Tagged: LSST Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:55 am on February 3, 2015 Permalink | Reply
    Tags: , , LSST,   

    From NPR: “Hunting For Big Planets Far Beyond Pluto May Soon Be Easier” 


    National Public Radio (NPR)

    February 02, 2015
    Nell Greenfieldboyce

    Stars over the Cerro Tololo Inter-American Observatory in Chile. Sheppard and Trujillo used the new Dark Energy Camera (DECam) on a telescope there to find the distant dwarf planet 2012 VP 113.

    On a mountaintop in Chile, excavators have just started work on a construction site. It will soon be home to a powerful new telescope that will have a good shot at finding the mysterious Planet X, if it exists.

    “Planet X is kind of a catchall name given to any speculation about an unseen companion orbiting the sun,” says Kevin Luhman, an astronomer at Penn State University.

    The discovery images of 2012 VP113, which has the most distant orbit known in our Solar System. The dwarf planet’s movement suggests its orbit. 2012 VP-113 Source: Carnegie Institution of Science
    Credit: Scott Sheppard

    For more than a century, scientists have observed various things that they thought could be explained by the presence of an unknown planet lurking at the edge of our solar system.

    “There’s a huge volume of space in the outer solar system,” says Luhman. “We know almost nothing about what might be out there.”

    Some conspiracy-minded folks even think that Planet X has already been discovered. “There are a lot of these people on the Internet,” says Luhman, “who think that, for instance, NASA knows about an unseen planet, but it’s on a collision course with Earth and it’s going to destroy us, but they don’t tell us about it.”

    Finding a major new planet would be big news. While dwarf planets like “Sedna” haven’t exactly become household names, a planet the size of Earth or Mars might get added to the list of planets students have to memorize.

    “If you put an object twice as far away, it becomes 16 times fainter. So things get very faint, very fast.”
    Scott Sheppard, astronomer, Carnegie Institution for Science

    Luhman recently went hunting for planet X using WISE, a NASA space telescope that detects infrared light.

    NASA Wise Telescope

    It would have found anything the size of Jupiter or Saturn, because gas giants like these are big enough and warm enough that they produce a lot of infrared light. But last year, Luhman reported that they didn’t see any planet like that.

    Scott Sheppard of the Carnegie Institution of Science. Courtesy of Scott Sheppard/Carnegie Institution of Science

    Still, there may be smaller, cooler planets out there — until recently, scientists had no way to look for them. “Up until a year or two ago, we just didn’t have the technology to do this, because we didn’t have large cameras on large telescopes,” explains Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington, D.C.

    Any planet that far away would be very faint, because light would have to travel billions of miles from the sun to the planet, bounce off, and then travel all the way back to our telescopes. “And because of that, if you put an object twice as far away, it becomes 16 times fainter,” Sheppard says. “So, things get very faint, very fast.”

    Sheppard and his colleagues have been searching for very faint objects using a massive camera on a powerful telescope in Chile. Last year, he and Chad Trujillo, of the Gemini Observatory, announced that they’d found a dwarf planet that they nicknamed “Biden,” since its temporary name is 2012 VP113. It’s a little pink ball of ice that’s far beyond Pluto.

    There’s a framed photo of the dwarf planet hanging on the wall of Sheppard’s office; if he has his way, there soon will be more photos up there.

    “Part of this search for these planets in the outer part of the solar system is trying to find out about the neighborhood. I think to find out more about our neighborhood is just really a cool thing.”
    Scott Kenyon, astrophysicist, Smithsonian Astrophysical Observatory

    “We believe there are probably a lot of objects bigger than Pluto still out there,” Sheppard says, “and there could easily be objects as big as Mars or even Earth, out beyond in the very far distant solar system.”

    He’s already found hints of something big: When he looks at the orbits of his dwarf planet and some other small icy bodies, he sees a pattern. “And you wouldn’t expect that,” Sheppard says. “You’d expect the orbits to be completely random.”

    One possible explanation is that the array of objects are all being influenced by the force of a large, unknown planet. “I think, like all new discoveries, this is just the tip of the iceberg,” Trujillo told NPR via email. “And it will probably be quite a while until someone can explain things and most people accept their explanation.”

    In Trujillo’s view, if a large planet is out there, astronomers are unlikely to find it until the Large Synoptic Survey Telescope comes online.

    LSST Exterior
    LSST Interior
    LSST Camera

    The device is designed to scan huge swaths of sky for faint objects; the building site for it is already being prepared on top of a mountain in Chile, and construction will begin in earnest this year. The telescope is expected to start operations in the early 2020s.

    “But, we could get lucky,” Trujillo notes — somebody might find the distant planet sooner than that.

    Others agree that the chances of finding something sizable are good.

    “With the next generation of telescopes, or if we’re lucky with the current generation of telescope, it will be possible to detect the light from this planet,” says Scott Kenyon, an astrophysicist at the Smithsonian Astrophysical Observatory in Cambridge, Mass. “If we can see it and pinpoint its position, then everybody will get excited.”

    Finding a big new planet would be like meeting a new neighbor, says Kenyon.

    “You like to know people on your street, or in your apartment building,” he says. “I think that part of this search for these planets in the outer part of the solar system is trying to find out about the neighborhood. I think to find out more about our neighborhood is just really a cool thing.”

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Great storytelling and rigorous reporting. These are the passions that fuel us. Our business is telling stories, small and large, that start conversations, increase understanding, enrich lives and enliven minds.

    We are reporters in Washington D.C., and in bunkers, streets, alleys, jungles and deserts around the world. We are engineers, editors, inventors and visionaries. We are Member stations around the country who are deeply connected to our communities. We are listeners and donors who support public radio because we know how it has enriched our own lives and want it to grow strong in a new age.

    We are NPR. And this is our story.

  • richardmitnick 1:26 pm on January 22, 2015 Permalink | Reply
    Tags: , , , LSST   

    From FNAL: “Fermilab leads in developing software for LSST Dark Energy Science Collaboration” 

    FNAL Home

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    From left: Fermilab’s Jim Kowalkowski, Marc Paterno, Saba Sehrish, Steve Kent, all of the Scientific Computing Division, and Scott Dodelson, Particle Physics Division, contributed to DESC as part of its Software Working Group, which Dodelson leads. Photo: Rich Blaustein

    Thursday, Jan. 22, 2015
    Rich Blaustein

    At the supercomputing conference SC14, held in November, Fermilab astrophysics and computing experts achieved a milestone with a demonstration run of the analysis framework software they are developing for the Dark Energy Science Collaboration (DESC) of the Large Synoptic Survey Telescope.

    LSST Exterior
    LSST Telescope

    LSST Camera
    LSST Camera, being built at SLAC

    The LSST, whose construction is led by SLAC National Accelerator Laboratory, is currently in the advanced design phase and will be placed in Cerro Pachon, Chile. It will be the tool for the world’s largest imaging survey, taking repeated images of the southern sky beginning in 2020.

    The software and data processing demands for the DESC are challenging, to say the least.

    “LSST will truly be a next-generation survey: It will surpass preceding surveys in terms of data size in its first few months of operation,” said University of Pennsylvania astrophysicist Bhuvnesh Jain, spokesperson for the Dark Energy Science Collaboration.

    More than 200 scientists from five countries are currently involved with DESC, and Jain expects the number of scientists involved in DESC to double in the next decade.

    Fermilab astrophysicist Scott Dodelson, convener of the DESC Software Working Group, says the group is designing a framework for all DESC scientists that will facilitate their collaboration and use of tools built by the LSST project team. Steve Kent, Jim Kowalkowski, Marc Paterno and Saba Sehrish, all in Fermilab’s Scientific Computing Division, worked to develop the DESC framework. Sehrish ran the November demonstration.

    The framework links some programs specifically produced for LSST with others written externally or by the scientists themselves. It runs them on supercomputers, networks such as FermiGrid and local resources.

    “The scientists running the DESC workflows will not have to worry about details such as file transport or access to supercomputers to do their dark energy science,” Paterno said. “We demonstrated how this could be done.”

    Dodelson and Kent say that the demonstration was very successful and bodes well for the DESC.

    “The demo was an end-to-end simulation of LSST data and science analyses — that was the really important thing,” Kent said. “It was a walking-through of all the steps and with an eye on eventually expanding to the LSST scale.”

    The group ran simulated images through the interlinked software until at the end it was run through CosmoSIS, a cosmological parameter estimation program to which Dodelson, Kowalkowski, Paterno and Sehrish have contributed.

    The DESC Software Working Group is currently developing another version of the demonstrated framework for the DESC scientists to consider at their February gathering at SLAC.

    Jain said that innovative DESC software will enable explorations of the many astronomical mysteries that LSST will open up.

    “The work of the Fermilab group is really going to pave the way for a new mode of doing software analyses and how people collaborate,” Jain said. “I think it will have far-reaching implications for how we do cosmology.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics.

  • richardmitnick 7:08 pm on January 12, 2015 Permalink | Reply
    Tags: , , LSST,   

    From Symmetry: “Mirror, mirror” 


    January 12, 2015
    Kathryn Jepsen

    After more than six years of grinding and polishing, the first-ever dual-surface mirror for a major telescope is complete.

    In March 2008, a group of people gathered around a giant, red oven in a six-story workshop space beneath the bleachers of the University of Arizona football stadium.

    The oven was about 10 meters wide and 2 meters tall, big enough to live in, really. But that day it was rendered less than hospitable by its extreme internal temperature—2200 degrees Fahrenheit—and its persistent spinning at 35 miles per hour. Also, it was full of 22 tons of molten glass.

    This was the “high-fire event,” the day the glass reached its melting point, freeing it to flow into a honeycomb-patterned mold on its way to becoming one of the largest telescope mirrors in the world.

    Now, after months of cooling and more than six years of grinding and polishing, the mirror is complete.

    On Saturday, a new group gathered in the Steward Observatory Mirror Labhttp://mirrorlab.as.arizona.edu/
    —still located under the bleachers—to admire the finished product.

    Steward Observatory Mirror Lab

    It is the first completed piece of the Large Synoptic Survey Telescope, which will eventually be located on Cerro Pachón, a mountain in Chile. In 2022, the massive mirror will enable LSST scientists to begin the most thorough survey ever of the Southern sky.
    Making a movie of the universe

    The mirror goes by the name M1M3, and it’s actually two mirrors in one. The outer ring serves as the first mirror, M1, and another, more steeply curved mirror, M3, has been carved out of the center.

    LSST will capture and focus images of the night sky by bouncing them through a series of three mirrors. Light will shine onto M1, which will reflect it up to another mirror, the 3.4-meter M2, which will reflect it down to M3, which will reflect it up into the lens of a 3.2-gigapixel camera.

    The three-mirror optical system, unique among large telescopes, will allow LSST to take in nearly 10 square degrees of sky with each image—a field of view large enough to fit 40 full moons.

    The combined dual-surface mirror, also unique among large telescopes, will allow scientists to align LSST just as quickly as they could a two-mirror telescope. This will help make LSST nimble enough to scan across the entire Southern sky once every three nights.

    LSST’s frequent sweeps across the same areas of sky will allow scientists to monitor changes to our galaxy and others in a way that has never before been possible.

    They will create time-lapse videos of asteroids, supernovae, variable stars, the effects of dark matter and dark energy—as LSST Director Steve Kahn puts it, “anything that can go bump in the night.” In the end, they hope the survey will lead to a new understanding of our universe.

    The multi-year mirror

    The LSST project has already met a major milestone with the completion of M1M3, although it only recently received federal funding for its construction start.

    In August 2014 the National Science Foundation authorized $473 million for the project. And just this month the US Department of Energy approved $165 million for construction of the LSST camera.

    LSST Camera
    LSST Camera

    The early development of LSST was supported by the LSST Corporation, a non-profit consortium of 40 universities and other research institutions. Building M1M3 and getting started on M2 have been supported by private funding: $20 million from the Charles and Lisa Simonyi Fund for Arts and Sciences; $10 million from Microsoft founder Bill Gates; and more contributions from Interface Inc. founder and chair Richard Caris; the WM Keck Foundation; Wayne Rosing and Dorothy Largay; Eric and Wendy Schmidt; and Edgar Smith.

    For its part, the Tucson-based Research Corporation for Science Advancement contributed $400,000 toward the purchase of the glass.

    This was no ordinary glass; it was high-quality glass made by a specialty company in Japan. It came in chunks weighing a couple of pounds each—light enough for technicians kneeling on a ramp suspended over the mold to pick them up and gently nestle them into place.

    Courtesy of: LSST

    Once the mold was filled, technicians heated it in the oven, which rotated to encourage the glass to travel up the sides and form a shallow bowl shape. The honeycomb design in the mold formed 1600 air pockets in the back of the mirror to reduce its mass and increase temperature-regulating airflow.

    To avoid cracking the mirror, technicians cooled it down slowly over 90 days.

    Scientist Chuck Claver, who has been a part of LSST since it was no more than an interesting idea, was one of the few people in the room when the oven was finally opened.

    “It’s like a cake cover,” he says. “They lift it off with a crane and then there it is… You walk up to this thing and your jaw just drops.”

    Claver keeps a picture of himself and a few other scientists standing in the center of the freshly baked M1M3. “Glass is actually pretty strong stuff. You can take your shoes off and walk on it in socks,” he says.

    “I hate it when they do that,” says LSST Project Manager Victor Krabbendam.

    Once the baking was done, the grinding and polishing began. A special machine shaved and sanded away layers of glass—including several tons from the center to form M2—in a process that removed millimeters and then nanometers at a time.

    “The shape of this mirror has to be good to small fractions of the diameter of a human hair across the whole surface,” Krabbendam says.

    Soon the mirror began to take on a dull shine, like an ice-skating rink after a Zamboni polish. Today, it’s crystal clear.

    After enduring a series of tests, M1M3 will go into storage in a hangar at Tucson International Airport. In a couple of years, scientists will apply a reflective surface and load it on a truck to start its journey to its mountaintop home in Chile.

    Courtesy of: LSST

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.

  • richardmitnick 2:51 pm on January 9, 2015 Permalink | Reply
    Tags: , , LSST,   

    From SLAC: “World’s Most Powerful Camera Receives Funding Approval” 

    SLAC Lab

    January 9, 2015
    Press Office Contact:
    Andrew Gordon, SLAC National Accelerator Laboratory:
    agordon@slac.stanford.edu, (650) 926-2282

    Scientist Contacts:
    Steven Kahn, SLAC National Accelerator Laboratory/LSST:

    Large Synoptic Survey Telescope Passes Major Milestone

    LSST Exterior
    LSST Interior

    Plans for the construction of the world’s largest digital camera at the Department of Energy’s SLAC National Accelerator Laboratory have reached a major milestone. The 3,200-megapixel centerpiece of the Large Synoptic Survey Telescope (LSST), which will provide unprecedented details of the universe and help address some of its biggest mysteries, has received key “Critical Decision 2” approval from the DOE.

    “This important decision endorses the camera fabrication budget that we proposed,” said LSST Director Steven Kahn. “Together with the construction funding we received from the National Science Foundation in August, it is now clear that LSST will have the support it needs to be completed on schedule.”

    Science operations are scheduled to begin in 2022 with LSST taking digital images of the entire visible southern sky every few nights from atop a mountain called Cerro Pachón in Chile. It will produce the widest, deepest and fastest views of the night sky ever observed. Over a 10-year time frame, the observatory will detect tens of billions of objects—the first time a telescope will catalog more objects in the universe than there are people on Earth—and will create movies of the sky with details that have never been seen before.

    LSST will generate a vast public archive of data—approximately 6 million gigabytes per year—that will help researchers study the formation of galaxies, track potentially hazardous asteroids, observe exploding stars and better understand dark matter and dark energy, which make up 95 percent of the universe but whose nature remains unknown.

    “The telescope is a key part of the long-term strategy to study dark energy and other scientific topics in the United States and elsewhere,” said David MacFarlane, SLAC’s director of particle physics and astrophysics. “SLAC places high priority on the successful development and construction of the LSST camera, and is very pleased that the project has achieved this major approval milestone.”

    The LSST team can now move forward with the development of the camera and prepare for the “Critical Decision 3” review process next summer, the last requirement before actual fabrication of the camera can begin. Components of the camera, which will be the size of a small car and weigh more than 3 tons, will be built by an international collaboration of labs and universities, including DOE’s Brookhaven National Laboratory, Lawrence Livermore National Laboratory and SLAC, where the camera will be assembled and tested.

    “Many excellent, hard-working people have been developing LSST for a long time and it is gratifying to see the quality of their efforts being recognized by the DOE approval,” said Steve Ritz of the University of California, Santa Cruz, the lead scientist of the camera project. “We are all excited about the amount of great science that LSST will enable.”

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

  • richardmitnick 5:28 pm on August 12, 2014 Permalink | Reply
    Tags: , , , , LSST   

    From LSST E-News: “LSST’s Calypso telescope moved from Kitt Peak to Tucson” 

    LSST E-News

    LSST E-News

    Early in the morning on May 28th, 2014, LSST’s 1.2-meter Calypso telescope took the first step of a long voyage from Kitt Peak National Observatory to Chile’s Cerro Pachón mountain, where it will accompany LSST as an essential calibration instrument. Through the efforts of a skilled team and thorough preparation, the move was successful, and by late-afternoon on the same day, Calypso had been delivered to the NOAO loading bay in Tucson.

    Calypso leaving Kitt Peak. Image credit: LSST / Gary Poczulp

    As part of LSST’s calibration work package, Calypso is slated for transport to Chile in 2017. Until then, it will reside at NOAO, where it is being upgraded with a new control system, new drives, and a recoated mirror.

    Once the only privately-owned telescope among the state-of-the-art suite of astronomical facilities on Kitt Peak, Calypso was generously donated to LSST in 2008 by its proprietor, astrophysicist and entrepreneur Dr. Edgar Smith.

    Smith named Calypso after the sharp-sighted Greek goddess who captured Odysseus for seven years – “about the time it took to build [the telescope],” he recalls in Timothy Ferris’s book Seeing in the Dark.

    Now, more than a decade after its initial installation, LSST engineers were faced with the colossal task of dismantling Calypso and removing it from its site before the onset of the summer monsoon season.

    Perched 35 feet off the ground on a 14,000-pound mount, Calypso’s uninstallation was a dedicated operation, requiring over one month of planning, a $25,000 investment in transportation costs, 6 NOAO staff members for truss and optics removal and 8 individuals involved in lifting the telescope from its mount, and a 175-ton crane to complete the job.

    Even so, “Calypso was built to be relocated,” says LSST Telescope and Site subsystem manager Bill Gressler.

    Gressler’s team crafted a custom-made stand in-house for test and transport of the telescope. All optics were carefully removed and placed in special containers to protect them from shock during transportation. The container carrying the mirror – insured at $2.5 million – was carried on a truck with air-ride suspension.

    But the biggest challenge was navigating a 5-axle crane down the narrow road to the Calypso site, a meticulous ¼-mile journey that took 30 minutes.

    Refurbished Calypso “will be a cool robotic machine with a slick, jazzy instrument,” promises Gressler.

    Once installed on Cerro Pachón, Calypso will be used for atmospheric monitoring, measuring water vapor and overall assisting with post-processing of astronomical data produced by LSST. Adjacent to the main telescope on a mound casually known as “Calibration Hill,” Calypso will withstand the same environmental conditions as its much larger companion, surviving 120 mile-per-hour winds while functioning autonomously to provide precise calibration data.

    In the meantime, Calypso’s vacant site at Kitt Peak is up for sale – great views!

    ScienceSprings relies on technology from

    MAINGEAR computers



  • richardmitnick 4:37 pm on August 12, 2014 Permalink | Reply
    Tags: , , , LSST,   

    From SLAC Lab: “Construction of Large Synoptic Survey Telescope to Begin” 

    SLAC Lab

    August 4, 2014

    LSST Will Capture Unprecedented View of Night Sky

    LSST Telescope

    On August 1, 2014, the National Science Foundation (NSF) announced an award to the Association of Universities for Research in Astronomy (AURA) to manage construction of the Large Synoptic Survey Telescope (LSST); with this announcement, construction of the LSST observatory can begin.

    When the LSST observatory starts surveying the entire visible southern sky from a Chilean mountaintop in October 2022, it will produce a unique view of the universe—the widest and fastest views of the night sky ever observed. LSST’s vast public archive of data will dramatically advance knowledge of the dark energy and dark matter that make up much of the universe, as well as galaxy formation and potentially hazardous asteroids. The LSST is expected to see “engineering first light” by 2020.

    LSST Camera
    SLAC is leading the construction of the 3,200-megapixel LSST camera, which will be the size of a small car and will weigh more than 3 tons. The digital camera will be the largest ever built for astronomy, allowing LSST to create an unprecedented public archive of data – about 6 million gigabytes per year, the equivalent of shooting roughly 800,000 images with a regular eight-megapixel digital camera every night. (SLAC National Accelerator Laboratory)

    LSST is an NSF and DOE partnership. NSF is responsible for the telescope and site, education and outreach, and the data management system, and DOE is providing the camera and related instrumentation. The National Research Council’s Astronomy and Astrophysics decadal survey ranked the LSST as the top new ground-based priority for the field in its 2010 report “New Worlds, New Horizons.”

    See the full article here.

    SLAC Campus
    SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the DOE’s Office of Science.

    ScienceSprings relies on technology from

    MAINGEAR computers



Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc

Get every new post delivered to your Inbox.

Join 426 other followers

%d bloggers like this: