Tagged: Leiden MASCARA on La Palma in the Canary Islands Spain Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:31 am on July 17, 2017 Permalink | Reply
    Tags: , , , , , , Leiden MASCARA on La Palma in the Canary Islands Spain   

    From ESO: “Eyes Wide Open for MASCARA in Chile” 

    ESO 50 Large

    European Southern Observatory

    19 July 2017
    Ignas Snellen
    Leiden Observatory
    Postbus 9513, 2300 RA Leiden, The Netherlands
    snellen@strw.leidenuniv.nl

    Richard Hook
    ESO Public Information Officer
    Garching bei München, Germany
    Tel: +49 89 3200 6655
    Cell: +49 151 1537 3591
    rhook@eso.org

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    The Leiden/MASCARA (Multi-site All-Sky CAmeRA) station at ESO’s La Silla Observatory in Chile has achieved first light. This new facility will seek out transiting exoplanets as they pass in front of their bright parent stars and create a catalogue of targets for future exoplanet characterisation observations.

    Planet transit. NASA/Ames

    In June 2016, ESO reached an agreement with Leiden University to site a station of MASCARA at ESO’s La Silla Observatory in Chile, taking advantage of the excellent observing conditions of the southern hemisphere skies. This station is now made its first successful test observations.

    The MASCARA station in Chile is the second to begin operations; the first station is in the northern hemisphere on the Roque de los Muchachos Observatory, on the island of La Palma in the Canary Islands.

    Roque de los Muchachos Observatory located in the municipality of Garafía on the island of La Palma in the Canary Islands. The observatory site is operated by the Instituto de Astrofís

    Each station contains a battery of cameras in a temperature-controlled enclosure which will monitor almost the entire sky visible from its location [1].

    “Stations are needed in both the northern and southern hemisphere to obtain all-sky coverage,” says Ignas Snellen, of Leiden University and the MASCARA project lead. “With the second station at La Silla now in place, we can monitor almost all the brighter stars over the entire sky.”

    Built by Leiden University in the Netherlands, MASCARA is a planet-hunting instrument. Its very compact and low-cost design appears unassuming, but is innovative, flexible and highly reliable. Consisting of five digital cameras with off-the-shelf components, this small planet-hunter takes repeated measurements of the brightnesses of thousands of stars and uses software to hunt for the slight dimming of a star’s light as a planet crosses the face of the star.

    This exoplanet discovery method is called transit photometry. The planet’s size and orbit can be directly determined through this method, and in very bright systems the planet’s atmosphere can also be characterised by further observations with large telescopes such as ESO’s Very Large Telescope.

    The main purpose of MASCARA is to find exoplanets around the brightest stars in the sky, currently not probed either by space or ground-based surveys. The target population for MASCARA consists mostly of “hot Jupiters” — large worlds that are physically similar to Jupiter but orbit very close to their parent star, resulting in high surface temperatures and orbital periods of only a few hours. Dozens of hot Jupiters have been discovered with the radial velocity exoplanet detection method, as they exert a noticeably gravitational influence on their host stars.

    “Not much can yet be learned from the planets discovered via the radial velocity method, as they require significantly better direct imaging techniques to separate the light of these cool, old planets from that of their host stars,” comments Snellen. “In contrast, planets that transit their host stars can readily be characterised.”

    MASCARA also has the potential to discover super-Earths and Neptune-sized planets. The project is expected to provide a catalogue of the brightest nearby targets for future exoplanet characterisation observations, particularly for detailed planetary atmosphere observations.
    Notes

    [1] MASCARA can monitor stars down to about magnitude 8.4 — roughly ten times fainter than can be seen with the naked eye on a clear dark night. Due to its design, MASCARA is less sensitive to weather condition than other observing instruments, and so observations may be made even when the sky is partially cloudy, thus extending observation times.

    Read more about MASCARA on the ESO website
    MASCARA website at Leiden University
    Agreement to site MASCARA station at La Silla
    Science paper on the design and operation of MASCARA

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition
    Visit ESO in Social Media-

    Facebook

    Twitter

    YouTube

    ESO Bloc Icon

    ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.

    ESO LaSilla
    ESO/Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT
    VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO Vista Telescope
    ESO/Vista Telescope at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    ESO NTT
    ESO/NTT at Cerro LaSilla 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO VLT Survey telescope
    VLT Survey Telescope at Cerro Paranal with an elevation of 2,635 metres (8,645 ft) above sea level

    ALMA Array
    ALMA on the Chajnantor plateau at 5,000 metres

    ESO E-ELT
    ESO/E-ELT to be built at Cerro Armazones at 3,060 m

    ESO APEX
    APEX Atacama Pathfinder 5,100 meters above sea level, at the Llano de Chajnantor Observatory in the Atacama desert

    Leiden MASCARA instrument, La Silla, located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

    Leiden MASCARA cabinet at ESO Cerro la Silla located in the southern Atacama Desert 600 kilometres (370 mi) north of Santiago de Chile at an altitude of 2,400 metres (7,900 ft)

     
  • richardmitnick 1:28 pm on July 10, 2017 Permalink | Reply
    Tags: , , , , , , IAC80 and SONG telescopes, Leiden MASCARA on La Palma in the Canary Islands Spain, , , NITES   

    From astrobites: “Finding the Brightest Exoplanet Hosts with MASCARA” 

    Astrobites bloc

    Astrobites

    Title: MASCARA-2 b: A hot Jupiter transiting a mV=7.6 A-star
    Authors: G.J.J. Talens, A. B. Justesen, S. Albrecht, et al.
    First Author’s Institution: Leiden Observatory, Leiden University, the Netherlands

    Leiden Observatory


    Status: Submitted to A&A, open access

    Before we start: the system discussed in this astrobite was discovered separately by two teams and presented simultaneously. The other paper, by the KELT team, can be found here. This astrobite will focus on the results of the MASCARA team.


    The MASCARA instrument on La Palma

    Kelt North Telescope In Arizona at Winer Observatory by Ohio State University

    KELT South robotic telescope, Southerland, South Africa

    1
    Figure 1: The Leiden MASCARA instrument on La Palma. Source: http://mascara.strw.leidenuniv.nl/technical/

    It’s clear that there are a lot of exoplanets out there. While large surveys like K2 continue to bring in hundreds of new planets, other projects are filling in the gaps that these surveys miss.

    NASA/Kepler Telescope

    The relatively new project MASCARA intends to find planets around the brightest host stars yet. They are targeting stars with magnitudes less than 8.4 (remember that fainter stars have higher magnitudes). For comparison, that’s still fainter than the human eye can see (magnitude 6 or less), but it’s a fair bit brighter than the Kepler space telescope can see (Kepler saturates on stars brighter than about 11th magnitude). There are currently only 14 exoplanet host stars known that are brighter than 8.4th magnitude, with the brightest being KELT-9 at a magnitude of 7.56. These exoplanets around bright stars are interesting because it’s so much easier to do follow-up observations on them. In particular, in-depth studies of exoplanet atmospheres — which require collecting starlight that has passed through the exoplanet atmosphere, and studying how the atmosphere has affected the starlight — are much easier when the exoplanet orbits bright stars like these, simply because there are so many more photons that reach us.

    The MASCARA team operate a station at the La Palma observatory in Spain, observing the northern sky. Like many astronomical acronyms, MASCARA takes a bit of imagination: it stands for the Multi-site All-Sky CAmeRA. The station consists of five cameras, one each pointing North, South, East and West, and the fifth pointing straight up. Between them they can cover the whole visible sky. The cameras remain motionless while the stars pass overhead. Like Kepler, MASCARA is looking for exoplanet transits — the dip in a star’s light that means a planet is passing between us and the star. To do this, they take a series of six-second images with each camera. By identifying the same stars between images, and taking into account any atmospheric effects such as passing clouds, they can search each star for dips in brightness that might be exoplanet transits.

    Planet transit. NASA/Ames

    MASCARA-2b [No image available]

    MASCARA-2b is the second exoplanet to be discovered by this method, but the first to be published (MASCARA-1b is also in the works, but 2b was pushed ahead in the queue because of a simultaneous discovery by another team). From the MASCARA data in Figure 2, a clear transit can be seen every 3.47 days. To follow this up, the team observed transits with the NITES, IAC80 and SONG telescopes.

    6
    Near Infra-red Transiting ExoplanetS (NITES) telescope is 0.4-m semi-robotic telescope located at El Observatorio del Roque de los Muchachos (ORM) on La Palma in the Canary Islands

    3
    The IAC 80 telescope of the Observatorio del Teide.

    4
    Danish led SONG telescope i the Canary Islands, Spain.

    To emphasise how bright this star is compared to the usual astronomical targets: these are small telescopes — NITES in particular is only 40cm in diameter. Even these telescopes however had to be kept deliberately out-of-focus, blurring the resulting image and spreading the star’s light over more pixels, because otherwise there would be a danger of saturating the image. This practise is not uncommon for larger telescopes, but it’s surprising to see it necessary on these rather smaller telescopes.

    6
    Figure 2: Searching for strong periods in the MASCARA data (top) and then wrapping data around on that period to see the transit shape (bottom). This is Figure 1 in today’s paper.

    3
    Figure 3: Transits observed with MASCARA (top), NITES (middle) and IAC80 (bottom). Source: Figure 2 in today’s paper.

    The host star has a magnitude of 7.58, narrowly missing the record. It’s also an A-type star, towards the hotter end of the spectrum, and as such the star spins on its axis faster than the average star does. Generally fast rotation makes spectroscopic measurements difficult, as the difference Doppler shift between opposite sides of the star smears out the spectral lines that we’re interested in. Aided by the system’s brightness, however, the team were able to obtain spectra that were high-enough quality to overcome this difficulty. They found that the planet is a hot Jupiter, orbiting at around 6% of the Earth-Sun separation, and that it has a radius around double that of Jupiter itself. They also found that the planet’s orbit is quite well aligned with the direction that the star spins — this is unusual for hot Jupiters in systems like this, which generally seem to orbit with a slight tilt. The team hope that the system is well-placed for follow-up studies of the planet’s atmosphere, adding to the fairly small pool of planets in which such studies are possible.

    The MASCARA team is currently building a second MASCARA instrument in Chile, where it will be able to explore the southern sky — at present, only two of the fourteen brightest exoplanet hosts are southern. This same planet was simultaneously discovered by KELT, another project exploring the same types of stars. This is a growing area of exoplanet research, so look for further interesting results in the future!

    To emphasise how bright this star is compared to the usual astronomical targets: these are small telescopes — NITES in particular is only 40cm in diameter. Even these telescopes however had to be kept deliberately out-of-focus, blurring the resulting image and spreading the star’s light over more pixels, because otherwise there would be a danger of saturating the image. This practise is not uncommon for larger telescopes, but it’s surprising to see it necessary on these rather smaller telescopes.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    What do we do?

    Astrobites is a daily astrophysical literature journal written by graduate students in astronomy. Our goal is to present one interesting paper per day in a brief format that is accessible to undergraduate students in the physical sciences who are interested in active research.
    Why read Astrobites?

    Reading a technical paper from an unfamiliar subfield is intimidating. It may not be obvious how the techniques used by the researchers really work or what role the new research plays in answering the bigger questions motivating that field, not to mention the obscure jargon! For most people, it takes years for scientific papers to become meaningful.
    Our goal is to solve this problem, one paper at a time. In 5 minutes a day reading Astrobites, you should not only learn about one interesting piece of current work, but also get a peek at the broader picture of research in a new area of astronomy.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: