Tagged: Linac 4 Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:05 pm on April 6, 2016 Permalink | Reply
    Tags: , , , , Linac 4, ,   

    From CERN: “LINAC4 ready to go up in energy” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    4.6.16
    Jennifer Toes

    1
    The DTL section of the LINAC4 (Image: CERN)

    The LINAC4 linear accelerator has recently achieved beam commissioning of 50MeV and is now almost ready for the next step of increasing the beam energy even further up to 100MeV. This project is part of the LHC Injectors Upgrade (LIU) required for the needs of the High Luminosity LHC (HL-LHC).

    LINAC4 aims to replace the ageing LINAC2 linear accelerator, going from the present 50 MeV proton beam injection into the Proton Synchrotron Booster (PSB), the first ring in the CERN accelerator chain, to a modern H- ion beam injection at 160 MeV, more the three times the Linac2 energy.

    “CERN is one of the few laboratories in the world that has not yet implemented H- injection” said Alessandra Lombardi, who is responsible for the beam commissioning of the LINAC4. Injecting H- at a higher energy results in a smaller emittance in the PSB.

    Following the successful commissioning of the three newly designed Drift Tube Linac (DTL) tanks in November 2015, the team began its preparations for the installation of two key accelerating sectors: the Cell Coupled Drift Tube Linac (CCDTL) and PI-Mode Structures (PIMS).

    Built in Russia by a collaboration of CERN with two Russian laboratories, VNIITF in Snezinsk and BINP in Novossibirsk, the CCDTL is the next structure to be conditioned and commissioned with beam in the LINAC4.

    “The CERN CCDTL is composed of 7 modules of 3 tanklets each and it brings the energy of the beam from 50 to 100MeV” said Lombardi.

    The main advantage of CCDTLs over standard DTLs is that their quadrupoles are external and therefore more accessible. The accessibility of these magnets makes the construction and alignment process much more straight forward.

    The PIMS was constructed as part of a CERN-Poland (NCBJ Swierk) collaboration with contributions from FZ Jülich (Germany). The PIMS was assembled and tuned at CERN will bring up the beam energy from 100MeV to its final goal of 160MeV. It is composed of 12 modules for a total length of about 25m.

    Currently, the installation and conditioning of all CCDTL tanks and of the first PIMS is being carried out before beam commissioning begins on April 11th 2016. The commissioning of the remaining PIMS tanks expected to follow in October will allow reaching the final beam energy.

    Scheduled to become operational by 2020, the LINAC4 is a crucial step towards the increase in the LHC luminosity that will allow CERN to remain at the pinnacle of high energy physics research.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New

    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New II

    LHC

    CERN LHC Map
    CERN LHC Grand Tunnel

    CERN LHC particles

    Quantum Diaries

     
  • richardmitnick 12:13 pm on November 26, 2015 Permalink | Reply
    Tags: , , , Linac 4   

    From CERN: “Release the beams! Linac 4 hits the 50 MeV mark” 

    Cern New Bloc

    Cern New Particle Event

    CERN New Masthead

    CERN

    26 Nov 2015
    Harriet Kim Jarlett

    1
    The Linac 4 tunnel where DTL tubes guide the 50MeV beam, taken on the Photowalk (Image: Andrew Hara/CERN)

    This week the Linac 4 accelerator has reached a milestone energy of 50 MeV – meaning it is now able to replace the ageing Linac 2 and eventually become the head of the accelerator chain .

    Linac 4 was built to boost negative hydrogen ions – consisting of a hydrogen atom with an additional electron – to high energies to provide protons to the Large Hadron and to replace the Linac 2. This 37-year-old accelerator is the first in a series of four, which are boosting particles to higher and higher energies before they are injected into the Large Hadron Collider (LHC). These accelerators are also providing beams to many other experiments at CERN.

    Eventually Linac 4 will accelerate ions to 160 MeV to prepare them to enter the Proton Synchrotron Booster – the second acclerator in the LHC injection chain.

    3
    Proton Synchrotron Booster

    These ions are stripped of their two electrons during injection from Linac 4 into the Proton Synchrotron Booster to leave only protons. This allows more particles to accumulate in the synchrotron, simplifies injection, reduces beam loss at injection and gives a more brilliant beam. As a key part of the LHC injector upgrade programme, Linac 4 will allow the PS Booster to double its beam brightness, which will contribute to increasing the LHC’s luminosity, a crucial factor proportional to the number of particles colliding within a defined amount of time.

    2
    A photo montage from the 2015 photowalk, with Maurizio Vretenar, the Linac 4 project leader, alongside both the designs for and the constructed accelerator 2015 (Image: Maelle Baud/CERN)

    Reaching 50MeV is a milestone as it’s the energy Linac 2 runs at, and means Linac4 is now capable of taking over the task of providing particles to CERN’s accelerator chain – a process that will begin during the long shutdown from 2018.

    The Linac 4 is composed of a hydrogen ion source and four types of accelerating structures which are progressively commissioned one after another. Earlier this year the second part of this accelerating chain, the Drift Tube Linac tanks were fully installed and commissioned, meaning the beam could be boosted to a new, higher, energy from its previous 3 MeV.

    “This innovative and patented design is a huge achievement that was eight years in the making,” says Maurizio Vretenar, the Linac 4 project leader. “We saw these tanks through from the drawing board to the test bench, and now to the accelerator chain itself; we couldn’t be happier with their performance so far.”

    Ensuring faultless connections between the seperate accelerator components was a key part of the commissioning process. The tubes and their components had to be aligned with ±0.1 mm precision to each other and to the rest of the Linac 4 line.

    “The first step was to accelerate the beam through the first tank of the DTL, to find the correct settings of the low energy part,” says Alessandra Lombardi, who is in charge of the commissioning phase of Linac 4. We then accelerated the beam progressively through the second and the third tank to the energy of 50 MeV.”

    Now the beam has reached 50 MeV, the Linac 4 team is moving on to the next item on the schedule: the Cell-Coupled DTLs (CCDTL), which will bring Linac 4 up to 100 MeV.

    See the full article here.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Meet CERN in a variety of places:

    Cern Courier

    THE FOUR MAJOR PROJECT COLLABORATIONS

    ATLAS
    CERN ATLAS New
    ALICE
    CERN ALICE New

    CMS
    CERN CMS New

    LHCb
    CERN LHCb New

    LHC

    CERN LHC New
    CERN LHC Grand Tunnel

    LHC particles

    Quantum Diaries

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: