Tagged: LIDAR – Light Detection and Ranging Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 4:13 pm on May 26, 2022 Permalink | Reply
    Tags: "As California Cliffs Erode UC San Diego Team Works to Track and Understand these Changes", , , , , LIDAR – Light Detection and Ranging, ,   

    From The University of California-San Diego and Scripps Institution of Oceanography : “As California Cliffs Erode UC San Diego Team Works to Track and Understand these Changes” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    5.26.22
    Lauren Fimbres Wood

    1
    The Coastal Process Group at Scripps Instiution of Oceanography deploys a drone to conduct a LiDAR survey. Photo by Erik Jepsen/University Communications.

    Advanced imaging and geotechnical technology are powering understanding of our coastline and its hazards.

    The cliff-top parking lot was fenced off and the trail marked “Unstable Cliffs – Active Landslide Area – Stay Back,” but that didn’t stop Adam Young and City of Encinitas officials from carefully traversing the uneven landscape at the Beacon’s Beach switchback trail to get a closer look.

    “There are definitely new cracks here,” said Young, a coastal geomorphologist and researcher at UC San Diego’s Scripps Institution of Oceanography.

    Young studies coastal erosion, overseeing coastline surveys throughout the state of California that use advanced laser imaging technology—called LiDAR, which stands for Light Detection and Ranging—to create high-resolution maps of cliffs to measure how they are eroding and changing over time.

    2
    The Beacons Beach switchback trail suffered damage in a landslide on May 2, 2022. Photo credit: Lauren Fimbres Wood.

    On May 2, 2022, a landslide at the Leucadia, California beach damaged part of the trail, closing the popular access point. Young and a team of fellow scientists from Scripps Oceanography went into rapid response mode, working with city officials to conduct a LiDAR survey of the landslide and install advanced geophysical instruments to determine if the landslide was still moving.

    At the site, a seismometer now monitors any shaking in the cliff face, a GPS monument allows for measuring ongoing changes in position of the cliff top, and wave pressure sensors measure wave impacts hitting the base of the cliff. These pressure sensors allow scientists to measure how often the waves reach the base of the cliff and potentially contribute to the movement of the slide.

    “Right now the beach is pretty eroded, and you can see the high tide water line is all the way up to the base of the cliff,” said Young on May 17, when he was back for the installation and monitoring of equipment.

    Tiltmeters, which Scripps geophysical engineer Frank Wyatt typically uses to measure movement of the San Andreas Fault, are instruments that can monitor slope stability, measuring to an accuracy of 10 micrometers if the ground is continuing to move. Tiltmeters have also been widely used across the U.S. and Europe to monitor railroad tracks. They get adhered to railroad ties to determine if a track has gone askew, and provide real-time monitoring to officials.

    Most of the data is disseminated from the instruments using cellular signals to “the cloud.” Results of the data collected will be shared with city geotechnical experts to help determine when the landslide is sicist Mark Zumberge are already conducting ongoing enhanced coastal monitoring. This research is funded as part of Assembly Bill 66, which was introduced by Assembly member Tasha Boerner Horvath, whose district includes San Diego’s coastal North County. The legislation was spurred in part by a fatal accident in which a 30-by-25-foot sandstone chunk broke loose and fell onto three women at Grandview Beach in Encinitas in August 2019.

    The bill has allowed for an expansion of coastal LiDAR surveys from Black’s Beach to Carlsbad. The surveys are now being conducted weekly. The LiDAR system, which can be operated by a truck-mounted system or drone depending on the width of the beach and other factors, sends hundreds of thousands of laser pulses per second.

    4
    Adam Young and Lucian Perry conduct a truck-based LiDAR scan of the cliffs at Torrey Pines State Beach.

    When the laser pulse hits an object, the laser signal bounces back to the LiDAR instrument, yielding a detailed measurement of the time it takes the laser to return to the sensor. This results in a centimeter-scale resolution point cloud map of the cliff face, beach elevation and beach cobble—the smooth rocks that are often found on San Diego beaches in the winter.

    4
    Brian Woodward with the Coastal Processes Group at Scripps conducts a survey at Torrey Pines State Beach. Here they are tracking the beach cobble to better understand how the rocks on the beach build up and retreat, and potentially act as a barrier to coastal erosion. Photo by Erik Jepsen/University Communications.

    “Each LiDAR survey provides a snapshot that we compare to previous surveys, to measure and track erosion over time,” said Young. “We use these surveys to quantify the erosion processes, identify erosion patterns on cliffs and beach, and examine stability conditions. The LiDAR surveys allow us to examine the site conditions before and after a landslide and help inform coastal management.”

    High tides, large surf, wave run up, groundwater intrusion, rainfall, weathering and sea-level rise can all contribute to beach and cliff erosion. Young and Zumberge are hoping to gain a better understanding of the complex processes that lead up to cliff failures.

    Better understanding this interplay may help answer the question of whether signals exist that can forecast where and when an increased risk for collapse is developing. If these signals exist, they would be foundational to informing recommendations towards the development of a potential early landslide warning system also envisioned in the AB 66 bill.

    The second phase of AB 66, which is still awaiting permitting approval, would also see the installation of optical-fiber strainmeters at key locations along the cliffs. The strainmeters, which were also developed at Scripps for earthquake research, can measure earth movements at the scale of nanometers.

    The strainmeters would be installed by embedding a fiber cable near the cliff top. The quarter-inch cable “uses light as a measuring tape,” according to Wyatt, to capture any strains of movements in the ground, sampling as quickly as 50,000 times per second.

    5
    LiDAR scanning creates high resolution spatial maps of the cliff face and beach elevation. These two maps show scans of Torrey Pines colored by elevation (green being lower and red higher elevation), and in true color. The 3D model shown here is made up of more than 11 million data points. Comparing these models over time allows scientists to measure the volume of cliff or beach that has eroded. Photo credit: Coastal Processes Group at Scripps.

    Any movement detected is measured instantly, creating a record similar to that from an earthquake seismograph. These important measurements may help identify small ground movement signals that precede a large cliff failure event.

    These innovations are part of a suite of instruments helping oceanographers and geologists project the future of California’s coastline in an era of changing climate. Other programs that complement this research include the Coastal Data Information Program at Scripps, which generates wave model forecasts that can help estimate how waves may interact with the coastline, and the Resilient Futures program, which works with the City of Imperial Beach to provide enhanced flood forecasting to help the community better prepare for sea-level rise.

    The beaches in San Diego County are among the most studied in California. Routine beach surveys conducted by Scripps using all-terrain vehicles and GPS date back more than twenty years. The newer mobile LiDAR surveys provide improved coastal coverage including the cliffs and other coastal features. The surveys have expanded over time thanks to advances in technology and increased demand for this critical research to understand threats to infrastructure. The new truck- and drone-based mobile data collection have facilitated higher frequency repeat surveys and are proving critical to better understanding coastal processes.

    The California coastline is home to significant and costly infrastructure on the coastline, including homes, railways, highways, wastewater treatment plants, military facilities, power plants and more. The railway corridor connecting San Diego to Los Angeles runs along the beach-top bluffs, with closures and service disruptions following cliff failures. There are calls to relocate the tracks off the bluffs, estimates of which could cost several billion dollars.

    “By better understanding how the coastline is evolving now, we can make better predictions for the future,” said Young.

    6
    The Scripps Coastal Processes Group conducts a LiDAR survey in Del Mar following a cliff collapse next to the rail corridor in February 2021. Photo credit: Coastal Process Group at Scripps Institution of Oceanography.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California, San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 4:18 pm on May 4, 2022 Permalink | Reply
    Tags: "Getting a Better View of Landslide Risk With LiDAR", , , , LiDAR allows geologists to make accurate 3D images of the earth’s surface through pulses of light., LIDAR – Light Detection and Ranging,   

    From The North Carolina State University: “Getting a Better View of Landslide Risk With LiDAR” 

    NC State bloc

    From The North Carolina State University

    May 4, 2022
    Tracey Peake

    1
    Drone photo of the aftermath of a debris flow, southern Appalachian Mountains, Macon County, North Carolina, April 12, 2020. Credit: Corey Scheip.

    In the mountains of North Carolina, landslides are no joke. Triggered by heavy rains, mountainside soils can become saturated and “unstuck.” As a result, what starts as a small landslide can quickly escalate into a huge debris flow that uproots trees and dislodges boulders, scouring everything in its path as it quickly flows downhill at speeds up to 30 mph. The cost – in both infrastructure and human lives – can be devastating.

    A quick note on the terminology being used here. Landslides and debris flows are not the same. They are both considered “mass-wasting events” in that they move soil, debris, and rock downhill, but they differ in both water content and movement mechanism. Landslides move like a sled down a snowy slope, while debris flows, which contain more water, flow like a turbulent mountain stream – but with a lot more force.

    Given the unpredictability of these mass-wasting events, figuring out where they may be more likely to occur seems a worthwhile project. Enter geologists Karl Wegmann, former NC State Ph.D. student Corey Scheip, and LiDAR.

    LiDAR, which stands for light detection and ranging, is an instrument that allows geologists to make accurate 3D images of the earth’s surface through pulses of light.

    Scheip and Wegmann were studying a landslide event south of Asheville in the Blue Ridge Mountains in 2018. A storm that dumped up to six inches of rain over three hours created 240 separate landslide-debris flows in the area.

    “We were fortunate because North Carolina is a leader in having the entire state surveyed with very high-resolution LiDAR topography data,” Wegmann says. “And we had LiDAR data from both before and after the event, so we were able to calculate what got displaced and how.”

    Traditionally, when geologists estimate whether an area is susceptible to landslides, they study the volume of debris flow after an event and try to figure out where it started.

    But LiDAR data allowed Scheip and Wegmann to look at how water flows downward from the areas above the debris flow. They then calculated how much water a certain area might receive from a storm and how likely landslides might then be in that area.

    “Essentially, we calculated the contributing drainage area,” Wegmann says. “If you look at every meter of the landscape above the debris flow and estimate where water is likely to collect, you can calculate where you may get enough water to create a triggering landslide, that if it is directed into a stream channel, very likely may transition into a fast-moving and damaging debris flow event.”

    The researchers also used LiDAR to look at the material transport rate along the debris flow path, meaning how much “stuff” gets moved from the start to the end of the debris flow. They found that erosion does not equal deposition, which was surprising.

    “In a perfect world, a debris flow starts, flows down a track, and everything piles up at that bottom,” Wegmann says. “So, in theory, the same amount that erodes off of the hillslope deposits at the bottom. However, we found that only about 70% of the material ends up at the bottom. That means 30% is moved into a river and washed out of the system.”

    Knowing how much material is actually moving downslope is important for modeling and predicting how debris flows will behave: how fast they will pick up new material, how big they will get and how far they will go. This information allows geologists to predict likely runout or deposition zones.

    “Most houses are built at the foot of valleys,” Wegmann says. “This data could give builders and planners the ability to look at topography and determine less hazardous places to build.”

    The work appears in the March 12, 2022, issue of the journal Landslides.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    NC State campus

    The North Carolina State University was founded with a purpose: to create economic, societal and intellectual prosperity for the people of North Carolina and the country. We began as a land-grant institution teaching the agricultural and mechanical arts. Today, we’re a pre-eminent research enterprise that excels in science, technology, engineering, math, design, the humanities and social sciences, textiles and veterinary medicine.

    North Carolina State University students, faculty and staff take problems in hand and work with industry, government and nonprofit partners to solve them. Our 34,000-plus high-performing students apply what they learn in the real world by conducting research, working in internships and co-ops, and performing acts of world-changing service. That experiential education ensures they leave here ready to lead the workforce, confident in the knowledge that NC State consistently rates as one of the best values in higher education.

    North Carolina State University is a public land-grant research university in Raleigh, North Carolina. Founded in 1887 and part of the University of North Carolina system, it is the largest university in the Carolinas. The university forms one of the corners of the Research Triangle together with Duke University in Durham and the University of North Carolina at Chapel Hill. It is classified among “R1: Doctoral Universities – Very high research activity”.

    The North Carolina General Assembly established the North Carolina College of Agriculture and Mechanic Arts, now North Carolina State University, on March 7, 1887, originally as a land-grant college. The college underwent several name changes and officially became North Carolina State University at Raleigh in 1965, and by longstanding convention, the “at Raleigh” portion was omitted. Today, North Carolina State University has an enrollment of more than 35,000 students, making it among the largest in the country. North Carolina State University has historical strengths in engineering, statistics, agriculture, life sciences, textiles, and design and offers bachelor’s degrees in 106 fields of study. The graduate school offers master’s degrees in 104 fields, doctoral degrees in 61 fields, and a Doctor of Veterinary Medicine.

    North Carolina State University athletic teams are known as the Wolfpack. The name was adopted in 1922 when a disgruntled fan described the behavior of the student body at athletic events as being “like a wolf pack.” They compete in NCAA Division I and have won eight national championships: two NCAA championships, two AIAW championships, and four titles under other sanctioning bodies.

    The North Carolina General Assembly founded North Carolina State University on March 7, 1887 as a land-grant college under the name “North Carolina College of Agriculture and Mechanic Arts,” or “North Carolina A&M” for short. In the segregated system, it was open only to white students. As a land-grant college, North Carolina A&M would provide a liberal and practical education while focusing on military tactics, agriculture, and the mechanical arts without excluding classical studies. Since its founding, the university has maintained these objectives while building on them. After opening in 1889, North Carolina A&M saw its enrollment fluctuate and its mandate expand. In 1917, it changed its name to “North Carolina State College of Agriculture and Engineering”—or “North Carolina State” for short. During the Great Depression, the North Carolina state government, under Governor O. Max Gardner, administratively combined the University of North Carolina, the Woman’s College (now the University of North Carolina at Greensboro), and North Carolina State University. This conglomeration became the University of North Carolina in 1931. In 1937 Blake R Van Leer joined as Dean and started the graduate program for engineering. Following World War II, the university grew and developed. The G.I. Bill enabled thousands of veterans to attend college, and enrollment shot past the 5,000 mark in 1947.

    State College created new academic programs, including the School of Architecture and Landscape Design in 1947 (renamed as the School of Design in 1948), the School of Education in 1948, and the School of Forestry in 1950. In the summer of 1956, following the US Supreme Court ruling in Brown v. Board of Education (1954) that segregated public education was unconstitutional, North Carolina State College enrolled its first African-American undergraduates, Ed Carson, Manuel Crockett, Irwin Holmes, and Walter Holmes.

    In 1962, State College officials desired to change the institution’s name to North Carolina State University. Consolidated university administrators approved a change to the University of North Carolina at Raleigh, frustrating many students and alumni who protested the change with letter writing campaigns. In 1963, State College officially became North Carolina State of the University of North Carolina. Students, faculty, and alumni continued to express dissatisfaction with this name, however, and after two additional years of protest, the name was changed to the current North Carolina State University at Raleigh. However, by longstanding convention, the “at Raleigh” portion is omitted, and the shorter names “North Carolina State University” and “NC State University” are accepted on first reference in news stories. Indeed, school officials discourage using “at Raleigh” except when absolutely necessary, as the full name implies that there is another branch of the university elsewhere in the state.

    In 1966, single-year enrollment reached 10,000. In the 1970s enrollment surpassed 19,000 and the School of Humanities and Social Sciences was added.

    Celebrating its centennial in 1987, North Carolina State University reorganized its internal structure, renaming all its schools to colleges (e.g. School of Engineering to the College of Engineering). Also in this year, it gained 700 acres (2.8 km^2) of land that was developed as Centennial Campus. Since then, North Carolina State University has focused on developing its new Centennial Campus. It has invested more than $620 million in facilities and infrastructure at the new campus, with 62 acres (0.3 km^2) of space being constructed. Sixty-one private and government agency partners are located on Centennial Campus.

    North Carolina State University has almost 8,000 employees, nearly 35,000 students, a $1.495 billion annual budget, and a $1.4 billion endowment. It is the largest university in the state and one of the anchors of North Carolina’s Research Triangle, together with Duke University and the University of North Carolina at Chapel Hill.

    In 2009, North Carolina State University canceled a planned appearance by the Dalai Lama to speak on its Raleigh campus, citing concerns about a Chinese backlash and a shortage of time and resources.

    North Carolina State University Libraries Special Collections Research Center, located in D.H. Hill Library, maintains a website devoted to NC State history entitled Historical State.

    North Carolina State University is one of 17 institutions that constitute the University of North Carolina system. Each campus has a high degree of independence, but each submits to the policies of the UNC system Board of Governors. The 32 voting members of the Board of Governors are elected by the North Carolina General Assembly for four-year terms. President Thomas W. Ross heads the system.

    The Board of Trustees of North Carolina State University has thirteen members and sets all policies for the university. The UNC system Board of Governors elects eight of the trustees and the Governor of North Carolina appoints four. The student body president serves on the Board of Trustees as a voting member. The UNC system also elects the Chancellor of North Carolina State University.

    The Board of Trustees administers North Carolina State University’s eleven academic colleges. Each college grants its own degrees with the exception of the First Year College which provides incoming freshmen the opportunity to experience several disciplines before selecting a major. The College of Agriculture and Life Sciences is the only college to offer associate’s degrees and the College of Veterinary Medicine does not grant undergraduate degrees. Each college is composed of numerous departments that focus on a particular discipline or degree program, for example Food Science, Civil Engineering, Genetics or Accounting. There are a total of 66 departments administered by all eleven NC State colleges.

    In total, North Carolina State University offers nine associate’s degrees in agriculture, bachelor’s degrees in 102 areas of study, master’s degrees in 108 areas and doctorate degrees in 60 areas. North Carolina State University is known for its programs in agriculture, engineering, textiles, and design. The textile and paper engineering programs are notable, given the uniqueness of the subject area.

    As of the 2018-2019 school year, North Carolina State University has the following colleges and academic departments:

    College of Agriculture and Life Sciences
    College of Design
    College of Education
    College of Engineering
    College of Humanities and Social Sciences
    College of Natural Resources
    Poole College of Management
    College of Sciences
    Wilson College of Textiles
    College of Veterinary Medicine
    The Graduate School
    University College

    In 2014 – 2015 North Carolina State University became part of only fifty-four institutions in the U.S. to have earned the “Innovation and Economic Prosperity University” designation by the Association of Public and Land-grant Universities.

    For 2020, U.S. News & World Report ranks North Carolina State University tied for 84th out of all national universities and tied for 34th out of public universities in the U.S., tied at 31st for “most innovative” and 69th for “best value” schools.

    North Carolina State University’s College of Engineering was tied for 24th by U.S. News & World Report, with many of its programs ranking in the top 30 nationally.North Carolina State University’s Nuclear Engineering program is considered to be one of the best in the world and in 2020, was ranked 3rd in the country (behind The Massachusetts Institute of Technology and the University of Michigan Ann Arbor). The biological and agricultural engineering programs are also widely recognized and were ranked 4th nationally. In 2019 North Carolina State University’s manufacturing and industrial engineering program was ranking 13th in the nation, and material science at 15th. Other notable programs included civil engineering at 20th, environmental engineering tied at 21st, chemical engineering tied for 22nd, computer engineering at 28th, and biomedical engineering ranking 28th nationally in 2019. In 2019, the Academic Ranking of World Universities ranked NC State’s electrical engineering program 9th internationally and chemical engineering 20th. In 2020, The Princeton Review ranked NC State 36th for game design.

    North Carolina State University is also home to the only college dedicated to textiles in the country, the Wilson College of Textiles, which is a partner of the National Council of Textile Organizations and is widely regarded as one of the best textiles programs in the world. In 2020 the textile engineering program was ranked 1st nationally by College Factual. In 2017, Business of Fashion Magazine ranked the college’s fashion and apparel design program 8th in the country and 30th in the world. In 2018, Fashion Schools ranked the college’s fashion and textile management program 11th in the nation.

    North Carolina State University’s Masters program in Data Analytics was the first in the United States. Launched in 2007, it is part of the Institute for Advanced Analytics and was created as a university-wide multidisciplinary initiative to meet the rapidly growing demand in the labor market for analytics professionals. In 2012, Thomas H. Davenport and D.J. Patil highlighted the MSA program in Harvard Business Review as one of only a few sources of talent with proven strengths in data science.

    North Carolina State University is known for its College of Veterinary Medicine and in 2020 it was ranked 4th nationally, by U.S. News & World Report, 25th internationally by NTU Ranking and 36th internationally by the Academic Ranking of World Universities.

    In 2020, North Carolina State University’s College of Design was ranked 25th by College Factual. In 2018, the Animation Career Review ranked North Carolina State University’s Graphic Design program 4th in the country and best among public universities.

    In 2020, the College of Education tied for 45th in the U.S. and the Poole College of Management is tied for 52nd among business schools. North Carolina State University’s Entrepreneurship program is ranked 10th internationally among undergraduate programs by The Princeton Review in 2020. For 2010 the Wall Street Journal surveyed recruiters and ranked NC State number 19 among the top 25 recruiter picks. In 2018, U.S. News & World Report ranked the Department of Statistics 16th (tied) in the nation.

    In fiscal year 2019, North Carolina State University received 95 awards and $29,381,782 in National Institutes of Health (NIH) Funds for Research. For fiscal year 2017, NC State was ranked 45th in total research expenditure by the National Science Foundation.

    Kiplinger’s Personal Finance placed North Carolina State University 9th in its 2018 ranking of best value public colleges in the United States.

     
  • richardmitnick 7:29 am on March 29, 2022 Permalink | Reply
    Tags: "Stanford engineers enable simple cameras to see in 3D", , , , LIDAR – Light Detection and Ranging, Lidar is like radar but with light instead of radio waves., ,   

    From Stanford University Engineering: “Stanford engineers enable simple cameras to see in 3D” 

    From Stanford University Engineering

    at

    Stanford University Name

    Stanford University

    March 28, 2022
    Written by Andrew Myers

    Media Contact
    Jill Wu
    Stanford University School of Engineering
    (386) 383-6061
    jillwu@stanford.edu

    With a simple design and some clever engineering, researchers devised a high-frequency, low-power, compact optical device that allows virtually any digital camera to perceive depth. Smartphone cameras see 3D.

    1
    The lab-based prototype lidar system that the research team built, which successfully captured megapixel-resolution depth maps using a commercially available digital camera. Image credit: Andrew Brodhead.

    Standard image sensors, like the billion or so already installed in practically every smartphone in use today, capture light intensity and color. Relying on common, off-the-shelf sensor technology – known as CMOS – these cameras have grown smaller and more powerful by the year and now offer tens-of-megapixels resolution. But they’ve still seen in only two dimensions, capturing images that are flat, like a drawing – until now.

    Researchers at Stanford University have created a new approach that allows standard image sensors to see light in three dimensions. That is, these common cameras could soon be used to measure the distance to objects.

    The engineering possibilities are dramatic. Measuring distance between objects with light is currently possible only with specialized and expensive lidar – short for “light detection and ranging” – systems. If you’ve seen a self-driving car tooling around, you can spot it right off by the hunchback of technology mounted to the roof. Most of that gear is the car’s lidar crash-avoidance system, which uses lasers to determine distances between objects.

    Lidar is like radar but with light instead of radio waves. By beaming a laser at objects and measuring the light that bounces back, it can tell how far away an object is, how fast it’s traveling, whether it’s moving closer or farther away and, most critically, it can calculate whether the paths of two moving objects will intersect at some point in the future.

    “Existing lidar systems are big and bulky, but someday, if you want lidar capabilities in millions of autonomous drones or in lightweight robotic vehicles, you’re going to want them to be very small, very energy efficient, and offering high performance,” explains Okan Atalar, a doctoral candidate in electrical engineering at Stanford and the first author on the new paper in the journal Nature Communications that introduces this compact, energy-efficient device that can be used for lidar.

    For engineers, the advance offers two intriguing opportunities. First, it could enable megapixel-resolution lidar – a threshold not possible today. Higher resolution would allow lidar to identify targets at greater range. An autonomous car, for example, might be able to distinguish a cyclist from a pedestrian from farther away – sooner, that is – and allow the car to more easily avoid an accident. Second, any image sensor available today, including the billions in smartphones now, could capture rich 3D images with minimal hardware additions.

    Changing how machines see

    One approach to adding 3D imaging to standard sensors is achieved by adding a light source (easily done) and a modulator (not so easily done) that turns the light on and off very quickly, millions of times every second. In measuring the variations in the light, engineers can calculate distance. Existing modulators can do it, too, but they require relatively large amounts of power. So large, in fact, that it makes them entirely impractical for everyday use.

    The solution that the Stanford team, a collaboration between the Laboratory for Integrated Nano-Quantum Systems (LINQS) and ArbabianLab, came up with relies on a phenomenon known as acoustic resonance. The team built a simple acoustic modulator using a thin wafer of lithium niobate – a transparent crystal that is highly desirable for its electrical, acoustic and optical properties – coated with two transparent electrodes.

    Critically, lithium niobate is piezoelectric. That is, when electricity is introduced through the electrodes, the crystal lattice at the heart of its atomic structure changes shape. It vibrates at very high, very predictable and very controllable frequencies. And, when it vibrates, lithium niobate strongly modulates light – with the addition of a couple polarizers, this new modulator effectively turns light on and off several million times a second.

    “What’s more, the geometry of the wafers and the electrodes defines the frequency of light modulation, so we can fine-tune the frequency,” Atalar says. “Change the geometry and you change the frequency of modulation.”

    In technical terms, the piezoelectric effect is creating an acoustic wave through the crystal that rotates the polarization of light in desirable, tunable and usable ways. It is this key technical departure that enabled the team’s success. Then a polarizing filter is carefully placed after the modulator that converts this rotation into intensity modulation – making the light brighter and darker – effectively turning the light on and off millions of times a second.

    “While there are other ways to turn the light on and off,” Atalar says, “this acoustic approach is preferable because it is extremely energy efficient.”

    Practical outcomes

    Best of all, the modulator’s design is simple and integrates into a proposed system that uses off-the-shelf cameras, like those found in everyday cellphones and digital SLRs. Atalar and advisor Amin Arbabian, associate professor of electrical engineering and the project’s senior author, think it could become the basis for a new type of compact, low-cost, energy-efficient lidar – “standard CMOS lidar,” as they call it – that could find its way into drones, extraterrestrial rovers and other applications.

    The impact for the proposed modulator is enormous; it has the potential to add the missing 3D dimension to any image sensor, they say. To prove it, the team built a prototype lidar system on a lab bench that used a commercially available digital camera as a receptor. The authors report that their prototype captured megapixel-resolution depth maps, while requiring small amounts of power to operate the optical modulator.

    Better yet, with additional refinements, Atalar says the team has since further reduced the energy consumption by at least 10 times the already-low threshold reported in the paper, and they believe several-hundred-times-greater energy reduction is within reach. If that happens, a future of small-scale lidar with standard image sensors – and 3D smartphone cameras – could become a reality.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.
    Mission

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

    Stanford University

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory(originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.
    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land.
    Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 1:29 pm on September 17, 2020 Permalink | Reply
    Tags: "Stanford researchers devise way to see through clouds and fog", A highly efficient algorithm that can reconstruct three-dimensional hidden scenes based on the movement of individual particles of light or photons., , , LIDAR – Light Detection and Ranging, ,   

    From Stanford University: “Stanford researchers devise way to see through clouds and fog” 

    Stanford University Name
    From Stanford University

    September 9, 2020
    Taylor Kubota
    (650) 724-7707
    tkubota@stanford.edu

    Like a comic book come to life, researchers at Stanford University have developed a kind of X-ray vision – only without the X-rays. Working with hardware similar to what enables autonomous cars to “see” the world around them, the researchers enhanced their system with a highly efficient algorithm that can reconstruct three-dimensional hidden scenes based on the movement of individual particles of light, or photons. In tests, detailed in a paper published Sept. 9 in Nature Communications, their system successfully reconstructed shapes obscured by 1-inch-thick foam. To the human eye, it’s like seeing through walls.

    Imaging through scattering media
    1
    Schematic of 3D Imaging through scattering media. a A pulsed laser and time resolved single-photon detector raster-scan the surface of the scattering medium. b Light diffuses through the medium, is back-reflected by the hidden object, and diffuses back through the medium to the detector. c Returning photons from the hidden object are captured by the detector over time, with earlier arriving photons being gated out (dashed line). SG, scanning galvanometer; BS, beam splitter; OL, objective lens; SPAD, single-photon avalanche diode; TCSPC, time-correlated single-photon counter.


    Abstract
    Optical imaging techniques, such as light detection and ranging (LiDAR), are essential tools in remote sensing, robotic vision, and autonomous driving. However, the presence of scattering places fundamental limits on our ability to image through fog, rain, dust, or the atmosphere. Conventional approaches for imaging through scattering media operate at microscopic scales or require a priori knowledge of the target location for 3D imaging. We introduce a technique that co-designs single-photon avalanche diodes, ultra-fast pulsed lasers, and a new inverse method to capture 3D shape through scattering media. We demonstrate acquisition of shape and position for objects hidden behind a thick diffuser (≈6 transport mean free paths) at macroscopic scales. Our technique, confocal diffuse tomography, may be of considerable value to the aforementioned applications.

    “A lot of imaging techniques make images look a little bit better, a little bit less noisy, but this is really something where we make the invisible visible,” said Gordon Wetzstein, assistant professor of electrical engineering at Stanford and senior author of the paper. “This is really pushing the frontier of what may be possible with any kind of sensing system. It’s like superhuman vision.”

    This technique complements other vision systems that can see through barriers on the microscopic scale – for applications in medicine – because it’s more focused on large-scale situations, such as navigating self-driving cars in fog or heavy rain and satellite imaging of the surface of Earth and other planets through hazy atmosphere.

    Supersight from scattered light

    In order to see through environments that scatter light every-which-way, the system pairs a laser with a super-sensitive photon detector that records every bit of laser light that hits it. As the laser scans an obstruction like a wall of foam, an occasional photon will manage to pass through the foam, hit the objects hidden behind it and pass back through the foam to reach the detector. The algorithm-supported software then uses those few photons – and information about where and when they hit the detector – to reconstruct the hidden objects in 3D.

    4
    The laser scanning process in action. Single photons that travel through the foam, bounce off the “S,” and back through the foam to the detector provide information for the algorithm’s reconstruction of the hidden object. (Image credit: Stanford Computational Imaging Lab)

    This is not the first system with the ability to reveal hidden objects through scattering environments, but it circumvents limitations associated with other techniques. For example, some require knowledge about how far away the object of interest is. It is also common that these systems only use information from ballistic photons, which are photons that travel to and from the hidden object through the scattering field but without actually scattering along the way.

    “We were interested in being able to image through scattering media without these assumptions and to collect all the photons that have been scattered to reconstruct the image,” said David Lindell, a graduate student in electrical engineering and lead author of the paper. “This makes our system especially useful for large-scale applications, where there would be very few ballistic photons.”

    In order to make their algorithm amenable to the complexities of scattering, the researchers had to closely co-design their hardware and software, although the hardware components they used are only slightly more advanced than what is currently found in autonomous cars. Depending on the brightness of the hidden objects, scanning in their tests took anywhere from one minute to one hour, but the algorithm reconstructed the obscured scene in real-time and could be run on a laptop.

    “You couldn’t see through the foam with your own eyes, and even just looking at the photon measurements from the detector, you really don’t see anything,” said Lindell. “But, with just a handful of photons, the reconstruction algorithm can expose these objects – and you can see not only what they look like, but where they are in 3D space.”

    Space and fog

    5
    A three-dimensional reconstruction of the reflective letter “S,” as seen through the 1-inch-thick foam. (Image credit: Stanford Computational Imaging Lab)

    Someday, a descendant of this system could be sent through space to other planets and moons to help see through icy clouds to deeper layers and surfaces. In the nearer term, the researchers would like to experiment with different scattering environments to simulate other circumstances where this technology could be useful.

    “We’re excited to push this further with other types of scattering geometries,” said Lindell. “So, not just objects hidden behind a thick slab of material but objects that are embedded in densely scattering material, which would be like seeing an object that’s surrounded by fog.”

    Lindell and Wetzstein are also enthusiastic about how this work represents a deeply interdisciplinary intersection of science and engineering.

    “These sensing systems are devices with lasers, detectors and advanced algorithms, which puts them in an interdisciplinary research area between hardware and physics and applied math,” said Wetzstein. “All of those are critical, core fields in this work and that’s what’s the most exciting for me.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 2:42 pm on August 20, 2020 Permalink | Reply
    Tags: "Stanford scientists slow and steer light with resonant nanoantennas", , “High-Q” resonators, Biosensing, , LIDAR – Light Detection and Ranging, , , ,   

    From Stanford University: Women in STEM-“Stanford scientists slow and steer light with resonant nanoantennas” Jennifer Dionne 

    Stanford University Name
    From Stanford University

    August 17, 2020
    Media Contact
    Ker Than
    Stanford News Service:
    (650) 723-9820
    kerthan@stanford.edu

    Written By Lara Streiff

    Researchers have fashioned ultrathin silicon nanoantennas that trap and redirect light, for applications in quantum computing, LIDAR and even the detection of viruses.

    1
    An artist rendering of a high-Q metasurface beamsplitter. These “high-quality-factor” or “high-Q” resonators could lead to novel ways of manipulating and using light. (Image credit: Riley A. Suhar)

    Light is notoriously fast. Its speed is crucial for rapid information exchange, but as light zips through materials, its chances of interacting and exciting atoms and molecules can become very small. If scientists can put the brakes on light particles, or photons, it would open the door to a host of new technology applications.

    Now, in a paper published on Aug. 17, in Nature Nanotechnology, Stanford scientists demonstrate a new approach to slow light significantly, much like an echo chamber holds onto sound, and to direct it at will. Researchers in the lab of Jennifer Dionne, associate professor of materials science and engineering at Stanford, structured ultrathin silicon chips into nanoscale bars to resonantly trap light and then release or redirect it later. These “high-quality-factor” or “high-Q” resonators could lead to novel ways of manipulating and using light, including new applications for quantum computing, virtual reality and augmented reality; light-based WiFi; and even the detection of viruses like SARS-CoV-2.

    “We’re essentially trying to trap light in a tiny box that still allows the light to come and go from many different directions,” said postdoctoral fellow Mark Lawrence, who is also lead author of the paper. “It’s easy to trap light in a box with many sides, but not so easy if the sides are transparent – as is the case with many Silicon-based applications.”

    Make and manufacture

    Before they can manipulate light, the resonators need to be fabricated, and that poses a number of challenges.

    A central component of the device is an extremely thin layer of silicon, which traps light very efficiently and has low absorption in the near-infrared, the spectrum of light the scientists want to control. The silicon rests atop a wafer of transparent material (sapphire, in this case) into which the researchers direct an electron microscope “pen” to etch their nanoantenna pattern. The pattern must be drawn as smoothly as possible, as these antennas serve as the walls in the echo-chamber analogy, and imperfections inhibit the light-trapping ability.

    “High-Q resonances require the creation of extremely smooth sidewalls that don’t allow the light to leak out,” said Dionne, who is also Senior Associate Vice Provost of Research Platforms/Shared Facilities. “That can be achieved fairly routinely with larger micron-scale structures, but is very challenging with nanostructures which scatter light more.”

    Pattern design plays a key role in creating the high-Q nanostructures. “On a computer, I can draw ultra-smooth lines and blocks of any given geometry, but the fabrication is limited,” said Lawrence. “Ultimately, we had to find a design that gave good-light trapping performance but was within the realm of existing fabrication methods.”

    High quality (factor) applications

    Tinkering with the design has resulted in what Dionne and Lawrence describe as an important platform technology with numerous practical applications.

    The devices demonstrated so-called quality factors up to 2,500, which is two orders of magnitude (or 100 times) higher than any similar devices have previously achieved. Quality factors are a measure describing resonance behavior, which in this case is proportional to the lifetime of the light. “By achieving quality factors in the thousands, we’re already in a nice sweet spot from some very exciting technological applications,” said Dionne.

    For example, biosensing. A single biomolecule is so small that it is essentially invisible. But passing light over a molecule hundreds or thousands of times can greatly increase the chance of creating a detectable scattering effect.

    Dionne’s lab is working on applying this technique to detecting COVID-19 antigens – molecules that trigger an immune response – and antibodies – proteins produced by the immune system in response. “Our technology would give an optical readout like the doctors and clinicians are used to seeing,” said Dionne. “But we have the opportunity to detect a single virus or very low concentrations of a multitude of antibodies owing to the strong light-molecule interactions.” The design of the high-Q nanoresonators also allows each antenna to operate independently to detect different types of antibodies simultaneously.

    Though the pandemic spurred her interest in viral detection, Dionne is also excited about other applications, such as LIDAR – or Light Detection and Ranging, which is laser-based distance measuring technology often used in self-driving vehicles – that this new technology could contribute to. “A few years ago I couldn’t have imagined the immense application spaces that this work would touch upon,” said Dionne. “For me, this project has reinforced the importance of fundamental research – you can’t always predict where fundamental science is going to go or what it’s going to lead to, but it can provide critical solutions for future challenges.”

    This innovation could also be useful in quantum science. For example, splitting photons to create entangled photons that remain connected on a quantum level even when far apart would typically require large tabletop optical experiments with big expensive precisely polished crystals. “If we can do that, but use our nanostructures to control and shape that entangled light, maybe one day we will have an entanglement generator that you can hold in your hand,” Lawrence said. “With our results, we are excited to look at the new science that’s achievable now, but also trying to push the limits of what’s possible.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: