Tagged: LLNL Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:23 pm on December 4, 2018 Permalink | Reply
    Tags: Adaptive Optics laser guide star, , , , , LLNL,   

    From Lawrence Livermore National Laboratory: “Guide star leads to sharper astronomical images” 

    From Lawrence Livermore National Laboratory

    Dec. 4, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    The laser guide star revolutionized astronomy by revealing large swaths of the sky that had previously been unseen from Earth due to atmospheric distortions. Now astronomy is on the verge of another great leap forward. The Extremely Large Telescope, which is expected to see first light in 2024, will have a 39-meter-diameter primary mirror — more than three times the size of today’s largest ground-based telescopes.

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    These next-generation telescopes require even more advanced optics to continue delivering clear images of distant stars, planets and interstellar space. To help answer that call, Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility and Photon Science (NIF&PS) directorate has delivered a first-of-its-kind, high-power, fiber-based sodium laser guide star to the University of California, Santa Cruz (UCSC).

    3
    The Lick Observatory’s Laser Guide Star at the Shane telescope forms a beam of glowing atmospheric sodium ions. This helps astronomers account for distortions caused by the Earth’s atmosphere so they can see farther and more clearly into space. Credit: Laurie Hatch/lauriehatch.com

    “This fiber-based sodium laser guide star is a significant advance for adaptive optics,” said Daren Dillon, a development engineer at UCSC. “We expect it to operate five to 10 times more efficiently than the state-of-the-art dye-based sodium laser guide stars we use at our observatories now. This will enable our adaptive optics to produce much sharper images.”

    Adapting fiber laser to a guide star

    The project has roots in LLNL’s long history of laser development. Claire Max, a UCSC astronomy professor and director of UC observatories, was a physicist at LLNL from 1974 to 2004. She co-authored the original paper proposing sodium guide star lasers for wavefront correction. In the early 1990s, she demonstrated the first high-power sodium laser guide star from technology developed in LLNL’s Atomic Vapor Laser Isotope Separation program. Max was the driving force for integrating sodium guide star laser systems into the astronomical community worldwide.

    To the naked eye, stars appear to twinkle. This is not through any action on the part of the celestial objects, but rather due to atmospheric turbulence — the turbulent mixing of Earth’s atmosphere — that the light rays pass through on their long journey to the eyes of night watchers.

    The sodium laser guide star creates an artificial star by shooting a laser into the sodium layer of the atmosphere, about 90 kilometers up. At a wavelength of 589 nanometers (billionths of a meter), the laser excites the sodium, which fluoresces in return. An artificial star is born.

    This star provides a reference point for an advanced optics system, which uses it to inform a computer-controlled deformable mirror that cancels out the effects of atmospheric turbulence to create a sharp image.

    The first generation of sodium laser guide stars, deployed at the Lick Observatory in Northern California and the Keck Observatory in Hawaii, were dye lasers that served the astronomy community for more than 15 years.

    UCO Keck Laser Guide Star Adaptive Optics

    Their size, weight and power and cooling requirements, however, made them difficult to incorporate with the telescopes, and they utilized flammable materials, which also are undesirable in an observatory setting.

    About 15 years ago, Max made a request of her LLNL colleagues.

    Efficient, compact and rugged

    “She asked us for a solid-state guide star laser that was compact and reliable,” explained Dee Pennington, one of the principal investigators on the project. “We considered several options and settled on a fiber laser because they are efficient, compact and rugged.”

    A fiber laser typically is constructed with an optical fiber doped with rare-earth elements such as erbium, ytterbium and neodymium. These lasers have unmatched beam quality, efficiency, thermal management and reliability as well as lower cost of ownership.

    The project was first funded by Livermore’s Laboratory Directed Research and Development program and later by grants from the National Science Foundation Center for Adaptive Optics, which Max directed, the Association of Universities for Research in Astronomy and the European Southern Observatory.

    At the project’s inception more than 15 years ago, fiber lasers were still an emerging technology. None existed at the 589-nanometer (nm) wavelength needed to interrogate the sodium layer.

    Developing this fiber laser with UCSC meant the researchers had to invent technology. “We had to learn how to cool a fiber laser,” said LLNL materials scientist Steve Payne, another researcher on the project. “If you’re first out of the box, you have to figure everything out on your own.”

    3
    Graham Allen (LLNL), Don Gavel (UCSC), Jay Dawson (LLNL) and Daren Dillon (UCSC) celebrate a milestone: the fiber-based sodium laser guide star achieved 10 watts of power at LLNL, making it ready for UC Santa Cruz.

    The team achieved 589 nm by combining a 938-nm laser and a 1,583-nm laser within a nonlinear crystal. Power scaling proved to be an even bigger challenge.
    “We were trying to scale two lasers to provide 10 watts of power, the minimum necessary to get enough feedback to inform adaptive optics,” said Jay Dawson, the principal investigator in the later years of this project. Dawson has continued working on fiber laser technology in his current role as the NIF&PS acting deputy program director for DoD Technologies.

    Because of the laser’s specialized application, custom optical fibers needed to be developed. LLNL did this in collaboration with existing specialty optical fiber companies.

    A new fabrication capability

    “However, industry was slow to manufacture the fiber we needed,” Dawson said. “They had little motivation, since few R&D fibers turn into significant commercial sales. We realized that if we wanted to advance fiber laser technology for a wide array of applications, LLNL would need its own fabrication capability.”

    As a result, LLNL built its own 8.2-meter fiber draw tower to fabricate the needed specialized fibers. In addition to meeting this need, the draw tower has been the key to success on other important projects. It enabled development of fiber-optic acoustic sensing fibers and the E-band fiber-optic amplifier, two technologies that are revolutionizing laser sensing and communication.

    Since commissioning the fiber draw tower, LLNL has applied NIF optics cleaning techniques to microstructured optical fibers to improve strength, loss and reliability. LLNL also has developed consolidation and grinding processes to further open the design space for new optical fibers.

    To correct ground-based telescopes with primary mirrors in the 30-meter-diameter range, laser guide stars will be essential. “However, a single guide star laser only can interrogate part of the telescope aperture,” Pennington said. “With the huge apertures we anticipate, it will take multiple guide stars to inform adaptive optics for everything the telescope collects.” But discriminating the feedback from each individual beam creates a challenge.

    “One answer is to use pulsed laser guide stars, which allows discrimination by time,” Pennington said. This was the focus of the LLNL fiber guide star laser program.

    Next stop, Lick Observatory

    UCSC astronomers plan to install the fiber-based sodium laser guide star at the Lick Observatory in the spring of 2019. It will be run alongside the existing dye-based sodium laser guide star.

    “We are pretty excited to see what happens when we integrate this fiber-based sodium laser guide star into our adaptive optics system at Lick,” Dillon said. “We think it will produce more detailed images that allow more precise measurements.”

    This technology transfer to UCSC has been a long time in the making. That journey also reflects the advances in fiber laser technology. “As a community, the progress we’ve made is amazing,” Pennington said.

    -Patricia Koning

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

    Advertisements
     
  • richardmitnick 2:06 pm on November 10, 2018 Permalink | Reply
    Tags: LLNL, LLNL Penguin Computing Corona AMD Mellanox high-performance computing cluster,   

    From Lawrence Livermore National Laboratory: “New computing cluster coming to Livermore” 

    From Lawrence Livermore National Laboratory

    Nov. 8, 2018
    Jeremy Thomas
    thomas244@llnl.gov
    925-422-5539

    LLNL Penguin Computing Corona AMD Mellanox high-performance computing cluster

    Lawrence Livermore National Laboratory, in partnership with Penguin Computing, AMD and Mellanox Technologies, will accept delivery of Corona, a new unclassified high-performance computing (HPC) cluster that will provide unique capabilities for Lab researchers and industry partners to explore data science, machine learning and big data analytics.

    The system will be provided by Penguin Computing and will be comprised of AMD EPYC™ processors and AMD Radeon™ Instinct™ GPU (graphics processing unit) accelerators connected via a Mellanox HDR 200 Gigabit InfiniBand network. The system lends itself to applying machine learning and data analysis techniques to challenging problems in HPC and big data and will be used to support the National Nuclear Security Administration’s (NNSA) Advanced Simulation and Computing (ASC) program. The system will be housed by Livermore Computing (LC) in an unclassified site adjacent to the High Performance Computing Innovation Center (HPCIC), dedicated to partnerships with American industry.

    Procured through the Commodity Technology Systems (CTS-1) contract, Corona will help NNSA assess future architectures, fill institutional and ASC needs to develop leadership in data science and machine learning capabilities at scale, provide access to HPCIC partners and extend a continuous collaboration vehicle for AMD, Penguin, Mellanox and LLNL.

    “Corona will provide an excellent platform for our research into cognitive computing algorithms and developing predictive simulations for both inertial confinement fusion applications as well as molecular dynamics simulations targeting precision medicine for oncology,” said Brian Van Essen, LLNL Informatics group leader and computer scientist. “The unique computational resources and interconnect will allow us to continue to develop leading edge algorithms for scalable distributed deep learning. As deep learning becomes an integral part of many applications at the Laboratory, computational resources like Corona are vital to our ability to develop the next generation of scientific applications.”

    Funded by the LLNL Multi-Programmatic and Institutional Computing (M&IC) program and the NNSA’s ASC program, the 383 teraFLOPS (floating point operations per second) Corona cluster will be delivered in late November and is expected to be available for limited use by December. The cluster consists of 170 two-socket nodes incorporating 24-core AMD EPYC™ 7401 processors and a PCIe 1.6 Terabyte (TB) nonvolatile (solid-state) memory device. Each Corona compute node is GPU-ready with half of those nodes utilizing four AMD Radeon Instinct™ MI25 GPUs per node, delivering 4.2 petaFLOPS of FP32 peak performance. The remaining compute nodes may be upgraded with future GPUs.

    Corona is likely to supplant the LLNL Catalyst cluster, a 150-teraFLOPS unclassified HPC cluster.

    It will run the NNSA-funded Tri-lab Open Source Software (TOSS) that provides a common user environment for Los Alamos, Sandia and Lawrence Livermore national labs.

    “We’re in a unique position working with this heterogenous architecture,” said Matt Leininger, deputy of Advanced Technology Projects for LLNL. “Corona is the next logical step in applying leading-edge technologies to the scientific discovery mission of the Laboratory. This system will be capable of generating big data from HPC simulations, while also being capable of translating that data into knowledge through the use of machine learning and data analysis.”

    The HPC Innovation Center at LLNL will offer access to Corona and the expected machine learning innovations it enables as a new option for its ongoing collaboration with American companies and research institutions.

    “Penguin Computing has been working with America’s national energy and defense labs on projects focused on open systems for almost 20 years,” said Sid Mair, senior vice president, federal systems at Penguin Computing. “During this long collaboration, we’ve been able to help them take advantage of the value, both in terms of return on investment and flexibility, that open systems provide compared to proprietary systems. Helping them deploy AI using open systems in the Corona system is an exciting new chapter in this relationship that we hope will help them execute their mission even more effectively.”

    “AMD welcomes the delivery of the Corona system to the HPCIC and the selection of high-performance AMD EPYC processors and AMD Radeon Instinct accelerators for the cluster,” said Mark Papermaster, AMD’s senior vice president and chief technology officer. “The collaboration between AMD, Penguin, Mellanox and Lawrence Livermore National Lab has built a world-class HPC system that will enable researchers to push the boundaries of science and innovation.”

    The system is interconnected via the new-generation high-performance Mellanox HDR 200G InfiniBand network, enabling the Lab to accelerate applications and increase scaling and efficiencies. The diverse mixture of computing technologies will allow LLNL and Corona partners to explore new approaches to cognitive simulation – blending machine learning and HPC – and intelligence-based data analytics.

    “HDR 200G InfiniBand brings a new level of performance and scalability needed to build the next generation of high-performance computing and artificial intelligence system,” said Gilad Shainer, vice president of marketing at Mellanox Technologies. “The collaboration between Penguin, AMD and LLNL results in a technology-leading platform that will progress science and discovery at the Lab.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 4:07 pm on October 26, 2018 Permalink | Reply
    Tags: LLNL, LLNL IBM ATS2 Mellanox NVIDIA Sierra Supercomputer   

    From Lawrence Livermore National Laboratory: “Lawrence Livermore unveils NNSA’s Sierra, world’s third fastest supercomputer” 

    From Lawrence Livermore National Laboratory

    Oct. 26, 2018

    Jeremy Thomas
    thomas244@llnl.gov
    925-422-5539

    LLNL IBM ATS-2 NVIDIA Mellanox Sierra Supercomputer

    The Department of Energy’s National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL) and its industry partners today officially unveiled Sierra, one of the world’s fastest supercomputers, at a dedication ceremony to celebrate the system’s completion.

    Sierra will serve the NNSA’s three nuclear security laboratories, LLNL, Sandia National Laboratories and Los Alamos National Laboratory, providing high-fidelity simulations in support of NNSA’s core mission of ensuring the safety, security and effectiveness of the nation’s nuclear stockpile. Its arrival represents years of procurement, design, code development and installation, requiring the efforts of hundreds of computer scientists, developers and operations personnel working in close partnership with IBM, NVIDIA and Mellanox.

    “Today we mark our latest milestone toward computing on a truly exascale level,” Department of Energy Secretary Rick Perry said in a video message prepared for the dedication. “With its dramatic unveiling of Sierra, Lawrence Livermore National Laboratory has taken a pivotal step forward on behalf of America’s national security.”

    “With the advent of Sierra, Livermore has delivered a powerful new tool for NNSA and stockpile stewardship. This machine represents a new approach to high performance computing that will enable us to address and answer scientific questions previously beyond our reach,” said LLNL Director Bill Goldstein. “I thank everyone involved in getting us to this point: our sponsors at NNSA, our industry and national lab partners and our own dedicated staff. This is a signal moment in Livermore’s history, and a new milestone in our leadership in high performance computing and simulation.”

    Sierra, ranked as the third-fastest supercomputer in the world on the latest TOP500 list, is NNSA’s first large-scale production heterogeneous system, meaning each node incorporates both IBM central processing units (CPUs) and NVIDIA graphics processing units (GPUs). It is specifically designed for modeling and simulations essential for NNSA’s Stockpile Stewardship Program, ongoing life extension programs, weapons science and nuclear deterrence. It is expected to go into use for classified production in early 2019.

    “NNSA and its predecessors have been at the forefront of scientific computing since World War II,” said Mark Anderson, director for the Office of Advanced Simulation and Computing and Institutional Research & Development at NNSA. “The supercomputers provided by NNSA are an essential element of stockpile stewardship without nuclear testing. Sierra is the most capable computer we have ever fielded. It also is a harbinger of future computing technology and a critical step along the path to exascale.”

    Sierra boasts a peak performance of 125 petaFLOPS — 125 quadrillion floating-point operations per second. Early indications using existing codes and benchmark tests are promising, demonstrating as predicted that Sierra can perform most required calculations far more efficiently in terms of cost and power consumption than systems consisting of CPUs alone. Depending on the application, Sierra is expected to be six to 10 times more capable than LLNL’s 20- petaFLOP Sequoia, currently the world’s eighth-fastest supercomputer.

    “The continued aging of the stockpile requires much more capable computing systems,” said Mike Dunning, acting principal associate director for LLNL’s weapons program. “Sierra represents a continuation of NNSA’s leadership in high performance computing. It’s even more important today as we face increased global complexities, so it is essential that our tools are able to operate at the leading edge.”

    With a footprint of 7,000 square feet, Sierra is comprised of 240 computing racks and 4,320 nodes, with each node consisting of two IBM POWER 9 CPUs, four NVIDIA V100 GPUs and a Mellanox EDR InfiniBand interconnect. To prepare for this architecture, LLNL has partnered with IBM and NVIDIA to rapidly develop codes and prepare applications to effectively optimize the CPU/GPU nodes.

    IBM and NVIDIA personnel worked closely with LLNL, both on-site and remotely, on code development and restructuring to achieve maximum performance, while LLNL personnel provided feedback on system design and the software stack to the vendor. This “center of excellence” co-design strategy is necessary to assure that codes and platforms are well-matched, and applications are optimized for GPU-accelerated architecture. LLNL’s partnership with Oak Ridge National Laboratory, which is siting the Summit system from IBM, also has been extremely helpful throughout the project, from procurement to operation.

    LLNL selected the IBM/NVIDIA system due to its energy and cost efficiency, as well as its potential to effectively run NNSA applications. Sierra’s IBM POWER9 processors feature CPU-to-GPU connection via NVIDIA NVLink interconnect, enabling greater memory bandwidth between each node so Sierra can move data throughout the system for maximum performance and efficiency. Backing Sierra is 154 petabytes of IBM Spectrum Scale, a software-defined parallel file system, deployed across 24 racks of Elastic Storage Servers (ESS). To meet the scaling demands of the heterogeneous systems, the solution delivers 1.54 terabytes per second in both read and write bandwidth and can manage 100 billion files per file system.

    “The next frontier of supercomputing lies in artificial intelligence,” said John Kelly, senior vice president, Cognitive Solutions and IBM Research. “IBM’s decades-long partnership with LLNL has allowed us to build Sierra from the ground up with the unique design and architecture needed for applying AI to massive data sets. The tremendous insights researchers are seeing will only accelerate high performance computing for research and business.”

    As the first NNSA production supercomputer backed by GPU-accelerated architecture, Sierra’s acquisition required a fundamental shift in how scientists at the three NNSA laboratories program their codes to take advantage of the GPUs. The system’s NVIDIA GPUs also present scientists with an opportunity to investigate the use of machine learning and deep learning to accelerate time-to-solution of physics codes. It is expected that simulation, leveraged by acceleration coming from the use of artificial intelligence technology, will be increasingly employed over the coming decade.

    “Sierra is a world-class, pre-exascale supercomputer that allows researchers to run large complex scientific simulations at scale, at speeds never before thought possible,” said Ian Buck, vice president and general manager of Accelerated Computing at NVIDIA. “Equipped with more than 17,000 of our Tesla Tensor Core V100 GPUs, Sierra is a powerful, universal platform for compute-intensive scientific simulations, machine learning, deep learning and visualization applications all in one — paving the path forward for the future of high performance computing.”

    Sierra also leverages Mellanox EDR 100 Gigabit InfiniBand In-Network Computing acceleration engines to achieve higher applications performance and scalability.

    “We are very proud to provide essential technology for one of the fastest supercomputers in the world at Lawrence Livermore National Laboratory,” said Gilad Shainer, vice president of marketing at Mellanox Technologies. “Our InfiniBand smart interconnect delivers the necessary performance, efficiency and scalability to support the needs of the Laboratory’s next-generation high performance and artificial intelligence applications, and the path to exascale computing.”

    In addition to critical national security applications, a companion unclassified system, called Lassen, also has been installed in the Livermore Computing Center. This institutionally focused system will play a role in projects aimed at speeding cancer drug discovery, precision medicine, research on traumatic brain injury, seismology, climate, astrophysics, materials science and other basic science benefiting society.

    Sierra continues the long lineage of world-class LLNL supercomputers and represents the penultimate step on NNSA’s road to exascale computing, which is expected to be achieved by 2023 with an LLNL system called “El Capitan.” Funded by the NNSA’s Advanced Simulation and Computing (ASC) program, El Capitan will be NNSA’s first exascale supercomputer, capable of more than a quintillion calculations per second, about 10 times greater performance than Sierra. Such computing power will be easily absorbed by NNSA for its mission, having required the most advanced computing capabilities and deep partnerships with American industry.

    “In just a few short years, we expect to see exascale systems deployed at Lawrence Livermore, Argonne and Oak Ridge (national laboratories), ensuring our global superiority in this arena for years and decades to come,” Perry said. “Starting with Sierra, this new generation of supercomputers will be an absolute game-changer for the world.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 5:59 pm on October 4, 2018 Permalink | Reply
    Tags: CPA-chirped-pulse amplification, Donna Strickland, , LLNL,   

    From Lawrence Livermore National Laboratory: Women in STEM “Nobelist Strickland’s invention helped spark LLNL’s short-pulse laser breakthroughs” Donna Strickland 

    From Lawrence Livermore National Laboratory

    Oct. 4, 2018

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    Charlie Osolin

    1

    The Nobel Prize-winning research by Donna Strickland, a former staff scientist in Lawrence Livermore National Laboratory’s (LLNL’s) Laser Programs Directorate, was instrumental in the Laboratory’s development of a series of groundbreaking short-pulse, high-energy laser systems over the past two decades.

    Self-described “laser jock” Strickland, who worked at LLNL in 1992, is only the third woman in history to win a Nobel Prize in physics, joining Marie Curie (1903) and Maria Goeppert-Mayer (1963). Strickland and her mentor, French physicist Gérard Mourou, were named Nobel Prize laureates on Oct. 2 for their work in developing chirped-pulse amplification (CPA) to amplify ultrashort laser pulses up to the petawatt (quadrillion-watt) level.

    CPA is the underlying and enabling technology for all ultra-high-peak-power laser systems, such as LLNL’s Advanced Radiographic Capability (ARC) and High-repetition-rate Advanced Petawatt Laser (HAPLS), as well as in laser eye surgery and ultrafast cameras used for imaging molecular processes. As noted by the Nobel Committee for Physics, the Laboratory’s NOVA Petawatt, the world’s first petawatt laser, was a famous early example of a CPA laser.

    Strickland and Mourou share the 2018 prize with Arthur Ashkin of the United States, inventor of “optical tweezers,” a process that uses light from a highly focused laser beam to manipulate viruses, bacteria and other microscopic objects.

    Strickland, now a professor at the University of Waterloo in Ontario, received her Ph.D. in optical physics from the University of Rochester, home to LLNL’s frequent collaborator, the Laboratory for Laser Energetics (LLE). Her work with Mourou, a former optics professor and scientist at LLE, was the basis for her Ph.D. dissertation.

    After postdoctoral research at the National Research Council in Ottawa, Strickland joined LLNL’s inertial confinement fusion program under Mike Perry, now a vice president at General Atomics in San Diego. She divided her time between work on high harmonic generation in noble gases and helping Todd Ditmire, then a graduate student and now director of the Center for High Energy Density Science at the University of Texas at Austin, build a CPA laser from a new, promising laser material called Cr-doped LiSAF. She contributed to papers on the design and performance of the Cr-doped LiSAF regenerative amplifier, extreme ultraviolet radiation (XUV) in laser-driven plasmas and a compact high-power femtosecond (quadrillionths of a second) laser.

    “I have for 25 years told everyone that Donna taught me to align my first laser, and, in fact, she mentored me greatly during my first year in grad school,” Ditmire said. “I always joked that she had a god-like talent to be able to lay her hands on a laser cavity and get it to lase. I learned an incredible amount from Donna, which launched me on my own career in high-intensity, short-pulse lasers, first at LLNL and then as a professor here at the University of Texas.”

    LLNL physicist John Crane, who worked with Strickland on the XUV paper, said she was already well known in her field because of her graduate work inventing CPA to build terawatt-scale lasers. “Several of Mike Perry’s graduate students and postdocs were female,” Crane said, “and she served as a great mentor, as she was young and already very accomplished, upbeat and fun to be around.”

    One of those female graduate students was Kim Budil, now vice president for national laboratories at the University of California Office of the President. “I was over the moon when I saw that she was being honored for the truly transformative work she did with Gérard,” Budil said. “I met Donna when I was a graduate student working in the short-pulse laser lab at LLNL. She was very smart and already extremely accomplished, and that alone made her a great role model.

    “However, what I remember most was how good a colleague and friend she was. I was struggling in my Ph.D. research and having a hard time believing I could be an independent researcher. She reminded me to stop apologizing for being there — I belonged and was contributing in a real way. She showed me how to be a real scientist, confident in her knowledge and ability to contribute and ready to be a member of the team. She was fun — and funny — and loved the work.”

    In her comments after the prize was announced, Strickland reflected on Goeppert-Mayer’s career and said her award shows how far the scientific field has come since 1963 in terms of gender parity, even though women still make up only a quarter of attendees at major conferences. “It’s true that a woman hasn’t been given the Nobel Prize since then,” she said, “but I think things are better for women than they have been. We should never lose the fact that we are moving forward. We are always marching forward.”

    Strickland, born in 1959 in Guelph, Canada, and Mourou, born in 1944 in Albertville, France, published the revolutionary article that would become the basis of Strickland’s dissertation in 1985.

    2
    The chirped-pulse amplification technique makes it possible for a petawatt laser’s high-power pulses to pass through laser optics without damaging them. Before amplification, low-energy laser pulses are passed through diffraction gratings to stretch their duration by as much as 25,000 times. After amplification, the pulses are recompressed back to near their original duration. Because the pulses pass through laser optics when they are long, they cause no damage. Credit: The Nobel Committee for Physics.

    In a summary of the prizewinning work, the Nobel Committee for Physics said the inspiration for their invention “came from a popular science article that described radar and its long radio waves. However, transferring this idea to the shorter optical light waves was difficult, both in theory and in practice.”

    “The breakthrough was described in the article and was Donna Strickland’s first scientific publication,” the committee said. “She had moved from Canada to the University of Rochester, where she became attracted to laser physics by the green and red beams that lit up the laboratory like a Christmas tree and, not least, by the visions of her supervisor, Gérard Mourou.”

    Using what the committee called “an ingenious approach,” they succeeded in creating ultrashort high-peak-power laser pulses without exceeding the optical damage threshold and damaging the amplifying material. They stretched the laser pulses in time to reduce their peak power, a process called chirping, then amplified them, and finally recompressed them. The technique to reduce large amounts of anomalous dispersion was described by O.E. Martinez, J.P. Gordon, and R.L. Fork in 1984, but not recognized for its potential to stretch and unstretch pulses and reduce their peak power. If a pulse is compressed in time and becomes shorter, then more light is packed together in the same tiny space — the peak power of the pulse increases dramatically.

    The chirped-pulse amplification technique makes it possible for a petawatt laser’s high-power pulses to pass through laser optics without damaging them. Before amplification, low-energy laser pulses are passed through diffraction gratings to stretch their duration by as much as 25,000 times. After amplification, the pulses are recompressed back to near their original duration. Because the pulses pass through laser optics when they are long, they cause no damage.

    3
    The development of the highest intensity laser pulse. The CPA technique being rewarded this year is the foundation for the explosive development of increasingly strong laser pulses. Credit: The Nobel Committee for Physics

    Strickland is continuing her research career in Canada, while Mourou, who has returned to France, initiated and led the early development of the European Extreme Light Infrastructure (ELI) project. The HAPLS advanced petawatt laser system, which was designed, developed and constructed by LLNL’s NIF and Photon Science Directorate, is a key element in the ELI project. The system recently was declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic.

    The CPA technique being rewarded this year is the foundation for the explosive development of increasingly strong laser pulses. “The invention of chirped pulse amplification realized by Donna and Gérard was truly a transformative change,” said Constantin Haefner, LLNL program director for Advanced Photon Technologies. “The ability to amplify lasers to extreme powers enabled discovery of new physics, quickly followed by many industrial applications. The invention of CPA has not only inspired several generations of laser physicists and researchers but also has mobilized a multi-billion-dollar market of applications.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 1:37 pm on August 14, 2018 Permalink | Reply
    Tags: , , , Black oles and Dark Matter?, , , LLNL, ,   

    From Lawrence Livermore National Laboratory: “Quest for source of black hole dark matter” 

    From Lawrence Livermore National Laboratory

    Aug. 13, 2018
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    LLNL scientists Michael Schneider, Will Dawson, Nathan Golovich and George Chapline look for black holes in the Lab’s telescope remote observing room. Photo by Julie Russell/LLNL.

    Like a game of “hide and seek,” Lawrence Livermore astrophysicists know that there are black holes hiding in the Milky Way, just not where.

    If they find them toward the galactic bulge (a tightly packed group of stars) and the Magellanic Clouds, then black holes as massive as 10,000 times the mass of the sun might make up dark matter. If they are only toward the galactic bulge then they are probably just from a few dead stars.

    Typically to observe the Magellanic Clouds, scientists must travel to observatories in the Southern Hemisphere.

    Large Magellanic Cloud. Adrian Pingstone December 2003


    Small Magellanic Cloud. NASA/ESA Hubble and ESO/Digitized Sky Survey 2


    Magellanic Bridge ESA Gaia satellite. Image credit V. Belokurov D. Erkal A. Mellinger.

    But recently, the LLNL team got a new tool that’s a little closer to home to help them in the search. As part of the Space Science and Security Program and an LDRD project, LLNL has a new telescope remote observing room.

    The team is using the observing room to conduct a gravitational microlensing survey of the Milky Way and Magellanic Clouds in search of intermediate mass black holes (approximately 10 to 10,000 times the mass of the sun) that may make up the majority of dark matter.

    “The remote observing room enables us to control the National Optical Astronomers Observatory Blanco 4-meter telescope located in Chile at the Cerro Tololo Inter-American Observatory,” said LLNL principal investigator Will Dawson.

    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    The team already has conducted its first observing run with the remote observing room.

    The visible universe is composed of approximately 70 percent dark energy, 25 percent dark matter and 5 percent normal matter. However, dark matter has remained a mystery since it was first postulated in 1933. The MACHO Survey, led by Lawrence Livermore in the 1990s, sought to test whether dark matter was composed of baryonic massive compact halo objects (MACHOs). The survey concluded that baryonic MACHOs smaller than 10 solar masses could not account for more than 40 percent of the total dark matter mass.

    Recently, the discovery of two merging black holes has renewed interest in MACHO dark matter composed of primordial black holes (formed in the early universe, before the first stars) with approximately 10 to 10,000 solar masses. This is an idea first proposed in 1975 by LLNL physicist and project co-investigator George Chapline. The most direct means of exploring this mass range is by searching for the gravitational microlensing signal in existing archival astronomical imaging and carrying out a next-generation microlensing survey with state-of-the-art wide-field optical imagers on telescopes 10 to 25 times more powerful than those used in the original MACHO surveys.

    Gravitational microlensing, S. Liebes, Physical Review B, 133 (1964): 835

    Microlensing is an astronomical effect predicted by Einstein’s general theory of relativity. According to Einstein, when the light emanating from a star passes very close to another massive object (e.g., black hole) on its way to an observer on Earth, the gravity of the intermediary massive object will slightly bend and focus the light rays from the source star, causing the lensed background star to appear brighter than it normally would.

    “We are developing a novel means of microlensing detection that will enable us to detect the parallactic microlensing signature associated with black holes in this mass range,” Dawson said. “We will detect and constrain the fraction of dark matter composed of intermediate mass black holes and measure their mass spectrum in the Milky Way.”

    While the scientists are currently using the Cerro Tololo Inter-American Observatory in the search, eventually they will achieve even more sensitivity in observing black holes when the Large Synoptic Survey Telescope, which LLNL has supported for the last two decades, comes online in 2022.

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 3:53 pm on August 9, 2018 Permalink | Reply
    Tags: , , , , Jupiter's zonal flows, LLNL   

    From Lawrence Livermore National Laboratory: “Lab researchers find magnetic fields impact atmospheric circulation of gas giant planets” 

    From Lawrence Livermore National Laboratory

    Aug. 9, 2018
    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    This image captures a high-altitude cloud formation surrounded by swirling patterns in the atmosphere of Jupiter’s North North Temperate Belt region. The North North Temperate Belt is one of Jupiter’s many colorful, swirling cloud bands. Scientists have wondered for decades how deep these bands extend. Gravity measurements collected by Juno during its close flybys discovered that these bands of flowing atmosphere actually penetrate deep into the planet, to a depth of about 1,900 miles (3,000 kilometers). Image courtesy of NASA

    Magnetic fields around a planet or a star can overpower the zonal jets that affect atmospheric circulation.

    New research by a Lawrence Livermore National Laboratory (LLNL) scientist and a collaborator from the Australian National University (ANU) provides a theoretical explanation for why self-organized fluid flows called zonal jets or “zonal flows” can be suppressed by the presence of a magnetic field. The research appears today (Aug. 9) in The Astrophysical Journal.

    Zonal flows are observed in the banded zones in the atmosphere of Jupiter. Previous work performed simulations that showed a magnetic field suppressed zonal flows. The new research provides a mechanism explaining that suppression. The study shows that with magnetic fields present, even a weak shear flow causes subtle but coherent correlations in the magnetic fluctuations that oppose zonal flows.

    “Because magnetic fields are prevalent in the universe, this theory could be important for understanding dynamics at the solar tachocline where a strong magnetic field exists, and also potentially applicable to zonal flows deep in the interior of Jupiter, Saturn and other gas giants,” said Jeff Parker, LLNL physicist and coauthor of the paper.

    Zonal flows are ubiquitous in rotating systems. Prominent examples include the Earth’s polar and subtropical jet streams in the atmosphere, the Antarctic Circumpolar Current in the ocean, the winds in Jupiter’s atmosphere and flows in the atmospheres of Saturn, Uranus and Neptune.

    The flows act as a barrier and don’t allow for fluid from the two sides to exchange properties (such as heat or carbon). Thus, zonal flows have a large impact on the Earth’s weather because they separate cold and warm air.

    But just how deep do these zonal jets dive in Jupiter? “The zonal flows have an indirect effect on the gravitational field of Jupiter. With detailed measurements of the gravitational field, we can infer how deep the zonal flows are,” said Navid Constantinou, a postdoc at ANU and coauthor of the paper. The recently launched NASA spacecraft Juno is in orbit around Jupiter collecting precisely these sorts of measurements.

    NASA/Juno

    Preliminary evidence shows that Jovian winds are as deep as 3,000 kilometers (km). This is still “shallow” when compared to the radius of Jupiter (approximately 70,000 km).

    “It has been a long-standing question about how deep zonal flows penetrate into the interior of Jupiter and other gas giants,” Parker said. “Some have argued they exist only on the surface, and others thought they should persist deep into the planet. Only in the last year are we are starting to get answers to these questions, thanks to Juno. It’s an exciting time. Since magnetic fields prevail within Jupiter’s interior, our research could shed light on why the jets don’t go any deeper.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 7:58 pm on July 16, 2018 Permalink | Reply
    Tags: , , LLNL, , , , Rayleigh-Taylor (RT) instabilities, Richtmyer-Meshkov instability   

    From Lawrence Livermore National Laboratory: “Researchers work to advance understanding of hydrodynamic instabilities in NIF, astrophysics” 

    From Lawrence Livermore National Laboratory

    July 16, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    A simulation of Rayleigh-Taylor (RT) hydrodynamic instability created on Lawrence Livermore National Laboratory’s BlueGene/L supercomputer using the MIRANDA code. RT instability occurs when a light fluid accelerates a heavier fluid and is a fundamental fluid-mixing mechanism important to inertial confinement fusion applications, star formation dynamics, supernova explosions, planetary formation dynamics and asteroid impact dynamics.

    LLNL Vulcan IBM Blue GeneQ system supercomputer

    In a Proceedings of the National Academy of Sciences (PNAS) “Special Feature” paper published online June 26, Lawrence Livermore National Laboratory (LLNL) and University of Michigan researchers reported on recent experiments and techniques designed to improve understanding and control of hydrodynamic (fluid) instabilities in high energy density (HED) settings such as those that occur in inertial confinement fusion implosions on the National Ignition Facility (NIF).

    This paper described four areas of HED research that focus on Rayleigh-Taylor (RT) instabilities, which arise when two fluids or plasmas of different densities are accelerated together, with the lighter (lower density) fluid pushing and accelerating the heavier (higher density) fluid.

    These instabilities can degrade NIF implosion performance because they amplify target defects as well as perturbations caused by engineering features like the “tents” used to suspend the target capsule in the hohlraum and the fill tube that injects fusion fuel into the capsule.

    Conversely, RT and its shock analog, the Richtmyer-Meshkov instability, are seen when stellar explosions (supernovae) eject their core material, such as titanium, iron and nickel, into interstellar space. The material penetrates through and outruns the outer envelopes of the lighter elements of silicon, oxygen, carbon, helium and hydrogen. In addition, a unique regime of HED solid-state plastic flow and hydrodynamic instabilities can occur in the dynamics of planetary formation and asteroid and meteor impacts.

    The PNAS paper presents summaries of studies of a wide range of HED RT instabilities that are relevant to astrophysics, planetary science, hypervelocity impact dynamics and inertial confinement fusion (ICF).

    The researchers said the studies, while aimed primarily at improving understanding of stabilization mechanisms in RT growth on NIF implosions, also offer “unique opportunities to study phenomena that typically can be found only in high-energy astrophysics, astronomy and planetary science,” such as the interiors of planets and stars, the dynamics of planetary formation, supernovae, cosmic gamma-ray bursts and galactic mergers.

    NIF HED experiments can generate pressures up to 100 terapascals (one billion atmospheres). These extreme conditions allow research samples to be driven, or compressed, to the kinds of pressures found in planetary interiors and the interiors of brown dwarfs (sometimes called “failed stars”). They also lend themselves to studies of RT evolution ranging from hot, dense plasmas and burning hot spots at the center of ICF implosions to relatively cool, high-pressure materials undergoing solid-state plastic flow at high strain and strain rate.

    “We found that the material strength in these high-pressure, solid-state, high-strain-rate plastic flow experiments is large and can significantly reduce the RT growth rates compared with classical values,” the researchers said. “These results are relevant to planetary formation dynamics at high pressures.”

    “An intriguing consideration,” they added, “is the possibility of using these findings to enhance resistance to hydrodynamic instabilities in advanced designs of ICF capsule implosions.”

    Joining lead author Bruce Remington on the paper were LLNL colleagues Hye-Sook Park, Dan Casey, Rob Cavallo, Dan Clark, Channing Huntington, Aaron Miles, Sabrina Nagel, Kumar Raman and Vladimir Smalyuk, along with Carolyn Kuranz of the University of Michigan.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 2:41 pm on July 14, 2018 Permalink | Reply
    Tags: , LLNL, NDBD-neutrinoless double-beta decay, , next Enriched Xenon Observatory (nEXO) experiment,   

    From Lawrence Livermore National Laboratory: “Understanding the universe through neutrinos” 

    From Lawrence Livermore National Laboratory

    July 13, 2018

    Anne M Stark
    stark8@llnl.gov
    925-422-9799

    1
    The xenon vessel and vacuum vessel for the next Enriched Xenon Observatory (nEXO) experiment was built at Lawrence Livermore National Laboratory. The experiment will search for an extremely rare nuclear process called neutrinoless double-beta decay (NDBD).

    Determining features of the elusive particle known as a neutrino – through the observation of an extremely rare nuclear process called neutrinoless double-beta decay (NDBD) — could provide a glimpse into the nature of the universe during the earliest moments of the Big Bang.

    As part of an international collaboration, Lawrence Livermore National Laboratory (LLNL) scientists have proposed the next Enriched Xenon Observatory (nEXO) experiment, a candidate for the next generation of NDBD experiments. If discovered, NDBD would demonstrate the existence of a new elementary particle, the Majorana fermion. This discovery could reshape the standard model of particle physics and lead to a better understanding of neutrinos and their impact on the evolution of the universe. The research behind the experiment appears in the journal Physical Review C.

    2
    The Enriched Xenon Observatory 200 (EXO-200) experiment provides the basis for current work on a more sensitive detector for observing neutrinoless double beta decay (NDBD). Shown here are the EXO-200 readout wires and avalanche photodiodes used to measure induced and collected charge and scintillation light from particle decays in the detector’s main vessel. Image courtesy of SLAC National Accelerator Laboratory.

    NDBD is a theoretical process with a half-life more than 10^16 times the age of the universe and could help determine whether neutrinos are their own antiparticles and explain why, from equal parts of matter and antimatter, the universe evolved into its current matter-dominated state.

    The design of the nEXO detector — a 5-ton liquid xenon (Xe) time projection chamber (TPC) using 90 percent enriched 136Xe — takes advantage the best technology for the next phase of NDBD search.

    “A competitive 2-order-of-magnitude increase in NDBD half-life sensitivity over current experiments is possible” using the nEXO detector, said LLNL scientist Samuele Sangiorgio, lead author of the paper. “We now have great confidence in nEXO’s design and approach, and we will be able to measure this rare event.”

    Scientists expect to see only about a dozen decays in a decade-long experiment. Because of this very low signal rate, false signals from background radiation and cosmic rays must be suppressed as much as is feasible. “Understanding the backgrounds is key to a make a convincing case for a NDBD experiment, and indeed is one of the main aspects of the paper,” Sangiorgio said.

    Other Livermore authors include Tyana Stiegler, Jason Brodsky. Mike Heffner and Allen House.

    Other collaborators include: Brookhaven National Laboratory, Carleton University, Colorado State University, Drexel University, Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of High Energy Physics Chinese Academy of Sciences, Institute for Theoretical and Experimental Physics Indiana University, Laurentian University, McGill University, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Rensselaer, SLAC National Accelerator Laboratory, Stony Brook University, TRIUMF, Universität Bern, Université de Sherbrooke, University of Alabama, University of Illinois, University of Massachusetts Amherst, University of South Dakota and Yale University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 2:39 pm on June 27, 2018 Permalink | Reply
    Tags: , LLNL, LLNL-developed petawatt laser system fully integrated operational at ELI Beamlines   

    From Lawrence Livermore National Laboratory: “LLNL-developed petawatt laser system fully integrated, operational at ELI Beamlines” 

    From Lawrence Livermore National Laboratory

    June 27, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    1
    The L3-HAPLS advanced petawatt laser system has been declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic, and is now ready for integration with the experimental systems and first experiments.

    After evaluation by an international peer review group, the L3-HAPLS advanced petawatt laser system has been declared fully integrated and operational at the ELI Beamlines Research Center in Dolní Břežany, Czech Republic. The group assessed the laser performance, determined that all performance parameters have been successfully met — capable of reaching the 1 petawatt, 10 hertz (Hz) design specification — and that the system is ready for integration with the experimental systems and first experiments.

    L3-HAPLS was designed, developed and constructed by Lawrence Livermore National Laboratory’s (LLNL) NIF and Photon Science (NIF&PS) Directorate and delivered to ELI Beamlines in June 2017. Since September 2017, an integrated team of scientific and technical staff from LLNL and ELI Beamlines has worked intensively on the installation of the laser hardware.

    “Developing an unprecedented laser system is an incredible undertaking — as is moving that technology 6,000 miles across the Atlantic,” said Constantin Haefner, LLNL’s program director for Advanced Photon Technologies in NIF&PS. “This level of success was enabled by a smart, talented and capable team of international professionals who worked tirelessly to develop and deliver the next generation of petawatt lasers.”

    Leading the L3-HAPLS project allowed LLNL to draw on its decades of pioneering laser research and development and apply that expertise to advance new laser concepts important for its mission as a national laboratory. The system consists of the main petawatt beamline capable of delivering 45 joules (J) of energy per pulse and is energized by diode-pumped lasers, capable of delivering up to 200J of energy per pulse.

    The system has now been ramped to its first operation point of 16 joules and a 27 femtosecond pulse duration at a 3.3Hz repetition rate (3.3 times per second), equivalent to a peak power of approximately 0.5 petawatt after the pulse compressor. This operational point was established to learn and conduct first experiments at a moderate repetition rate.

    “In order to fulfill ELI’s mission to enable revolutionary scientific experiments, ELI Beamlines introduced exacting requirements that meant that Livermore was the only organization capable of delivering such a complicated and state-of-the-art system,” said Roman Hvezda, project manager of ELI Beamlines. “After meeting every milestone along the way, this collaboration has successfully delivered L3-HAPLS, which will not only serve as the flagship of ELI Beamlines but also gives us the competitive edge over other facilities in the future. The full integration of this laser system marks the beginning of commissioning the experimental systems to conduct science that can’t be done anywhere else in the world.”

    The collaboration extended beyond just LLNL and ELI Beamlines. By partnering with industry — and drawing on LLNL’s expertise laser research and development — the team delivered key advancements, including the world’s highest peak power diode arrays; a pump laser generating up to 200 joules at a 10 Hz repetition rate; a gas-cooled short-pulse titanium-doped sapphire amplifier; a dual chirped-pulse-amplification high-contrast short-pulse front end; and an energetic gigashot laser pump source for pumping the short-pulse preamplifiers and others.

    “These innovations not only distinguish L3-HAPLS from other petawatt lasers — they represent a quantum leap in technology,” said Haefner. “Many of these advancements have already made it to market, where they have the potential to enable advancement in a variety of areas beyond science.”

    L3-HAPLS will have a wide range of uses, supporting both basic and applied research. By focusing petawatt peak power pulses at high intensity on a target, the system will generate secondary sources such as electromagnetic radiation or accelerate charged particles, enabling unparalleled access to a variety of research areas, including time-resolved proton and X-ray radiography, laboratory astrophysics and other basic science and medical applications for cancer treatments, in addition to industrial applications such as nondestructive evaluation of materials and laser fusion.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.”[1] Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 11:09 am on May 10, 2018 Permalink | Reply
    Tags: , , , LLNL, NIF From the ground up., ,   

    From The Atlantic Magazine: “The National Ignition Facility” 2014 Origins 

    Atlantic Magazine

    From The Atlantic Magazine

    Jan 9, 2014
    Alan Taylor

    At Lawrence Livermore National Laboratory, a federally funded research and development center about 50 miles east of San Francisco, scientists at the National Ignition Facility (NIF) are trying to achieve self-sustaining nuclear fusion — in other words, to create a miniature star on Earth.

    The core of the NIF is a house-sized spherical chamber aiming 192 massive lasers at a tiny target. One recent laser experiment focused nearly 2 megajoules (the energy consumed by 20,000 100-watt light bulbs in one second) of light energy onto a millimeter-sized sphere of deuterium and tritium in a 16-nanosecond pulse. The resulting energetic output, while far short of being a self-sustaining reaction, set a record for energy return, and has scientists hopeful as they fine-tune the targeting, material, and performance of the instruments. The facility itself bristles with machinery and instruments, impressing the producers of the movie Star Trek: Into Darkness, who used it as a film set for the warp core of the starship Enterprise.

    1
    1. Inside the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, a service system lift allows technicians to access the target chamber interior for inspection and maintenance. The goal of the NIF is to initiate controlled nuclear fusion, in the hopes of creating a new source of energy for our growing world.
    Philip Saltonstall/Lawrence Livermore National Laboratory

    2
    2. During construction in the late 1990s – NIF’s “Grand Central Station” is its seven-story-tall Target Bay which houses the target chamber as well as the final optics assemblies, cryogenics systems, and diagnostic equipment. The chamber, a sphere ten meters (33 feet) in diameter, is covered with boron-injected concrete to absorb neutrons during NIF experiments. Lawrence Livermore National Laboratory

    3
    3. U.S. Secretary of Energy Bill Richardson, lower right, christens the 150-ton, 33-foot diameter aluminum laser target chamber at the National Ignition Facility in Lawrence Livermore National Laboratory in Livermore, California, on June 11, 1999. AP Photo/Ben Margot

    4
    4. The single largest piece of equipment at the NIF is its 130-ton target chamber. The design features 6 symmetric middle plates and 12 asymmetric outer plates, which were poured at the Ravenswood Aluminum Mill in Ravenswood, West Virginia. The plates were shipped to Creusot-Loire Industries in France, where they were heated and then shaped in a giant press. The formed plates were shipped from France to Precision Components Corp. in York, Pennsylvania, where they were trimmed and weld joints prepared. Assembly and welding activities at Lawrence Livermore National Laboratory (seen here) were performed in a temporary cylindrical steel enclosure looking much like an oil or water tank. Lawrence Livermore National Laboratory

    5
    5. In June 1999, after careful preparation, a rotating crane hoisted the target chamber and gently moved it to the Target Bay. Lawrence Livermore National Laboratory

    6
    6. After the target chamber was lowered into place, the seven-story walls and roof of the Target Bay were completed. Lawrence Livermore National Laboratory

    7
    7. The target chamber under construction. Holes in the target chamber provide access for the laser beams and viewing ports for NIF diagnostic equipment.
    Lawrence Livermore National Laboratory

    8
    8. Power Conditioning System – Peak power for the NIF electrical system exceeds one trillion watts, making it the highest-energy and highest-power pulsed electrical system of its kind. Lawrence Livermore National Laboratory

    9
    9. The fabrication of melted and rough-cut blanks of laser glass amplifier slabs needed for NIF construction (3,072 pieces) was completed in 2005. The amplifier slabs are neodymium-doped phosphate glass manufactured by Hoya Corporation, USA and SCHOTT North America, Inc. Lawrence Livermore National Laboratory

    10
    10. The target assembly for NIF’s first integrated ignition experiment is mounted in the cryogenic target positioning system, or cryoTARPOS. The two triangle-shaped arms form a shroud around the cold target to protect it until they open five seconds before a shot. Lawrence Livermore National Laboratory

    11
    11. A new “tentless” National Ignition Facility target showing the two-millimeter-diameter target capsule in the center of the hohlraum (a specially designed barrel-shaped housing for the target sphere). The tiny capsule is supported by the fill tube used to fill the capsule with fuel and a secondary stabilizing support tube at right. Both tubes are 30 microns in diameter. In previous targets, the capsule was supported by ultrathin plastic membranes known as tents; experiments indicated that the tents might be seeding hydrodynamic instabilities sufficient to interfere with the NIF implosions. Lawrence Livermore National Laboratory

    12
    12. A NIF target contains a polished capsule about two millimeters in diameter, filled with cryogenic (super-cooled) hydrogen fuel. Lawrence Livermore National Laboratory

    13
    13. NIF’s final optics inspection system, when extended into the target chamber from a diagnostic instrument manipulator, can produce images of all 192 laser final optics assemblies.
    Jacqueline McBride/Lawrence Livermore National Laboratory

    14
    14. The National Ignition Facility at Lawrence Livermore National Laboratory requires optics produced from large single crystals of potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP). Each crystal is sliced into 40-centimeter-square crystal plates. Traditionally DKDP has been produced by methods requiring approximately two years to grow a single crystal. With the development of rapid growth methods for KDP, the time required to grow a crystal has been reduced to just two months. NIF requires 192 optics produced from traditionally grown DKDP and 480 optics rapidly grown from KDP. Approximately 75 production crystals were grown totaling a weight of nearly 100 tons. Lawrence Livermore National Laboratory

    15
    15. This view from the bottom of the chamber shows the target positioner being inserted. Pulses from NIF’s high-powered lasers race toward the Target Bay at the speed of light. They arrive at the center of the target chamber within a few trillionths of a second of each other, aligned to the accuracy of the diameter of a human hair. Philip Saltonstall/Lawrence Livermore National Laboratory

    16
    16. Seen from above, each of NIF’s two identical laser bays has two clusters of 48 beamlines, one on either side of the utility spine running down the middle of the bay, eventually reaching the target chamber. Jacqueline McBride/Lawrence Livermore National Laboratory

    17
    17. Temperatures of 100 million degrees and pressures extreme enough to compress the target to densities up to 100 times the density of lead are created in the target chamber. Surrounding the target is diagnostic equipment capable of examining in minute detail the arrival of the laser beams and the reaction of the target to this sudden deposition of energy. Jacqueline McBride/Lawrence Livermore National Laboratory

    18
    18. The interior of the NIF target chamber. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right.
    Lawrence Livermore National Laboratory

    19
    19. Lawrence Livermore National Laboratory technicians John Hollis (right) and Jim McElroy install a SIDE camera in the target bay of the National Ignition Facility (NIF). The camera was the last of NIF’s 6,206 various opto-mechanical and controls system modules to be installed. Jacqueline McBride/Lawrence Livermore National Laboratory

    20
    20. Director Edward Moses briefed California Governor Arnold Schwarzenegger at the NIF target chamber, on November 10, 2008. Jacqueline McBride/Lawrence Livermore National Laboratory

    21
    21. NIF’s millimeter-sized targets must be designed and fabricated to meet precise specifications for density, concentricity and surface smoothness for NIF experiments. LLNL scientists and engineers have developed a precision robotic assembly machine to manufacture the small and complex fusion ignition targets. Lawrence Livermore National Laboratory

    22
    22. California Governor Arnold Schwarzenegger examines a model of a target while touring the National Ignition Facility in Livermore, California, on November 10, 2008. AP Photo/Lea Suzuki, Pool

    23
    23. A tall view of the NIF target chamber. Jacqueline McBride/Lawrence Livermore National Laboratory

    24
    24. A new viewing window recently installed on the NIF Target Chamber allows members of the NIF team and visitors to see inside the chamber while it is vacuum-sealed for experiments. NIF Team members Bruno Van Wonterghem (left), Jim Nally (pointing) and Rod Saunders watch through the viewing window as the Final Optics Damage Inspection System is deployed.
    Lawrence Livermore National Laboratory

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: