Tagged: LLNL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:47 am on March 28, 2020 Permalink | Reply
    Tags: , “Today’s news provides a prime example of how government and industry can work together for the benefit of the entire nation.”, Ensuring the National Nuclear Security Administration — LLNL Sandia National Laboratories and Los Alamos National Laboratory —keeping the nation’s nuclear stockpile safe., , HPE Cray Shasta El Capitan supercomputer at LLNL, HPE/Cray, LLNL   

    From Lawrence Livermore National Laboratory: “LLNL and HPE to partner with AMD on El Capitan, projected as world’s fastest supercomputer” 

    From Lawrence Livermore National Laboratory

    3.5.20

    Jeremy Thomas
    thomas244@llnl.gov
    925-422-5539

    Lawrence Livermore National Laboratory (LLNL), Hewlett Packard Enterprise (HPE) and Advanced Micro Devices Inc. (AMD) today announced the selection of AMD as the node supplier for El Capitan, projected to be the world’s most powerful supercomputer when it is fully deployed in 2023.

    HPE Cray Shasta El Capitan supercomputer at LLNL

    With its advanced computing and graphics processing units (CPUs/GPUs), El Capitan’s peak performance is expected to exceed 2 exaFLOPS, ensuring the National Nuclear Security Administration (NNSA) laboratories — LLNL, Sandia National Laboratories and Los Alamos National Laboratory — can meet their primary mission of keeping the nation’s nuclear stockpile safe, secure and reliable. (An exaFLOP is one quintillion floating point operations per second.)

    Funded by the Advanced Simulation and Computing (ASC) program at the Department of Energy’s (DOE) NNSA, El Capitan will perform complex and increasingly predictive modeling and simulation for NNSA’s vital Life Extension Programs (LEPs), which address weapons aging and emergent threat issues in the absence of underground nuclear testing.

    “This unprecedented computing capability, powered by advanced CPU and GPU technology from AMD, will sustain America’s position on the global stage in high-performance computing and provide an observable example of the commitment of the country to maintaining an unparalleled nuclear deterrent,” said LLNL Director Bill Goldstein. “Today’s news provides a prime example of how government and industry can work together for the benefit of the entire nation.”

    El Capitan will be powered by next-generation AMD EPYC processors, code-named “Genoa” and featuring the “Zen 4” processor core, next-generation AMD Radeon Instinct GPUs based on a new compute-optimized architecture for workloads including HPC and AI, and the AMD Radeon Open Compute platform (ROCm) heterogenous computing software. The nodes will support simulations used by the NNSA labs to address the demands of the LEPs, whose computational requirements are growing due to the ramping up of stockpile modernization efforts and in response to rapidly evolving threats from America’s adversaries.

    Providing enormous computation capability for the energy used, the GPUs will provide the majority of the peak floating-point performance of El Capitan. This enables LLNL scientists to run high-resolution 3D models quicker, as well as increase the fidelity and repeatability of calculations, thus making those simulations truer to life.

    “We have been pursuing a balanced investment effort at NNSA in advancing our codes, our platforms and our facilities in an integrated and focused way,” said Michel McCoy, Weapon Simulation and Computing Program Director at LLNL. “And our teams and industrial partners will deliver this capability as planned to the nation. Naturally, this has required an intimate, sustained partnership with our industry technology partners and between the tri-labs to be successful.”

    Anticipated to be one of the most capable supercomputers in the world, El Capitan will have a significantly greater per-node capability than any current systems, LLNL researchers said. El Capitan’s graphics processors will be amenable to AI and machine learning-assisted data analysis, further propelling LLNL’s sizable investment in AI-driven scientific workloads. These workloads will supplement scientific models that researchers hope will be faster, more accurate and intrinsically capable of quantifying uncertainty in their predictions, and will be increasingly used for stockpile stewardship applications. The use of AMD’s GPUs also is anticipated to dramatically increase El Capitan’s energy efficiency as compared to systems using today’s graphical processors.

    “El Capitan will drive unprecedented advancements in HPC and AI, powered by the next-generation AMD EPYC CPUs and Radeon Instinct GPUs,” said Forrest Norrod, senior vice president and general manager, Datacenter and Embedded Systems Group, AMD. “Building on our strong foundation in high-performance computing and adding transformative coherency capabilities, AMD is enabling the NNSA Tri-Lab community — LLNL, Los Alamos and Sandia national laboratories — to achieve their mission-critical objectives and contribute new AI advancements to the industry. We are extremely proud to continue our exascale work with HPE and NNSA and look forward to the delivery of the most powerful supercomputer in the world, expected in early 2023.”

    El Capitan also will integrate many advanced features that are not yet widely deployed, including HPE’s advanced Cray Slingshot interconnect network, which will enable large calculations across many nodes, an essential requirement for the NNSA laboratories’ simulation workloads. In addition to the capabilities that Cray Slingshot provides, HPE and LLNL are partnering to actively explore new HPE optics technologies that integrate electrical-to-optical interfaces that could deliver higher data transmission at faster speeds with improved power efficiency and reliability. El Capitan also will feature the new Cray Shasta software platform, which will have a new container-based architecture to enable administrators and developers to be more productive, and to orchestrate LLNL’s complex new converged HPC and AI workflows at scale.

    “As an industry and as a nation, we have achieved a major milestone in computing. HPE is honored to support DOE, NNSA and Lawrence Livermore National Laboratory in a critical strategic mission to advance the United States’ position in security and defense,” said Peter Ungaro, senior vice president and general manager, HPC and Mission Critical Systems (MCS), at HPE. “The computing power and capabilities of this system represent a new era of innovation that will unlock solutions to society’s most complex issues and answer questions we never thought were possible.”

    The exascale ecosystem being developed through the sustained efforts of DOE’s Exascale Computing Initiative will further ensure El Capitan has formidable capabilities from day one. Through funding from NNSA’s ASC program, in collaboration with the DOE Office of Science’s Advanced Scientific Computing Research program, ongoing investments in hardware and software technology will assure highly functional hardware and tools to meet DOE’s needs in the next decade. The El Capitan system also will benefit from a partnership with Oak Ridge National Laboratory, which is taking delivery of a similar system from HPE about one year earlier than El Capitan.

    El Capitan would not have been possible without the investments made by DOE’s Exascale PathForward program, which provided funding for American companies including HPE/Cray and AMD to accelerate the technologies necessary to maximize energy efficiency and performance of exascale supercomputers.

    Besides supporting the nuclear stockpile, El Capitan will perform secondary national security missions, including nuclear nonproliferation and counterterrorism. NNSA laboratories are building machine learning and AI into computational techniques and analysis that will benefit NNSA’s primary missions and unclassified projects such as climate modeling and cancer research for DOE.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition


    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:22 pm on October 18, 2019 Permalink | Reply
    Tags: "Unexamined lunar rocks indicate early bombardment", , , , , LLNL   

    From Lawrence Livermore National Laboratory: “Unexamined lunar rocks indicate early bombardment” 

    From Lawrence Livermore National Laboratory

    10.16.19

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    Astronaut and geologist Harrison Schmitt landed on the moon with Eugene Cernan on Dec. 11, 1972, and began collecting rocks. Lawrence Livermore is studying rocks from that Apollo 16 mission. Photo courtesy of NASA.

    A team of Lawrence Livermore National Laboratory (LLNL) scientists has challenged the long-standing theory that the moon experienced a period of intense meteorite bombardment about 3.8 billion years ago, when the first forms of life appeared on Earth.

    This theory is known as the Late Heavy Bombardment and is thought to have resulted from disturbance of the asteroid belt due to the outward migration of the giant planets. The Late Heavy Bombardment hypothesis was predicated on evidence from numerous impacts on the lunar surface around 3.8 billion years ago and suggested that there were essentially no prior impacts.

    However, Lawrence Livermore cosmochemists have examined a rock collected during the Apollo 16 mission in 1971 and found that a very large impact occurred around 4.3 billion years ago, thus challenging the Late Heavy Bombardment hypothesis. The research appears in the Journal of Geophysical Research.

    By looking at a previously unstudied Apollo 16 lunar rock, the cosmochemists discovered that the sample came from deep in the lunar crust, solidifying at a depth greater than 20 kilometers.

    Earth’s moon is believed to have formed when a Mars-sized body slammed into Earth and caused a piece of what was then Earth to separate from the planet and form the moon. The moon originally was a lunar magma ocean before it congealed into what we now know as Earth’s moon. Eventually the magma on the outer layers started to solidify.

    2
    Harrison Schmitt observes a split lunar boulder during the third Apollo 17 extravehicular activity at the Taurus-Littrow landing site. Photo courtesy of NASA.

    The Livermore team applied numerous dating techniques to the samples that are based on the natural decay of long-lived isotopes such as potassium-40 to argon, rubidium-87 to strontium and samarium-147 to neodymium. Each of these geologic clocks record the age when a sample was at a specific temperature between 300 degrees Celsius to 850 degrees.

    “The interesting observation is that the same 4.3-billion-year age is recorded by all isotopic systems,” said LLNL cosmochemist Naomi Marks, lead author of the paper. “This implies that large basin-forming impact events occurred on the moon 4.3 billion years ago, and that these types of events did not occur only at 3.8 billion years ago during the Late Heavy Bombardment.”

    Using a scaling algorithm, the group estimated that the sample was brought to the surface 4.3 billion years ago by an impact that produced a crater on the surface at least 700 kilometers across.

    LLNL partnered with a University of New Mexico team to complete this work. Other LLNL authors include Lars Borg and Bill Cassata. The work was funded by both NASA cosmochemistry grants and LLNL’s Laboratory Directed Research and Development program.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 4:52 pm on September 14, 2019 Permalink | Reply
    Tags: , , , , LLNL, ,   

    From Lawrence Livermore National Laboratory: “World’s largest optical lens shipped to SLAC” 

    From Lawrence Livermore National Laboratory

    Sept. 12, 2019

    Stephen Wampler
    wampler1@llnl.gov
    925-423-3107

    1
    LLNL engineer Vincent Riot (left), who has worked on the Large Synoptic Survey Telescope (LSST) for more than a decade and has been the full camera project manager since 2017, and LLNL optical engineer Justin Wolfe, the LSST camera optics subsystems manager, stand in front of the LSST main lens assembly. Photo by Farrin Abbott/SLAC National Accelerator Laboratory.

    When the world’s newest telescope starts imaging the southern sky in 2023, it will take photos using optical assemblies designed by Lawrence Livermore National Laboratory (LLNL) researchers and built by Lab industrial partners.

    A key feature of the camera’s optical assemblies for the Large Synoptic Survey Telescope (LSST), under construction in northern Chile, will be its three lenses, one of which at 1.57 meters (5.1 feet) in diameter is believed to be the world’s largest high-performance optical lens ever fabricated.

    The lens assembly, which includes the lens dubbed L-1, and its smaller companion lens (L-2), at 1.2 meters in diameter, was built over the past five years by Boulder, Colorado-based Ball Aerospace and its subcontractor, Tucson-based Arizona Optical Systems.

    Mounted together in a carbon fiber structure, the two lenses were shipped from Tucson, arriving intact after a 17-hour truck journey at the SLAC National Accelerator Laboratory in Menlo Park.

    SLAC is managing the overall design and fabrication, as well as the subcomponent integration and final assembly of LSST’s $168 million, 3,200-megapixel digital camera, which is more than 90 percent complete and due to be finished by early 2021. In addition to SLAC and LLNL, the team building the camera includes an international collaboration of universities and labs, including the Paris-based Centre National de la Recherche Scientifique and Brookhaven National Laboratory.

    LSST the Vera C. Rubin Observatory

    LSST Camera, built at SLAC

    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    LSST Data Journey, Illustration by Sandbox Studio, Chicago with Ana Kova

    “The success of the fabrication of this unique optical assembly is a testament to LLNL’s world-leading expertise in large optics, built on decades of experience in the construction of the world’s largest and most powerful laser systems,” said physicist Scot Olivier, who helped manage Livermore’s involvement in the LSST project for more than a decade.

    Olivier said without the dedicated and exceptional work of LLNL optical scientists Lynn Seppala and Brian Bauman and LLNL engineers Vincent Riot, Scott Winters and Justin Wolfe, spanning a period of nearly two decades, the LSST camera optics, including the world’s largest lens, would not be the reality they are today.

    “Riot’s contributions to LSST also go far beyond the camera optics — as the current overall project manager for the LSST camera, Riot is a principal figure in the successful development of this major scientific instrument that is poised to revolutionize the field of astronomy,” Olivier added.

    LSST Director Steven Kahn, a physicist at Stanford University and SLAC, noted that “Livermore has played a very significant technical role in the camera and a historically important role in the telescope design.”

    Livermore’s researchers made essential contributions to the optical design of LSST’s lenses and mirrors, the way LSST will survey the sky, how it compensates for atmospheric turbulence and gravity, and more.

    LLNL personnel led the procurement and delivery of the camera’s optical assemblies, which include the three lenses (the third lens, at 72 centimeters in diameter, will be delivered to SLAC within a month) and a set of filters covering six wavelength-bands, all in their final mechanical mount.

    Livermore focused on the design and then delegated fabrication to industry vendors, although the filters will be placed into the interface mounts at the Lab before being shipped to SLAC for final integration into the camera.

    The 8.4-meter LSST will take digital images of the entire visible southern sky every few nights, revealing unprecedented details of the universe and helping unravel some of its greatest mysteries. During a 10-year time frame, LSST will detect about 20 billion galaxies — the first time a telescope will observe more galaxies than there are people on Earth – and will create a time-lapse “movie” of the sky.

    This data will help researchers better understand dark matter and dark energy, which together make up 95 percent of the universe, but whose makeup remains unknown, as well as study the formation of galaxies, track potentially hazardous asteroids and observe exploding stars.

    The telescope’s camera — the size of a small car and weighing more than three tons — will capture full-sky images at such high resolution that it would take 1,500 high-definition television screens to display just one picture.

    Research scientists aren’t the only ones who will have access to the LSST data. Anyone with a computer will be able to fly through the universe, past objects 100 million times fainter than can be observed with the unaided eye. The LSST project will provide an engagement platform to enable both students and the public to participate in the process of scientific discovery.

    Riot, who started on the LSST project in 2008, initially managed the camera optics fabrication planning, became the LSST deputy camera manager in 2013 and the full camera project manager in 2017. For the past three years, he has worked at LLNL and at SLAC on special assignment.

    “There are important challenges getting everything together for the LSST camera. We’re receiving all of these expensive parts that people have been working on for years and they all have to fit together,” Riot said.

    Wolfe, an LLNL optical engineer and the LSST camera optics subsystems manager, and Riot are pleased that the world’s largest optical lens has overcome hurdles.

    “Any time you undertake an activity for the first time, there are bound to be challenges, and production of the LSST L-1 lens proved to be no different,” Wolfe said. “Every stage was crucial and carried great risk. You are working with a piece of glass more than five feet in diameter and only four inches thick. Any mishandling, shock or accident can result in damage to the lens. The lens is a work of craftsmanship and we are all rightly proud of it.

    “When I joined LLNL I had no idea that it would lead to the opportunity to deliver first-of-a-kind optics to a first-of-a-kind telescope,” Wolfe said. “From production of the largest precision lens known, to coating of the largest precision bandpass filters, the LSST optics have set a new standard.”

    Livermore involvement in LSST started around 2001, spurred by the scientific interest of LLNL astrophysicist Kem Cook, a member of the Lab team that previously led the search for galactic dark matter in the form of Massive Compact Halo Objects.

    However, LLNL participation in LSST quickly became centered on the Lab’s expertise in large optics, built over decades of developing the world’s largest laser systems. Starting in 2002, LLNL optical scientist Seppala, who helped design the National Ignition Facility, made a series of improvements to the optical design of LSST leading to the 2005 baseline design. This consisted of three mirrors, the two largest in the same plane so they could be fabricated from the same piece of glass, and three large lenses, as well as a set of six filters that define the color of the images recorded by the 3.2-gigapixel camera detector.

    Construction on LSST started in 2014 on El Peñon, a peak 8,800 feet high along the Cerro Pachón ridge in the Andes Mountains, located 220 miles north of Santiago, Chile.

    Financial support for LSST comes from the National Science Foundation (NSF), the U.S. Department of Energy’s Office of Science, and private funding raised by the LSST Corporation. The NSF-funded LSST Project Office for construction was established as an operating center under management of the Association of Universities for Research in Astronomy. The DOE-funded effort to build the LSST camera is managed by the SLAC National Accelerator Laboratory.

    The camera system for LSST, including the three lenses and six filters designed by LLNL researchers and built by Lab industrial partners, will be shipped from SLAC to the telescope site in Chile in early 2021

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:28 pm on July 30, 2019 Permalink | Reply
    Tags: "Study reveals new structure of gold at extremes", , , , Increase in pressure and temperature changes the crystalline structure to a new phase of gold., LLNL, ,   

    From Lawrence Livermore National Laboratory: “Study reveals new structure of gold at extremes” 

    From Lawrence Livermore National Laboratory

    July 30, 2019
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    Three of the images collected at Argonne National Laboratory’s Dynamic Compression Sector, highlighting diffracted signals recorded on the X-ray detector.

    Section 1 shows the starting face-centered cubic structure; Section 2 shows the new body-centered cubic structure at 220 GPa; and Section 3 shows the liquid gold at 330 GPa.

    Gold is an extremely important material for high-pressure experiments and is considered the “gold standard” for calculating pressure in static diamond anvil cell experiments. When compressed slowly at room temperature (on the order of seconds to minutes), gold prefers to be the face-centered cubic (fcc) structure at pressures up to three times the center of the Earth.

    However, researchers from Lawrence Livermore National Laboratory (LLNL) and the Carnegie Institution for Science have found that when gold is compressed rapidly over nanoseconds (1 billionth of a second), the increase in pressure and temperature changes the crystalline structure to a new phase of gold.

    This well-known body-centered cubic (bcc) structure morphs to a more open crystal structure than the fcc structure. These results were published recently in Physical Review Letters.

    “We discovered a new structure in gold that exists at extreme states — two thirds of the pressure found at the center of Earth,” said lead author Richard Briggs, a postdoctoral researcher at LLNL. “The new structure actually has less efficient packing at higher pressures than the starting structure, which was surprising considering the vast amount of theoretical predictions that pointed to more tightlypacked structures that should exist.”

    The experiments were carried out at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory.

    ANL Advanced Photon Source

    DCS is the first synchrotron X-ray facility dedicated to dynamic compression science. These user experiments were some of the first conducted on hutch-C, the dedicated high energy laser station of DCS. Gold was the ideal subject to study due to its high-Z (providing a strong X-ray scattering signal) and relatively unexplored phase diagram at high temperatures.

    The team found that that the structure of gold began to change at a pressure of 220 GPa (2.2 million times Earth’s atmospheric pressure) and started to melt when compressed beyond 250 GPa.

    “The observation of liquid gold at 330 GPa is astonishing,” Briggs said. “This is the pressure at the center of the Earth and is more than 300 GPa higher than previous measurements of liquid gold at high pressure.”

    The transition from fcc to bcc structure is perhaps one of the most studied phase transitions due to its importance in the manufacturing of steel, where high temperatures or stress causes a change in structure between the two fcc/bcc structures. However, it is not known what phase transition mechanism is responsible. The research team’s results show that gold undergoes the same phase transition before it melts, as a consequence of both pressure and temperature, and future experiments focusing on the mechanism of the transition can help clarify key details of this important transition for manufacturing strong steels.

    “Many of the theoretical models of gold that are used to understand the high-pressure/high-temperature behavior did not predict the formation of a body-centered structure – only two out of more than 10 published works,” Briggs said. “Our results can help theorists improve their models of elements under extreme compression and look toward using those new models to examine the effects of chemical bonding to aid the development of new materials that can be formed at extreme states.”

    Briggs was joined on the publication by co-authors Federica Coppari, Martin Gorman, Ray Smith, Amy Coleman, Amalia Fernandez-Panella, Marius Millot, Jon Eggert and Dane Fratanduono from LLNL, and Sally Tracy from the Carnegie Institution of Washington’s Geophysical Laboratory.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 8:27 am on July 12, 2019 Permalink | Reply
    Tags: , , , dDAC-dynamic diamond anvil cell, , LLNL, ,   

    From Lawrence Livermore National Laboratory: “Under pressure: New device’s 1.6 billion atmospheres per second assists impact studies” 

    From Lawrence Livermore National Laboratory

    July 11, 2019

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    The new dynamic diamond anvil cell (dDAC) at the Extreme Conditions Beamline (ECB) at DESY’s X-ray source PETRA III. Image courtesy of Hanns-Peter Liermann/DESY

    A new super-fast high-pressure device at DESY’s PETRA III X-ray light source allows scientists to simulate and study earthquakes and meteorite impacts more realistically in the lab.

    DESY Petra III

    The new-generation dynamic diamond anvil cell (dDAC), developed by scientists from Lawrence Livermore National Laboratory (LLNL), Deutsches Elektronen-Synchroton (DESY), the European Synchrotron Radiation Facility (ESRF) and the universities of Oxford, Bayreuth and Frankfurt/Main, compresses samples faster than any similar device before. The instrument can turn up the pressure at a record rate of 1.6 billion atmospheres per second and can be used for a wide range of dynamic high-pressure studies. The developers present their new device, that has already proved its capabilities in various materials experiments, in the journal Review of Scientific Instruments.

    “For more than half a century, the diamond anvil cell or DAC has been the primary tool to create static high pressures to study the physics and chemistry of materials under those extreme conditions — for example, to explore the physical properties of materials at the center of the Earth at 3.5 million atmospheres,” said lead author Zsolt Jenei from LLNL.

    To simulate fast dynamic processes like earthquakes and asteroid impacts more realistically with high compression rates in the lab, Jenei’s team, in collaboration with DESY scientists, developed a new generation of dynamically driven diamond anvil cell (dDAC), inspired by the pioneering original LLNL design, and coupled it with the new fast X-ray diffraction setup of the Extreme Conditions Beamline P02.2 at PETRA III.

    The new cell consists of two small modified brilliant diamonds that are pushed together by a powerful piezo electric drive. Thanks to improvements like the much stronger piezo actuators and fast, high peak current amplifiers, the new device is capable of rapidly compressing the tiny samples between the diamond anvils more than a thousand times faster than previous generation dynamic diamond anvil cells. “One unique aspect fo the dDAC technique is that it also allows us to characterize the response of a sample under well controlled fast decompression,” said co-author Earl O’Bannon from LLNL.

    To study the changes in physical properties of materials under high pressure, scientists shine X-rays on the small samples and record the way the X-rays are diffracted by the material. These diffraction patterns allow scientists to determine the structure of the material. However, to take snapshots of high-speed dynamic processes, the X-ray flash needs to be bright enough and the camera — the detector — must be fast enough.

    “For almost 10 years since the first invention of the dDAC at our Laboratory, it has been extremely difficult to conduct fast diffraction experiments because of the lack of photon flux and, more important, fast and highly sensitive high-energy X-ray diffraction detectors,” Jenei said. Only with the advent of the extremely bright third-generation X-ray sources, such as PETRA III, and the development of highly sensitive cameras, such as the gallium-arsenide (GaAs) Lambda detector, invented by the DESY detector group, did it become possible to collect diffraction images with the adequate short exposure times and temporal resolution.”

    The Extreme Conditions Beamline (ECB) at DESY has the world’s first two GaAs Lambda detectors. “By triggering them with a delay of 0.25 milliseconds, we are able to collect up to 4,000 frames per second,” said Hanns-Peter Liermann, the beamline scientist in charge of the ECB. The detectors were funded through a joint research project awarded by the German Federal Ministry of Education and Research BMBF to the Goethe University Frankfurt, where Björn Winkler is the principal investigator.

    Researchers working on the project have demonstrated the performance and versatility of the experimental setup with fast compression studies of heavy metals such as gold and bismuth, as well as light compounds such as ice (H2O) and planetary materials such as ferropericlase. While conducting fast diffraction experiments on gold, the team demonstrated an increase in pressure from 1,000 atmospheres to 1.4 million atmospheres in only 2.5 milliseconds (thousandth of a second), resulting in a maximum compression rate of 160 terapascals per second (a terapascal is a measure of pressure). During this extremely short time, the detectors collected eight diffraction patterns across the complete compression path.

    “We believe that with the existing setup we can improve the compression rates to maybe thousands of terapascals per second,” Liermann said. However, this will need even brighter X-ray flashes and still faster cameras such as the planned upgrade of PETRA III to a next-generation X-ray source PETRA IV and the High Energy Density experimental station (HED) at the European X-ray laser European XFEL, where DESY is participating in building a dDAC setup as part of the Helmholtz International Beamline for Extreme Fields (HIBEF) consortium.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 8:53 am on July 2, 2019 Permalink | Reply
    Tags: A team of scientists from Lawrence Livermore National Laboratory (LLNL) and Russia that discovered five elements from 1989 to 2010., “Astrophysicists also are interested in these types of reactions because of NIF’s ability to duplicate the conditions at the interior of stars” Shaughnessy said., , LLNL, , , , Synthetic elements- flerovium (atomic number 114) moscovium (115) livermorium (116) tennessine (117) and oganesson (118)   

    From Lawrence Livermore National Laboratory: Women in STEM- “Stellar reactions in a galaxy not so far, far away” Dawn Shaughnessy 

    From Lawrence Livermore National Laboratory

    July 1, 2019
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    Dawn Shaughnessy examines a sample plate used to collect the nuclear reaction products produced when neutrons from fusion during a NIF shot bombard research materials. Photo by Jason Laurea/LLNL

    Few people over the course of history have had a hand in discovering an atomic element. Yet nuclear chemist Dawn Shaughnessy joined a team of scientists from Lawrence Livermore National Laboratory (LLNL) and Russia that discovered five elements from 1989 to 2010.

    Now she leads the Nuclear and Radiochemistry Group of the Physics and Life Sciences Directorate at LLNL and uses the National Ignition Facility (NIF) to generate some of the most extreme conditions in our solar system for high energy density experiments.

    2

    Russian scientist Alexander Yeremin (left), Dawn Shaughnessy, and former LLNL scientist John Wild stand in front of a particle separator from the U400 cyclotron at Russia’s Flerov Laboratory of Nuclear Reactions in 2003. The experiments by these researchers and their colleagues were used to investigate the nuclear properties of elements copernicium (atomic number 112) and flerovium (114). Courtesy of Dawn Shaughnessy

    “NIF is the brightest neutron source in the world, and we use it to produce nuclear reactions that are relevant to stockpile stewardship and nuclear forensics programs. The reactions cannot be done by using accelerators or other means,” said Shaughnessy, who also is serving a one-year appointment as scientific editor of the Laboratory’s Science & Technology Review.

    National Ignition Facility at LLNL

    Her first experience with NIF came before it was even operational. She joined a working group to determine whether nuclear science could be performed at NIF, and, if so, what types of diagnostics would be needed for making the measurements.

    “I was fascinated,” she said. “It was really cutting-edge stuff. You could make measurements in a plasma. No one else in the world was able to do that.”

    She began investigating how to make experimental platforms for studying the nuclear reactions of materials of interest, such as the elements nickel, yttrium and zirconium (see “Providing Data for Nuclear Detectives”). But only over the last couple of years did her team develop a technique capable of doping target capsules with these elements.

    Serving as the NIF target is a 2-millimeter-diameter capsule lined on the inner surface with extremely small amounts of the material (about 1016 atoms) and filled with deuterium and tritium (DT) gas. The neutrons produced by the DT fusion during the shot bombard the material and cause nuclear reactions to occur. The fusion energy blows the products of the reaction outward, and the resulting solid debris is collected by specialized diagnostic instruments so that important radiochemical characteristics, such as rates of reactions, can be evaluated back inside a laboratory.

    “Astrophysicists also are interested in these types of reactions because of NIF’s ability to duplicate the conditions at the interior of stars,” Shaughnessy said.

    By studying nuclear reactions within the star-like plasma generated by NIF, researchers can better explore nuclear synthesis, the stellar process that eventually creates heavier elements by fusing together lighter elements and particles. Sometimes this process, which is a progression of different nuclear reactions, must first create lighter elements before heavier ones can be created.

    One such nuclear reaction under investigation occurs inside a class of stars that have masses on the order of the sun. It has boron absorbing a proton to form beryllium and an alpha particle. This nuclear reaction illustrates the type of interactions between atoms and particles that interest nuclear chemists.

    As is true for so many of the projects at LLNL, the search for basic science understanding can yield big returns for other programs. Through the Discovery Science program, about 8 percent of NIF’s shots each year are dedicated to these types of experiments.

    “Everything we’ve done for Discovery Science ties exactly into the platforms that we are developing for the Stockpile Stewardship Program,” Shaughnessy said. “It has helped teach us how to dope capsules with materials, how to collect materials coming out of a shot and how to conduct various analyses.”

    But it is not just in the stellar cauldrons of stars in other galaxies where atomic concoctions are brewed. It happens right here in our solar system, without even having to escape Earth’s gravitational force. And from early on, this attracted Shaughnessy.

    “Einsteinium is my favorite element,” she said. “It doesn’t get enough credit because its chemistry is relatively ordinary. But I think it is really cool.”

    Her affinity toward einsteinium wells from her Ph.D. research at the University of California, Berkeley, into the fission of this synthetic, radioactive element. But after graduation, she turned in the opposite direction at Lawrence Berkeley National Laboratory by studying environmental factors of plutonium, which she feels is one of the most interesting elements because it has many oxidation states and forms, and neptunium, plutonium’s next-door neighbor on the periodic table.

    This radioactive background is what led Shaughnessy to join LLNL’s Stockpile Radiochemistry Group in 2002, which is the same year she began hunting for elements that had never been observed before. The five elements that the team discovered were forged in a particle accelerator at Flerov Laboratory of Nuclear Reactions in Russia.

    “The heavy element program at the Lab was very small,” said Shaughnessy, who became the team’s principal investigator in 2005. “It was a team effort by people who were really dedicated to the science. Most of us had a background in it from somewhere else.”

    They filled out the bottom row of the periodic table by co-discovering the heavy elements flerovium (atomic number 114), moscovium (115), livermorium (116), tennessine (117) and oganesson (118) (see “Collaboration Expands the Periodic Table, One Element at a Time”).

    If any of these short-lived, synthetic elements have familiar sounding names, like livermorium, it might be because many elements that appear in the latter part of the periodic table are given names to honor people and places connected to important achievements in science.

    Periodic table Sept 2017. Wikipedia

    Shaughnessy recalls that the name davincium was tossed around during this period of discovery, and she hopes it will be used one day in commemoration of the early days of scientific investigation.

    It is hard not to envision Leonardo da Vinci, sketching his latest invention on a table while his Italian robe flowed around him. Shaughnessy, however, looked in a much more futuristic direction for her wardrobe inspiration: she owns a custom-made Jedi robe from a Jedi robe shop in England.

    “I am an enormous fan of ‘Star Wars,’” she said — no surprise to anyone who has worked with her. “I’ve been a fan since it first came out in 1977, when I saw it in a theater and connected with it at a young age. ‘Star Wars’ has always been a part of me. I still have my Star Wars figures. And now that we have new Star Wars movies again, I can get to share it with my daughter. I’ve probably seen the movies hundreds of times by this point.”

    Even at NIF, the force is strong with Shaughnessy. The influence runs deep. When trying to name a newly developed solid debris collecting diagnostic — which happens to look spaceship-like — she came up with Vast Area Detector for Experimental Radiochemistry, or VADER. She quickly points out, though, that she is of course aligned with the light side of the force — or, as in this case, the “laser light side.”

    Shaughnessy’s passion for this epic science fiction saga has helped propel her to transcend real-world boundaries, where science is fact and breakthroughs bring distant worlds much closer to home.

    —Dan Linehan

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:22 pm on June 26, 2019 Permalink | Reply
    Tags: , , , LLNL, Switchgrass is used as a biomass crop for advanced biofuel production., Turning the switch on biofuels   

    From Lawrence Livermore National Laboratory: “Turning the switch on biofuels” 

    From Lawrence Livermore National Laboratory

    June 17, 2019
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    Switchgrass is used as a biomass crop for advanced biofuel production.

    Plant cell walls contain a renewable, nearly limitless supply of sugar that can be used in the production of chemicals and biofuels. However, retrieving these sugars isn’t all that easy.

    Imidazolium ionic liquid (IIL) solvents are one of the best sources for extracting sugars from plants. But the sugars from IIL-treated biomass are inevitably contaminated with residual IILs that inhibit growth in bacteria and yeast, blocking biochemical production by these organisms.

    Lawrence Livermore National Laboratory (LLNL) scientists and collaborators at the Joint BioEnergy Institute have identified a molecular mechanism in bacteria that can be manipulated to promote IIL tolerance, and therefore overcome a key gap in biofuel and biochemical production processes. The research appears in the Journal of Bacteriology.

    “Ionic liquid toxicity is a critical roadblock in many industrial biosynthetic pathways,” said LLNL biologist Michael Thelen, lead author of the paper. “We were able to find microbes that are resistant to the cytotoxic effects.”

    The team used four bacillus strains that were isolated from compost (and a mutant E. coli bacterium) and found that two of the strains and the E. coli mutant can withstand high levels of two widely used IILs.

    Douglas Higgins, a postdoc working with Thelen at the time, dived into how exactly the bacteria do this. In each of the bacteria, he identified a membrane transporter, or pump, that is responsible for exporting the toxic IIL. He also found two cases in which the pump gene contained alterations in the RNA sequence of a regulatory guanidine riboswitch. Guanidine is a toxic byproduct of normal biological processes; however, cells need to get rid of it before it accumulates.

    The normal, unmodified riboswitch interacts with guanidine and undergoes a conformational change, causing the pump to switch on and make the bacterial cells resistant to IILs.

    “Our results demonstrate the critical roles that transporter genes and their genetic controls play in IIL tolerance in their native bacterial hosts,” Thelen said. “This is just another step in engineering IIL tolerance into industrial strains and overcoming this key gap in biofuel production.”

    The results could help identify genetic engineering strategies that improve conversion of cellulosic sugars into biofuels and biochemicals in processes where a low concentration of ionic liquids surpass bacterial tolerance.

    Scientists from Sandia National Laboratories and Lawrence Berkeley National Laboratory also contributed to this research.

    The work is funded by the Department of Energy’s Office of Science

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 11:17 am on June 19, 2019 Permalink | Reply
    Tags: , , LLNL, LLNL’s Lassen IBM NVIDIA supercomputer leaps to No. 10 on TOP500 list,   

    From Lawrence Livermore National Laboratory: “LLNL’s Lassen supercomputer leaps to No. 10 on TOP500 list, Sierra remains No. 2” 

    From Lawrence Livermore National Laboratory

    June 18, 2019
    Jeremy Thomas
    thomas244@llnl.gov
    925-422-5539

    1
    Lawrence Livermore National Laboratory’s Lassen IBM NVIDIA supercomputer

    Lawrence Livermore National Laboratory’s Lassen joined its companion system Sierra in the top 10 of the TOP500 list of the world’s most powerful supercomputers, announced Monday at the 2019 International Supercomputing Conference (ISC19) in Frankfurt, Germany.

    Lassen, an unclassified, heterogenous IBM/NVIDIA system with the same architecture as Sierra but smaller, placed No. 10 on the list with a High Performance Linpack (HPL) benchmark score of 18.2 petaFLOPS (18.2 quadrillion point operations per second) boosting its original 15.4 petaFLOP performance from last November. Sierra, LLNL’s classified system that went into production earlier this year, remained unchanged in the second spot at 94.6 petaflops.

    “We are pleased with the results of the June 2019 TOP500 list, in which not only does Sierra continue to occupy the second position but also Lassen has risen to tenth,” said Bronis de Supinski, chief technical officer for Livermore Computing. “These successes demonstrate that LLNL’s strategy of both programmatic and institutional investments supports the complete range of applications required to meet our mission.”

    The improved HPL score for Lassen was attributed to an upgrade on the system, according to a TOP500 press release. LLNL’s IBM/Blue Gene system Sequoia, which had been the 10th most powerful computer in the world in the previous list and is expected to be retired later this year, dropped to 13th.

    LLNL Sequoia IBM Blue Gene Q petascale supercomputer

    Oak Ridge National Laboratory’s Summit, also an IBM/NVIDIA supercomputer, maintained its top spot on the list and slightly improved its result from six months ago, delivering a record 148.6 petaFLOPS. Los Alamos National Laboratory’s Trinity, another Department of Energy/National Nuclear Security Administration supercomputer, placed seventh at 20.2 petaFLOPS.

    ORNL IBM AC922 SUMMIT supercomputer, No.1 on the TOP500. Credit: Carlos Jones, Oak Ridge National Laboratory/U.S. Dept. of Energy

    The 53rd edition of the TOP500 marks a milestone. For the first time in the 26-year history of the list, all 500 systems on the list registered HCL benchmark scores of a petaFLOP or more. The benchmark reflects the performance of a dedicated system for solving a dense system of linear equations.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 7:43 am on May 21, 2019 Permalink | Reply
    Tags: Advanced Radiographic Capability (ARC), , , , LLNL, ,   

    From Lawrence Livermore National Laboratory: “ARC experiments exceed expectations” 

    From Lawrence Livermore National Laboratory

    May 17, 2019
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    – Charlie Osolin

    1
    At left: A schematic of the National Ignition Facility’s (NIF) target chamber with 192 NIF long-pulse beams shown in blue and two of the NIF beams “picked off” for ARC shown in red (upper right). The two long-pulse beams are split to form two rectangular beamlets each, giving a total of four beamlets that are compressed to picosecond-pulse lengths. Lower right: The modeled ellipsoidal focal spot for one of the four beamlets at target chamber center.

    The first proton-acceleration experiments using the National Ignition Facility’s (NIF) Advanced Radiographic Capability (ARC) short-pulse laser have produced protons with energies about 10 times higher than previous experience would have predicted (see “A Powerful New Source of High-Energy Protons”).

    Beams of high-energy protons can be precisely targeted and are able to quickly heat materials before they can expand. Ultrafast heating of matter will enable opacity and equation-of-state measurements at unprecedented energy densities and could open the door to new ways of studying extreme states of matter, such as stellar and planetary interiors. Proton acceleration also promises to enable a variety of other applications in high energy density (HED) and inertial confinement fusion (ICF) research.

    In a recently published Physics of Plasmas paper, an international team of researchers reported that the maximum proton energies created in the February 2018 experiments — from 14 to 18 MeV (million electron volts) — are “indicative of (an)…electron acceleration mechanism that sustains acceleration over long (multi-picosecond) time-scales and allows for proton energies to be achieved far beyond what the well-established scalings of proton acceleration (at ARC-level intensities) would predict.

    “Coupled with the NIF,” the researchers said, “developing ARC laser-driven ion acceleration capabilities will enable multiple exciting applications. For example, the NIF can deliver 1.8 MJ (million joules) of laser light to drive an experiment and with an energetic proton beam, we could begin to diagnose electromagnetic fields in these experiments by using proton radiography.”

    LLNL engineering physicist Derek Mariscal, lead author of the paper, said the surprise results at ARC’s quasi-relativistic, or “modest” laser intensities — about a quintillion (1018) watts per square centimeter — “forced us to try to understand the source of these particles, and we ultimately found that a different mechanism for accelerating particles to MeV electrons was necessary to explain the results.

    “While we haven’t completely explained this mechanism,” he said, “we’ve been able to start discounting mechanisms that have been identified in previous short-pulse work to start honing in on how we could get such unexpected electron and subsequent proton energies.

    “These results are really encouraging not only for ARC-driven proton beams,” he added, “but for particle acceleration in what’s referred to as the quasi-relativistic laser regime.”

    ARC is a petawatt (quadrillion watt)-class short-pulse laser created by splitting two of NIF’s 192 long-pulse beams into four rectangular beamlets. Using a 2018 Nobel Prize-winning process called chirped-pulse amplification, the beamlets are stretched in time to reduce their peak intensity, then amplified at intensities below the optics damage threshold in the laser amplifiers and finally compressed to picosecond (trillionth of a second) pulse lengths and highest peak power in large compressor vessels, as shown in this video.

    In the experiments, which are supported by LLNL’s Laboratory Directed Research and Development (LDRD) and NIF’s Discovery Science programs, two ARC shots were fired onto 1.5×1.5-millimeter-square, 33-micron-thick titanium foils. About 2.6 kilojoules of energy were delivered in a 9.6-picosecond pulse and 1.1 kJ were fired in a 1.6-ps pulse. A Target Normal Sheath Acceleration (TNSA) field, first observed on LLNL’s Nova petawatt laser two decades ago, accelerated high-energy protons and ions from the contamination layer of proton-rich hydrocarbons and water coating the target’s surface.

    3
    Illustration of the titanium target foil, ARC beamlet pointing, and images of the proton-acceleration data captured by radiochromic film stacks placed at the front of the primary diagnostics, the NIF Electron Positron Proton Spectrometer (NEPPS) magnetic spectrometers.

    “We plan to take this platform in several directions,” Mariscal said. “One of the most obvious directions is for probing electromagnetic field structures generated during experiments driven by the NIF long-pulse beams, which has been a standard use for these proton beams since their discovery here at LLNL around 20 years ago on the Nova petawatt laser.

    “In addition to using proton beams as a diagnostic tool,” he said, “we plan to continue to use these beams to create high-energy-density conditions. Since we’re able to generate around 50 joules of proton beam energy, if we can deposit it over a 10-picosecond timescale we can generate plasmas at near solid density with temperatures over 100 eV, which is a truly exotic state of matter known as hot dense matter.”

    he researchers also are exploring new target designs that could enhance ARC’s laser intensity to achieve even higher proton energy, enabling probes of ICF experiments. And by varying the length of ARC pulses, they hope to create shaped short pulses using ARC laser beams.

    “Pulse shaping with nanosecond pulses allows for driving precision shocks in materials for studying material equations of state, but we plan to use this idea at the sub-picosecond level to manipulate particle acceleration physics,” Mariscal said. “We’ve tried this scheme on the OMEGA EP laser at the University of Rochester’s Laboratory for Laser Energetics and saw greatly enhanced laser coupling to high-energy particles over single short pulses.”
    Two-proton-beam experiments

    Additional NIF shots will use a 10-picosecond ARC beam to drive a beam of protons intended to rapidly heat a solid sample to more than 50 eV. Concurrently, a higher-intensity one-picosecond ARC beam will be used to generate a second proton beam that will probe the electromagnetic field structures of the heating experiment. “That will ultimately help us to understand how particles are being accelerated to MeV energies with a 10-picosecond pulse,” Mariscal said.

    Mariscal credited the “fantastic” suite of diagnostics at the ARC diagnostics table and modeling support from the NIF ARC laser team with enabling the researchers to learn “some very interesting fundamental short-pulse-driven particle acceleration physics in this new regime provided by ARC.

    “We’re given a new level of confidence in our interpretations due to the high-quality characterization of delivered ARC laser pulses,” he said. “This allows our physics team to accurately model the laser conditions of the experiment and maximize our understanding from the limited overall number of ARC laser experiments.”

    Joining Mariscal on the paper were LLNL colleagues Tammy Ma, Scott Wilks, Andreas Kemp, G. Jackson Williams, Pierre Michel, Hui Chen, Prav Patel, Bruce Remington, Mark Bowers, Lawrence Pelz, Mark Hermann, Warren Hsing, David Martinez, Ron Sigurdsson, Matt Prantil, Alan Conder, Janice Lawson, Matt Hamamoto, Pascal Di Nicola, Clay Widmayer, Doug Homoelle, Roger Lowe-Webb, Sandrine Herriot, Wade Williams, David Alessi, Dan Kalantar, Rich Zacharias, Constantin Haefner, Nathaniel Thompson, Thomas Zobrist, Dawn Lord, Nicholas Hash, Arthur Pak, Nuno Lemos and Max Tabak, along with collaborators from the University of California at San Diego, General Atomics, the University of Oxford and the Central Laser Facility at the STFC Rutherford Appleton Laboratory in the UK, the Institute of Laser Engineering at Osaka University in Japan and Los Alamos National Laboratory.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 9:25 am on March 20, 2019 Permalink | Reply
    Tags: "Solving a 50-year-old beta decay puzzle with advanced nuclear model simulations", , , LLNL, , , Synthesis of heavy elements, Technische Universität Darmstadt, The electroweak force, , When protons inside atomic nuclei convert into neutrons or vice versa   

    From Lawrence Livermore National Laboratory and ORNL: “Solving a 50-year-old beta decay puzzle with advanced nuclear model simulations” 

    i1

    Oak Ridge National Laboratory

    From Lawrence Livermore National Laboratory

    March 19, 2019

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    First-principles calculations show that strong correlations and interactions between two nucleons slow down beta decays in atomic nuclei compared to what’s expected from the beta decays of free neutrons. This impacts the synthesis of heavy elements and the search for neutrinoless double beta decay. Image by Andy Sproles/Oak Ridge National Laboratory.

    For the first time, an international team including scientists at Lawrence Livermore National Laboratory (LLNL) has found the answer to a 50-year-old puzzle that explains why beta decays of atomic nuclei are slower than expected.

    The findings fill a long-standing gap in physicists’ understanding of beta decay (converting a neutron into a proton and vice versa), a key process stars use to create heavier elements. The research appeared in the March 11 edition of the journal Nature Physics.

    Using advanced nuclear model simulations, the team, including LLNL nuclear physicists Kyle Wendt (a Lawrence fellow), Sofia Quaglioni and twice-summer intern Peter Gysbers (UBC/TRIUMF), found their results to be consistent with experimental data showing that beta decays of atomic nuclei are slower than what is expected, based on the beta decays of free neutrons.

    “For decades, physicists couldn’t quite explain nuclear beta decay, when protons inside atomic nuclei convert into neutrons or vice versa, forming the nuclei of other elements,” Wendt said. “Combining modern theoretical tools with advanced computation, we demonstrate it is possible to reconcile, for a considerable number of nuclei, this long-standing discrepancy between experimental measurements and theoretical calculations.”

    Historically, calculations of beta decay rates have been much faster than what is seen experimentally. Nuclear physicists have worked around this discrepancy by artificially scaling the interaction of single nucleons with the electroweak force, a process referred to as “quenching.” This allowed physicists to describe beta decay rates, but not predict them. While nuclei near each other in mass would have similar quenching factors, the factors could differ dramatically for nuclei well separated in mass.

    Predictive calculations of beta decay require not just accurate calculations of the structure of both the mother and daughter nuclei, but also of how nucleons (both individually and as correlated pairs) couple to the electroweak force that drives beta decay. These pairwise interactions of nucleons with the weak force represented an extreme computational hurdle due to the strong nuclear correlations in nuclei.

    The team simulated beta decays from light to heavy nuclei, up to tin-100 decaying into indium-100, demonstrating their approach works consistently across the nuclei where ab initio calculations are possible. This sets the path toward accurate predictions of beta decay rates for unstable nuclei in violent astrophysical environments, such as supernova explosions or neutron star mergers that are responsible for producing most elements heavier than iron.

    “The methodology in this work also may hold the key to accurate predictions of the elusive neutrinoless double-beta decay, a process that if seen would revolutionize our understanding of particle physics,” Quaglioni said.

    Other institutions include Oak Ridge National Laboratory, TRIUMF and the Technische Universität Darmstadt Germany.


    Technische Universität Darmstadt campus

    Technische Universität Darmstadt

    The work was funded by the Laboratory Directed Research and Development Program.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: