Tagged: LLNL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:59 pm on October 4, 2018 Permalink | Reply
    Tags: CPA-chirped-pulse amplification, Donna Strickland, , LLNL,   

    From Lawrence Livermore National Laboratory: Women in STEM “Nobelist Strickland’s invention helped spark LLNL’s short-pulse laser breakthroughs” Donna Strickland 

    From Lawrence Livermore National Laboratory

    Oct. 4, 2018

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    Charlie Osolin

    1

    The Nobel Prize-winning research by Donna Strickland, a former staff scientist in Lawrence Livermore National Laboratory’s (LLNL’s) Laser Programs Directorate, was instrumental in the Laboratory’s development of a series of groundbreaking short-pulse, high-energy laser systems over the past two decades.

    Self-described “laser jock” Strickland, who worked at LLNL in 1992, is only the third woman in history to win a Nobel Prize in physics, joining Marie Curie (1903) and Maria Goeppert-Mayer (1963). Strickland and her mentor, French physicist Gérard Mourou, were named Nobel Prize laureates on Oct. 2 for their work in developing chirped-pulse amplification (CPA) to amplify ultrashort laser pulses up to the petawatt (quadrillion-watt) level.

    CPA is the underlying and enabling technology for all ultra-high-peak-power laser systems, such as LLNL’s Advanced Radiographic Capability (ARC) and High-repetition-rate Advanced Petawatt Laser (HAPLS), as well as in laser eye surgery and ultrafast cameras used for imaging molecular processes. As noted by the Nobel Committee for Physics, the Laboratory’s NOVA Petawatt, the world’s first petawatt laser, was a famous early example of a CPA laser.

    Strickland and Mourou share the 2018 prize with Arthur Ashkin of the United States, inventor of “optical tweezers,” a process that uses light from a highly focused laser beam to manipulate viruses, bacteria and other microscopic objects.

    Strickland, now a professor at the University of Waterloo in Ontario, received her Ph.D. in optical physics from the University of Rochester, home to LLNL’s frequent collaborator, the Laboratory for Laser Energetics (LLE). Her work with Mourou, a former optics professor and scientist at LLE, was the basis for her Ph.D. dissertation.

    After postdoctoral research at the National Research Council in Ottawa, Strickland joined LLNL’s inertial confinement fusion program under Mike Perry, now a vice president at General Atomics in San Diego. She divided her time between work on high harmonic generation in noble gases and helping Todd Ditmire, then a graduate student and now director of the Center for High Energy Density Science at the University of Texas at Austin, build a CPA laser from a new, promising laser material called Cr-doped LiSAF. She contributed to papers on the design and performance of the Cr-doped LiSAF regenerative amplifier, extreme ultraviolet radiation (XUV) in laser-driven plasmas and a compact high-power femtosecond (quadrillionths of a second) laser.

    “I have for 25 years told everyone that Donna taught me to align my first laser, and, in fact, she mentored me greatly during my first year in grad school,” Ditmire said. “I always joked that she had a god-like talent to be able to lay her hands on a laser cavity and get it to lase. I learned an incredible amount from Donna, which launched me on my own career in high-intensity, short-pulse lasers, first at LLNL and then as a professor here at the University of Texas.”

    LLNL physicist John Crane, who worked with Strickland on the XUV paper, said she was already well known in her field because of her graduate work inventing CPA to build terawatt-scale lasers. “Several of Mike Perry’s graduate students and postdocs were female,” Crane said, “and she served as a great mentor, as she was young and already very accomplished, upbeat and fun to be around.”

    One of those female graduate students was Kim Budil, now vice president for national laboratories at the University of California Office of the President. “I was over the moon when I saw that she was being honored for the truly transformative work she did with Gérard,” Budil said. “I met Donna when I was a graduate student working in the short-pulse laser lab at LLNL. She was very smart and already extremely accomplished, and that alone made her a great role model.

    “However, what I remember most was how good a colleague and friend she was. I was struggling in my Ph.D. research and having a hard time believing I could be an independent researcher. She reminded me to stop apologizing for being there — I belonged and was contributing in a real way. She showed me how to be a real scientist, confident in her knowledge and ability to contribute and ready to be a member of the team. She was fun — and funny — and loved the work.”

    In her comments after the prize was announced, Strickland reflected on Goeppert-Mayer’s career and said her award shows how far the scientific field has come since 1963 in terms of gender parity, even though women still make up only a quarter of attendees at major conferences. “It’s true that a woman hasn’t been given the Nobel Prize since then,” she said, “but I think things are better for women than they have been. We should never lose the fact that we are moving forward. We are always marching forward.”

    Strickland, born in 1959 in Guelph, Canada, and Mourou, born in 1944 in Albertville, France, published the revolutionary article that would become the basis of Strickland’s dissertation in 1985.

    2
    The chirped-pulse amplification technique makes it possible for a petawatt laser’s high-power pulses to pass through laser optics without damaging them. Before amplification, low-energy laser pulses are passed through diffraction gratings to stretch their duration by as much as 25,000 times. After amplification, the pulses are recompressed back to near their original duration. Because the pulses pass through laser optics when they are long, they cause no damage. Credit: The Nobel Committee for Physics.

    In a summary of the prizewinning work, the Nobel Committee for Physics said the inspiration for their invention “came from a popular science article that described radar and its long radio waves. However, transferring this idea to the shorter optical light waves was difficult, both in theory and in practice.”

    “The breakthrough was described in the article and was Donna Strickland’s first scientific publication,” the committee said. “She had moved from Canada to the University of Rochester, where she became attracted to laser physics by the green and red beams that lit up the laboratory like a Christmas tree and, not least, by the visions of her supervisor, Gérard Mourou.”

    Using what the committee called “an ingenious approach,” they succeeded in creating ultrashort high-peak-power laser pulses without exceeding the optical damage threshold and damaging the amplifying material. They stretched the laser pulses in time to reduce their peak power, a process called chirping, then amplified them, and finally recompressed them. The technique to reduce large amounts of anomalous dispersion was described by O.E. Martinez, J.P. Gordon, and R.L. Fork in 1984, but not recognized for its potential to stretch and unstretch pulses and reduce their peak power. If a pulse is compressed in time and becomes shorter, then more light is packed together in the same tiny space — the peak power of the pulse increases dramatically.

    The chirped-pulse amplification technique makes it possible for a petawatt laser’s high-power pulses to pass through laser optics without damaging them. Before amplification, low-energy laser pulses are passed through diffraction gratings to stretch their duration by as much as 25,000 times. After amplification, the pulses are recompressed back to near their original duration. Because the pulses pass through laser optics when they are long, they cause no damage.

    3
    The development of the highest intensity laser pulse. The CPA technique being rewarded this year is the foundation for the explosive development of increasingly strong laser pulses. Credit: The Nobel Committee for Physics

    Strickland is continuing her research career in Canada, while Mourou, who has returned to France, initiated and led the early development of the European Extreme Light Infrastructure (ELI) project. The HAPLS advanced petawatt laser system, which was designed, developed and constructed by LLNL’s NIF and Photon Science Directorate, is a key element in the ELI project. The system recently was declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic.

    The CPA technique being rewarded this year is the foundation for the explosive development of increasingly strong laser pulses. “The invention of chirped pulse amplification realized by Donna and Gérard was truly a transformative change,” said Constantin Haefner, LLNL program director for Advanced Photon Technologies. “The ability to amplify lasers to extreme powers enabled discovery of new physics, quickly followed by many industrial applications. The invention of CPA has not only inspired several generations of laser physicists and researchers but also has mobilized a multi-billion-dollar market of applications.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:37 pm on August 14, 2018 Permalink | Reply
    Tags: , , , Black oles and Dark Matter?, , , LLNL, ,   

    From Lawrence Livermore National Laboratory: “Quest for source of black hole dark matter” 

    From Lawrence Livermore National Laboratory

    Aug. 13, 2018
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    LLNL scientists Michael Schneider, Will Dawson, Nathan Golovich and George Chapline look for black holes in the Lab’s telescope remote observing room. Photo by Julie Russell/LLNL.

    Like a game of “hide and seek,” Lawrence Livermore astrophysicists know that there are black holes hiding in the Milky Way, just not where.

    If they find them toward the galactic bulge (a tightly packed group of stars) and the Magellanic Clouds, then black holes as massive as 10,000 times the mass of the sun might make up dark matter. If they are only toward the galactic bulge then they are probably just from a few dead stars.

    Typically to observe the Magellanic Clouds, scientists must travel to observatories in the Southern Hemisphere.

    Large Magellanic Cloud. Adrian Pingstone December 2003


    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2


    Magellanic Bridge ESA Gaia satellite. Image credit V. Belokurov D. Erkal A. Mellinger.

    But recently, the LLNL team got a new tool that’s a little closer to home to help them in the search. As part of the Space Science and Security Program and an LDRD project, LLNL has a new telescope remote observing room.

    The team is using the observing room to conduct a gravitational microlensing survey of the Milky Way and Magellanic Clouds in search of intermediate mass black holes (approximately 10 to 10,000 times the mass of the sun) that may make up the majority of dark matter.

    “The remote observing room enables us to control the National Optical Astronomers Observatory Blanco 4-meter telescope located in Chile at the Cerro Tololo Inter-American Observatory,” said LLNL principal investigator Will Dawson.

    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    The team already has conducted its first observing run with the remote observing room.

    The visible universe is composed of approximately 70 percent dark energy, 25 percent dark matter and 5 percent normal matter. However, dark matter has remained a mystery since it was first postulated in 1933. The MACHO Survey, led by Lawrence Livermore in the 1990s, sought to test whether dark matter was composed of baryonic massive compact halo objects (MACHOs). The survey concluded that baryonic MACHOs smaller than 10 solar masses could not account for more than 40 percent of the total dark matter mass.

    Recently, the discovery of two merging black holes has renewed interest in MACHO dark matter composed of primordial black holes (formed in the early universe, before the first stars) with approximately 10 to 10,000 solar masses. This is an idea first proposed in 1975 by LLNL physicist and project co-investigator George Chapline. The most direct means of exploring this mass range is by searching for the gravitational microlensing signal in existing archival astronomical imaging and carrying out a next-generation microlensing survey with state-of-the-art wide-field optical imagers on telescopes 10 to 25 times more powerful than those used in the original MACHO surveys.

    Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835

    Microlensing is an astronomical effect predicted by Einstein’s general theory of relativity. According to Einstein, when the light emanating from a star passes very close to another massive object (e.g., black hole) on its way to an observer on Earth, the gravity of the intermediary massive object will slightly bend and focus the light rays from the source star, causing the lensed background star to appear brighter than it normally would.

    “We are developing a novel means of microlensing detection that will enable us to detect the parallactic microlensing signature associated with black holes in this mass range,” Dawson said. “We will detect and constrain the fraction of dark matter composed of intermediate mass black holes and measure their mass spectrum in the Milky Way.”

    While the scientists are currently using the Cerro Tololo Inter-American Observatory in the search, eventually they will achieve even more sensitivity in observing black holes when the Large Synoptic Survey Telescope, which LLNL has supported for the last two decades, comes online in 2022.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 3:53 pm on August 9, 2018 Permalink | Reply
    Tags: , , , , Jupiter's zonal flows, LLNL   

    From Lawrence Livermore National Laboratory: “Lab researchers find magnetic fields impact atmospheric circulation of gas giant planets” 

    From Lawrence Livermore National Laboratory

    Aug. 9, 2018
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    This image captures a high-altitude cloud formation surrounded by swirling patterns in the atmosphere of Jupiter’s North North Temperate Belt region. The North North Temperate Belt is one of Jupiter’s many colorful, swirling cloud bands. Scientists have wondered for decades how deep these bands extend. Gravity measurements collected by Juno during its close flybys discovered that these bands of flowing atmosphere actually penetrate deep into the planet, to a depth of about 1,900 miles (3,000 kilometers). Image courtesy of NASA

    Magnetic fields around a planet or a star can overpower the zonal jets that affect atmospheric circulation.

    New research by a Lawrence Livermore National Laboratory (LLNL) scientist and a collaborator from the Australian National University (ANU) provides a theoretical explanation for why self-organized fluid flows called zonal jets or “zonal flows” can be suppressed by the presence of a magnetic field. The research appears today (Aug. 9) in The Astrophysical Journal.

    Zonal flows are observed in the banded zones in the atmosphere of Jupiter. Previous work performed simulations that showed a magnetic field suppressed zonal flows. The new research provides a mechanism explaining that suppression. The study shows that with magnetic fields present, even a weak shear flow causes subtle but coherent correlations in the magnetic fluctuations that oppose zonal flows.

    “Because magnetic fields are prevalent in the universe, this theory could be important for understanding dynamics at the solar tachocline where a strong magnetic field exists, and also potentially applicable to zonal flows deep in the interior of Jupiter, Saturn and other gas giants,” said Jeff Parker, LLNL physicist and coauthor of the paper.

    Zonal flows are ubiquitous in rotating systems. Prominent examples include the Earth’s polar and subtropical jet streams in the atmosphere, the Antarctic Circumpolar Current in the ocean, the winds in Jupiter’s atmosphere and flows in the atmospheres of Saturn, Uranus and Neptune.

    The flows act as a barrier and don’t allow for fluid from the two sides to exchange properties (such as heat or carbon). Thus, zonal flows have a large impact on the Earth’s weather because they separate cold and warm air.

    But just how deep do these zonal jets dive in Jupiter? “The zonal flows have an indirect effect on the gravitational field of Jupiter. With detailed measurements of the gravitational field, we can infer how deep the zonal flows are,” said Navid Constantinou, a postdoc at ANU and coauthor of the paper. The recently launched NASA spacecraft Juno is in orbit around Jupiter collecting precisely these sorts of measurements.

    NASA/Juno

    Preliminary evidence shows that Jovian winds are as deep as 3,000 kilometers (km). This is still “shallow” when compared to the radius of Jupiter (approximately 70,000 km).

    “It has been a long-standing question about how deep zonal flows penetrate into the interior of Jupiter and other gas giants,” Parker said. “Some have argued they exist only on the surface, and others thought they should persist deep into the planet. Only in the last year are we are starting to get answers to these questions, thanks to Juno. It’s an exciting time. Since magnetic fields prevail within Jupiter’s interior, our research could shed light on why the jets don’t go any deeper.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 7:58 pm on July 16, 2018 Permalink | Reply
    Tags: , , LLNL, , , , Rayleigh-Taylor (RT) instabilities, Richtmyer-Meshkov instability   

    From Lawrence Livermore National Laboratory: “Researchers work to advance understanding of hydrodynamic instabilities in NIF, astrophysics” 

    From Lawrence Livermore National Laboratory

    July 16, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    A simulation of Rayleigh-Taylor (RT) hydrodynamic instability created on Lawrence Livermore National Laboratory’s BlueGene/L supercomputer using the MIRANDA code. RT instability occurs when a light fluid accelerates a heavier fluid and is a fundamental fluid-mixing mechanism important to inertial confinement fusion applications, star formation dynamics, supernova explosions, planetary formation dynamics and asteroid impact dynamics.

    LLNL Vulcan IBM Blue GeneQ system supercomputer

    In a Proceedings of the National Academy of Sciences (PNAS) “Special Feature” paper published online June 26, Lawrence Livermore National Laboratory (LLNL) and University of Michigan researchers reported on recent experiments and techniques designed to improve understanding and control of hydrodynamic (fluid) instabilities in high energy density (HED) settings such as those that occur in inertial confinement fusion implosions on the National Ignition Facility (NIF).

    This paper described four areas of HED research that focus on Rayleigh-Taylor (RT) instabilities, which arise when two fluids or plasmas of different densities are accelerated together, with the lighter (lower density) fluid pushing and accelerating the heavier (higher density) fluid.

    These instabilities can degrade NIF implosion performance because they amplify target defects as well as perturbations caused by engineering features like the “tents” used to suspend the target capsule in the hohlraum and the fill tube that injects fusion fuel into the capsule.

    Conversely, RT and its shock analog, the Richtmyer-Meshkov instability, are seen when stellar explosions (supernovae) eject their core material, such as titanium, iron and nickel, into interstellar space. The material penetrates through and outruns the outer envelopes of the lighter elements of silicon, oxygen, carbon, helium and hydrogen. In addition, a unique regime of HED solid-state plastic flow and hydrodynamic instabilities can occur in the dynamics of planetary formation and asteroid and meteor impacts.

    The PNAS paper presents summaries of studies of a wide range of HED RT instabilities that are relevant to astrophysics, planetary science, hypervelocity impact dynamics and inertial confinement fusion (ICF).

    The researchers said the studies, while aimed primarily at improving understanding of stabilization mechanisms in RT growth on NIF implosions, also offer “unique opportunities to study phenomena that typically can be found only in high-energy astrophysics, astronomy and planetary science,” such as the interiors of planets and stars, the dynamics of planetary formation, supernovae, cosmic gamma-ray bursts and galactic mergers.

    NIF HED experiments can generate pressures up to 100 terapascals (one billion atmospheres). These extreme conditions allow research samples to be driven, or compressed, to the kinds of pressures found in planetary interiors and the interiors of brown dwarfs (sometimes called “failed stars”). They also lend themselves to studies of RT evolution ranging from hot, dense plasmas and burning hot spots at the center of ICF implosions to relatively cool, high-pressure materials undergoing solid-state plastic flow at high strain and strain rate.

    “We found that the material strength in these high-pressure, solid-state, high-strain-rate plastic flow experiments is large and can significantly reduce the RT growth rates compared with classical values,” the researchers said. “These results are relevant to planetary formation dynamics at high pressures.”

    “An intriguing consideration,” they added, “is the possibility of using these findings to enhance resistance to hydrodynamic instabilities in advanced designs of ICF capsule implosions.”

    Joining lead author Bruce Remington on the paper were LLNL colleagues Hye-Sook Park, Dan Casey, Rob Cavallo, Dan Clark, Channing Huntington, Aaron Miles, Sabrina Nagel, Kumar Raman and Vladimir Smalyuk, along with Carolyn Kuranz of the University of Michigan.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 2:41 pm on July 14, 2018 Permalink | Reply
    Tags: , LLNL, NDBD-neutrinoless double-beta decay, , next Enriched Xenon Observatory (nEXO) experiment,   

    From Lawrence Livermore National Laboratory: “Understanding the universe through neutrinos” 

    From Lawrence Livermore National Laboratory

    July 13, 2018

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    The xenon vessel and vacuum vessel for the next Enriched Xenon Observatory (nEXO) experiment was built at Lawrence Livermore National Laboratory. The experiment will search for an extremely rare nuclear process called neutrinoless double-beta decay (NDBD).

    Determining features of the elusive particle known as a neutrino – through the observation of an extremely rare nuclear process called neutrinoless double-beta decay (NDBD) — could provide a glimpse into the nature of the universe during the earliest moments of the Big Bang.

    As part of an international collaboration, Lawrence Livermore National Laboratory (LLNL) scientists have proposed the next Enriched Xenon Observatory (nEXO) experiment, a candidate for the next generation of NDBD experiments. If discovered, NDBD would demonstrate the existence of a new elementary particle, the Majorana fermion. This discovery could reshape the standard model of particle physics and lead to a better understanding of neutrinos and their impact on the evolution of the universe. The research behind the experiment appears in the journal Physical Review C.

    2
    The Enriched Xenon Observatory 200 (EXO-200) experiment provides the basis for current work on a more sensitive detector for observing neutrinoless double beta decay (NDBD). Shown here are the EXO-200 readout wires and avalanche photodiodes used to measure induced and collected charge and scintillation light from particle decays in the detector’s main vessel. Image courtesy of SLAC National Accelerator Laboratory.

    NDBD is a theoretical process with a half-life more than 10^16 times the age of the universe and could help determine whether neutrinos are their own antiparticles and explain why, from equal parts of matter and antimatter, the universe evolved into its current matter-dominated state.

    The design of the nEXO detector — a 5-ton liquid xenon (Xe) time projection chamber (TPC) using 90 percent enriched 136Xe — takes advantage the best technology for the next phase of NDBD search.

    “A competitive 2-order-of-magnitude increase in NDBD half-life sensitivity over current experiments is possible” using the nEXO detector, said LLNL scientist Samuele Sangiorgio, lead author of the paper. “We now have great confidence in nEXO’s design and approach, and we will be able to measure this rare event.”

    Scientists expect to see only about a dozen decays in a decade-long experiment. Because of this very low signal rate, false signals from background radiation and cosmic rays must be suppressed as much as is feasible. “Understanding the backgrounds is key to a make a convincing case for a NDBD experiment, and indeed is one of the main aspects of the paper,” Sangiorgio said.

    Other Livermore authors include Tyana Stiegler, Jason Brodsky. Mike Heffner and Allen House.

    Other collaborators include: Brookhaven National Laboratory, Carleton University, Colorado State University, Drexel University, Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of High Energy Physics Chinese Academy of Sciences, Institute for Theoretical and Experimental Physics Indiana University, Laurentian University, McGill University, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Rensselaer, SLAC National Accelerator Laboratory, Stony Brook University, TRIUMF, Universität Bern, Université de Sherbrooke, University of Alabama, University of Illinois, University of Massachusetts Amherst, University of South Dakota and Yale University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 2:39 pm on June 27, 2018 Permalink | Reply
    Tags: , LLNL, LLNL-developed petawatt laser system fully integrated operational at ELI Beamlines   

    From Lawrence Livermore National Laboratory: “LLNL-developed petawatt laser system fully integrated, operational at ELI Beamlines” 

    From Lawrence Livermore National Laboratory

    June 27, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    The L3-HAPLS advanced petawatt laser system has been declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic, and is now ready for integration with the experimental systems and first experiments.

    After evaluation by an international peer review group, the L3-HAPLS advanced petawatt laser system has been declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic. The group assessed the laser performance, determined that all performance parameters have been successfully met — capable of reaching the 1 petawatt, 10 hertz (Hz) design specification — and that the system is ready for integration with the experimental systems and first experiments.

    L3-HAPLS was designed, developed and constructed by Lawrence Livermore National Laboratory’s (LLNL) NIF and Photon Science (NIF&PS) Directorate and delivered to ELI Beamlines in June 2017. Since September 2017, an integrated team of scientific and technical staff from LLNL and ELI Beamlines has worked intensively on the installation of the laser hardware.

    “Developing an unprecedented laser system is an incredible undertaking — as is moving that technology 6,000 miles across the Atlantic,” said Constantin Haefner, LLNL’s program director for Advanced Photon Technologies in NIF&PS. “This level of success was enabled by a smart, talented and capable team of international professionals who worked tirelessly to develop and deliver the next generation of petawatt lasers.”

    Leading the L3-HAPLS project allowed LLNL to draw on its decades of pioneering laser research and development and apply that expertise to advance new laser concepts important for its mission as a national laboratory. The system consists of the main petawatt beamline capable of delivering 45 joules (J) of energy per pulse and is energized by diode-pumped lasers, capable of delivering up to 200J of energy per pulse.

    The system has now been ramped to its first operation point of 16 joules and a 27 femtosecond pulse duration at a 3.3Hz repetition rate (3.3 times per second), equivalent to a peak power of approximately 0.5 petawatt after the pulse compressor. This operational point was established to learn and conduct first experiments at a moderate repetition rate.

    “In order to fulfill ELI’s mission to enable revolutionary scientific experiments, ELI Beamlines introduced exacting requirements that meant that Livermore was the only organization capable of delivering such a complicated and state-of-the-art system,” said Roman Hvezda, project manager of ELI Beamlines. “After meeting every milestone along the way, this collaboration has successfully delivered L3-HAPLS, which will not only serve as the flagship of ELI Beamlines but also gives us the competitive edge over other facilities in the future. The full integration of this laser system marks the beginning of commissioning the experimental systems to conduct science that can’t be done anywhere else in the world.”

    The collaboration extended beyond just LLNL and ELI Beamlines. By partnering with industry — and drawing on LLNL’s expertise laser research and development — the team delivered key advancements, including the world’s highest peak power diode arrays; a pump laser generating up to 200 joules at a 10 Hz repetition rate; a gas-cooled short-pulse titanium-doped sapphire amplifier; a dual chirped-pulse-amplification high-contrast short-pulse front end; and an energetic gigashot laser pump source for pumping the short-pulse preamplifiers and others.

    “These innovations not only distinguish L3-HAPLS from other petawatt lasers — they represent a quantum leap in technology,” said Haefner. “Many of these advancements have already made it to market, where they have the potential to enable advancement in a variety of areas beyond science.”

    L3-HAPLS will have a wide range of uses, supporting both basic and applied research. By focusing petawatt peak power pulses at high intensity on a target, the system will generate secondary sources such as electromagnetic radiation or accelerate charged particles, enabling unparalleled access to a variety of research areas, including time-resolved proton and X-ray radiography, laboratory astrophysics and other basic science and medical applications for cancer treatments, in addition to industrial applications such as nondestructive evaluation of materials and laser fusion.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 11:09 am on May 10, 2018 Permalink | Reply
    Tags: , , , LLNL, NIF From the ground up., ,   

    From The Atlantic Magazine: “The National Ignition Facility” 2014 Origins 

    Atlantic Magazine

    From The Atlantic Magazine

    Jan 9, 2014
    Alan Taylor

    At Lawrence Livermore National Laboratory, a federally funded research and development center about 50 miles east of San Francisco, scientists at the National Ignition Facility (NIF) are trying to achieve self-sustaining nuclear fusion — in other words, to create a miniature star on Earth.

    The core of the NIF is a house-sized spherical chamber aiming 192 massive lasers at a tiny target. One recent laser experiment focused nearly 2 megajoules (the energy consumed by 20,000 100-watt light bulbs in one second) of light energy onto a millimeter-sized sphere of deuterium and tritium in a 16-nanosecond pulse. The resulting energetic output, while far short of being a self-sustaining reaction, set a record for energy return, and has scientists hopeful as they fine-tune the targeting, material, and performance of the instruments. The facility itself bristles with machinery and instruments, impressing the producers of the movie Star Trek: Into Darkness, who used it as a film set for the warp core of the starship Enterprise.

    1
    1. Inside the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, a service system lift allows technicians to access the target chamber interior for inspection and maintenance. The goal of the NIF is to initiate controlled nuclear fusion, in the hopes of creating a new source of energy for our growing world.
    Philip Saltonstall/Lawrence Livermore National Laboratory

    2
    2. During construction in the late 1990s – NIF’s “Grand Central Station” is its seven-story-tall Target Bay which houses the target chamber as well as the final optics assemblies, cryogenics systems, and diagnostic equipment. The chamber, a sphere ten meters (33 feet) in diameter, is covered with boron-injected concrete to absorb neutrons during NIF experiments. Lawrence Livermore National Laboratory

    3
    3. U.S. Secretary of Energy Bill Richardson, lower right, christens the 150-ton, 33-foot diameter aluminum laser target chamber at the National Ignition Facility in Lawrence Livermore National Laboratory in Livermore, California, on June 11, 1999. AP Photo/Ben Margot

    4
    4. The single largest piece of equipment at the NIF is its 130-ton target chamber. The design features 6 symmetric middle plates and 12 asymmetric outer plates, which were poured at the Ravenswood Aluminum Mill in Ravenswood, West Virginia. The plates were shipped to Creusot-Loire Industries in France, where they were heated and then shaped in a giant press. The formed plates were shipped from France to Precision Components Corp. in York, Pennsylvania, where they were trimmed and weld joints prepared. Assembly and welding activities at Lawrence Livermore National Laboratory (seen here) were performed in a temporary cylindrical steel enclosure looking much like an oil or water tank. Lawrence Livermore National Laboratory

    5
    5. In June 1999, after careful preparation, a rotating crane hoisted the target chamber and gently moved it to the Target Bay. Lawrence Livermore National Laboratory

    6
    6. After the target chamber was lowered into place, the seven-story walls and roof of the Target Bay were completed. Lawrence Livermore National Laboratory

    7
    7. The target chamber under construction. Holes in the target chamber provide access for the laser beams and viewing ports for NIF diagnostic equipment.
    Lawrence Livermore National Laboratory

    8
    8. Power Conditioning System – Peak power for the NIF electrical system exceeds one trillion watts, making it the highest-energy and highest-power pulsed electrical system of its kind. Lawrence Livermore National Laboratory

    9
    9. The fabrication of melted and rough-cut blanks of laser glass amplifier slabs needed for NIF construction (3,072 pieces) was completed in 2005. The amplifier slabs are neodymium-doped phosphate glass manufactured by Hoya Corporation, USA and SCHOTT North America, Inc. Lawrence Livermore National Laboratory

    10
    10. The target assembly for NIF’s first integrated ignition experiment is mounted in the cryogenic target positioning system, or cryoTARPOS. The two triangle-shaped arms form a shroud around the cold target to protect it until they open five seconds before a shot. Lawrence Livermore National Laboratory

    11
    11. A new “tentless” National Ignition Facility target showing the two-millimeter-diameter target capsule in the center of the hohlraum (a specially designed barrel-shaped housing for the target sphere). The tiny capsule is supported by the fill tube used to fill the capsule with fuel and a secondary stabilizing support tube at right. Both tubes are 30 microns in diameter. In previous targets, the capsule was supported by ultrathin plastic membranes known as tents; experiments indicated that the tents might be seeding hydrodynamic instabilities sufficient to interfere with the NIF implosions. Lawrence Livermore National Laboratory

    12
    12. A NIF target contains a polished capsule about two millimeters in diameter, filled with cryogenic (super-cooled) hydrogen fuel. Lawrence Livermore National Laboratory

    13
    13. NIF’s final optics inspection system, when extended into the target chamber from a diagnostic instrument manipulator, can produce images of all 192 laser final optics assemblies.
    Jacqueline McBride/Lawrence Livermore National Laboratory

    14
    14. The National Ignition Facility at Lawrence Livermore National Laboratory requires optics produced from large single crystals of potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP). Each crystal is sliced into 40-centimeter-square crystal plates. Traditionally DKDP has been produced by methods requiring approximately two years to grow a single crystal. With the development of rapid growth methods for KDP, the time required to grow a crystal has been reduced to just two months. NIF requires 192 optics produced from traditionally grown DKDP and 480 optics rapidly grown from KDP. Approximately 75 production crystals were grown totaling a weight of nearly 100 tons. Lawrence Livermore National Laboratory

    15
    15. This view from the bottom of the chamber shows the target positioner being inserted. Pulses from NIF’s high-powered lasers race toward the Target Bay at the speed of light. They arrive at the center of the target chamber within a few trillionths of a second of each other, aligned to the accuracy of the diameter of a human hair. Philip Saltonstall/Lawrence Livermore National Laboratory

    16
    16. Seen from above, each of NIF’s two identical laser bays has two clusters of 48 beamlines, one on either side of the utility spine running down the middle of the bay, eventually reaching the target chamber. Jacqueline McBride/Lawrence Livermore National Laboratory

    17
    17. Temperatures of 100 million degrees and pressures extreme enough to compress the target to densities up to 100 times the density of lead are created in the target chamber. Surrounding the target is diagnostic equipment capable of examining in minute detail the arrival of the laser beams and the reaction of the target to this sudden deposition of energy. Jacqueline McBride/Lawrence Livermore National Laboratory

    18
    18. The interior of the NIF target chamber. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right.
    Lawrence Livermore National Laboratory

    19
    19. Lawrence Livermore National Laboratory technicians John Hollis (right) and Jim McElroy install a SIDE camera in the target bay of the National Ignition Facility (NIF). The camera was the last of NIF’s 6,206 various opto-mechanical and controls system modules to be installed. Jacqueline McBride/Lawrence Livermore National Laboratory

    20
    20. Director Edward Moses briefed California Governor Arnold Schwarzenegger at the NIF target chamber, on November 10, 2008. Jacqueline McBride/Lawrence Livermore National Laboratory

    21
    21. NIF’s millimeter-sized targets must be designed and fabricated to meet precise specifications for density, concentricity and surface smoothness for NIF experiments. LLNL scientists and engineers have developed a precision robotic assembly machine to manufacture the small and complex fusion ignition targets. Lawrence Livermore National Laboratory

    22
    22. California Governor Arnold Schwarzenegger examines a model of a target while touring the National Ignition Facility in Livermore, California, on November 10, 2008. AP Photo/Lea Suzuki, Pool

    23
    23. A tall view of the NIF target chamber. Jacqueline McBride/Lawrence Livermore National Laboratory

    24
    24. A new viewing window recently installed on the NIF Target Chamber allows members of the NIF team and visitors to see inside the chamber while it is vacuum-sealed for experiments. NIF Team members Bruno Van Wonterghem (left), Jim Nally (pointing) and Rod Saunders watch through the viewing window as the Final Optics Damage Inspection System is deployed.
    Lawrence Livermore National Laboratory

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:23 am on May 10, 2018 Permalink | Reply
    Tags: , , , , Experiments shed new light on supernovae, LLNL,   

    From Lawrence Livermore National Laboratory: “Experiments shed new light on supernovae” 

    From Lawrence Livermore National Laboratory

    May 9, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    False-color Chandra X-ray Observatory image of supernova remnant E0102.2-72, the spectacular remains of a core-collapse supernova located about 190,000 light-years away in the Small Megallanic Cloud in the constellation Tucana. The expanding multimillion-degree remnant is about 30 light-years across. What appear to be Rayleigh-Taylor “spikes” can be seen in the outer edge of the expanding supernova remnant. Credit: (X-ray) NASA/CXC/MIT/D. Dewey et al. and NASA/CXC/SAO/J. DePasquale; (optical) NASA/STScI

    NASA/Chandra X-ray Telescope

    NASA/ESA Hubble Telescope

    Small Magellanic Cloud. 10 November 2005. ESA/Hubble and Digitized Sky Survey 2

    Experiments on Lawrence Livermore National Laboratory’s National Ignition Facility (NIF) are providing scientists with new insights into the turbulent after-effects of a supernova explosion. The studies also could inform efforts to achieve self-sustaining nuclear fusion on NIF and other high-energy laser systems.

    When stars of a certain mass collapse and then violently explode, material called ejecta expands rapidly and is then decelerated by the surrounding circumstellar medium. This results in Rayleigh-Taylor (RT) hydrodynamic instabilities — the mixing of denser with less-dense material.

    The same instabilities can affect the performance of inertial confinement fusion (ICF) and high-energy density (HED) science experiments such as those conducted on NIF, the world’s highest-energy laser system. The instabilities can cause too much target capsule material to mix with the fuel, quenching the fusion reaction.

    The supernova studies, conducted by an international team of researchers led by the University of Michigan (UM) and LLNL physicists Hye-Sook Park and Channing Huntington, found that high energy fluxes and the resulting heat could reduce RT growth in supernova remnants (SNRs) — something previous astrophysics models had not considered. The results were reported in a Nature Communications paper published online on April 19.

    “Rayleigh-Taylor instabilities have been studied for more than 100 years,” said Carolyn Kuranz, director of UM’s Center for Laser Experimental Astrophysical Research and an associate research scientist of climate and space sciences and engineering. “These instabilities are important in supernova dynamics, but the effects of these high-energy fluxes, these mechanisms that cause heating, have never been studied in this context.” The researchers said realistic models of SNRs “must account for the effects of thermal conduction to accurately predict their evolution at epochs immediately following the shock breakout.”

    “These heating mechanisms reduce mixing and can have a dramatic effect on the evolution of a supernova,” Kuranz said. “In our experiment, we found that mixing was reduced by 30 percent and that reduction could continue to increase over time.”

    That finding is potentially important for NIF because “the Rayleigh-Taylor instability is a very basic ingredient in understanding NIF’s performance,” Park said. “The effect of large energy flux and the basic science of the RT theory and application are quite relevant to ICF and HED science.”

    Involving NIF users

    The supernova studies originated shortly after NIF became operational as a way to begin involving academic institutions in NIF experiments — an effort that has grown into the current Discovery Science program in which external institutions compete for time on NIF to conduct experimental campaigns (see NIF Users Bring Ideas and Energy to Discovery Science).

    “We designed that experiment way back in 2009,” Park said. “This is one of the original Discovery Science programs — the first one, actually. The University of Michigan was doing supernova RT (SNRT) experiments on OMEGA (the OMEGA Laser at the University of Rochester), so we decided we could think of a similar experiment, but with a new physics goal, on NIF.”

    U Rochester Omega Laser


    U Rochester OMEGA EP Laser System


    National Ignition Facility at LLNL

    U- was studying RT instabilities in the context of the cosmic shocks produced by supernova explosions, “and NIF is really good at generating high-energy fluxes, using the hohlraum, that are transported via thermal heat conduction and radiation transport — that’s one of the things that we can do easily,” Park said.

    “So the idea was to study the effect of high-energy flux on RT growth that may be important to supernova evolution. Using NIF, we decided to study the difference in RT growth between the low-flux (230-electron-volt, or eV) and high-flux (325-eV) radiation drive cases.”

    There were setbacks in the early years, however; NIF diagnostics at the time weren’t up to the task of providing the data required by the researchers. “A 325-eV hohlraum is really hot (about 3.8 million degrees Centigrade), generating a huge amount of background ‘noise,’” Park said. “A typical ICF deuterium-tritium (fusion) shot uses about 290 eV (3.4 million degrees C). Our 325-eV hohlraum is 400,000 degrees hotter. So our signal from our initial experiment got swamped by the background on the time-integrating X-ray film.”

    The experiments regained momentum when Park became aware of a new experimental platform developed by Los Alamos National Laboratory (LANL) (see Shock/Shear’ Experiments Shed Light on Turbulent Mix). “We designed a target to fit in the halfraum (the half-hohlraum used in the shock/shear experiments),” Park said, “and we did a first set of experiments with a low-flux drive.

    3
    (a) Schematic of the NIF SNRT target; laser beams incident on the gold hohlraum create the X-ray drive while additional beams impact the large-area backlighter to create the diagnostic X-ray source. A plastic shock tube is attached to the hohlraum. The soft X-rays from the hohlraum create a shock wave in the plastic layer inside the shock tube (b), which decays into a blast wave before crossing the unstable interface and entering the foam. The diagnostic X-ray source creates radiographs by being preferentially absorbed by a tracer layer in the center of the plastic. (c and d) X-ray radiographs of the experiment; the plasma flows upward, and the dark fingers are due to RT instability growth. The color bar indicates the relative transmission for (c) the high-flux case taken at 13 nanoseconds and (d) the low-flux case at 34 nanoseconds. The high-flux case shows significantly lower RT growth.

    “We got great data with the low-flux hohlraum,” she said, “but we also needed to do a high-flux drive case with which to compare it. The experiment is all about comparing low drive and high drive. This (shock/shear) platform was never done at high drive, and unless you carefully design the target it wouldn’t work. We had to incorporate additional features to generate a high-flux drive that didn’t generate significant background and that didn’t hamper our observations.”

    With a new target designed and deployed, the researchers were able to conduct a successful series of nine shots using both low-flux and high-flux drives that demonstrated the effect of high-flux radiation on the subsequent RT growth. They used the results to explore how the large energy fluxes present in supernovae could affect the structure of SNRs and Rayleigh–Taylor growth.

    “In analyzing the comparison with supernova SN1993J, a Type II supernova,” they said, “we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences.”

    According to Park, future experiments in the campaign will attempt to measure the temperature and density in the shock-formation region. “Then we can be more creative about creating more heat flux in the NIF environment to more closely mimic the astrophysical conditions,” she said. “There are a lot of windows of opportunity.”

    4
    NIF
    Members of the team studying supernova remnants on NIF (from left): NIF Operations Manager Bruno Van Wonterghem, Channing Huntington, Bruce Remington, Carolyn Kuranz, Kirk Flippo and Hye-sook Park.

    Joining Kuranz, Park and Huntington on the paper were Aaron Miles, Bruce Remington, Harry Robey, Kumar Raman, Steve MacLaren, Shon Prisbrey, Russell Wallace and Dan Kalantar from LLNL; along with John Kline, Kirk Flippo, Willow Wan and Forrest Doss from LANL; Eric Harding from Sandia National Laboratories; Christine Krauland and Emilio Giraldez from General Atomics; and researchers from UM and Florida State University; Ben Gurion, University of the Negev in Israel; and MJ Grosskopf, Simon Fraser University, Canada.

    -Charlie Osolin/LLNL

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:24 pm on May 2, 2018 Permalink | Reply
    Tags: ELI Beamlines facility, , LLNL,   

    From Lawrence Livermore National Laboratory: “Lasers, photonics and powerful partnerships” 

    Lawrence Livermore National Laboratory

    April 30, 2018

    Stephen Wampler
    wampler1@llnl.gov
    925-423-3107

    1
    The commercialization of laser peening technology — similar to working a metal’s surface with a ballpeen hammer — has been one of the most successful transfers of Lawrence Livermore technology to industry. The laser peening technology, which was originally developed by Battelle in the 1970s and was first commercialized by LSP technologies in 1975, was upgraded by LLNL researchers working with Metal Improvement Co. Inc.

    The world’s most energetic laser sits in a secure, guarded federal laboratory, but its impact stretches far beyond the one-square-mile site of Lawrence Livermore National Laboratory (LLNL).


    National Ignition Facility at LLNL

    Since the outset, technologies developed or improved at the Laboratory have led to industry-defining partnerships and products that make millions of Americans’ lives better every day. Even if they’ve never heard of them.

    “Nearly all of us at this point have flown on an airplane with turbine blades that were laser peened with technology that Livermore commercialized years ago,” said Craig Siders, senior scientist and commercial technology development leader in NIF & Photon Science’s Advanced Photon Technologies program. Laser peening — using intense laser light to improve the quality of a material — had been invented in the 1970s, but had not achieved significant market penetration until LLNL introduced a new laser architecture that provided critical new functionality to the technology. Laser peening is commonplace now, thanks in part to Laboratory research that was spun off into the private sector.

    “It’s technology that’s absolutely in the hands of industry today, and the Lab is now out of the peening business, because it’s the right thing to do,” Siders added. “LLNL’s innovations in laser technology were a critical component in making peening a success story.”

    In 2003, former LLNL scientists Lloyd Hackel and Brent Dane, together with LLNL CRADA partner Metal Improvement Company (MIC), today part of Curtiss-Wright Corporation, brought the benefits of laser peening to the economy as a whole. The Laboratory’s commercialization process worked: Lawrence Livermore helped develop a cutting-edge technology until it was mature enough to stand on its own. Today, laser peening can exponentially extend the lifespan of an F-22 fighter jet’s airframe. MIC has treated jet engine fan blades on every Airbus A340 passenger plane and hundreds of Boeing 777s and 787s. It’s the third best royalty-producing technology in Lab history.

    And now, LLNL is offering the opportunity to license and commercialize an extension of laser-peening technology called high velocity laser accelerated deposition (HVLAD) for controlled laser-driven explosive bonding. HVLAD was selected by R&D Magazine as a winner of an R&D 100 Award in 2012.

    “We’re in the process of satisfying the primary goals of the Lab — pursuing national security, stockpile stewardship and fundamental science,” said David Dawes, a business development executive in LLNL’s Innovation and Partnerships Office (IPO). “All of these things can help generate spinoffs that are commercially important.”

    Dawes is a primary conduit between LLNL and industry. When scientists believe they have a breakthrough, they often come to Dawes for advice. Whether that conversation leads to a record of invention, a patent or a Collaborative Research and Development Agreement (CRADA), he’s instrumental in helping keep up with the laser and optics industry and matching research with opportunity. Many of NIF’s 40,000 brand new, specialized optical components represent commercialization opportunities, thanks to the new technologies developed to create them. As the Laboratory advances each dimension of laser and optics technology, companies can follow behind and adopt them as they become available.

    “All of these features involve leading-edge technologies that are important to the laser industry as a whole as they scale up their power levels,” Dawes says. “There’s marketable technologies there that we’re currently talking to a number of companies about licensing.” For other examples of current laser and optics technologies available for commercialization, see the IPO website.

    In particular, Dawes brings 35 years of experience in the industry (and some patents of his own) to bear on IPO’s work connecting research with companies. Maintaining long-standing relationships with industry and academic leaders, setting up visits to Livermore and monitoring trade and scientific journals are important tricks of Dawes’ trade. IPO screens every paper slated for journal publication in order to identify possibilities for future commercialization. Details on ongoing CRADAs and licensing are scarce, but the Laboratory’s track record speaks for itself.

    “The Lab has had a significant impact, historically, on the market,” said Siders. “There’s a lot of goodwill out there, built up with past success stories like peening.”

    Pushing the frontiers in lasers

    Anticipating the next generation of lasers is especially fertile ground for partnerships with LLNL’s NIF & Photon Science researchers. Scientists expect these lasers to be so powerful, current optics technologies won’t be able to withstand them.

    “When I was a professor, I called this the first law of directed energy,” said Siders. “Thou Shalt Destroy the Target Before You Destroy the Laser.”

    A current CRADA with Electro-Optics Technology (EOT) aims to address one of these. Known for their diode-like Faraday isolators — permitting light to pass in one direction only while preventing harmful backward propagation — EOT, among other industry leaders, got a call from Laboratory researchers with experience in high-power laser performance and component cooling looking for pushing the limits of isolator technologies. EOT was looking to advance applications of new materials, which fit perfectly into the needs for high-power isolators. Together, EOT and LLNL are close to producing a marketable product that will benefit the laser industry as a whole and prepare the Laboratory for advanced high-power laser systems.

    One such system is the new HAPLS pulsed-laser being installed in the European Union’s Extreme Light Infrastructure (ELI) Beamlines facility in the Czech Republic.

    The L3-HAPLS laser system, installed at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic.

    HAPLS (the High-Repetition-Rate Advanced Petawatt Laser System designed, developed and delivered by LLNL) integrates a number of new, efficient, high-power laser and optical technologies that Siders believes will eventually lead to the lasers necessary for inertial fusion energy. It’s a powerful tool for its customer, ELI Beamlines, but it’s also a window for scientists into the future of high-power pulsed lasers and a possible fusion power plant.

    ELI Beamlines facility, Research Center in Dolní Břežany, Czech Republic

    2
    LLNL researchers partnered with Lasertel Inc. to develop the world’s highest peak power laser diode arrays, representing total peak power of 3.2 megawatts, to power the High-Repetition-Rate Advanced Petawatt Laser System. To drive the diode arrays, LLNL developed and patented a new type of pulsed-power system, which supplies the arrays with electrical power by drawing energy from the grid and converting it to extremely high-current, precisely-shaped electrical pulses. Photo by Damien Jemison/LLNL.

    “We’re actually looking to provide benefits back from investments that this nation and the Department of Energy have made over four or five decades of research into inertial confinement fusion and inertial fusion energy,” said Siders. While luck is always a component, he added that strategy and ongoing communication are key to maintaining fruitful partnerships.

    “By working with industry in that way, we can get products on the market that everyone can benefit from,” said Siders. “That helps move the nation’s laser technology capabilities forward. That’s a good news story.”

    In addition to the significant benefits Lawrence Livermore’s laser and optics research can provide to industry, commercialization can also have a tremendous impact on the scientists themselves.

    “I often tell folks here that there’s a future where they could walk into almost any lab in the world, point to something and say ‘hey, that’s my work,’” said Siders. “That’s immensely rewarding.”

    -Ben Kennedy

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 4:47 pm on April 17, 2018 Permalink | Reply
    Tags: , LLNL, , Ramp compression, Superearths   

    From Lawrence Livermore National Laboratory: “Ramp compression of iron provides insight into core conditions of large rocky exoplanets” 

    Lawrence Livermore National Laboratory

    April 16, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    High-power lasers at the National Ignition Facility are focused onto a multi-stepped iron sample at the center of the 10-meter-diameter target chamber. These experiments measure the equation of state of iron under core conditions of large rocky exoplanets.

    In a paper published today by Nature Astronomy , a team of researchers from Lawrence Livermore National Laboratory (LLNL), Princeton University, Johns Hopkins University and the University of Rochester have provided the first experimentally based mass-radius relationship for a hypothetical pure iron planet at super-Earth core conditions.

    This discovery can be used to evaluate plausible compositional space for large, rocky exoplanets, forming the basis of future planetary interior models, which in turn can be used to more accurately interpret observation data from the Kepler space mission and aid in identifying planets suitable for habitability.

    “The discovery of large numbers of planets outside our solar system has been one of the most exciting scientific discoveries of this generation,” said Ray Smith, a physicist at LLNL and lead author of the research. “These discoveries raise fundamental questions. What are the different types of extrasolar planets and how do they form and evolve? Which of these objects can potentially sustain surface conditions suitable for life? To address such questions, it is necessary to understand the composition and interior structure of these objects.”

    Of the more than 4,000 confirmed and candidate extrasolar planets, those that are one to four times the radius of the Earth are now known to be the most abundant. This size range, which spans between Earth and Neptune, is not represented in our own solar system, indicating that planets form over a wider range of physical conditions than previously thought.

    “Determining the interior structure and composition of these super-Earth planets is challenging but is crucial to understanding the diversity and evolution of planetary systems within our galaxy,” Smith said.

    As core pressures for even a 5×-Earth-mass planet can reach as high as 2 million atmospheres, a fundamental requirement for constraining exoplanetary composition and interior structure is an accurate determination of the material properties at extreme pressures. Iron (Fe) is a cosmochemically abundant element and, as the dominant constituent of terrestrial planetary cores, is a key material for studying super-Earth interiors. A detailed understanding of the properties of iron at super-Earth conditions is an essential component of the team’s experiments.

    The researchers describe a new generation of high-power laser experiments, which use ramp compression techniques to provide the first absolute equation of state measurements of Fe at the extreme pressure and density conditions found within super-Earth cores. Such shock-free dynamic compression is uniquely suited for compressing matter with minimal heating to TPa pressures (1 TPa = 10 million atmospheres).

    The experiments were conducted at the LLNL’s National Ignition Facility (NIF).

    NIF, the world’s largest and most energetic laser, can deliver up to 2 megajoules of laser energy over 30 nanoseconds and provides the necessary laser power and control to ramp compress materials to TPa pressures. The team’s experiments reached peak pressures of 1.4 TPa, four times higher pressure than previous static results, representing core conditions found with a 3-4x Earth mass planet.

    “Planetary interior models, which rely on a description of constituent materials under extreme pressures, are commonly based on extrapolations of low-pressure data and produce a wide range of predicated material states. Our experimental data provides a firmer basis for establishing the properties of a super-Earth planet with a pure iron planet,” Smith said. “Furthermore, our study demonstrates the capability for determination of equations of state and other key thermodynamic properties of planetary core materials at pressures well beyond those of conventional static techniques. Such information is crucial for advancing our understanding of the structure and dynamics of large rocky exoplanets and their evolution.”

    Future experiments on NIF will extend the study of planetary materials to several TPa while combining nanosecond X-ray diffraction techniques to determine the crystal structure evolution with pressure.

    Co-authors include Dayne Fratanduono, David Braun, Peter Celliers, Suzanne Ali, Amalia Fernandez-Pañella, Richard Kraus, Damian Swift and Jon Eggert from LLNL; Thomas Duffy from Princeton University; June Wicks from Johns Hopkins University; and Gilbert Collins from the University of Rochester.
    Tags: Lasers / NIF / National Ignition Facility

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration

    LLNL/NIF


    DOE Seal
    NNSA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: