnetic field with it — encounters Venus, the thermal pressure of the ionosphere pushes back against the magnetic pressure of the solar wind, causing the field lines to drape around Venus and remain supported there.

    This induced magnetosphere has a bow shock on the Sun side and a long, trailing magnetotail on the anti-Sun side. The pile-up of magnetic field between the magnetosphere and Venus’s ionosphere — the magnetic barrier — prevents the solar-wind plasma from penetrating deeper down into Venus’s atmosphere.

    Front-Row Seats to Action

    So Venus isn’t unprotected — but how well does this shield hold up in the face of powerful solar storms? In 2011, we had a orbiter ready to watch the stormy drama up close: the Venus Express spacecraft.

    Venus Express, launched in 2005, orbited around Venus’s poles and studied the global space environment around the planet.

    ESA/Venus Express

    On 5 November, 2011, an extremely strong interplanetary coronal mass ejection hit Venus while the spacecraft was in orbit — and now, in a publication led by Qi Xu (Macau University of Science and Technology, China), a team of scientists has detailed what the spacecraft learned.

    Not Unflappable

    The magnetic field strength (top) and direction (bottom) measured by the Venus Express reveal the rapid flapping motion of the plasma sheet in the magnetotail in response to the interplanetary coronal mass ejection. The red line shows that the Bx component of the magnetic field changed direction 5 times within 1.5 minutes (7:49:30–7:51:00)! [Adapted from Xu et al. 2019]

    Venus Express’s data show that the planet’s induced magnetosphere and its ionosphere responded dramatically to the strong solar eruption. Venus’s bow shock was compressed and broadened as the storm hit; the plasma sheet of the magnetotail flapped back and forth rapidly; the magnetic barrier increased in strength; and the ionosphere was excited, jumping to a whopping three times the quiet-Sun plasma density!

    Based on their analysis, Xu and collaborators expect that interplanetary coronal mass ejections like this one substantially increase the rate of Venus’s atmospheric loss, violently driving ions from the planet’s gravitational grasp.

    We still have a lot to learn about about how our sister planet reacts when solar storms strike, but these observations have shed new light on the dramatic struggle.


    “Observations of the Venus Dramatic Response to an Extremely Strong Interplanetary Coronal Mass Ejection,” Qi Xu et al 2019 ApJ 876 84.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

  • richardmitnick 8:40 pm on September 10, 2015 Permalink | Reply
    Tags: , , Magnetospheres,   

    From Queens: “Monitoring magnetospheres” 

    Queens U bloc

    Queens University

    September 10, 2015
    Anne Craig

    Queen’s researcher works to debunk the theory behind massive stars.

    Queen’s University PhD student Matt Shultz is researching magnetic, massive stars, and his research has uncovered questions concerning the behaviour of plasma within their magnetospheres.

    This image shows the magnetosphere of a massive star. (Image by Richard Townsend)

    Drawing upon the extensive dataset assembled by the international Magnetism in Massive Stars (MiMeS) collaboration, led by Mr. Shultz’s supervisor, Queen’s professor Gregg Wade, along with some of his own observations collected with both the Canada-France-Hawaii Telescope [CFHT] and the European Southern Observatory’s Very Large Telescope, Mr. Shultz is conducting the first systematic population study of magnetosphere-host stars.

    CFHT Interior

    ESO VLT Interferometer
    ESO VLT Interior

    “All massive stars have winds: supersonic outflows of plasma driven by the stars’ intense radiation. When you put this plasma inside a magnetic field you get a stellar magnetosphere,” explains Mr. Shultz (Physics, Engineering Physics and Astronomy). “Since the 1980s, theoretical models have generally found that the plasma should escape the magnetosphere in sporadic, violent eruptions called centrifugal breakout events, triggered when the density of plasma grows beyond the ability of the magnetic field to contain.

    “However, no evidence of this dramatic process has yet been observed, so the community has increasingly been calling that narrative into question.”

    Before now, obvious disagreements with theory had been noted primarily for a single, particularly well-studied star. Studying the full population of magnetic, massive stars with detectable magnetospheres, Mr. Shultz has determined that the plasma density within all such magnetospheres is far lower than the limiting value implied by the centrifugal breakout model. This suggests that plasma might be escaping gradually, maintaining magnetospheres in an essentially steady state.

    “We don’t know yet what is going on,” says Mr. Shultz. “But, when centrifugal breakout was first identified as the most likely process for mass escape, only the simplest diffusive mechanisms were ruled out. Our understanding of space plasmas has developed quite a bit since then. We now need to go back and look more closely at the full range of diffusive mechanisms and plasma instabilities. There are plenty to choose from: the real challenge is developing the theoretical tools that will be necessary to test them.”

    Mr. Shultz is presenting his research at the Canadian Astronomical Society Conference at McMaster University.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Queens U Campus

    Queen’s University is a community, 170+ years of tradition, academic excellence, research, and beautiful waterfront campus made of limestone buildings and modern facilities. But more than anything Queen’s is people.

    We are researchers, scholars, artists, professors and students with an ambitious spirit who want to develop ideas that can make a difference in the world. People who imagine together what the future could be and work together to realize it.

    Queen’s is one of Canada’s oldest degree-granting institutions, and has influenced Canadian higher education since 1841 when it was established by Royal Charter of Queen Victoria.

    Located in Kingston, Ontario, Canada, it is a mid-sized university with several faculties, colleges and professional schools, as well as the Bader International Study Centre located in Herstmonceux, East Sussex, United Kingdom.

    Queen’s balances excellence in undergraduate studies with well-established and innovative graduate programs, all within a dynamic learning environment.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: